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(57) ABSTRACT

A method for detecting and recovery from a soft error in a
computing device 1s provided. In examples discussed herein,
the method can be performed to detect soft errors that may
occur during execution of a predefined critical mstruction(s)
and/or has been propagated 1n the computing device prior to
the execution of the predefined critical instruction(s). Spe-
cifically, a software compiler may be used to embed an error
detector block(s) after the predefined critical 1nstruction(s).
In this regard, the error detector block(s) can be executed
after the predefined critical instruction(s) to detect the soft
error. Accordingly, 1t may be possible to invoke a diagnosis
routine to determine severity of the detected soft error and
take appropriate action against the detected soit error. As
such, 1t may be possible to protect the execution of the
predefined critical instruction(s) concurrent to eliminating
vulnerable voting intervals and reducing soft error detection
overhead.
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METHOD FOR DETECTING AND
RECOVERY FROM SOFT ERRORS IN A
COMPUTING DEVICE

RELATED APPLICATIONS

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 16/420,364, filed May 23, 2019, which
claims the benefit of provisional patent application Ser. No.

62/681,129, filed Jun. 6, 2018, the disclosures of which are
hereby incorporated herein by reference in their entireties.

GOVERNMENT SUPPORT

[0002] This invention was made with government support
under 1055094 awarded by the National Science Founda-
tion. The government has certain rights 1n the ivention.

FIELD OF THE DISCLOSURE

[0003] The technology of the disclosure relates generally
to a method for detecting a soft error 1n a computing device.

BACKGROUND

[0004] The ever-increasing use of digital systems in every-
day life has made rehability a key factor in modern com-
puting devices such as microprocessors. Soit errors caused
by high-energy particles, power supply noises, transistor
variability, and so on can modily a logic value stored 1n a
microprocessor memory element(s) and cause timing and/or
functional failure. Historically, soft errors were considered a
challenge for high-altitude applications because most of the
high-energy particles can get cascaded by FEarth’s atmo-
sphere before reaching ground level. However, as Interna-
tional Technology Roadmap for Semiconductors (ITRS)
2015 predicts, even terrestrial level muon-induced particles
can cause soit errors 1n the microprocessors. Software-level
soit error tolerant schemes may be preferred over hardware-
based solutions because software-level soft error tolerant
schemes can be selectively applied on commercial ofi-the-
shelf processors—either to a satety/mission critical applica-
tion(s) or to a critical part(s) of an application.

[0005] Redundancy-based techniques may have been con-
sidered the most eflective soft error protection schemes.
Depending on recovery strategy, existing soltware fault
tolerant schemes can be categorized into backward and
forward recovery schemes. Many schemes have been devel-
oped only for error detection. There are two main kinds of
backward-recovery techniques, namely restart and check-
pointing-and-rollback. The restart-based recovery tech-
niques may be usetul for some small applications, but can be
less effective for hard real-time, long-running, and interac-
tive applications. Checkpointing may solve the problems of
global restarting by periodically saving a snapshot of the
programs architectural state and memory and register state
(checkpoint). In case of an error, the program rolls back to
the last saved checkpoint and re-executes the instructions
from the checkpoint. However, a software-based full check-
point scheme may sufler from latent error problems (e.g.,
errors that happen before a checkpoint and are detected long
alter the checkpoints) and may introduce significant perfor-
mance overhead. Although an idempotent-based checkpoint/
recovery techmque proposed by some researchers may be
capable for low-latency error detection scheme and provide
cllicient recovery, the idempotent-based checkpoint/recov-
ery technmique may sufler from restricted recovery capability.
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For example, 1t can be dificult for the 1dempotent-based
checkpoint/recovery techmque to recover from errors that
can aflect an address of a memory write instruction, trans-
form an opcode of an instruction to memory write operation,
or alter a control flow of a program.

[0006] In contrast to the backward recovery, forward
recovery schemes do not implicitly detect errors. Instead, the
forward recovery schemes mask errors by applying major-
ity-voting between redundantly-computed results. A coarse-
grain forward recovery scheme may perform inifrequent
voting on system-call arguments but may be unable to
provide protection 1n cases where a pointer 1s 1n the list of
system call arguments. This 1s because the coarse-grain
forward recovery scheme verifies correctness of redundant
computed pointers, but not data that 1s actually stored into
the memory. On the other hand, fine-grain forward recovery
schemes perform voting operations on some specific points
of execution and can get the best from Error Correcting
Code (ECC)-protected components like cache/memory sub-
system. For instance, Swilt-R triplicates the arithmetic/
logical instructions 1n a program and performs 2-01-3 major-
ity-voting for register operands of critical instructions (e.g.,
memory and control flow structions).

[0007] However, detailed analysis of Swift-R based tech-
niques reveals that such schemes have quite restricted error
coverage. The main reason 1s that the always-on voting 1s
based on voting of the operands before all critical instruc-
tions. Such always-on voting may cause two main problems.
First, the critical instructions are executed only one time,
and therefore are vulnerable. If any error occurs during the
execution of critical mstructions 1t may remain undetected,
and therefore unrecovered. Second, frequent voting opera-
tions may introduce vulnerable intervals for the operands of
critical instructions and impose significant performance
overhead. Hence, it may be desired to further optimize the
existing forward recovery schemes to overcome the above-
mentioned shortcomings.

