AR A LA AR

US 20230133791A1

a9y United State_s _ o
a2 Patent Application Publication o) Pub. No.: US 2023/0133791 A1l

Kasturi et al. 43) Pub. Date: May 4, 2023
(54) PROVENANCE INFERENCE FOR ADVANCED Publication Classification
CMS-TARGETING ATTACKS

(51) Int. CL
(71) Applicant: Georgia Tech Research Corporation, GO6L 21/55 (2006.01)

Atlanta, GA (US) (52) U.S.Cl

(72) Inventors: Ranjita Pai Kasturi, Atlanta, GA (US); CPC GO6I 21/554 (2013.01);
Brendan D. Saltaformaggio, Atlanta, GOoF 2221/033 (2013.01)
GA (US)
(57) ABSTRACT
(21) Appl. No.: 17/801,686 | | | |
In a method for detecting an attack compromise window 1n a
(22) PCT Filed: Mar. 4, 2021 CMS website for which a temporal sequence of a plurality
of snapshots of website backups have been stored, a tempo-
(80) PCT No.: PCT/US2021/020894 rally ordered set of spatial elements from each snapshot is
§ 371 (c)(1) constructed. Spatial metrics are computed for each indivi-
(2) Date: ’ Aug. 23, 2022 dual snapshot’s elements. The collected spatial metrics are
| 7 temporally correlated and queried against attack models to
Related U.S. Application Data recover an attack timeline. Attack events 1n the attack time-

line are labelled. A sequence of assigned attack labels 1s

(60) Provisional application No. 62/985,067, filed on Mar. verified. The compromise window 1s extracted from the
4, 2020. plurality of snapshots.

SPATIAL ELEMENT SEQUENCING

200

SPATIAL
(1) ELEMENTS /
~ i SNAPSHOT 5
WEBSITE | ;
WEBSITE | CONTENTS :
"'rji‘sf, Mg 1
<V, M>q L TEMPORAL CORRELATION COMPROMISE WINDOW EXTRACTION

f’“ sDIFFEﬁENTMLSF’m’EAL o
; _ | METRECS"W""F 1 , W
SPATIAL | SPATIALE v v oo L LOGICAL SQUENCE ::? whel|!
ANALYSIS . METRIC N\ /| i 31 ﬁﬁzgmﬂmﬂm 5
: EVGLUT!QN iiz'jﬁi'.;5;5%51?"-""' 8 ot / :: Sy A
gy - aveoutuer HP—Hcompromise
L e vl o2 LQEE??QE ANALYSTS > P1 A WINDOW _
\ CODE | SLIDING e ey | H

smumu RALNIMETRICS & . WINDOW |
MEIREQ&....,..,..,,.“.,* SRR oconfie: . o 12...cONNRRRRRS SN -

US 2023/0133791 Al

May 4, 2023 Sheet 1 of 3

Patent Application Publication

F

S
OF

-
N
ST _ “

On
Recurring
FIG. 1B

irr
LL LL

<

May 4, 2023 Sheet 2 of 3 US 2023/0133791 Al

Patent Application Publication

.%m...muunnnunllllllllnnsnnnu”...ssunnuun..:..n...n,“_”w.u.n..n.,.._,w.“.”usunnraa; _.ﬁ_.._.a.MF uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu nuu.. nnnnnnnnnnnnnnnn @, apTERERERREEae R NE wummwﬁﬁnnur
m. e ey ﬂ_ un :,ww:_ o Ew_ G ﬂ z mg .” wm_m im;mmm§ Hmé mJ lm-. u mnm.Nnm..m: m __,ﬂ
SNSRI SN G S R MRS & ONIIIS i m
MOONIM_ T o SISATYNY. i oNnaEyT AVOH m
SSINOBANOD] HETLLNO HAY g . ADVLLY - = mm m
: ooy |1 = zﬂ%ﬁwmw\m w SISATYNY
NOILOVMLXE MOGNIM SSINONANOD NOLLY TEME00 TYHOdNIL
W SINILNOD | w%mxmwﬂﬂm
m LOHSdWYNS | 7
. SINIWIF m
307 - IVIdS m

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DNIONZNOZS LNIWIZTE WiLvds

May 4, 2023 Sheet 3 of 3 US 2023/0133791 Al

Patent Application Publication

€ 'Ol
Y301

00€

UousT
9AI108l10

1501
<01
901

US 2023/0133791 Al

PROVENANCE INFERENCE FOR
ADVANCED CMS-TARGETING ATTACKS

CROSS-REFERENCE TO RELATED
APPLICATTION(S)

[0001] This application claims the benefit of PCT Patent
Application Serial No. PCT/US21/20894, filed Mar. 04,
2021, which claims the benefit of U.S. Provisional Pat.
Application Serial No. 62/985,067, filed Mar. 04, 2020, the
entirety of each of which 1s hereby incorporated herein by
reference.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with government support
under grant number 1755721, awarded by the National
Science Foundation. The government has certain rights in
the 1nvention.

BACKGROUND OF THE INVENTION
1. Field of the Invention

[0003] The present mvention relates to digital security
systems and, more specifically, to a system for detecting
attacks that target CMS systems.

2. Description of the Related Art

[0004] Over 55% of the world’s websites run on content
management systems (CMS), with WordPress controlling
nearly 60% of the CMS market. Unfortunately, this wide-
spread adoption has led to a swift increase in CMS-targeting
cyber-attacks. These attacks are made even easier, because
CMS deployments tend to be an amalgam of layered soft-
ware and interpreters, all with varying degrees of network
and system permission, which execute on the internet-facing
web server. Also, common compromises of CMS deploy-
ments tend to exhibit what are referred to as “low and

slow” characteristics indicative of multi-stage attacks.
[0005] Despite the sigmficant deployment of these com-

plex software systems few systems effectively remediate
CMS- targetmg cyber-attacks. Existing systems use fine-
oramed logging to try to understand the provenance of an
attack. Unfortunately, in the CMS domain, these techniques
tend not to be widely used n practlce This is because fine-
oramed logging solutions still mcur notable performance/
space overhead and often require instrumenting and training
with the target systems. Moreover, website owners often
have no control over the underlying web server because
the entire platform 1s usually owned and maintained by a
hosting provider.

