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(57) ABSTRACT

A computing device includes a host processor to execute a
host driver to create a host-side interface, the host-side
interface emulating a first Ethernet interface, assign the
host-side 1nterface a first medium access control (MAC)
address and a first Internet Protocol (IP) address. Memory
components are disposed on a substrate. A memory channel
network (MCN) processor 1s disposed on the substrate and
coupled between the memory components and the host
processor. The MCN processor 1s to execute an MCN driver
to create a MCN-side interface, the MCN-side interface
emulating a second Ethemet interface. The MCN processor
1s to assign the MCN-side interface a second MAC address
and a second IP address, which identily the MCN processor

as a MCN network node to the host processor.
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APPLICATION-TRANSPARENT
NEAR-MEMORY PROCESSING
ARCHITECTURE WITH MEMORY
CHANNEL NETWORK

REFERENCE TO EARLIER FILED
APPLICATION

[0001] This application 1s a divisional of U.S. patent
application Ser. No. 17/250,783, filed Mar. 3, 2021, which 1s
a National Stage of International Application No. PCT/

US19/50027, filed Sep. 6, 2019, which claims the benefit
under 35 U.S.C. § 119(e) of U.S. Provisional Patent Appli-
cation No. 62/728,416, filed Sep. 7, 2018, all of which are

incorporated herein, 1n their entirety, by this reference.

L1

SEARCH OR

FEDERALLY SPONSORED R.
DEVELOPMENT

[0002] This disclosure was made with government support
under CNS1705047 awarded by the National Science Foun-
dation. The government has certain rights 1 the mvention.

BACKGROUND

[0003] The performance of servers running emerging data-
intensive applications such as big-data analytic 1s limited by
the dynamic random access memory (DRAM) capacity and
double data rate (DDR) bandwidth. The expected deploy-
ment of emerging memory technologies such as 3D XPoint
to servers will relieve the ever-increasing pressure on
demanding larger memory capacity for such applications.
However, for such servers to be cost-eflective, servers need
to 1ncrease the compute throughput and available memory
bandwidth commensurate with the increase in memory
capacity.

[0004] As part of such eflort, researchers have proposed
various near-memory processing architectures that tightly
integrate a processor with memory to expose higher band-
width to the processor. Such near-memory processing archi-
tectures, nonetheless, require significant changes 1n target
applications especially to orchestrate the communication
between the host and near-memory processors. This hurts
application readiness and thus creates a big hurdle for wide
adoption.

[0005] To address application readiness challenge {for
near-memory processing, many emerging data-intensive
applications, which can benefit from near-memory process-
ing, are oiten built upon distributed computing frameworks
such as Hadoop, Spark, and Message Passing Interface
(MPI). These distributed computing frameworks distribute
grven mmput data of an application and have many servers
process the input data in parallel. As such, the high-level
processing model of recent near-memory processing archi-
tectures was imspired and derived by the distributed com-
puting framework.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] A more particular description of the disclosure
briefly described above will be rendered by reference to the
appended drawings. Understanding that these drawings only
provide information concerning typical embodiments and
are not therefore to be considered limiting of its scope, the
disclosure will be described and explained with additional
specificity and detail through the use of the accompanying
drawings.
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[0007] FIG. 1A 1s a block diagram of an exemplary
computing system 1n which a memory sub-system 1ncludes
memory channel network (MCN) memory modules accord-
ing to one embodiment.

[0008] FIG. 1B 1s a block diagram of one of the MCN
memory modules of FIG. 1A according to an embodiment.
[0009] FIG. 1C 1s a block diagram of an MCN processor
disposed on the MCN module of FIG. 1B according to an
embodiment.

[0010] FIG. 2 1s a block diagram that illustrates function-
ality of a conventional network interface card (NIC) accord-
ing to various embodiments.

[0011] FIG. 3A 1s a graph diagram illustrative of a local
buffer of the MCN processor of FIG. 1C according to an
embodiment.

[0012] FIG. 3B is a graph diagram 1llustrative of an MCN
message stored in the local buller according to an embodi-
ment.

[0013] FIG. 4 1s a functional flow diagram 1illustrative of
a relationship between the memory channel network hard-
ware, kernel space software, and user space applications
according to an embodiment.

[0014] FIG. 5 1s a flow chart of a method for handling a
network packet recerved at an MCN-side interface from the
network stack according to various embodiments.

[0015] FIG. 6 1s a flow chart of a method for a host-side
polling agent to determine whether local buflers of MCN

processors are attempting to transmit data according to
various embodiments.

[0016] FIG. 7 1s a flow chart of a method for the host
processor to decide where to route a network packet depend-
ing on 1ts medium access control (MAC) address according
to various embodiments.

[0017] FIG. 8 1s a set of graphs 1llustrative of host pro-
cessor view of interleaved arrangement of physical address
space versus MCN processor views of that physical address
space according to an embodiment.

[0018] FIG. 9A 1s an image of a ConTutto field program-
mable gate array (FPGA) board according to an embodi-
ment.

[0019] FIG. 9B i1s an image of the board of FIG. 8A
plugged into an International Business Machine (IBM
S824L) system alongside regular Centaur DIMMSs according,
to an embodiment.

[0020] FIG. 9C 1s a block diagram of an implementation
example of the computing system of FIGS. 1A-1C accord-
ing to an embodiment.

[0021] FIG. 10 1s a block diagram of an example computer
system 1n which embodiments of the present disclosure can
operate.

DETAILED DESCRIPTION

[0022] The present disclosure provides a Memory Chan-
nel Network (MCN), which builds on distributed computing
frameworks (such as Hadoop, Spark, and MPI), and exploits
high bandwidth and low latency of double data rate (DDR)
or other similar interfaces. Specifically, MCN architecture
aims to give the host and near-memory processors connected
through a host interface (such as a DDR 1interface) in a server
the 1llusion that these processors connect through Ethernet
inks. As such, MCN can provide a standard and application-
transparent communication interface not only between the
host and near-memory processors 1n a server, but also among
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such servers, seamlessly unifying near-memory processing
with distributed computing for data-intensive applications.