SUMMARY

[0008] Aspects disclosed 1n the detailed description relate
to a method for detecting and recovery from soit errors in a
computing device. In examples discussed herein, the method
can be performed to detect a soft error that may occur during
execution of a predefined critical instruction(s) (e.g., a
memory write istruction, a tlow control instruction, etc.)
and/or has been propagated 1n the computing device prior to
the execution of the predefined critical instruction(s). Spe-
cifically, a software compiler may be used to embed an error
detector block(s) after the predefined critical instruction(s).
In this regard, the error detector block(s) can be executed
alter the predefined critical instruction(s) to detect the soft
error. Accordingly, 1t may be possible to invoke a diagnosis
routine to determine severity of the detected soit error and
take appropriate action against the detected soft error. As
such, 1t may be possible to protect the execution of the
predefined critical instruction(s) concurrent to eliminating,
vulnerable voting intervals and reducing soft error detection
overhead.

[0009] In one aspect, a method for detecting and recovery
from soft errors in a computing device 1s provided. The
method 1ncludes executing a predefined critical mstruction.
The method also 1ncludes executing an error detector block
subsequent to executing the predefined critical instruction to
detect a soft error occurring during execution of the pre-
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defined critical instruction. The method also includes mvok-
ing a diagnosis routine 1n response to detecting the sofit error.
[0010] In another aspect, a non-transitory computer-read-
able medium (CRM) 1s provided. The non-transitory CRM
includes software with mnstructions configured to execute a
predefined critical instruction. The non-transitory CRM also
includes software with istructions configured to execute an
error detector block subsequent to executing the predefined
critical instruction to detect a soft error occurring during
execution of the predefined critical instruction. The non-
transitory CRM also includes software with instructions
configured to invoke a diagnosis routine in response to
detecting the soit error.

[0011] Those skilled in the art will appreciate the scope of
the present disclosure and realize additional aspects thereof
after reading the following detailed description of the pre-
terred embodiments in association with the accompanying
drawing figures.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

[0012] The accompanying drawing figures incorporated 1n
and forming a part of this specification illustrate several
aspects of the disclosure, and together with the description
serve to explain the principles of the disclosure.

[0013] FIG. 1 1s a schematic diagram providing an exem-
plary illustration of Swift-R transformation for a simple
piece ol code;

[0014] FIG. 2 1s a flowchart of an exemplary process that
can be employed to detect and recover from a soft error 1n
a computing device;

[0015] FIG. 3 15 a schematic diagram providing an exem-
plary illustration of the method of FIG. 2 for detecting a soft
error that may occur during execution of a memory write
instruction:

[0016] FIG. 4 15 a schematic diagram providing an exem-
plary 1llustration of a silent-store error that may occur during,
execution of a memory write instruction;

[0017] FIG. SA 1s a schematic diagram providing an
exemplary illustration of the method of FIG. 2 configured
according to an embodiment of the present disclosure to
detect the silent-store error in FIG. 4;

[0018] FIG. 5B i1s a schematic diagram providing an
exemplary illustration of the method of FIG. 2 configured
according to another embodiment of the present disclosure
to detect the silent-store error in FIG. 4;

[0019] FIG. 6 1s a schematic diagram providing an exem-
plary illustration of the method of FIG. 2 configured to
detect a wrong-direction control flow error associated with
execution of a flow control 1nstruction; and

[0020] FIG. 7 1s a schematic diagram of an exemplary
computer system including one or more non-transitory coms-
puter-readable media for storing soitware instructions to
implement the process of FIG. 2.

DETAILED DESCRIPTION

[0021] The embodiments set forth below represent the
necessary information to enable those skilled in the art to
practice the embodiments and illustrate the best mode of
practicing the embodiments. Upon reading the following
description 1n light of the accompanying drawing figures,
those skilled 1n the art will understand the concepts of the
disclosure and will recognize applications of these concepts
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not particularly addressed herein. It should be understood
that these concepts and applications fall withun the scope of
the disclosure and the accompanying claims.

[0022] It will be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first element could be termed a
second element, and, similarly, a second element could be
termed a first element, without departing from the scope of
the present disclosure. As used herein, the term “and/or”
includes any and all combinations of one or more of the
associated listed 1tems.

[0023] It will be understood that when an element such as
a layer, region, or substrate 1s referred to as being “on” or
extending “onto” another element, 1t can be directly on or
extend directly onto the other element or intervenming ele-
ments may also be present. In contrast, when an element 1s
referred to as being “directly on” or extending “directly
onto” another element, there are no intervening elements
present. Likewise, 1t will be understood that when an ele-
ment such as a layer, region, or substrate 1s referred to as
being “over” or extending “over” another element, 1t can be
directly over or extend directly over the other element or
intervening elements may also be present. In contrast, when
an element 1s referred to as being “directly over” or extend-
ing “directly over” another element, there are no intervening
clements present. It will also be understood that when an
clement 1s referred to as being “connected” or “coupled” to
another element, 1t can be directly connected or coupled to
the other element or intervening elements may be present. In
contrast, when an element 1s referred to as being “directly
connected” or “directly coupled” to another element, there
are no intervening elements present.

[0024] Relative terms such as “below” or ‘“‘above” or
“upper” or “lower” or “horizontal” or “vertical” may be used
herein to describe a relationship of one element, layer, or
region to another element, layer, or region as illustrated in
the Figures. It will be understood that these terms and those
discussed above are intended to encompass diflerent orien-
tations of the device 1n addition to the orientation depicted
in the Figures.

[0025] The terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended
to be limiting of the disclosure. As used herein, the singular
forms ““a,” “an,” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “‘comprises,”
“comprising,” “includes,” and/or “including” when used
herein specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or

groups thereol.