[0006] For these reasons, the main approach for dealing
with compromised CMS deployments employs a “backup
and restore” model of security, which are offered by popular
platforms (e.g., Dropmysite, Codeguard, GoDaddy, Sucuri,
and 1Page). These systems stores nightly backups of each
website’s files that are maintained offsite. They also employ
anti-virus (AV) scanners to detect compromises 1 websites.
When a compromused data 1s detected by an AV scanner 1n a
website, these systems restore the last-know non-compro-
mised copy of the website. (Backed up copies of websites

are often referred to as “snapshots”™ of the website.)
[0007] Unfortunately, the signatures used by AV scanners
catch only well-known malware and they frequently fail to

May 4, 2023

detect stealthy multi-stage attacks. Also, high false alarm
rates often result mn real alerts being 1gnored. Moreover,
website owners often erroneously revert to the most recent
snapshot which did not trigger an AV alert, but the snapshot
used to restore the website may actually include stealthy
malware code that the AV scanner failed to detect. Also, 1t
has been found that website owners rollback to an earlier
snapshot for only about 31% of true alerts and only one-
third of those rollback to an actually pre-mitial-infection
state.

[0008] Recently, Applicants have discovered that the evo-
lution of a typical CMS attack tends to exhibat clear multi-
stage attack patterns: (1) slowly establishing an 1nitial foot-
hold; (2) quietly maintaining persistence; (3) lateral move-
ment; and (2) cleaning up traces of earlier phases. Because
these patterns tend to evolve over time, 1t can be difficult to
detect an attack by analyzing a single snapshot. Generally, 1t
has been found that attacks persist n CMS websites for a
mimimum of 6 days and a maximum of 1694 days, with a
median of 40 to 100 days. One study indicated that more
than 20% of WordPress websites observed 1n one study
housed attacks for over a year. These attacks typically
involved stealthily dropping a huge volume of malicious
code affecting the web server.

[0009] Theretore, there 1s a need for a system that detects
a likelihood that that website has been attacked by analyzing

states of the website over time.

SUMMARY OF THE INVENTION

[0010] The disadvantages of the prior art are overcome by
the present mvention which, in one aspect, 1s a method for
detecting an attack compromise window 1n a CMS website
for which a temporal sequence of a plurality of snapshots of
website backups have been stored, in which a temporally
ordered set of spatial elements from each snapshot 1s con-
structed. Spatial metrics are computed for each individual
snapshot’s elements. The collected spatial metrics are tem-
porally correlated and quernied against attack models to
recover an attack timeline. Attack events 1n the attack time-
line are labelled. A sequence of assigned attack labels 1s
verified. The compromise window 1s extracted from the
plurality of snapshots.

[0011] In another aspect, the mmvention 1s a method for
detecting an attack compromise window 1n a CMS website
for which a temporal sequence of a plurality of snapshots of
website backups have been stored, in which the following
steps are executed:

[0012] constructing a temporally ordered set of spatial ele-
ments from each snapshot by extracting files associated with
cach snapshot and mapping the files as spatial elements;
computing spatial metrics for each individual snapshot’s
clements by executing the steps of: extracting a structural
metric from each snapshot’s elements; and extracting a
code metric from ¢ach snapshot’s elements; temporally cor-
relating the collected spatial metrics and querying them
against attack models to recover an attack timeline and
labelling attack events 1n the attack timeline by executing
the steps of: querying each two consecutive temporal snap-
shots 1n a window at a tume agamst a plurality of attack
models; and assigning an attack label and a corresponding
severity to each temporal snapshot, thereby building an
incremental the attack timeline; verifymg a sequence of

US 2023/0133791 Al

assigned attack labels; and extracting the compromise win-

dow from the plurality of snapshots.
[0013] These and other aspects of the mvention will

become apparent from the following description of the pre-
ferred embodiments taken in conjunction with the follow-
ing drawings. As would be obvious to one skilled 1n the art,
many variations and modifications of the invention may be
effected without departing from the spirit and scope of the
novel concepts of the disclosure.

BRIEF DESCRIPTION OF THE FIGURES OF
THE DRAWINGS

[0014] FIGS. 1A-1C are schematic diagrams showing
three models of temporal mfection evolution.

[0015] FIG. 2 1s a schematic diagrams showing an over-
view of the steps employed 1n the system of the present
invention.

[0016] FIG. 3 1s a chart showing Outlier detection within
the directive length distribution of all code elements 1 one
snapshot.

DETAILED DESCRIPTION OF THE INVENTION

[0017] A prefterred embodiment of the invention 18 now
described 1n detail. Reterring to the drawings, like numbers
indicate like parts throughout the views. Unless otherwise
specifically indicated m the disclosure that follows, the
drawings are not necessarily drawn to scale. The present
disclosure should 1n no way be limited to the exemplary
implementations and techniques 1llustrated 1n the drawings
and described below. As used m the description herein and
throughout the claims, the following terms take the mean-
ings explicitly associated herein, unless the context clearly
dictates otherwise: the meaning of “a,” “an,” and “the”
includes plural reference, the meaning of “in” includes

A A

in”” and “on.”
[0018] In one embodiment, the system 1s an automated

provenance inference technique, which enables the mnves-
tigation and remediation of CMS-targeting attacks based
on only the nightly backups already being collected by
website hosting companies.

[0019] The system of the present nvention reconstructs a
timeline of the attack phases and recovers the compromise
window, or the period of time during which the snapshots
should not be trusted. In mferring provenance patterns,
applicant has discovered that a finite number of 1dentical
provenance patterns exist within the evolution of all the
websites. Generally, a file 1n a given snapshot can exist 1n
1 of 3 states: added, modified, or deleted. As shown 1n
FIGS. 1A-1C, three infection scenarios can be observed
1in the website backups. A file added (denoted by ®) can
be flagged as suspicious (denoted by (D) by an antivirus
(AV) system at some pomt throughout its life cycle.
These files could also be flagged as suspicious (by an
AV) after they are modified (as denoted by @). In some
cases, a snapshot rollback 1s performed to treat the suspi-
cious files by deleting (as denoted by @) them. If the roll-
back deletes all of the attacker’s files then the attack 1s
cured 110, as shown 1n FIG. 1A. If the rollback adopts a
snapshot that still includes the attacker’s files, as shown 1n
FIG. 1B, the attack regenerates the malicious files 120. In
other cases, no action 1s taken despite detecting a suspi-
cious file 130, as shown i FIG. 1C. This indicates that
the industry standard of “backup and restore” 1s entirely

May 4, 2023

msufficient. In fact, 1t has been found that about 80% of
these websites remain 1mnfected — even though many web-
site owners had rolled back to a snapshot and patched the
vulnerability. This probably because most website owners
lack forensic expertise and are unable to i1dentify a pre-
infection snapshot (leaving initial backdoors i place and
allowing the attack to recur).