[0023] The MCN 1s made up of a combination of hardware
and software. For example, the hardware may include, but 1s
not limited to, a memory module made MCN-capable with
an MCN processor that will be explained in detail. The
memory module may be a dual in-line memory module
(DIMM) where memory components are coupled to the
MCN processor on a substrate such as a printed circuit board
(PCB) or the like. Other types of memory modules are
envisioned. This “MCN DIMM™ may be coupled between a
host-side memory controller (MC) of a host computing,
system and installed DRAM devices, where the MCN pro-
cessor may be viewed as a buflered device and the MCN
DIMM as a buflered DIMM. As used herein, “coupled to”
generally refers to a connection between components or
devices, which can be an indirect communicative connection
or direct communicative connection (e.g., without interven-
ing components or devices), whether wired or wireless,
including connections such as electrical, optical, magnetic,
etc

[0024] In various embodiments, an MCN interface may be
implemented within the MCN processor to function similar
to a network interface. In lieu of an Ethernet physical layer
(PHY ), MCN may build on any PHY for memory, including
DDR PHY, GEN-Z™ PHY, or OpenCAPI™ PHY, to inter-
face between a host-sidde MC and the MCN processor. In
embodiments, the MCN processor runs a lightweight oper-
ating system (OS) with the network software layer used for
running a distributed computing framework.

[0025] The MCN may also deploy software on both the
host system and the MCN processor, to facilitate data
exchange between the two within the memory channel
network. In various embodiments, both the MCN and host
processors may execute special MCN-adapted drivers. For
example, the MCN processor may execute an MCN driver,
and the host processor may execute a corresponding (simi-
lar) MCN driver, referred to herein as a host MCN driver (or
just “host dniver” for simplicity). The interplay between
these two MCN drivers running on the MCN and host
processors enable functionality akin to inter-node connec-
tions through Ethernet interfaces.

[0026] For example, the host dniver runming on the host
processor may be similar to a conventional NIC driver but
intercepts a network packet from the network software layer
in the OS and redirects the network packet to a memory
controller (MC) of an MCN DIMM 1f the network packet 1s
destined (e.g., addressed) to the MCN DIMM. Unlike a
conventional NIC generating an interrupt to inform a host of
new network packets, the memory mtertface (and MC) do not
have a corresponding mechamism. Hence, the host driver 1s

adapted with a mechanism (or mechanisms) to determine
whether any MCN DIMM 1s sending a network packet to the
host or other MCN DIMMs, as will be discussed.

[0027] In various embodiment, these MCN DIMMs and
associated MCN drivers together allow a server to run an
application based on a distributed computing framework
without any change 1n the host processor hardware, distrib-
uted computing middleware, and application soitware, while
offering the benefits of high-bandwidth and low-latency
communications between the host and the MCN processors
over memory channels. Furthermore, each MCN processor
accesses 1its DRAM devices on the same MCN DIMM

through a local memory channel that 1s isolated from a

Mar. 9, 2023

global memory channel shared with other DIMMSs and the
host. Therefore, multiple MCN DIMMs can concurrently
operate. That 1s, the aggregate memory bandwidth for pro-
cessing 1s proportional to the number of MCN DIMMs, and
thus grows as the number of MCN DIMMs 1s increased. As
such, MCN architecture can serve as an application-trans-
parent near memory processing platform, as well as unify
near-memory processing i a server with the distributed
computing across multiple servers.

[0028] Accordingly, MCN architecture can unily near-
DRAM processing i a node with distributed computing
across multiple such nodes. To further increase the utilized
bandwidth and decrease the communication latency between
MCN DIMMs, optional software and hardware optimization
techniques may be implemented. Specifically, the MCN
driver and some of the OS network layers may be optimized,
leveraging unique properties of MCN over traditional Eth-
ernet. Further communication efliciency may be achieved by
adapting an already existing signal from the memory com-
ponents to the host 1n order to interrupt the host MC when
an MCN DIMM has outgoing packets, to reduce polling
cycles. These optimizations will be discussed 1n detail.

[0029] The network architecture of the current datacenters
follows a hierarchical model with the servers as the leaf
nodes. A rack, as the basic building block of a datacenter,
includes several servers connected together using a top of
rack switch. As reported in several industry papers, the
bandwidth of a top of rack switch ranges from 1 to 10 Gbps,
while the top of rack switches are connected together
through 40 to 100 Gbps connections. As discussed herein,
even a basic MCN implementation provides higher band-
width and lower latency than its 10 GbE counterpart. We
propose to replace a rack with MCN-enabled servers that
interconnect leal nodes (e.g., MCN nodes) using a low cost,
energy ellicient interconnect to improve the energy efli-
ciency of runming I/O intensive applications while reducing
the datacenter cost.

[0030] FIG. 1A 1s a block diagram of an exemplary
computing system 100 in which a memory sub-system 110
includes memory channel network (MCN) memory modules
according to one embodiment. The computing system 100
(or computing device) may further include a host system 120
including a host processor 122 and a memory controller
(MC) for each bank of memory modules. For exemplary
purposes, a (first) host MC 130A and a (second) host MC
1308 are illustrated. The host processor 122 may execute a
host operating system (OS) 125 and a host driver 127 (e.g.,
host MCN driver), as will be explained.

[0031] The memory sub-system 110 may include a num-
ber of memory modules, e.g., organized i banks that are
coupled, via global memory channels 102A and 102B, to the
host MC 130A and the host MC 130B, respectively. While
only two global memory channels 102A and 102B are
illustrated, 1t 1s to be understood that there could be multiple
global memory channels more than what 1s illustrated.

[0032] To strike a balance between memory capacity and
bandwidth, multiple DRAM devices that operate 1n tandem
compose a rank, and one or more ranks are packaged on a
memory module. A popular memory module called Dual
In-line Memory Module (DIMM) has 64 data I/O (DQ) pins
plus 8 DQ pins for a DIMM supporting error correcting code
(ECC) capability. A first bank of DIMMS coupled to the host
MC 130A may include a first conventional (CONV) DIMM
112A, a second CONV DIMM 114A, a first MCN DIMM
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116 A, and a second MCN DIMM 118A. A second bank of
DIMMS coupled to the host MC 130B may include a first
CONYV DIMM 112B, a second CONV DIMM 114B, a first
MCN DIMM 116B, and a second MCN DIMM 118B. In one
embodiment, the convention (or CONV) DIMMs employ
the DDR protocol, although other high-bandwidth, low-
latency protocols are also envisioned. For example, the
CONYV DIMMs are DDR4 DIMMSs, or other updated DIMM
technology, 1n various embodiments. In various embodi-
ments, the host MC 130A or 130B treats MCN DIMMs as
buflered DIMMs and thus supports a mixture of multiple
MCN and conventional DIMMSs per memory channel.