[0026] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same mean-
ing as commonly understood by one of ordinary skill in the
art to which this disclosure belongs. It will be further
understood that terms used herein should be interpreted as
having a meaning that 1s consistent with their meaning in the
context of this specification and the relevant art and will not
be interpreted 1n an 1dealized or overly formal sense unless
expressly so defined herein.
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[0027] Aspects disclosed 1n the detailed description relate
to a method for detecting and recovery from soit errors in a
computing device. In examples discussed herein, the method
can be performed to detect a soit error that may occur during
execution of a predefined critical instruction(s) (e.g., a
memory write instruction, a flow control mstruction, etc.)
and/or has been propagated 1n the computing device prior to
the execution of the predefined critical instruction(s). Spe-
cifically, a software compiler may be used to embed an error
detector block(s) after the predefined critical instruction(s).
In this regard, the error detector block(s) can be executed
alter the predefined critical instruction(s) to detect the soft
error. Accordingly, 1t may be possible to imnvoke a diagnosis
routine to determine severity of the detected soit error and
take appropriate action against the detected soft error. As
such, 1t may be possible to protect the execution of the
predefined critical instruction(s) concurrent to eliminating,
vulnerable voting intervals and reducing soft error detection
overhead.

[0028] Before discussing the method of the present dis-
closure, a brief overview of an existing fine-grain forward
recovery scheme known as Swiit-R 1s first provided with
reference to FIG. 1 to help understand the limitations of the
Swift-R scheme. The discussion of specific exemplary
aspects ol a method for detecting a soit error 1n a computing
device according to the present disclosure starts below with
reference to FIG. 2.

[0029] In this regard, FIG. 1 1s a schematic diagram
providing an exemplary illustration of Swift-R transforma-
tion for a simple piece of code. Swilt-R 1s a fine-grain
torward error recovery technique, which divides program-
mer-visible registers into three sets and triplicates compu-
tational 1nstructions. In an attempt to prevent propagation of
soit errors to a memory subsystem, Swiit-R performs 2-01-3
majority-voting between redundantly computed values of
source register operands of memory and compare nstruc-
tions, just before execution of the mstructions.

[0030] As shown in FIG. 1, majority-voting 1s performed
between the redundantly-computed values of load address
registers before execution (marked as x4-majority-voting).
The loaded value (x2) 1s then copied 1nto the corresponding
redundant registers (x2* and x2**). The add nstruction 1s
triplicated with redundant registers. Before the execution of
a store istruction, two majority-voting operations, one for
a store value register(x1) (marked as x1-majority-voting)
and one for a store address register (x2) (marked as x2-ma-
jority-voting), are performed.

[0031] Notably, the Swiit-R transformation may have
some noticeable shortcomings. First, execution of critical
instructions, which accounts for 45% of overall program
operations, may not be protected. Although Swift-R major-
1ity-voting operations may eliminate eflects of soft errors that
may incur during execution ol computational instructions
(e.g., arithmetic instruction), Swift-R may be ineflicient 1n
terms of eliminating soft errors occurring during execution
of memory write instructions (e.g., store instruction) and
control-flow 1nstructions (e.g., branch instruction). For
example, 1f the soft error occurs 1n a pipeline that registers
during execution ol the load instruction, the eflective
address of the load struction may be modified to an
arbitrary value, thus causing a wrong value being loaded into
the x2 register. Consequently, Swift-R may copy the erro-
neous value into the corresponding redundant registers (x2*,
and x2**), making the state of all three registers consistently

Apr. 13, 2023

wrong. These types of errors may lead to a failure 1n Swift-R
protected programs. The same problem can happen during
the execution of all critical instructions that are executed
only once (e.g., store, compare, and branch instructions) and
Swilt-R scheme does not verity whether the execution of
these critical instructions 1s completed correctly. On aver-
age, about 55% of dynamic instructions are arithmetic
instructions, and can be triplicated and protected by Swiit-R.
However, the remaining 45% of the instructions can be
critical instructions, which the Switt-R transformation may
be unable to protect.

[0032] Second, the majority-voting operation performed
by the Swift-R transformation may introduce vulnerability
as well. Software implementation ol the majority-voting
operation requires several compare and branch instructions
(as shown 1n x1-majority-voting and x2-majority-voting in
FIG. 1) and may require 4 to 10 machine instructions to
complete. As such, the frequent majority-voting operation
performed by the Swilt-R transformation can introduce
unprotected intervals even for operands of critical mnstruc-
tions. Particularly, 11 soft error happens on registers that are
carrying the operands of the critical instructions, it may
cause the critical instructions to execute incorrectly even
after checking the operands. For example, 11 an error hap-
pens on the register x1 after the last access by x1-majority-
voting operation and before being accessed by the store
instruction, the wrong value may be written into the correct
memory location. This vulnerable period 1s marked by a
x1_wvul vertical line 1 FIG. 1. Impact from the unprotected
intervals can be significant, depending on length of the
vulnerability window and the frequency of the majority-
voting operation. Hence, 1t may be desired to overcome the
above shortcomings of the Swilt-R transformation when

protecting the critical instructions from the impact of soft
EITors.

[0033] Inthisregard, FIG. 2 1s a flowchart of an exemplary
process 10 that may be employed 1n a computing device
(e.g., a microprocessor) for detecting and recovery from a
soit error that may occur during or prior to execution of a
predefined critical instruction. For example, the soit error
may have occurred elsewhere in the computing device and
propagated to the execution of the predefined critical
instruction. In a non-limiting example, the predefined criti-
cal istruction can include a memory-write (e.g., store)
instruction and a flow control instruction (e.g., branch). In
another non-limiting example, a software compiler can be
executed to generate an executable program that includes the
predefined critical instruction, the error detector block, the
diagnosis routine, and a recovery routine. Specifically, the
solftware compiler may be configured (e.g., via compiler
input parameters) to detect the predefined critical instruction
among a number of pipeline instructions and always embed
the error detector block immediately after the predefined
critical instruction 1n the executable program. Notably, the
soltware compiler may be configured to embed a respective
error detector block aiter each predefined critical instruction
among the pipeline 1structions.