[0020] In order to quickly rollback to a clean snapshot,
administrators must recover the compromised window or
the period of time during which the snapshots should not be
trusted. This 1s further complicated by the fact that each
snapshot contains tens of thousands of files (an average
of 11,292 files were counted 1n one study), adding to the
complexity of the recovery. One experimental study drilled
down mto the individual snapshots from a single Drupal
website (referred to herein as “W6828862” to ensure anon-
ymity) over the course of 17 different snapshots (see Table
I, below), which will serve as a running example through-
out this disclosure.

[0021] Single Snapshot Metrics: The complexity of each
snapshot can be reduced to a set of measurements, called
spatial metrics, that highlight the existence of cyber attack
evidence. In addition to the state of each file 1n the snapshot
from before (the first spatial metric), another spatial metric
measures extension mismatches among the files, 1.¢. 1f a
file’s mternal format matches the filename’s extension.
Similarly, another spatial metric identifies UTF-8 based
code obfuscation patterns in server-side script files. For
example, 1n the case of W682886, 3 PHP {iles had obfus-
cated payloads disguised as 1con files 1n the 5 June snap-
shot which mmitiated the attack. The system of the present
invention employs 9 spatial metrics, which will be dis-
cussed 1n more detail below. These spatial metrics were
found to be effective at highlighting the presence of cyber
attack artifacts within a single snapshot.

[0022] Temporal Evolution Of Attack Phases: The
experimental embodmment collected spatial metrics to
represent each snapshot of W682886, paying specific
attention to sudden changes between pairs of consecutive
snapshots. This revealed that modelling the implicit events
which trigger these sudden changes can expose the attack
phases. Plot the temporal progression of the spatial metrics
across a range of snapshots can show trends that lead to the
detection of a cyber attack.

[0023] For example, Table I shows one such progression
for website W682886 considering only a single spatial
metric, 1.€., the file format numbers. The temporal evolu-
tion of this metric exposes the first attack signs. As seen 1n
Table I, sudden changes 1n the file format metric stand out
on 21 April, 5-8 June, and 13-14 June (the dates on which
the metrics were measured). Identical spatial metric out-
liers m 3 other Drupal websites from 14 April to 21 May
suggest the attack’s lateral movement. It has been found
that web attacks tend to drop large volumes of files on a
web server, which explains the sudden changes observed 1n
file format metrics. These patterns also appear to evolve
similarly over time — adding more functionality to the
existing malicious code (e.g., one example started with
only file read capabilities, and after 8 days evolved to mod-
ity files and communicate over an SSL gateway). Even-
tually, these attacks also tend to attempt cleaning up therr
footprints by deleting most of the attack files.

US 2023/0133791 Al

TABLE |

Temporal File Ditferential Analysis:
Date Outher PHP HTIML ASC XML PNG Z1P

20 Apr - 0 0 +1 0 0 0
21 Apr ® +7 +1 +3 +21 ¢ 0
22 Apr - -2 0 +1 0 0 0
23 Apr - 0 +2 +2 0 0 0
24 Apr - 0 0 +1 0 0 0
25 Apr - +3 -1 +6 0 0 0
05 Jun O -13 +5 +50 4 +9 +1
07 Jun 0, -31 0 +1 O 0 0
08 Jun ® -18 -0 -22 -20 -9 -1
09 Jun - +5 0 0 O 0 0
10 Jun - 0 §; +3 O 0 0
11 Jun - +5 0 +1 O 0 0
12 Jun - +3 -7 -4 O 0 0
13 Jun ® +9 +13 +28 +20 ¢ +1
14 Jun ® -13 -13 -26 20 0 -1
15 Jun - 0 §; +1 O O 0
16 Jun - 0 §; +1 O 0 0

[0024] Attack Model: These patterns form the basis of the
multi-stage attack model disclosed herem. Applicant’s study
found that these attacks consisted of slow and steady attack
patterns starting with establishing an mitial foothold, mal-
ware mjection, maintamning persistence, lateral movement,
and eventually cleaning up any traces of malicious activity.
[0025] Taken together, the above key observations drove
the design of the system of the present mvention. Modeling
the temporal evolution of the spatial metrics allows the sys-
tem of the present mvention to infer the provenance of
attack evidence. Further, identitying outhiers within that
evolution reveals both the compromise window (e.g., start-
ing Apr 21 tor W682886) and the progression of the attack
phases. Using the system of the present invention, forensic
investigators can know where to focus their etforts and web-
site owners can quickly revert the website to a clean
snapshot.

[0026] 'The design the system of the present mvention
overcomes the challenges discussed above through prove-
nance inference technique, using only the nightly backups
of the CMS deployment. An overview of the phases of the
system 200 of the present invention’s operation are shown 1n
FI1G. 2, which includes four phases. Phase 1 constructs spa-
tial element sets from the website backup. Phase 2 computes
the structural and code metrics for each individual snapshot.
Phase 3 temporally correlates the collected metrics and
labels attack events. Phase 4 venifies the assigned attack
labels and extracts the compromise window. First, the sys-
tem of the present invention constructs a temporally ordered
set of spatial elements from each snapshot of the website. It
then computes spatial metrics for each individual snapshot’s
elements. This 1s followed by temporally correlating the col-
lected spatial metrics and queryimg them against attack mod-
els to recover the timeline and label attack events. Finally, 1t
verifies the sequence of assigned attack labels and extracts
the compromise window.