[0033] A global memory channel couples an MC to one or
more DIMMs. In a server class processor, an MC drives
hundreds of DRAM devices and delivers Command/Ad-
dress (C/A) signals through the global memory channel to
the DRAM devices. Considering the gigahertz (GHz) opera-
tion frequency range of a modern DRAM device, this 1n turn
leads to a serious signal integrity problem. For example, a
C/A pin from a memory controller has to drive 144 DRAM
devices (18x4 devices per rank supporting ECC multiplied
by 8 ranks) when 8 ranks are populated per channel. In
contrast, a data pin 1s connected to 8 DRAM devices, which
1s an order of magnitude fewer. Therefore, DIMMs {for
servers typically employ a bufler per DIMM, such as Reg-
istered DIMM (RDIMM) or Load-Reduce DIMM
(LRDIMM), to reduce this huge capacitive load imposed to
an MC and alleviate the signal integrity problem.

[0034] In one embodiment, a server (such as the comput-

ing system 100) may deploy another DIMM type with a
bufler, e.g., a Centaur DIMM (CDIMM). Centaur 1s a

memory bufler chip designed by IBM® for their POWER
scale-up microprocessors. Each CDIMM with a tall form
factor includes up to 80 commodity DDR DRAM devices
and a Centaur device that provides a 16 MB eDRAM L4
cache, memory management logic, and an interface between
DDR and IBM® proprietary memory interfaces. Note that
the bandwidth available to the CPU remains constant as the
global memory channel 1s shared by all the DIMMSs although
the memory capacity increases with more DIMMs per
channel.

[0035] In embodiments, the host system 120 may execute
the host OS 125 and perform memory management for
kernel space drivers. For virtual to physical address map-
pings, the host OS 1235 can manage hierarchical page tables,
cach with two or more levels, depending on a processor
architecture. During the booting process, the Linux kernel 1s
responsible for setting up page tables and turning on a
Memory Management Unit (MMU). By default, the Linux
kernel and users assume that any virtual page can be mapped
to any physical page. However, host OS 125 may want to
reserve a specific range of physical memory space exclu-
sively for a (memory-mapped) I/O device and 1ts I/O dniver,
and allow the I/O driver to access this physical memory
range with virtual addresses since every address 1ssued by
the processor 1s a virtual address after the MMU 1s turned on.

[0036] In the Linux kernel within the host OS 125 may
reserve the specific range of physical memory by editing the
Device Tree Blob (DTB). A DTB 1s a set of attributes of the
hardware components in a given system and 1s fetched
during the booting process. Specifically, a node in a DTB
represents a hardware component and describes information
such as the number and type of CPUs, base physical
addresses and si1zes of memory devices, 1/0 devices, and the
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like. To reserve a specific region of physical memory, the
host OS 125 may create a new node in the device tree, where
a physical address range 1s explicitly enumerated and 1is
tagged as reserved memory. At boot time, the kernel will
exclude this physical address range from mapping to other
processes, thereby creating a memory map hole. Later, the
reserved memory region may be assigned to a device driver
by setting the memory region (e.g., memory_region) param-
eter.

[0037] The host OS 125 may also execute software to
instantiate an OS network layer. Transport Control Protocol/
Internet Protocol (TCP/IP) 1s the most commonly used
protocol for the distributed computing frameworks. An
application sends and receives data through a TCP socket,
¢.g., using tcp_sendmsg( ) and tcp_recvmsg( ) system calls,
respectively. When a user application calls tcp_sendmsg( )
the data 1s copied to a kernel bufler, fragmented into several
segments of Maximum Transmission Unit (MTU) size,
undergoes TCP/IP processing, and 1s eventually sent to a
NIC for transmission. A maximum transmission unit (MTU)
1s the largest size packet or frame, specified 1n octets
(e1ght-bit bytes), that can be sent in a packet- or frame-based
network such as the Internet. The MTU limit exists since
sending a packet with huge data at once i1s vulnerable to
random transient errors in traditional physical links such as
the Ethernet links, and increases the probability and the
overhead of re-transmitting the packet. In Linux, the default
value of MTU 1s 1,500 bytes. On the receiver side, the
segments of a message are reassembled inside the Linux
kernel and the complete message 1s copied to the user-space
application.

[0038] FIG. 2 1s a block diagram that illustrates function-
ality of a network interface card (NIC) 205 according to
various embodiments, where the NIC 205 may be a con-
ventional NIC. More specifically, FIG. 2 illustrates the
interactions between a processor 201, physical memory 210,
and the NIC 205 when a network packet 1s received or
transmitted. Once an outgoing network packet 1s processed
in the TCP/IP stack, the network packet 1s written to a
transmission (1X) ring bufler 214 (A) in the physical
memory 210. Then, a NIC dniver executed on the processor
201 informs the NIC 205 of the available packets 1n the TX
ring bufler 214 (B). Later, the NIC 203 reads the ready-to-
transmit descriptors from the TX ring bufler 214 and a
direction memory access (DMA) transters the data from the
physical memory 210 to the NIC builers of the NIC 205 (C).
Finally, the NIC 205 sends the network packet out, e.g., onto
an Ethernet link (D).

[0039] Smmilar to the TX ring, the NIC driver on the
processor 201 manages a circular ring bufler (e.g., the RX
ring bufler 212) 1in the memory for the incoming network
packets, e.g., networked network packets. When a network
packet 1s received (1 1n FIG. 2), the NIC DMA transfers the
network packet to the next available bufler in the RX ring
bufler 212 (2). When the DM A -transter 1s done, the NIC 205
sends a HW 1nterrupt to the processor (3). Upon receiving
the HW interrupt, the NIC driver schedules a software
interrupt (e.g., a softIRQ). When a softIRQ handler of the
processor 201 eventually executes, the softIR(Q) handler
prepares a socket bufler by assembling the data inside the
RX ring bufler 212 (4) and sends the network packet to a
higher network layer for further processing. Note that once
the NIC 205 starts to receive the network packet, switching
to a polling-based approach may be preferred to a pure
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interrupt-based approach. This 1s because the performance
cost of handling many hardware 1nterrupts 1s notable, which
can bottleneck the throughput of a high bandwidth network.

[0040] A NIC (such as the NIC 205) employs several
techniques to achieve high bandwidth. For example, the NIC
may utilize several offload engmes A TCP/IP offload engine
(TOE) 1s a technology that 1s gaining popularnty in high-
speed Ethernet systems for the purpose of optlmlzmg
throughput, ¢.g., offloading communication processing from
the host system 120 TOE components are incorporated into
one of the printed circuit boards, such as the NIC or the host
bus adapter (HBA). The NIC may further use a highly
optimized driver and OS software stack such as Data Plane
Development Kit (DPDK) or mTCP, with special purpose
network processing libraries such as remote direct memory
access (RDMA). The DPDK includes libraries to accelerate

packet processing workloads running on a wide variety of
CPU architectures. The mTCP 1s a set of TCP/IP applica-

tions for personal computers running PC-DOS, MS-DOS,
FreeDOS, and other disk operating systems (DOS). The
RDMA 1s direct memory access from the memory of one
computer into that of another without involving either one’s
operating system. This permits high-throughput, low-la-
tency networking, which 1s especially useful in massively
parallel computer clusters. The NIC may further distribute
the packet processing tasks over several CPU cores and use
the aggregate memory bandwidth of the host processor 122
by imterleaving DMA data across multiple memory chan-
nels.