[0034] As such, when the executable program 1s executed,
the predefined critical instruction can be executed (block
12). Immediately after execution of the critical instruction,
the error detector block 1s executed to detect a soit error(s)
(block 14). If the error detector block detects the soft error,
the diagnosis routine and the recovery routine will be
invoked to react to the detected soit error (block 16).
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[0035] In a non-limiting example, the diagnosis routine
can be configured to first determine whether the detected
soit error 1s recoverable. If the detected soit error 1s deter-
mined to be a recoverable soft error, the diagnosis routine
may invoke the recovery routine to recover the detected soft
error. Otherwise, the diagnosis routine may alert the detected
soit error (e.g., generating an error message) and abort the
executable program.

[0036] FIG. 3 1s a schematic diagram providing an exem-
plary 1illustration of the process 10 of FIG. 2 for detecting a
solt error that may occur during execution of a memory
write instruction. The computing device, 1n which the pro-
cess 10 1s executed for detecting soft errors, may include a
number of programmer-accessible registers (not shown) that
can be manipulated 1n a program via such instructions as
load, move, copy, shift, add, and so on. The software
compiler may be configured (e.g., via compiler input param-
eters) to partition the programmer-accessible registers into at
least one master register R, at least one detection register
R”, and at least one recovery register R*. Accordingly, the
soltware compiler may be configured to generate the error
detector block that includes a master instruction sequence 18
(also referred to as “M-Stream™), a detection instruction
sequence 20 (also referred to as “D-Stream”) succeeding the
master instruction sequence 18, and a recovery instruction
sequence 22 (also referred to as “R-Stream™) succeeding the
detection instruction sequence 20. In this regard, when the
error detector block 1s executed, the master 1nstruction
sequence 18 will be executed first, the detection 1nstruction
sequence 20 will be executed after execution of the master
istruction sequence 18, and the recovery instruction
sequence 22 will be executed after execution of the detection
instruction sequence 20.

[0037] The master instruction sequence 18 may include
one or more master mstructions configured to operate exclu-
sively on the master register R*. The detection instruction
sequence 20 may include one or more detection 1nstructions
configured to operate exclusively on the detection register
R” and the recovery instruction sequence 22 may include
one or more recovery instructions configured to operate
exclusively on the recovery register R*. In a non-limiting
example, the master instruction sequence 18 can be config-
ured to include all executable instructions, such as arithme-
tic 1nstruction (e.g., add), memory read instruction (e.g.,
load), flow control instruction (e.g., branch), memory write
istruction (e.g., store), and functional call instruction (e.g.,
jump). The detection 1nstruction sequence 20 can be con-
figured to include a subset of the instructions involved 1n the
master 1nstruction sequence 18, namely the arithmetic
instruction, the memory read instruction, and the flow con-
trol instruction. The recovery instruction sequence 22 can be
configured to include a subset of the instructions involved 1n
the detection 1nstruction sequence 20, namely the arithmetic
instruction and the memory read instruction.

[0038] In a non-limiting example, the master register R
1s configured to carry out each of the master instructions 1n
the master mnstruction sequence 18. The detection register
R” is mainly used to compare with values in the master
register R™ to help detect the soft error. The recovery
register R*, on the other hand, is only used to determine
recoverability of the detected soft error (e.g., via majority-
voting).

[0039] As mentioned earlier, the software compiler may
be executed with proper input parameters to generate an
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executable program 24 that includes a memory write mstruc-
tion 26 (the predefined critical instruction, denoted as
“store”), an error detector block 28 (denoted as “‘error
detector”), and a diagnosis routine 30.

[0040] After executing the memory write instruction 26,
the error detector block 28 1s executed to determine whether
a soft error has occurred during execution of the memory
write 1nstruction. If the error detector block 28 does not
detect the soft error, then the executable program will
proceed to executing the next instruction 32. In case the
error detector block 28 detects the soft error, the executable
program will proceed to the diagnosis routine 30, which
determines whether the detected soit error 1s recoverable.

[0041] The diagnosis routine 30 may be configured to
determine recoverability of the detected soft error by per-
forming a majority-vote among the master register R, the
detection register R”, and the recovery register R*. In a
non-limiting example, the diagnosis routine 30 can conclude
that the detected soft error 1s recoverable 11 at least two of the
master register RY, the detection register R”, and the
recovery register R” contain identical value. In contrast, the
diagnosis routine 30 may conclude that the detected soft
error 1s non-recoverable 1f respective values of the master
register R™, the detection register R”, and the recovery
register R™ are distinct.

[0042] If the diagnosis routine 30 determines that the
detected soft error 1s recoverable, the executable program 24
proceeds to a recovery routine 33 for memory restoration
(block 34) and then re-execution of the memory write
instruction (block 36). In this regard, the steps 1n blocks 34
and 36 may be performed as part of the recovery routine 33.
In case the diagnosis routine 30 determines that the detected
soit error 1s non-recoverable, the diagnosis routine 30 may
generate an alert (e.g., error message) indicative of the
non-recoverable soit error. Subsequently, the diagnosis rou-
tine 30 may cause the executable program to be aborted or

restarted (block 38).

[0043] Notably, the process 10 of FIG. 2 assumes that the

caches and memories are Error Correcting Code (ECC)-
protected. As such, the sphere of protection of the error
detector block 28 may only include the entire microproces-
sor core components (excluding memory subsystem). The
objective of the process 10 1s to detect and correct the effect
of all transient faults and prevent the executable program
from experiencing any form of function and timing failures.

[0044] The sphere of protection of the error detector block
28 includes all program instructions. The error detector
block 28 checks for errors 1n the outcome of the predefined
critical instruction, such as tlow control (e.g., branch) and
memory write (e.g., store) istructions, rather than register
operands of the predefined critical instruction. As a result, 1t
may be possible to enhance the coverage of voting-based
schemes from just triplicated instructions to all istructions
in the executable program 24.