[0027] Spatial Element Sequencing: The system of the
present mvention extracts the files associated with each
night’s snapshot and maps them as spatial elements (el (y;)
e V;) for each snapshot y; € . Here, W 1s the set of all ya,
the label 1 denotes the mndex of the temporal snapshot under
analysis, and 1 denotes the index of a spatial element 1n V;.
Essentially, y1 1s a pomt 1n time when the 177 snapshot was

May 4, 2023

taken. V; 1s the set ot spatial elements (el;) collected at time
v,;. For example, the mitial snapshot 1s collected at g, the
next snapshot at y; and so on. At snapshot v,, the set of
elements are represented as VO=[¢el,y.¢ely, ...]. These elements
(el(w;)) € V, reside 1n the space © that denotes the monitor-
ing space of all spatial elements (1.¢., all versions of all files

hosted on the web server).
[0028] While processing each temporal snapshot y;, a set

of imtial spatial metrics (my(y;) € M,) are recorded 1n the set
M,. Here, the label k denotes the index of the spatial metrics
collected at temporal snapshot ;. These iitial spatial
metrics consists of the file type counts, and the state of
cach spatial element 1n terms of added, modified, or deleted.
M. 1s further populated with caretully selected measure-
ments. A comprehensive definition of the terminology
used 1s presented 1n Table II below.

TABLE 11

Formal Definitions of the State of the CMS Deployment:

Name Symbol Definition Description

Time Y =(y,...) VY =(Z,+t) Time measured in terms of the
snapshot versions.

Space B =1(0,.) 0=(Z1) Space of elements that can be
monitored,

Elements V =(el,...} el=-el(0,v,y'}) Files under investigation within

their life span.

Spatial M=(m,.) m=m(0,y) Measurements computed against

Metrics a single nmight’s snapshot of the
website backup attributes.

Labels L=(b,.) 1b=1b(y,0) An enumerable set of labels

describing the events associated
with the secunty of the elements.

[0029] For example, the website W682886's 1itial snap-
shot (y,) contamed 11, 327 files. All of these files are
mapped as a sequence of spatial elements 1 V,. As an
example of a single spatial metric, this snapshot also con-
tamned 23 ditferent file types (e.g., PHP, HIML, JS, CSS,
etc.). This mnformation was recorded within the spatial
metric set M,. It the backups are collected on a nightly
basis for 3 months (e.g., 91 backups), then:

M, = | num (PHP)= 727,num(CSS)=829,... |

[0030] Spatial Analysis: The set of spatial elements
include various file types (such as PHP, HITML, JS, CSS,
images, plamtext, etc.), each of which requires disparate
investigation techniques to idenftify attack attributes. To
address this challenge, the system splits spatial analysis to
extract two types of metrics: (1) structural metrics and (2)
code metrics.

[0031] Structural Metrics: With the computed set of spa-
tial elements V and the mmitial metrics M for each temporal
snapshot, the set V 1s mvestigated. The system employs a
suite of lightweight measurements that highlight the exis-
tence of suspicious elements.

US 2023/0133791 Al

[0032] Hidden Files and Directories: Long-lived multi-
stage attacks can be characterized by the attacker’s intent
to modify the existing setup and laymg low at the same
time. Applicant has observed that this was achieved by
droppmg malicious and/or suspicious elements as a hidden
file or by placing them m a hidden directory to evade first
order defenses. The system of the present invention employs
pattern matching by filtering the typically expected hidden
elements (such as .htaccess) and appends a structural metric
Hide(el(y;)) to M; upon finding an element el; € V; m a
hidden location, because clean websites do not often employ
hidden files or directories.

[0033] Extension Mismatch: Applicants have also
observed that another common tactic used in CMS-targeting
attacks was to disguise a server-side executable as some-
thing else. For example, spatial elements are frequently
renamed deceptively as an 1con file (e.g. favicon.ico) but
contain PHP code to evade less technical CMS users. The
system of the present mvention uses the spatial element’s
filename to extract 1ts extension and then matches 1t against
the inferred file structural metric ExtMis(el(y;)) to M..
[0034] Filename Entropy: Another mdicator of suspicious
activity seen 1 CMS-targeting attacks 18 long, incoherent,
or randomly generated filenames. The system of the present
invention measures the entropy of filenames for all spatial
elements el;. A higher entropy indicates a more random file-
name that 1s less likely to be a human-generated benign file-
name. Entropy 1s measured using existing password strength
calculation logic, which computes a filename’s “random-
ness” score by measuring its similarity to several diction-
aries, spatial keyboard patterns (e.g., QWERTY, Dvorak),
repetition of a single character, sequences of numbers or
characters, and other commonly used keywords (e.g., 1331).
For the system of the present invention, the password
strength output 1s analogous to higher entropy (more ran-
domness) and thus a more suspicious filename.

[0035] Since may not be practical to identify an absolute
threshold for high entropy i filenames, the system of the
present mvention compares the relative entropy of the spa-
tial elements using the median absolute deviation (MAD)
test. Specifically, instead of computing an absolute threshold
tor filename entropy, which 1s difficult to predict with cer-
tainty, the system of the present mvention considers all of
the elements m a given temporal snapshot to first find the
median entropy of all elements, followed by computing the
median absolute deviations for each element and eventually
checking 1f the median absolute deviation 1s greater than a
relative threshold. When a relatively higher entropy 1s 1den-
tified for an element el; € V, from a temporal snapshot y,, the
structural metric HEntrp(el,(y;)) 1s appended to M,.

[0036] Permussion Change: The system of the present
invention uses temporal tracking ot each spatial element to
detect permission changes between snapshots. In particular,
when the permissions of spatial elements change from non-
executable (read-only, read-write, etc.) to executable, 1t
raises suspicion since it 1s unusual for a developer to start
with a non-executable and provide execute privileges to 1t.
Multi-stage attacks package shell scripts 1n a text file and
then change the permissions of the file to explore privilege

May 4, 2023

escalation opportunities. Upon identitying an element el; €
V; from a temporal snapshot y; with permission change
equipping 1t with execute capabilities, the system of the pre-
sent mvention appends a structural metric Exec(el(y,)) to
M..

[0037] Code Metrics: Sice the system 1s concerned with
server-side attacks targeting CMSs, the system of the pre-
sent mvention analyzes the spatial elements containing
code. These collected metrics are recorded for each snapshot

v, and appended to the spatial metric set M.
[0038] Script Directive Outher Analysis: Most of the ser-

ver-side source code 1s either part of the CMS core, asso-
ciated plugins, or website-owner developed code. As they
are meant to be maintained by developers, 1t 1s unusual to
find source code files among the spatial elements with script
directives (parsable imstruction sequences) that are thou-
sands of characters long. Hence, mjecting exceptionally
long and complex lines of obscure code 1n the spatial ele-
ments 18 a strong 1ndicator that can be leveraged to 1dentify
attack behaviors. Attackers use this tactic to limit the read-
ability of mjected code, delaying immediate reverse engi-
neering attempts.