[0041] FIG. 1B 1s a block diagram of an MCN DIMM 146
illustrated as an example of one of the MCN memory
modules of FIG. 1A according to an embodiment. As
mentioned, although the DIMM form factor for memory
module 1s illustrated by way of example, other memory
module form factors are envisioned. The MCN DIMM 146
may represent any MCN DIMM in FIG. 1A. The MCN
DIMM 146 may include multiple memory components 10A,
10B, 10C, and 10D (heremnatter 10A . . . 10D), although the
MCN DIMM 146 may include fewer or more memory
components, which are all coupled through a set of local
memory channels 142 (e.g., local DRAM channels) to an
MCN processor 150. In at least one embodiment, the
memory components 10A . . . 10D are DRAM chips. The
MCN DIMM 146 may therefore provide near-memory pro-
cessing capability for the computing system 100. The MCN
processor 150 may execute an MCN OS 155 and an MCN

driver 157, and include other firmware and logic.

[0042] In embodiments, the MCN DIMMs, the host driver
127, and the MCN driver 157 are designed such that the host
system 120 runs applications based on the existing distrib-
uted computing frameworks without any change in the
hardware of the host processor 122, distributed computing
middleware, or application software. That 1s, MCN does not
require modification in the host processor 122 and commod-
ity DRAM architectures, as MCN limits hardware changes
to those of the MCN processor 150. Further, the MCN
processor 150 of each MCN DIMM is to access the DRAM
devices on the same MCN DIMM through the local memory
channels 142, which 1s 1solated from the global memory
channel 102A or 102B. Each memory module (e.g., MCN
DIMM) may, therefore, access 1ts memory components 10A
... 10D independently of other memory modules (e.g., other
DIMMSs) of the memory sub-system 110.
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[0043] Therefore, multiple of the MCN DIMMs 116A,
118A, 116B, 118B may be concurrently accessed by the
MCN processor 150 through its local MCN MC (170 1n FIG.
1C), multiplying the aggregate memory bandwidth for pro-
cessing, as 1llustrated in FIGS. 1A and 1B. This 1s 1n contrast
to a traditional memory sub-system, where the memory
bandwidth for processing remains constant regardless of the
number of DIMMs per memory channel. This limitation 1s
due to multiple DIMMSs sharing the global memory channel
and the host processor 122 can access only one DIMM at a
time through the shared global memory channel 102A or
102B, for example. As such, MCN architecture can serve as
an application-transparent near-memory processing plat-
form, as well as unity the near-memory processing in a node
(akin to a network node) with the distributed computing
across multiple such nodes formed by other MCN memory
modules (e.g., DIMMs). Accordingly, the MCN DIMM 146
may also be referred herein to as an MCN node (or just a
node).

[0044] FIG. 1C 1s a block diagram of the MCN processor
150 disposed on the MCN DIMM 146 of FIG. 1B according
to an embodiment. The MCN processor 150 may include,
but not be limited to, one or more processor cores 101A,
101B, . 101N, a last level cache (LLC) 104, a host

protocol interface 160, an MCN memory controller (MC)
170, and a local buffer 180. In various embodiments, the

MCN MC 170 further includes an MCN protocol interface
190.

[0045] The local bufier 180 may be any type of local
memory, such as static random access memory (SRAM),
flash memory, or other fast-access memory, whether volatile
or non-volatile. Further, the host protocol interface 160 may
service DDR DIMM devices, and thus may be a host DDR
interface. Further, the MCN protocol interface 190 may
service DDR DRAM memory components and thus be an
MCN DDR interface. Use of diflerent protocols 1s envi-
sioned for servicing memory components of other-than-
DDR protocol, including NAND flash, 3D crosspoint (X
point), and phase change memory (PCM), for example. The
local bufler 180 may be formed with a dual- -port SRAM
device or other dual-port memory device in difierent
embodiments.

[0046] The local builer 180 may form a builer between the
global memory channel 102A or 102B to which the host
protocol interface 160 1s coupled and the MCN MC 170,
which 1s coupled to the local (DRAM) memory channels
142. The local bufler 180 may further include control fields
182, a transmission bufller 184 (e.g., TX buller 184), and a
receiving butler 186 (e.g., RX bufller 186), which are dis-
cussed 1 more detail with reference to FIG. 3A. In one
embodiment, the TX bufller 184 and/or the RX buller 1s a
circular bufler, or some other type of memory builer.

[0047] In some embodiments, the MCN processor 150 1s
a small, low-power, but capable mobile processor used 1n
access points on a bufler device of each MCN DIMM.
Further, 11 the power constraint of DIMMs prevents from
taking more capable processors for MCN DIMMs, then one

can bring an external power cable to DIMMs as do
NVDIMMs.

[0048] With additional retference to FIG. 1C, the local
bufler 180 may be approximately 96 KB 1n a typical
quad-core mobile processor, but other sizes are envisioned.
The host protocol interface 160 may include a physical layer

(PHY) (such as a DDR PHY) and be adapted with a protocol
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engine that amplifies and repeats DRAM C/A and data
iput/output (DQ) signals from/to the host MC 130A or
130B. The host protocol interface 160 may also perform two
operations that are specific to the MCN.

[0049] First, upon receiving a memory write request from
a host MC, the host protocol interface 160 retrieves a
command, a host physical address (HPA), and 64-byte data
from the captured C/A and DQ signals from the host MC
130A or 130B. The host protocol interface 160 may further
translate the HPA to a local address of the local bufler 180,
and write the data to the local buller 180.

[0050] Second, when servicing a memory-read request
from a host MC, the host protocol interface 160 may
perform operations similar to handling the memory write
request except that the host protocol interface 160 reads data
from the local bufler. More specifically, the host protocol
interface 160 may retrieve a read command from the
memory read request, retrieve a host physical address (HPA)
from the C/A signals of the host protocol interface, and
translate the HPA to a local bufler address of the local bufler
180. The host protocol mterface 160 may then read the data
from the local bufler 180. The host protocol interface 160
may also generate DQ signals according to a given memory
protocol, such as the DDR (or other) memory protocol.