[0045] In addition, the process 10 may close all known
soltware vulnerability windows as identified earlier in the
Swiit-R scheme. Software vulnerability window, defined as
the duration between checking a value 1n software and the
time to use the value, exists 1n almost all existing software-
level techniques. The software vulnerability window can be
a major source ol failure in voting-based techniques like
Swilt-R. Instead of voting, the process 10 1s configured to
check for errors 1n execution results of the critical mstruc-
tion 26. Since the error detector block 28 1s placed after
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execution of the memory write nstruction 26, 1t may be
possible to preserve the value inside each memory location
for recovery purposes. Such lazy error checking strategy
climinates all software vulnerable windows.

[0046] The error detector block 28 may be particularly
cellective 1 detecting a so-called silent-store error during
execution of the memory write instruction 26. FIG. 4 1s a
schematic diagram providing an exemplary 1llustration of a
silent-store error, which may occur during execution of a
memory write instruction.

[0047] The memory write (e.g., store) instruction 1s said to
be silent 11 the memory write instruction writes a value 1nto
a memory element already holding the same value. If an
error alters the eflective address of a silent store, 1t can make
a random modification to the state of memory and the error
may be detected by load back strategy because the loaded
value from the memory 1s the same as the stored value. The
store 1s silent because the value val at a memory location
addr, before executing a store mstruction (as shown in the
upper part of FIG. 4) is equal to the values val* and val”
computed by the master instruction sequence (M-Stream)
and the detection instruction sequence (D-Stream), respec-
tively. Therefore, the state of memory should not get
changed by the execution of the memory write 1nstruction.
I1 the soft error hits the base address register of the memory
write 1nstruction, and alters the eflective address of the
memory write instruction from addr to f-addr, then the
memory write instruction may write data ito the faulty
memory address f-addr rather than addr, thus changing the
state of memory while 1t 1s not supposed to do so (as shown
in the lower part of FIG. 4). This error remains undetectable,
since the following checking-load instruction will load the
value, val, from the correct address (computed by the
detection stream), addr”, which is equal to val™ and val”.
Note that simply inserting a check for the base address
register store would not solve the problem since the error can
alter the store address without affecting the address register
(e.g., errors aflecting functional unit or pipeline register
while processing the store instruction). Since silent stores
can consist of around 18% to 64% of the total program’s
store 1nstructions, fixing the silent store vulnerability 1s
important 1n critical applications.

[0048] The process 10 of FIG. 2 and, more specifically, the

error detector block 28 i FIG. 3, can be configured to
cllectively detect and thereby react to the so-called silent-
store error as discussed above. In this regard, FIG. 5A 15 a
schematic diagram providing an exemplary illustration of
the process 10 of FIG. 2 configured according to an embodi-
ment of the present disclosure to detect the silent-store error
in FIG. 4. Common elements between FIGS. 3 and 5A are
shown therein with common element numbers and will not
be re-described herein.

[0049] The software compiler may be configured to gen-
erate an error detector block 28 A that 1s functionally equiva-
lent to the error detector block 28 in FIG. 3. The error
detector block 28A may load a value stored at a destination
address [ADDR™], which is associated with the memory
write instruction (e.g., load), mto a silent check register
(SCR) (block 40). Next, the error detector block 28A
compares the SCR with a master value VALY computed by
the master instruction sequence 18 and stored in the master
register R* to determine whether the silent-store error exists
(block 42). If the silent-store error does not exist, the error
detector block 28A writes the master value VALY to the
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destination address [ADDR™] as stored in the SCR (block
44). Notably, the error decoder block 28 A may invoke one
or more external instructions (e.g., not as part of the error
decoder block 28A) to write the master value VALY to the
destination address [ADDR™]. The error detector block 28 A
then loads a value stored at a detection destination address
[ADDR”] into the SCR (block 46). Regardless of whether
the silent-store error exists, the error detector block 28A
proceeds to comparing the SCR with a detection value
VAL” computed by the detection instruction sequence 20
and stored in the detection register R” to detect the soft error
associated with executing the memory write 1nstruction

(block 48).

[0050] FIG. 5B i1s a schematic diagram providing an
exemplary illustration of the process 10 of FIG. 2 configured
according to another embodiment of the present disclosure
to detect the silent-store error 1n FIG. 4. Common elements
between FIGS. 3 and 5B are shown therein with common
clement numbers and will not be re-described herein.

[0051] The software compiler may be configured to gen-
erate an error detector block 28B that 1s functionally equiva-
lent to the error detector block 28 in FIG. 3. The error
detector block 28B may load a value stored at a destination
address [ADDR?™], which is associated with the master
instruction sequence 18, into a value check register (VCR)
(block 50). The error detector block 28B may load a value
stored at a destination address [ADDR”], which is associ-
ated with the detection 1nstruction sequence 20, into a silent
check register (SCR) (block 52). Next, the error detector
block 28B compares the SCR with a master value VALY
computed by the master instruction sequence 18 and stored
in the master register R™ to determine whether the silent-
store error exists (block 54). Regardless of whether the
silent-store error exists, the error detector block 28B copies
the SCR to the VCR (block 56). It the silent-store error does
not exist, the error detector block 28B writes the master
value VAL to the destination address [ADDR™Y] as stored
in the VCR (block 58). Notably, the error decoder block 28B
may invoke one or more external instructions (e.g., not as
part of the error decoder block 28B) to write the master
value VALY to the destination address [ADDR™]. The error
detector block 28B then loads a value stored at a detection
destination address [ADDR?”] into the VCR (block 60).
Regardless of whether the silent-store error exists, the error
detector block 28B proceeds to comparing the SCR with a
detection value VAL” computed by the detection instruction
sequence 20 and stored in the detection register R” to detect
the soft error associated with executing the memory write
istruction (block 62).