[0039] As shown 1n FIG. 3, the directive length distribu-
tion for all spatial elements containing server-side code for
W682886's 2 May snapshot 1s plotted 1 a chart 300. The x-
axis presents the spatial element index j, and the longest
directive length for each of these code files 1s plotted along
the y-axis. In benign elements (in which each data point 1s
represented as a round dot) none of the directives were more
than 500 characters long, whereas most attacker-injected
elements (in which each data point 1s represented as a star)
in this snapshot contained directives longer than 1500 char-
acters. There was a mix of benign and malicious elements
with maximum directive length between 500 and 1500 char-
acters, which becomes the suspicious range (in which each
data point 1s represented as a diamond).

[0040] Despite learning that long directives 1n spatial ele-
ments are suspicious, finding a threshold for directive length
may not be practical due to varied coding styles and prac-
tices followed by different developers. However, 1t 1s possi-
ble to decide 1t a spatial element 1s suspicious by relatively
comparing all the elements 1n any given temporal snapshot
and performing outlier analysis. Thus, one can find suspi-
cious files with relatively long directives using the median
absolute deviation (MAD) previously described. Upon
detection of the suspiciously long directive lines 1n a spatial
element el; € V; from a temporal snapshot y;, the system of
the present imnvention appends the code metric Longline(el,
(y;)) to the spatial metric set M,.

[0041] Obluscation Detection: server-side malware often
uses a string that contains both UTF-8 characters (1.e., wide
characters) and traditional 8-bit characters. While the con-
struction of such a string itself 1s not malicious, 1t 1s a com-
monly used tactic to avoid detectors that look for known
malicious string/code snippets. For example, a malicious
PHP file disguised as an 1con file can be included from the

root of the CMS using the following long UTF-8 (shown 1n
italic) coupled with ASCII (shown 1n bold) path to the file:

@include "\ x2fmn\x74/s\x74or\x31-w\x632-\x64fw\x31/4\

x3505\x327/\x77Tww\x2ecvix6dar\xélci\x6eqg. \x63om\
x2fwe\x62/c\x6fnt\x65nt\x2fmo\x64ul\x65s/\x61lgg\

US 2023/0133791 Al

~-continued

May 4, 2023

x72eg\x6lto\x72/t\x65st\x73/£\x61lvi\x63on\x5fbd\

x33fd\x35.i\x630";

[0042] Armray map obfuscation 1s another obfuscation
scheme commonly used to evade defenses. An array map
1s defined to map each character to a different character.
This map 1s used to deobfuscate what appears to be a
jumbled list of characters to a reverse engineer trymg to
make sense of this obfuscated spatial element. For example,
in the following code snippet, Inhqvwxeon() 1s a function
that takes a jumbled character string (in the wvariable
$zvkgw) and uses the array map 1n Slyfuf to generate mal-
icious code that gets executed as part of the PHP eval
function:

$1lyfuf = Array ('1'=>'G', '0'=>'6', '3'=>'4",

'2'=>'L', 151=}|1|r '4'=}'W', I'?'l':}!yl’ L

'yl=}'W', l':{l':}lElljr l'zl'=}|1l);
eval (lnhgvwxeon ($zvkgw, Slyfuf));

[0043] Suspicious Payload Evaluation: In server-side spa-
tial elements, functions such as eval, base64 decode, and
url decode are commonly pawred to execute previously
1dentified obfuscated code. The system of the present mnven-
tion 1dentifies and flags instances of the eval and base64 -
decode/url decode paimrmng via pattern matching along each
control flow. Upon 1dentitying this code unwrapping technai-
que 1n an element el; € V; from a temporal snapshot v;, the
system of the present mnvention appends a code metric EvD-
c(el(y;)) to M, indicating unsate or suspicious code, com-
pressed to avoid more conventional detectors.

[0044] Code Generation Capability: Almost every server-
side spatial element contributing to the multi-stage CMS-
targeting attack contams code generation capabilities such
as the use of create function. Although several developers
use this as part of certain CMS plugins, 1t 1s very rarely
employed 1n ordmary server-side code development. The
system of the present mnvention scouts for such code genera-
tion capabilities and appends a code metric CodeGen(el;
(v;)) to the spatial metric set M, upon finding an element
el; € V; satistying the constraints.

[0045] Temporal Correlation and Forensic Recovery:
Based on the collected spatial metrics for each snapshot,
the system of the present mvention now attempts to tempo-
rally correlate these metrics across snapshots to identify sus-
picious activities that evolve within the website. Here, the
system of the present mvention 1s programmed to track
developments over a sliding n - day time window (e.g., n
= 20 means track developments in the spatial metrics by
comparing them across 20 days). In this stage, the system
of the present mvention temporally correlates the spatial
metric set M; at any temporal snapshot y; with the spatial
metrics M, from all previous temporal snapshots within the
sliding window (1 - n<x < 1) to capture the persistent adver-
sary relationship and extract the timeline of events.

[0046] Patterns 1n the metrics M, assigned as a function of
spatial elements, indicate long-lived multi-stage attack
behaviors which can be detected. The system constructs
rules to encode these behaviors based on the Boolean com-
position of the spatial metrics. These rules are designed to

be agnostic to the mdividual metrics and are based on the
invariants of the phases that long-lived multi-stage attacks
oo through. Table III, below, shows the representative set of
rules applied as part of the current implementation. Further,
the temporal correlation of events encapsulating the patterns
1n spatial metrics 1s implemented by considering two conse-
cutive temporal snapshots at a time. In particular, the 2-tuple
(M,-1, M,) 18 passed to the system of the present invention’s
temporal correlation phase (as shown m FIG. 2) where 1t 18
queried against the attack models from Table III. An attack
label set L; and a severity are assigned to each temporal

snapshot, thus mcrementally building the attack timelne.
The assigned severity of the attack labels tells the investiga-
tor which of the labels are more critical than the others.