[0051] In this way, the local buller 180 serves as a data
communication builer between the host processor 122 and
the MCN processor 150, and 1s exposed to both the host and
MCN processors as a part of their respective physical
memory spaces, referred to as host physical memory space
and MCN physical memory spaces. respectively. Accord-
ingly, the host protocol iterface 160 and the local butler 180
together operate as an MCN interface similar to the con-
ventional NIC 2035 as discussed herein.

[0052] FIG. 3A 1s a graph diagram illustrative of the local
butler 180 of the MCN processor 150 of FIG. 1C according
to an embodiment. In various embodiments, the control
ficlds 182 are illustrated by way of example in the first two
rows, the first row for transmission (1X) and the second row
tor recerving (RX). The local bufler 180 may further include
the TX bufler 184 and the RX bufler 186, each of which are
ring builers 1 one embodiment. Other types of bulfler
configurations are envisioned.

[0053] In various embodiments, the control fields 182
provide control metadata values associated with writing to
and reading from the TX bufler 184 and the RX butler 186.
For example, the transmission control fields may include a
transmit start pointer 302 (e.g., tx start pointer 302), a
transmit end pointer 304 (e.g., tx end pointer), a transmit
polling field 306 (e.g., tx-poll field 306), and a reserved field
310. The receiving control fields may include a receive start
pointer 312 (e.g., rx start pointer 312), a receive end pointer

314 (e.g., rx end pointer 314), a receive polling field 316
(e.g., rx-poll field 316), and a reserved field 320.

[0054] The tx-start and tx-end pointers 302, 304 may
pointer to the start of the valid data and end of valid data
respectively. Based on the area from Multicore Power, Area,
and Timing (McPAT) 1n 22 nm technology, we calculate that
the size of this bufler 1s 0.074 mm?2 1 10 nm technology.
The McPAT 1s an integrated power, area, and timing mod-
cling framework for multithreaded, multicore, and many
core architectures.

[0055] The TX and RX buflers 184, 186 may store MCN
messages 380 that are sent to or received from the host
processor, respectively. FIG. 3B 1s a graph diagram illustra-
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tive of an MCN message 380 stored 1n the local builer 180
according to an embodiment. Each MCN message 380 may
include a packet length value 330 and packet data 340. With
additional reference to FIG. 3 A, the tx-poll and rx-poll fields
306, 316 are used for handshaking between the host pro-
cessor 122 and the MCN processor 150. The detailed usage
of these control bits (or values 1n these control fields) and the

TX and RX bufters will be described in detail later.

[0056] In various embodiments, when the OS network
layer running on the MCN processor 150 sends a network
packet, the MCN driver 157, which 1s perceived as a regular
Ethernet interface, sends the network packet to a range of
contiguous MCN physical memory addresses. Cache line
entries stored i the local bufler 180 may be mapped
similarly as 1s performed with memory-mapped 1I/O devices.
When the MCN MC 170 receives any memory request
directed to the MCN physical memory space (e.g., 1n the
multiple memory components 10A . . . 10D) corresponding
to the local buller 180, the MCN MC 170 re-directs the
memory request to the local buffer 180, which 1s coupled to
the MCN MC 170 through an on-chip interconnect, mstead

of sending the memory request to the DRAM devices on the
MCN DIMM 146.

[0057] Further, the local bufler 180 may contain logic to
implement a hardware iterrupt mechanism to notify the
MCN processor 150 of any received packet in the RX butler
186 of the local bufler 180, indicated as IRQ 1n FIG. 1C.
More specifically, the local builer 180 may send a hardware
interrupt signal to one of the cores to notily the core of a
received network packet in the receiving (RX) butler 186 of
the local butler 180 and/or of assertion of the recerve polling
field 316. In another embodiment, the host protocol interface
160 1s to assert the hardware interrupt in response to
detection of writing of the received data into the RX buller
186 and/or assertion of the receive polling field 316.

[0058] Upon receiving the hardware interrupt, the core
may start a transfer of the network packets from the RX
bufler 186 to the kernel memory space of the MCN driver
157 using a memory copy function, e.g., memcpy 1n Linux,
which 1s used to copy a block of data from a source address
to a destination address. The memory copy operation may
also be accelerated using a custom DMA engine.

[0059] The MCN drivers run on both the host and the
MCN DIMMs to create (or emulate) the functionality of an
Ethernet interface between the host and MCN processors.
An MCN dniver exposes itself as a regular Ethernet interface
to the upper OS network layers, therefore, MCN does not
require changes 1 the OS network stack, which 1s an

advantage for MCN as there 1s a resistance towards changes
in the TCP/IP architecture.

[0060] As illustrated in FIG. 1A, the global memory
channel 102A or 102B may be populated with multiple
MCN DIMMs (also referred to as MCN nodes). The host
driver 125 running on the host processor 122 may create (or
emulate) a virtual Ethernet interface with which each MCN
node 1nstalled on the global memory channels may commu-
nicate. That 1s, a virtual point-to-point connection 1s pro-
vided between the host system 120 and each MCN node in
the computing system 100 (to include another distributed
computing system as well). A virtual Ethernet interface
created on the host system 120 may be referred to herein as
a host-side interface. The host OS 127 may then assign a
medium access control (MAC) address to the host-side
interface. The MAC address may be a unique identifier
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(usually 48 bits) assigned to a device connected to a net-
work. Further, the MCN processor 150 may execute the
MCN driver 157 to also create (or emulate) a virtual
Ethernet interface, as each MCN node has one point-to-point
connection to the host-side interface. A virtual Ethernet
interface created on an MCN node (e.g., the MCN DIMM

146) may be referred to herein as an MCN-side interface.

[0061] To create the functionality of the NIC, the host
driver 127 may assign an Internet Protocol (IP) address (e.g.,
IPv4 address) to the host-side interface and the MCN driver
157 may assign another IP address to the MCN-side inter-
face. From the host point of view, all of the MCN nodes are
locally connected. Each host-side interface (e.g., for mul-
tiple servers) 1s assigned a unique IP address. The host driver
127 may further set a subnet mask of each host-side interface
to 255.255.255.2535, e.g., so that the host system 120 for-
wards a network packet to the host-side interface only when
the entire destination IP address of the network packet
matches the IP address of the host-side interface.