[0052] FIG. 6 1s a schematic diagram providing an exem-
plary illustration of the process 10 of FIG. 2 configured to
detect a wrong-direction control flow error associated with
execution of a tlow control instruction 64. Common ele-
ments between FIGS. 3 and 6 are shown therein with
common element numbers and will not be re-described
herein.

[0053] The flow control mstruction 64 determines a true-
condition branch 66T (denoted as “TAKEN”) and a false-

condition branch 66F (denoted as “NOT-TAKEN") based on
a predefined branching condition (e.g., a=zb, a<b, etc.). In
examples discussed herein, the tlow control instruction 64
compares a first master value VAL1" stored in a first master
register R1" (not shown) and a second master value VAL2Y
stored in a second master register R2* (not shown) to
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determine the true-condition branch 661, which corresponds
to satisfaction of the predefined branching condition, and the
false-condition branch 66F, which corresponds to dissatis-
faction of the predefined branching condition. Notably, a
soit error occurring during execution of the flow control
instruction 64 may cause the tlow control instruction 64 to
sufler the wrong-direction control tlow error. For example,
the flow control instruction 64 may mistakenly cause a
program to proceed to the true-condition branch 661 even
though the predefined branching condition 1s actually dis-
satisiied, or vice versa. As such, 1t may be desired to detect
and react to the wrong-direction control flow error that may
occur during execution of the flow control instruction 64.

[0054] In this regard, the software compiler may be con-
figured to generate an error detector block 28C, which 1s
functionally equivalent to the error detector block 28 1n FIG.
3, immediately after the flow control instruction 64. In a
non-limiting example, the error detector block 28C includes
a true-condition error detector block 681 and a false-con-
dition error detector block 68F. The true-condition error
detector block 681 1s configured to compare a first detection
value VAL1” stored in a first detection register R1” (not
shown) and a second detection value VAL2” stored in a
second detection register R2” (not shown) based on an
opposite of the predefined branching condition to detect the
wrong-direction control flow error. For example, if the
predefined branching condition 1s a=b, then the opposite of
the predefined branching condition will be a<b. In contrast,
the false-condition error detector block 68F 1s configured to
compare the first detection value VAL1” stored in the first
detection register R1” and the second detection value
VAL2?” stored in the second detection register R2” based on
the predefined branching condition to detect the wrong-
direction control flow error. If the wrong-direction control
flow error 1s detected 1n the true-condition branch 66T or the
false-condition branch 66F, the error detector block 28C
may ivoke the diagnosis routine 30 (not shown) to react to
the wrong-direction control flow error. If the wrong-direc-
tion control flow error 1s not detected in both the true-
condition branch 66T and the false-condition branch 66F,
the true-condition error detector block 681 and the false-
condition error detector block 68F can cause the execution
to proceed to a true-condition base block 70T and a false-
condition base block 70F, respectively.

[0055] In a non-limiting example, there can be a second
flow control 1nstruction 72 1n execution, either concurrent to
or independent of, the flow control instruction 64. The
second flow control instruction 72 determines a second
true-condition branch 74T (denoted as “TAKEN™) and a
second Tfalse-condition branch 74F (denoted as “NOT-
TAKEN?) based on a second predefined branching condi-
tion. In examples discussed herein, the second tlow control
instruction 72 compares a third master value VAL3" stored
in a third master register R3* (not shown) and a fourth
master value VAL4Y stored in a fourth master register R4™
(not shown) to determine the second true-condition branch
74T, which corresponds to satisfaction of the second pre-
defined branching condition, and the second false-condition
branch 74F, which corresponds to dissatisfaction of the
second predefined branching condition. Notably, a soft error
occurring during execution ol the second flow control
instruction 72 may cause the second flow control instruction
72 to sufler the wrong-direction control tlow error.
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[0056] In a non-limiting example, the error detector block
28C may include a second true-condition error detector
block 76T and a second false-condition error detector block
76F. The second true-condition error detector block 76T 1s
configured to compare a third detection value VAL3” stored
in a third detection register R3” (not shown) and a fourth
detection value VAL4” stored in a fourth detection register
R4” (not shown) based on an opposite of the second pre-
defined branching condition to detect the wrong-direction
control flow error. In contrast, the second false-condition
error detector block 76F 1s configured to compare the third
detection value VAL3” stored in the third detection register
R1” and the fourth detection value VAL4” stored in the
fourth detection register R4” based on the second predefined
branching condition to detect the wrong-direction control
flow error. If the wrong-direction control flow error 1is
detected 1n the second true-condition branch 74T or the
second false-condition branch 74F, the error detector block
28C may invoke the diagnosis routine 30 to react to the
wrong-direction control tlow error. If the wrong-direction
control flow error 1s not detected 1n both the second true-
condition branch 74T and the second false-condition branch
74F, the second true-condition error detector block 76T and
the second false-condition error detector block 76F can
cause the execution to proceed to the true-condition base
block 70T and a second false-condition base block 78F,

respectively.

[0057] Notably, the false-condition base block 70F 1s a
single-entry base block since the execution can only arrive
at the false-condition base block 70F via the false-condition
branch 66F. Likewise, the second false-condition base block
78F 1s also a single-entry base block since the execution can
only arrive at the second false-condition base block 78F via
the second {false-condition branch 74F. In contrast, the
true-condition base block 70T 1s a multi-entry base block
(also referred to as “fan-in” base block) because the execu-
tion can arrive at the true-condition base block 70T via the
true-condition branch 66T and the second true-condition
branch 747T. In this regard, the error detector block 28C may
be effective 1n detecting the wrong-direct control flow error
in the context of single-entry base block and the fan-1n base

block.