TABLE III

Rules to Model Compromised CMS Events as Multi-Stage Attack Phases:

Attack Label L 1ty Attack Modeling Rule

Establish Med- ExtMis(el(y))V](el;¢)A| HEntrp(el(y;)})vHide
Foothold wm (el{y;)]]

Obfuscated High [(size(el(y;})>s1ze(el (v,))V(MaxL{el(y;))
Code Injection >MaxL(el(y;.1))) JAObius(el (y;))

Malware High (el &V,)A[Obtus(el{y;))VLongLine(el;
Dropped (w:))VEvDc(el(y;))

Code Generation Low CodeGen(el(y,))

Capability
Defense Evasion High Hide(el(y;))A|Obtus(el{(y;))VEvD(el,
(v)VHEntp(el (v VEXIMis(el,(v;))|

Escalate High Exec(el(y;))A~Exec(el(y;1))
Privileges
Maintain Med- (Sev(el(y;))==High)A(Sev(el(y;.,))==High)

Presence um

Attack Cleanup Med- (Sev(el (v, ,))=—=High)A[(Sev(el{y;))
ium ==None)V(Sev(el,(y;))==Low)V((el(y;))¢;

[0047] The rules presented i Table III capture the overall
intution behind our msights. For example, the running exam-
ple W682886 has two cases of obfuscated code mjection: (1)
Suspicious obfuscated code mjected mnto an existing unobfus-
cated element; and (2) Additional obfuscated code appended
to an already obfuscated element. Based on this observation, if
an obfuscated spatial element el.(y;) € V; mncreases 1n size (1.€.
obfuscated attack progression), or 1f a script directive outhier
1s tlagged 1n el(y;) but not el (y, -1) (1.e. obfuscated code 1s
injected mto an existing unobfuscated element), and the code
metric Obtus(el(y,)) € M,, then an attack label “Obfuscated
Code Imjection™ 1s appended to the set L; at snapshot ;. For
the W682886 example, this label was assigned on 21 Apnl, 7
June, and 13 June.

[0048] Note that multiple spatial elements el.(y,) € V; can
o1ve rise to multiple labels for each temporal snapshot. For

US 2023/0133791 Al

example, there can be three spatial elements associated with
Obfus (el(y;)) € M; (1.e., 3 tiles with obfuscated code m
them), and four other spatial elements associated with
ExtMis (el(y;)) € M; (1.e., tour shell scripts disguised as
o11s). In this case, both event labels Obtuscated Code Injec-
tion and Privilege Escalation are appended to the set L;, and
the highest severity of the union of this set L; 1s assigned to
the temporal snapshot ;. It 18 also possible that multiple
labels get assigned to a temporal snapshot due to one spatial
clement, 1.¢., an adversary can move a benign file to a hid-
den directory and 1nject 1t with suspicious obfuscated code.
In this case, both Defense Evasion and Obfuscated Code
Injection labels get appended to the set L; and follow the

highest severity assignment as described above.
[0049] Compromise Window Recovery: With the attack

labels 1n hand, the system of the present invention proceeds
to extract the compromise window by parsing consecutive
pairs of the 3-tuple of spatial elements, spatial metrics, and
the assigned attack labels (1.e. (V, M, L);). Algorithm 1
below presents the pseudocode for this procedure. Lines 1-
3 1n Algorithm 1 describe how it takes the 3-tuple (V, M, L)
as mput, computes the differential spatial metrics DiffAttr
tor each snapshot at vy, from consecutive pairs of (V, M);-
1,(V, M), (e.g., recall the differential file type mformation
shown 1n Table I).

Algorithm 1: Compromise Window Detection

Input:V = [Vy, Vi, ..., V. M =[Mg, My, ..., My,
L=[Lo, L1, ..., Laual,

N = Number of temporal snapshots

QOutput: SuspiciousRanks = [y,o, Wa1. .- Wanrtl-

CompromiseWindow = |W.4, Wy, -... Wyz| // Calculate frequency of each
attribute value

1 for Vy; € ¥ do
2 Ditt Attr; «— V; - V., for each el; € V,
3 Daff Attr; «— M, - M;.,;, for each m; € M,
// Venify label sequence
1f 1! = 0 and L; comes after L, ; then
CorrectLabel, = True
end
end Attr Freq = Frequency of each attribute da; € DitfAttr

o0 -1 On Lh

// Calculate AVF scores
9 for YDiff Attr, € Diff Attr do
10 score «— O;
11 for da; € Diff Attr; do

// Score for snapshot y;

12 score <— score + Atir Freq[da]
13 end
14 AVF scores < score/size(Ihil Attr;)
15 end
16 Suspicious Ranks < return (sort v; in order of minimum
AVF scores)
17 for Yy; € ¥ do
18 1f CorrectLabel;, == True then
19 while AVF Scores outside CompromiseWindow <
AVF Scores inside CompromiseWindow do
20 CompromiseWindow < compute (range between
first and last y; with verified L;)
21 end
22 end
23 end

24 return SuspiciousRanks, CompromiseWindow

[0050] As shown m Lines 8-16 i Algorithm 1, 1t then
computes the attribute value frequencies (AVF) using the

May 4, 2023

AVF algonithm (one representative example of which 1s
shown below as Algorithm 2) on the differential spatial
metrics DitffAttr1 and processes it to rank the temporal snap-
shots y; m order of suspicious activities. The AVF algorithm
performs well on categorical data with multiple attributes,
the differential spatial metrics 1n our case. In a typical AVF
application, the number of anomalies to be detected are pre-
programmed. Here, instead of choosing the number of
anomalies to be detected, the system of the present invention
uses the AVF algorithm to rank the temporal snapshots 1n
the compromise window 1n the order of most suspicious to
least suspicious.

[0051] Algorithm 2: Example of pseudocode for the AVF

algorithm:

Label all data points as non-outliers
calculate frequency of cach attribute value
foreach point x
AVFscore = Sum(frequency each attrib. wvalue in
x)/num.attribs
end foreach
return top k outliers with minimum AVFscore

[0052] Before the system of the present mvention outputs
the final attack labels for the entire temporal sequence, it
passes the label set L through logical sequence verification
of the associated labels (Lines 4-6 1 Algorithm 1) and
assesses their order of appearance. For example, when the
only labels assigned are ‘code generation capability’ and
‘attack cleanup’, 1t has been observed that these behaviors
arise from benign elements populated by the web developer
and mean no harm. In such cases, the labels are retained but
their severities are reduced to ‘None’. If the label ‘maintain
presence’ 18 seen on a snapshot prior to any other event label
such as ‘establish foothold” or ‘malware dropped’ or any
other high severity modeling rule, smce we know that this
event sequence 1s mtuitively not feasible, the system of the
present mvention has been programmed (again via Boolean
composition of the previous label rules) to filter out
sequences that do not make logical sense.