[0062] An MCN node, however, does not have a direct

connection to the other MCN nodes and nodes outside of the
computing system 100. Therefore, a network packet that 1s
generated by the MCN DIMM 146 (e.g., the MCN node) and
1s destined to another MCN node (or to a node outside of the

computing system 100), has a different destination IP
address than the IP address of the host system 120. To

support MCN-to-MCN and MCN-to-outside nodes, the
MCN driver 157 may set the subnet mask of the MCN-side
interface to 0.0.0.0, e.g., so that the outgoing network
packets from an MCN node are forwarded to the host system
120 regardless of the IP address of the host system 120. In
embodiments, within an MCN node, a network packet with
its destination IP address set to localhost2 does not get
torwarded to the host system 120 as the kernel first checks
if a packet belongs to a loopback network interface. It there
1s no match, then the MCN-side interface may enumerate
other available interfaces. The loopback network interface 1s
a logical, virtual interface 1n a Cisco® Router. A loopback
interface 1s always up and allows Border Gateway Protocol
(BGP) neighborship between two routers to stay up even it
one of the outbound physical interface connected between
the routers 1s down.

[0063] This setup, with use of the MCN drivers, ensures
that the host system 120 arbitrates the traflic to the MCN
nodes, including the traflic between the MCN nodes. This
network organization also supports the communication
between MCN nodes connected to different hosts by having,
the source host to forward the network packet to the host of
the destination MCN node through a conventional NIC.

[0064] FIG. 4 1s a functional flow diagram illustrative of
a relationship between the memory channel network hard-
ware, kernel space solftware, and user space applications
according to an embodiment. The MCN hardware may

include, for example, the MCN DIMM 146, which was
discussed with reference to FIGS. 1A-1C. Within the kernel
space ol the host processor 122, the host driver 127 may
include three main components, €.g., a memory mapping
unit 402, a packet forwarding engine 406, and a polling
agent 410A. The MCN driver 157 may also exist in the
kernel space and include a (similar) polling agent 4108 as
well as an interrupt handler 414. As 1illustrated, the drivers
127 and 157 may communicate with a network stack 415
(e.g., the Linux network stack in some embodiments), which
in turn runs applications within the user space of the

Mar. 9, 2023

computing system 100. Upon initialization of the computing
system 100, the host driver 127 or the MCN driver 157 may
create a network device object, set up the network object as
an Ethernet device, and register the Ethernet device with the
kernel of the host OS 1235, thereby making a network
interface visible to the host OS 125.

[0065] In various embodiments, the memory mapping unit
402 of the host driver 127 may account for the memory
interleaving across different global memory channels 102A,
102B and ensure that the physical address space of the local
buflers (e.g., of multiple MCN nodes) 1s accessible to the
host processor 122 and each MCN processor 150 through

virtual memory of the computing system 100.

[0066] Further, the polling agent 410A may be responsible
for periodically polling the transmit polling field 306 of the
local buflers 180 to check for new incoming network pack-
ets. If the transmit polling field 306 1s asserted (e.g., 1s
non-zero), then the polling agent 410A detects an incoming
network packet and alerts the host driver 127 to retrieve the
transmission data in the TX builer 184. Similarly, if the host
driver 127 1s to transmit a packet to be recerved by the MCN
DIMM 146, then the host MC writes the data into the RX
bulter 186 of the local buller 180, and asserts the receive
polling field 316. Upon the receive polling field 316 being
asserted, the local bufler 180 may 1ssue the HW interrupt to
the core of the MCN processor 150 so that the recerved data
may be written out to the local memory channels 142 or the

LLC 104 for processing by the cores 101 A-N.

[0067] In various embodiments, the polling agent 410B of
the MCN driver 157 performs polling on the local butlter 180
to determine whether a new packet 1s received on the MCN
DIMM 146. Additionally, or alternatively, the interrupt
handler 414 (e.g., IRQ handler) may be configured to handle
hardware interrupts (e.g., IRQs) received from the local
bufler 180. This interrupt handler 414 can transier a network
packet from the RX bufler 186 to local memory components
10A . . . 10D through the MCN MC 170. The nterrupt
handler 414 may also send the network packet from the RX
bufler 186 to an upper network layer for processing.

[0068] FIG. 5 1s a flow chart of a method 500 for handling
a network packet received at an MCN-side interface from
the network stack according to various embodiments. The
method 500 can be performed by processing logic that can
include hardware (e.g., processing device, circuitry, dedi-
cated logic, programmable logic, microcode, hardware of a
device, mtegrated circuit, etc.), software (e.g., mstructions
run or executed on a processing device), or a combination
thereof. In some embodiments, the method 500 1s performed
by the MCN processor 150 executing the MCN driver 157,
as 1llustrated mm FIG. 1B, previously referenced as the

MCN-side interface.

[0069] Although shown 1n a particular sequence or order,
unless otherwise specified, the order of the processes can be
modified. Thus, the illustrated embodiments should be
understood only as examples, and the 1llustrated processes
can be performed 1n a different order, and some processes
can be performed in parallel. Additionally, one or more
processes can be omitted 1n various embodiments. Thus, not
all processes are required 1 every embodiment. Other
process flows are possible.

[0070] With reference to FIG. 5, at operation 3505, the
processing logic receives a network packet from the network
stack 415. At operation 3510, the processing logic reads a
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transmit start pointer (e.g., tx-start 302) and a transmit end
pointer (e.g., tx-end 304) from the local buller 180 for the
network packet.

[0071] At operation 520, the processing logic determines
whether there 1s enough space available 1n the TX builer 184
(of the local butler 180) for the network packet. If there 1s
not space, at operation 525, the processing logic reports the
local bufler 180 as being busy, e.g., NETDEV_TX_BUSY.
IT there 1s suflicient space, at operation 330, the processing
logic writes the packet length 330 followed by the packet
data 340 (of the network packet) into the TX buller 184,
starting at a bufler address to which points the transmit end
pointer (tx-end 304).

[0072] With continued reference to FIG. 5, at operation
540, the processing logic updates a value for the transmuit
end pointer (tx-end 304) in the local butler. At operation 550,
the processing logic sets a transmit polling field (tx-poll 306)
ol the local bufler 180 to a non-zero value to indicate that a
new packet 1s enqueued in the TX bufler 184. Memory
fences may be used to ensure that the packet data has been
copied correctly, prior to setting these control bits.

[0073] Although FIG. 5 describes the flow of sending a
network packet from an MCN node and receiving the
network packet at the host processor 122, since the host and
MCN nodes run similar drivers (which was discussed with
reference to FIG. 4), except for some minor differences, the
packet transmission/reception tlow 1s mirrored for the host
processor 122 to send a network packet to an MCN node,
¢.g., the MCN DIMM 146. Some of these minor diflerences
include that the host node will assert the recerve polling field
316 to trigger the hardware interrupt (IRQ) to the core of the

MCN processor 150, as was discussed, so that the MCN
processor 150 knows of the incoming (received) data.