[0058] FIG. 7 1s a schematic diagram of an exemplary
computer system 80 including one or more non-transitory
computer-readable media 82(1)-82(4) for storing soiftware
instructions to implement the process 10 of FIG. 2. The
non-transitory computer-readable media 82(1)-82(4) further
include a hard drive 82(1), an on-board memory system
82(2), a compact disc 82(3), and a floppy disk 82(4).
Notably, the computer system 80 may include additional
storage media such as flash memory, non-volatile memory,
cache memory, and so on. Each of the non-transitory com-
puter-readable media 82(1)-82(4) may be configured to store
the software instructions to implement the process 10.

[0059] The computer system 80 also includes a keyboard
84 and a computer mouse 86 for mputting the solftware
istructions onto the non-transitory computer-readable
media 82(1)-82(4). The keyboard 84 and the computer
mouse 86 may also be used to mput parameters of the
soltware compiler for generating the error detector block 28
in the executable program 24 of FIG. 3 according to the
process 10.

[0060] The computer system 80 also includes a monitor 88
for providing an indication of unrecoverable soft error as
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determined by the diagnosis routine 30 1n FIG. 3. Further,
the computer system 80 includes a processor 90 configured
to read the software instructions from the non-transitory
computer-readable media 82(1)-82(4) and execute the sofit-
ware 1nstructions to implement the process 10. While the
computer system 80 1s 1illustrated as a single device, the
computer system 80 may also be a computer network
deployed according to a centralized topology or a distributed
topology.

[0061] Those skilled in the art will recognize 1mprove-
ments and modifications to the preferred embodiments of the
present disclosure. All such improvements and modifica-
tions are considered within the scope of the concepts dis-
closed herein and the claims that follow.

What 1s claimed 1s:

1. A method for detecting and recovery from soft errors 1n
a computing device comprising:

executing a predefined critical 1nstruction;

executing an error detector block subsequent to executing

the predefined critical mstruction to detect a soft error
in the computing device; and

invoking a diagnosis routine and a recovery routine in

response to detecting the soft error.

2. The method of claim 1 further comprising executing the
error detector block to detect the soft error occurring during
or prior to execution of the predefined critical instruction.

3. The method of claim 1 further comprising executing a
soltware compiler to:

determine the predefined critical instruction;

generate the error detector block corresponding to the

predefined critical instruction;

generate the diagnosis routine corresponding to the error

detector block; and

generate an executable program comprising the pre-

defined critical instruction, the error detector block, and
the diagnosis routine.

4. The method of claim 1 further comprising:

portioning a plurality of programmer-accessible registers

in the computing device into at least one master reg-
ister, at least one detection register, and at least one
recovery register;

generating the error detector block comprising:

a master 1struction sequence configured to operate on
the at least one master register;

a detection instruction sequence configured to operate
on the at least one detection register; and

a recovery instruction sequence configured to operate
on the at least one recovery register; and

executing sequentially the master instruction sequence,

the detection instruction sequence, and the recovery
istruction sequence after executing the predefined
critical instruction to detect the soft error associated
with executing the predefined critical instruction.

5. The method of claim 4 further comprising;:

generating the master istruction sequence comprising

one or more master mstructions selected from a group
consisting of: an arithmetic nstruction, a memory read
istruction, a tlow control mstruction, a memory write
instruction, and a functional call instruction;
generating the detection istruction sequence comprising,
one or more detection instructions selected from a

group consisting of: the arithmetic instruction, the
memory read instruction, and the flow control nstruc-
tion; and
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generating the recovery instruction sequence comprising
one or more recovery instructions selected from a
group consisting of: the arthmetic mnstruction and the
memory read instruction.
6. The method of claim 4 further comprising invoking the
diagnosis routine to:
determine whether the detected soft error 1s recoverable;
recover the detected soit error in response to determining
that the detected soft error 1s a recoverable soit error;
and
alert the detected soft error 1n response to determining that
the detected soft error 1s a non-recoverable soft error.
7. The method of claim 6 further comprising performing,
majority-voting among the at least one master register, the at
least one detection register, and the at least one recovery
register to determine whether the soit error 1s recoverable.
8. The method of claim 4 further comprising detecting and
reacting to a silent-store error occurring during execution of
a memory write struction.
9. The method of claim 8 further comprising:
loading a value stored at a destination address associated
with the memory write mnstruction into a silent check
register;
comparing the silent check register with a master value
computed by the master instruction sequence and
stored 1n the at least one master register to determine
whether the silent-store error exists:
in response to determining that the silent-store error does
not exist:
writing the master value stored in the at least one
master register to the destination address stored 1n
the silent check register; and
loading a value stored at a detection destination address
into the silent check register;

comparing the silent check register with a detection value

computed by the detection instruction sequence and
stored 1n the at least one detection register to detect the

soit error associated with executing the memory write
instruction; and

invoking the diagnosis routine 1n response to detecting the
soit error.

10. The method of claim 8 further comprising;

loading a value stored at a destination address associated
with the memory write instruction into a value check
register and a silent check register, respectively;

comparing the silent check register with a master value

computed by the master instruction sequence and
stored 1n the at least one master register to determine
whether the silent-store error exists:

copying the silent check register to the value check
register;

in response to determining that the silent-store error does
not exist:

writing the master value stored in the at least one
master register to the destination address stored 1n
the value check register; and

loading a value stored at a detection destination address
into the value check register;

comparing the silent check register with a detection value
computed by the detection instruction sequence and
stored 1n the at least one detection register to detect the
soit error associated with executing the memory write
instruction; and
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invoking the diagnosis routine and a recovery routine in

response to detecting the soft error.

11. The method of claim 4 further comprising detecting
and reacting to a wrong-direction control flow error occur-
ring during execution of a flow control instruction.