[0053] The system of the present mnvention’s compromise
window 1s 1nfluenced only by the order of 2 out of the
8 labels, 1.¢., attack cleanup and maintain presence. The sys-
tem of the present invention considers all combinations of
the other labels as the beginning of a compromise window.
This makes the system of the present invention robust
against attackers who might try to deploy out-of-order pay-
loads to contound the system of the present mmvention.
[0054] Once the logical sequence of the assigned labels 1s
verified and the temporal snapshots are ranked 1n the order
of suspicious activities, the system of the present invention
then 1denftifies the compromise window — the period
between the first and the last temporal snapshot comprising
of suspicious activities with assigned and verified labels L.
Also, the window 1s chosen such that the AVF score for
cvery temporal snapshot outside the compromise window
1s higher than the score for every temporal snapshot within
the compromise window (see, lines 17 -21 of Algorithm 1).
Thais 1s the period when maximum suspicious activities take
place 1n the website and help one to narrow down the ana-
lysis to a smaller window. These mtuitive temporally corre-
lated spatial metrics and the attack models both align well
with the design and work well 1 practice.

US 2023/0133791 Al

[0055] For the example website under investigation
(“W6828867"), from 1 April - 30 June, the compromise win-
dow was 1dentified from 21 April - 16 June. By applying the
AVF algorithm, the system of the present imnvention output
the following temporal snapshots for this website ranked 1n
order of most suspicious to least suspicious as follows:

<-Most SUsSPIlCiOoUS.ttt s teueanss Least suspicious ->

May 4, 2023

(b) computing spatial metrics for each individual snap-
shot’s elements;

(¢) temporally correlating the collected spatial metrics and
querying them against attack models to recover an attack
timeline and labelling attack events in the attack
fimeline;

5 June, 13 June, 8 June, 14 June,b2l1l April,..,29 June

[0056] Note than these attack models are scalable 1rre-
spective of the underlying CMS, 1.¢. when a new tactic 1s
identified, the system of the present mvention framework
1s designed to be highly modulanized and can be easily
updated to capture the essence of the new tactic and the
attack label associated with 1t. Essentially, applying the
attack modeling rules to spatial metrics and mmcrementally
shiding along each temporal snapshot enables the system of
the present imnvention to assign appropriate labels L along the
compromise window, thus providing a timeline of the events
as part of the long-lived multi-stage attack analysis.

[0057] Although specific advantages have been enumer-
ated above, various embodiments may include some, none,
or all of the enumerated advantages. Other technical advan-
tages may become readily apparent to one of ordinary skall
in the art after review of the following figures and descrip-
tion. It 1s understood that, although exemplary embodiments
are 1llustrated 1n the figures and described below, the princi-
ples of the present disclosure may be implemented using any
number of techniques, whether currently known or not.
Modifications, additions, or omissions may be made to the
systems, apparatuses, and methods described herein without
departing from the scope of the invention. The components
of the systems and apparatuses may be integrated or sepa-
rated. The operations of the systems and apparatuses dis-
closed heremn may be performed by more, fewer, or other
components and the methods described may include more,
fewer, or other steps. Additionally, steps may be performed
in any suitable order. As used m this document, “each”
refers to each member of a set or each member of a subset
of a set. It 1s mtended that the claims and claim elements
recited below do not mvoke 35 U.S.C. §112(1) unless the
words “means for” or “step for” are explicitly used 1n the
particular claim. The above-described embodiments, while
including the preferred embodiment and the best mode of
the mvention known to the mventor at the time of filing,
are given as illustrative examples only. It will be readily
appreciated that many deviations may be made from the spe-
cific embodiments disclosed 1n this specification without
departing from the spirit and scope of the invention. Accord-
ingly, the scope of the mvention 1s to be determined by the
claims below rather than being limited to the specifically
described embodiments above.

What 1s claimed 1s:

1. A method for detecting an attack compromise window in
a CMS website for which a temporal sequence ofa plurality of
snapshots of website backups have been stored, comprising

the steps of:
(a) constructing atemporally ordered set of spatial elements

from each snapshot;

(d) verifymg a sequence of assigned attack labels; and

(e) extracting the compromise window from the plurality of
snapshots.

2. The method of claim 1, wherem the step of constructing a
temporally ordered set of spatial elements from each snapshot
comprises the step of extracting files associated with each
snapshot and mapping the files as spatial elements.

3. The method of claim 1, wherein the step of computing
spatial metrics for each individual snapshot’s elements com-
prises the steps of:

(a) extracting a structural metric from each snapshot’s ele-

ments; and

(b) extracting a code metric fromeach snapshot’s elements.

4. The method of claim 3, wherein the step of extracting the
compromise window from the plurality of snapshots com-
prises designating a subset of the plurality of snapshots as a
compromise window when the structural metric and the code
metric have an attack label of high severity according to a
predetermined attack modeling rule.

S. The method of claim 4, wherein the step of extracting
structural metrics comprises the steps of:

(a) detecting hidden files and hidden directories m each
snapshot and, when detected then adding a hidden file
clement to the structural metric for the snapshot;

(b) detecting extension mismatches between file type and
file extension m each snapshot and, when detected then
adding an extension mismatch file element to the struc-
tural metric for the snapshot;

(¢) detecting file name high entropy 1n each snapshot and,
when detected then adding a file name high entropy ele-
ment to the structural metric for the snapshot; and

(d) detecting permission changes between snapshots and,
when detected then adding a permission name element to
the structural metric for the snapshot.

6. The method of claim 5, wherein the step of detecting file
name entropy comprises the step ot detecting long, incoherent
or randomly generated filenames.

7. The method of claim 5, wherein the step of detecting file
name entropy comprises the steps of:

(a) computing a randomness score for each file name 1n the

snapshot;

(b) calculating a median absolute deviation of all random-
ness scores for the snapshot;

(¢) comparing the median absolute deviation to a relative
threshold for the plurality of snapshots; and

(d) when the median absolute deviation 1s greater than a
relative threshold for the plurality of snapshots, then des-
1gnating the snapshot as having high name entropy.