[0074] FIG. 6 1s a flow chart of a method 600 for a
host-side polling agent to determine whether local buffers of
MCN processors are attempting to transmit data according
to various embodiments. The method 600 can be performed
by processing logic that can include hardware (e.g., pro-
cessing device, circuitry, dedicated logic, programmable
logic, microcode, hardware of a device, itegrated circuit,
etc.), software (e.g., istructions run or executed on a
processing device), or a combination thereof. In some
embodiments, the method 600 1s performed by the host
processor 122 executing the host driver 127, as illustrated in
FIG. 1A, which may include a host-side polling agent 410A
for example.

[0075] Although shown in a particular sequence or order,
unless otherwise specified, the order of the processes can be
modified. Thus, the illustrated embodiments should be
understood only as examples, and the 1llustrated processes
can be performed 1n a different order, and some processes
can be performed in parallel. Additionally, one or more
processes can be omitted 1n various embodiments. Thus, not
all processes are required 1 every embodiment. Other
process tlows are possible.

[0076] Because a conventional protocol (e.g., DDR) inter-
face does not provide a signal that can serve as an interrupt
or allow a transaction to be imtiated by a DIMM, the
host-side polling agent may be employed to notily the host
processor 122 of incoming packets, which 1s comparable to
functionality of a high-speed NIC. For example, at operation
610, the processing logic periodically reads the transmait
polling field (tx-poll 306) 1n a plurality of local buflers
across a plurality of MCN nodes. At operation 620, the
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processing logic determines whether there 1s a pending
network packet in any of the local buflers. If there 1s no
pending network packet, the method 600, loops back to
operation 610 to continue polling the local buflers for a
pending network packet.

[0077] With continued reference to FIG. 6, at operation
630 and in response to detecting a pending network packet
in an local bufler, the processing logic reads a transmit start
pointer (tx-start 302) and a transmit end pointer (tx-end 304 )
from the local bufler 180 for the pending network packet. At
operation 640, the processing logic reads a cache line at a
location of the local bufler 180 to which the transmit start
pointer (tx-start 302) points. At operation 650, the process-
ing logic retrieves the packet length and a packet destination
MAC address (e.g., dest-mac) from the cache line. In an
Ethernet packet, the first six bytes of the data construct the
destination MAC address. At operation 660, the processing
logic transmits the pending network packet to the packet
forwarding engine 406 of the MCN-side interface.

[0078] With continued reference to FIG. 6, at operation
680, the processing logic determines whether the transmit
start pointer (tx-start 302) moved by a number of bytes read
from the TX bufler 184 of the local buller 180 1s equal to a
value of the transmit end pointer. If the number of bytes the
transmit start pointer has moved 1s not equal to the value of
the transmit end pointer, at operation 640, the processing
logic reads another cache line from the local bufler 180 and
continues with operations 650 and 660 for the additional
cache line. If the number of bytes the transmit start pointer
has moved 1s equal to the value of the transmit end pointer,

at operation 680, reset a value of a transmit polling field of
the local bufler and exit.

[0079] FIG. 7 1s a flow chart of a method 700 for the host

processor 122 to decide where to route a network packet
depending on its medium access control (MAC) address
according to various embodiments. The method 700 can be
performed by processing logic that can include hardware
(e.g., processing device, circuitry, dedicated logic, program-
mable logic, microcode, hardware of a device, integrated
circuit, etc.), software (e.g., mstructions run or executed on
a processing device), or a combination thereof. In some
embodiments, the method 700 1s performed by the host
processor 122 executing the host driver 127 (FIG. 1A). The
host processor 122 may utilize the packet forwarding engine
406 of the host driver 127, for example, 1n execution of the

method 700.

[0080] Although shown 1n a particular sequence or order,
unless otherwise specified, the order of the processes can be
modified. Thus, the illustrated embodiments should be
understood only as examples, and the 1llustrated processes
can be performed 1n a different order, and some processes
can be performed in parallel. Additionally, one or more
processes can be omitted 1n various embodiments. Thus, not
all processes are required 1 every embodiment. Other
process flows are possible.

[0081] With reference to FIG. 7, at operation 710, the
processing logic receives a network packet with a destina-
tion MAC address (e.g., dest-mac). At operation 720, the
processing logic determines to which MAC address the
destination MAC address matches. In one embodiment, at
operation 730, the processing logic determines that the
dest-mac of the incoming network packet matches the MAC
address of the host-side interface. In another embodiment, at
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operation 730, processing logic determines the dest-mac of
the incoming network packet matches a reserved address for
broadcast.

[0082] In either case, at operation 740, the processing
logic allocates a socket bufler. At operation 750, the pro-
cessing logic copies data of the network packet from the
receiving (RX) builer 186 of the local bufler 180 to the
socket bufler. At operation 760, the processing logic trans-
mits the data from the socket builer to a network stack for
processing. In the alternative embodiment, if the dest-mac of
the network packet was a reserved address for broadcast, the
processing logic may perform operations 740 through 760
and additionally, at operation 770, transmit data from the
socket bufler to multiple MCN network nodes (as 1n broad-
casted to available MCN network nodes). This broadcast of
the data may be transmitted as described with reference to

FIG. 3.

[0083] With continued reference to FIG. 7, at operation
780, the dest-mac of the network packet instead matches an
MCN-si1de interface of a reachable MCN node. If so, at
operation, 790, the processing logic transmit the network
packet to the destination MCN node to which the dest-mac

matches, e¢.g., by using the operations discussed with refer-
ence to FIG. 5.

[0084] The memory mapping unit 402 of the MCN dniver
157 may function as follows. In embodiments of the dis-
closure, the 1oremap( ) function (in Linux) by default creates
a page mapping that 1s tagged as uncacheable 1n the ARM™
architecture. In embodiments, the 1oremap( ) function 1is
used to map the physical address of an I/O device to the
kernel virtual address. The kernel creates a page table, e.g.,
a mapping of virtual address to the physical address that 1s
requested. When the kernel does an 1iounmap( ) this mapping,
1s destroyed.