12. The method of claim 11 further comprising;:

executing the flow control instruction based on a pre-

defined branching condition to determine a true-con-
dition branch and a false-condition branch;

in the true-condition branch, comparing a first detection

register and a second detection register among the at
least one detection register based on an opposite of the
predefined branching condition to detect the wrong-
direction control flow error;

in the false-condition branch, comparing the first detec-

tion register and the second detection register among,
the at least one detection register based on the pre-
defined branching condition to detect the wrong-direc-
tion control flow error; and

invoking the diagnosis routine in response to detecting the

wrong-direction control tlow error.

13. A non-transitory computer-readable medium (CRM)
comprising software with 1nstructions configured to:

execute a predefined critical mstruction;

execute an error detector block subsequent to executing
the predefined critical instruction to detect a soft error
in a computing device; and

invoke a diagnosis routine in response to detecting the

soit error.

14. The non-transitory CRM of claim 13 wherein the
software with 1nstructions 1s further configured to execute a
software compiler to execute the error detector block to
detect the soft error occurring during or prior to execution of
the predefined critical instruction.

15. The non-transitory CRM of claim 13 wherein the
software with 1nstructions 1s further configured to execute a
soltware compiler to:

determine the predefined critical instruction;

generate the error detector block corresponding to the
predefined critical instruction;

generate the diagnosis routine corresponding to the error
detector block; and

generate an executable program comprising the pre-
defined critical instruction, the error detector block, and
the diagnosis routine.

16. The non-transitory CRM of claim 13 wherein the
software with instructions 1s further configured to:

partition a plurality of programmer-accessible registers in
a computing device into at least one master register, at
least one detection register, and at least one recovery
register;

generate the error detector block comprising:

a master instruction sequence configured to operate on
the at least one master register;

a detection instruction sequence configured to operate
on the at least one detection register; and

a recovery instruction sequence configured to operate
on the at least one recovery register; and

execute sequentially the master instruction sequence, the
detection 1nstruction sequence, and the recovery
istruction sequence after executing the predefined
critical instruction to detect the soft error associated
with executing the predefined critical istruction.
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17. The non-transitory CRM of claam 16 wherein the
soltware with instructions 1s further configured to:

generate the master mstruction sequence comprising one

or more master 1nstructions selected from a group
consisting of: an arithmetic instruction, a memory read
instruction, a flow control instruction, a memory write
instruction, and a functional call instruction;

generate the detection instruction sequence comprising,

one or more detection instructions selected from a
group consisting of: the arthmetic instruction, the
memory read instruction, and the flow control nstruc-
tion; and

generate the recovery instruction sequence comprising

one or more recovery instructions selected from a
group consisting of: the arnthmetic mnstruction and the
memory read nstruction.

18. The non-transitory CRM of claam 16 wherein the
soltware with instructions 1s further configured to invoke the
diagnosis routine to:

determine whether the detected soft error i1s recoverable;

recover the detected soft error in response to determining

that the detected soft error 1s a recoverable soit error:
and

alert the detected soit error 1n response to determining that

the detected soit error 1s a non-recoverable soit error.

19. The non-transitory CRM of claam 18 wherein the
soltware with instructions 1s further configured to perform
majority-voting among the at least one master register, the at
least one detection register, and the at least one recovery
register to determine whether the soit error 1s recoverable.

20. The non-transitory CRM of claim 16 wherein the
soltware with 1nstructions 1s further configured to detect and
react to a silent-store error occurring during execution of a
memory write 1struction.

21. The non-transitory CRM of claim 20 wherein the
soltware with instructions 1s further configured to:

load a value stored at a destination address associated

with the memory write instruction into a silent check
register;

compare the silent check register with a master value

computed by the master instruction sequence and
stored 1n the at least one master register to determine
whether the silent-store error exists;

in response to determining that the silent-store error does

not exist:

write the master value stored 1n the at least one master
register to the destination address stored in the silent
check register; and

load a value stored at a detection destination address
into the silent check register;

compare the silent check register with a detection value

computed by the detection instruction sequence and
stored 1n the at least one detection register to detect the
soit error associated with executing the memory write
instruction; and

invoke the diagnosis routine 1n response to detecting the

soit error.

22. The non-transitory CRM of claim 20 wherein the
software with instructions 1s further configured to:

load a value stored at a destination address associated

with the memory write instruction into a value check

register and a silent check register, respectively;
compare the silent check register with a master value

computed by the master instruction sequence and
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stored 1n the at least one master register to determine
whether the silent-store error exists:;

copy the silent check register to the value check register;

in response to determining that the silent-store error does
not exist:

write the master value stored in the at least one master

register to the destination address stored 1n the value
check register; and

load a value stored at a detection destination address
into the value check register;

compare the silent check register with a detection value

computed by the detection instruction sequence and
stored 1n the at least one detection register to detect the

soit error associated with executing the memory write
instruction; and

invoke the diagnosis routine in response to detecting the
soit error.

23. The non-transitory CRM of claam 16 wherein the
soltware with 1nstructions 1s further configured to detect and
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react to a wrong-direction control flow error occurring
during execution of a flow control 1nstruction.

24. The non-transitory CRM of claim 23 wherein the
soltware with instructions 1s further configured to:

execute the flow control 1instruction based on a predefined
branching condition to determine a true-condition
branch and a false-condition branch:;

in the true-condition branch, compare a first detection
register and a second detection register among the at
least one detection register based on an opposite of the
predefined branching condition to detect the wrong-
direction control flow error;

in the false-condition branch, compare the first detection
register and the second detection register among the at
least one detection register based on the predefined
branching condition to detect the wrong-direction con-
trol flow error; and

invoke the diagnosis routine 1n response to detecting the
wrong-direction control flow error.
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