8. The method of claim §, wherein the step of detecting
permission changes comprises the step of determining when
a permission change has changed a file’s permission from a
non-¢xecutable state to an executable state.

US 2023/0133791 Al

9. The method of claim 4, wherem the step of extracting a
code metric for each snapshot comprises the steps of:

(a) detecting a script directive outlier in each snapshot and,
when a script directive outhier 1s detected, then adding a
script directive outlier element to the code metric for the
snapshot; and

(b) detecting an obtuscation indicator 1n each snapshot and,
when an obfuscation indicator 1s detected, thenadding an
obfuscation indicator element to the code metric for the
snapshot.

10. The method of claim 9, wherein the step of detecting a
script directive outhier comprises the step of indicating that a
scriptdirective1s an outlier ifithas a predetermined number of
characters that 1s greater than a threshold number of
characters.

11. The method of claim 10, wherem the predetermined
number 1s a number that 1s at least an average number of char-
acters 1n all script directives 1n the snapshot.

12. The method of claim 9, wherein the obfuscation indica-
tor comprises detection of UTF-8 characters coupled with
ASCII characters 1n an executable file.

13. The method of claim 9, wherein the obfuscation indica-
tor comprises amapping function that maps at least a plurality
of characters 1 an executable file to another corresponding
plurality of characters.

14. The method of claim 1, wherein the step of temporally
correlating the collected spatial metrics and querying them
against attack models to recover an attack timeline and label-
ling attack events 1n the attack timeline comprises the steps of:

(a) querying each two consecutive temporal snapshots 1in a
window at a time against a plurality of attack models; and

(b)assigning an attack label and a corresponding severity to
cach temporal snapshot, thereby building an incremental
the attack timeline.

15. The method of claim 14, wherein the step of extracting
the compromise window trom the plurality of snapshots com-
prises the steps of:

(a) parsing consecutive pairs of the spatial elements, the

spatial metrics and the attack labels;

(b) ranking the temporal snapshots 1n the compromise win-
dow 1 the order of most suspicious to least suspicious;
and

(¢) outputting the final attack labels for the snapshots for the
temporal sequence.

16. A method for detecting an attack compromise window
1n a CMS website for which a temporal sequence of a plurality
of snapshots of website backups have been stored, comprising
the steps of:

(a) constructing atemporally ordered set of spatial elements
from each snapshot by extracting files associated with
cach snapshot and mapping the files as spatial elements;

(b) computing spatial metrics for each individual snap-
shot’s elements by executing the steps of:

(1) extracting a structural metric from each snapshot’s
elements; and

(1) extracting a code metric from each snapshot’s
elements;

(¢) temporally correlating the collected spatial metrics and
querying them against attack models to recover an attack
timeline and labelling attack events 1n the attack timeline
by executing the steps of:

(1) querying each two consecutive temporal snapshots 1n
a window at a time against a plurality of attack models;
and

May 4, 2023

(11) assigning an attack label and a corresponding severity
to each temporal snapshot, thereby building an incre-
mental the attack timeline;

(d) venifymg a sequence of assigned attack labels; and

(e) extracting the compromise window from the plurality of
snapshots.

17. The method of claim 16, wherein the step of extracting
the compromise window from the plurality of snapshots com-
prises designating a subset of the plurality of snapshots as a
compromise window when the structural metric and the code
metric have an attack label of high severity according to a
predetermined attack modeling rule.

18. The method of claim 17, wherein the step of extracting
structural metrics comprises the steps of:

(a) detecting hidden files and hidden directories 1 each
snapshot and, when detected then adding a hidden file
element to the structural metric for the snapshot;

(b) detecting extension mismatches between file type and
file extension 1 each snapshot and, when detected then
adding an extension mismatch file element to the struc-
tural metric for the snapshot;

(¢) detecting file name high entropy 1n each snapshot and,
when detected then adding a file name high entropy ele-
ment to the structural metric for the snapshot; and

(d) detecting permission changes between snapshots and,
when detected then adding a permission name element to
the structural metric for the snapshot.

19. The method of claim 18, wherein the step of detecting
file name entropy comprises the step of detecting long, 1nco-
herent or randomly generated filenames.

20. The method of claim 18, wherein the step of detecting

file name entropy comprises the steps of:
(a) computing a randomness score for each file name 1n the

snapshot;
(b) calculating a median absolute deviation of all random-

ness scores for the snapshot;
(¢) comparing the median absolute deviation to a relative

threshold for the plurality of snapshots; and
(d) when the median absolute deviation 18 greater than a
relative threshold for the plurality of snapshots, then des-

1gnating the snapshot as having high name entropy.
21. The method of claim 18, wherein the step of detecting

permission changes comprises the step of determining when a
permission change has changed a file’s permission from a

non-executable state to an executable state.
22. The method of claim 17, wherein the step of extracting a

code metric for each snapshot comprises the steps of:

(a) detecting a script directive outlier 1n each snapshot by
indicating that a script directive 1s an outlier 1f 1t has a
predetermined number of characters that 1s greater than
a threshold number of characters, wherein the predeter-
mined number 1s anumber that 1s at least an average num-
ber of characters 1n all script directives 1n the snapshot
and, when a script directive outlier 1s detected, then add-
ing a script directive outlier element to the code metric
tor the snapshot; and

(b) detecting an obtuscation indicator 1n each snapshot and,
when an obfuscation indicator 1s detected, then adding an
obluscation mdicator element to the code metric for the
snapshot, wherein the obfuscation indicator includes at

least one of:
(1) a detection of UTF-8 characters coupled with ASCII
characters 1n an executable file; and

US 2023/0133791 Al May 4, 2023

(1) a mapping function that maps at least a plurality ot
characters 1 an executable file to another correspond-
ing plurality of characters.

23. The method of claim 16, wherein the step of extracting
the compromise window from the plurality of snapshots com-
prises the steps of:

(a) parsing consecutive pairs of the spatial elements, the

spatial metrics and the attack labels;

(b) ranking the temporal snapshots 1n the compromise win-
dow 1 the order of most suspicious to least suspicious;
and

(¢) outputting the final attack labels for the snapshots for the
temporal sequence.

w W W% % %

	Front Page
	Drawings
	Specification
	Claims