[0085] Making the page mapping uncacheable enables the
physical address space of the MCN processor 150 to be
uncacheable, and thus avoid MCN-processed data from
being trapped up 1n cache of the MCN processor 150 when
the data should instead be sent on (either to the host
processor 122 or stored into local DRAM). Accordingly,
making the page mapping uncacheable may prevent unnec-
essary delay 1n data processing. While the memory mapping
unit 402 making this page mapping (e.g., the page table) as
uncacheable prevents coherency issues, the maximum size
of a memory access to an uncacheable memory space 1s

double word (e.g., 64 bits).

[0086] In various embodiment’s, for the bulk memory
transfers needed 1 MCN, the MCN processor 150 may
access memory at cache line granularity. Accessing data at
cache line granularity may be done using a memory map-
ping function, e.g., memremap( ) with a MEMREMAP_WC
flag, which a similar functionality to 1oremap( ). Accessing
data at cache line granularity may allow the ability of the
MCN MC 170 to perform a write combiming, into a group,
consecutive write requests (e.g., write commands) at a cache
line granularity inside 1ts write queue. On the other hand,
read requests (e.g., read commands) to consecutive memory
addresses cannot be merged 1nside a read queue of the MCN
MC 170, as doing so violates the memory consistency
model. Thus, the host driver 127 may use an uncacheable
memory mapping with the write combining support for the
TX bufler 184 and a cacheable memory mapping for the RX
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bufler 186. The host driver 127 may explicitly invalidate the
cache lines in the range of RX bufler after receiving a
packet.

[0087] While accessing the local bufler 180, the MCN-
side interface 1s cognizant of the memory channel interleav-
ing performed by the memory subsystem 110, wherein the
successive cache lines in the physical address space are
mapped evenly across all the MCs of the host processor 122.
This 1s to maximize the memory channel parallelism when
there 1s spatial locality between the memory accesses. With-
out accounting for the memory interleaving, a naive memory
copy (e.g., memcpy) would incorrectly spread the packet
data across MCN DIMMs 1n different memory channels,
although the host MCs 130A and 130B should send the
packet data to a particular MCN DIMM’s address space.

[0088] In various embodiments, to efliciently resolve this
challenge, the host dniver 127 may be adapted with a pair of
new memory copy functions (e.g., memcpy_to_mcn and
memcpy_Irom_mcn) to map memory operations interleaved
across two or more global memory channels 102A and 102B
of the host processor 122 to the local buffer of multiple
memory modules (e.g., MCN DIMMs of FIG. 1A). The
local buflers may be 1solated from the two or more global
memory channels. These new memory copy functions may
perform memory copying such that the 64-byte blocks
within the address space of the MCN DIMMs are inter-
leaved 1n a manner that reflects the memory nterleaving of
the host processor 122. This allows the MCN driver 157 to
send a network packet to an appropriate memory channel
and thus an appropriate MCN DIMM.

[0089] FIG. 8 1s a set of graphs 1llustrative of host pro-
cessor view ol interleaved arrangement of physical address
space versus MCN processor views of that physical address
space according to an embodiment. The host processor 122
may view a single physical address space 1n which data from
memory operations (or requests) are interleaved with regard
to one of the global memory channels 102A or 102B, e.g.,
a single memory channel. Accordingly, although consecu-
tive memory operations may be accessing consecutive
addresses with MCN physical address space, the host pro-
cessor 122 may still interleave the memory accesses across
the global memory channels, as illustrated on left in FIG. 8,
which may be understood to show one of the global memory
channels.

[0090] In contrast, the MCN processor 150 views multiple
memory channels depending on a number of the local
memory channels 142 existing within the MCN processor
150. Because consecutive memory accesses to consecutive
physical addresses within the MCN physical address space
should occur at the same global memory channel 102A or
102B, the host driver 127 may be adapted to perform a pair
of memory copy functions to map memory operations
interleaved across two or more global memory channels of
the host processor to a single global memory channel on
which the destination MCN DIMM 146 1s installed. In other
words, the host driver 127 may perform the memory copy
functions to map memory operations, which are directed at
consecutive addresses of physical memory space of the
plurality of memory modules, to a single global memory
channel to which 1s coupled an 1dentified memory module
associated with the consecutive addresses. The host MC
130A or 130B may then direct the mapped memory opera-
tions to the single global memory channel. The host driver
127 operation may further enable the host processor 122 to




US 2023/0071386 Al

broadcast network packets to multiple memory modules
(e.g., MCN DIMMSs) over a single global memory channel.

[0091] More specifically, the above-mentioned pair of
memory copy functions may include a copy-to-MCN func-
tion (e.g., memcpy_to_mcn(mcn_dest, host_src)) and a
copy-from-MCN function (e.g., memcpy_from_mcn(host_
dest, mcn_src)) 1n order to appropriately write to and read
from consecutive physical memory addresses with respect to
the MCN processor view of the address space (on the right
in FIG. 8). For example, the copy-to-MCN function may
cause host_src (or transmission) data (which may be allo-
cated on CONV DIMMs 112AB or 114AB and 1s interleaved
between global memory channels 102A and 102B) to be
copied to an 1dentified MCN memory module over a single
global memory channel 102A or 102B (FIG. 1A). In various
embodiments, the 1dentified memory module 1s a destination
MCN DIMM 116A or 116B (over global memory channel
102A) or 118A or 118B (over global memory channel
102B). The copy-to MCN function performs as a write to the
MCN DIMM, and 1s thus directed at physical address space
of the local bufler 180. Further, 1n executing the copy-to-
MCN function, the host driver 127 may split data packets
into chunks, appropriately address these chunks according to
the global channel interleaving, and forward the newly

addressed data chucks to the host MC 130A or 130B.

[0092] In various embodiments, the copy-from-MCN
function may perform the opposite operation, e.g., 1s to read
mcn_src (or receive) data from the single global memory
channel (e.g., from the local bufler 180 of the identified
memory module) and write the mcn_src data to a host
destination (host_dest) builer. As before, the host_dest bui-
ter may be allocated on CONV DIMMSs and be iterleaved

between the global memory channels 102A and 102B.

[0093] In various embodiments, these new memory func-
tions may, 1n this way, map a host processor view of the
physical address space to an MCN processor view of the
physical address space that involves two memory channels.
As there 1s an MCN driver 157 assigned to each local
memory channel 142 and a typical distributed application
sends packets to multiple MCN nodes, the memory requests
from these MCN drivers may still concurrently utilize the
global and local memory channels.

[0094] There has been 1dentified two bottlenecks towards
utilizing MCN architecture to 1ts full capabilities. First, the
TCP congestion control 1s mmplemented for slow, long
latency network connections and sometimes takes several
seconds to reach to the full bandwidth utilization. Also, TCP
frequently sends ACK messages to the sender. Sending and
receiving ACK messages consumes both CPU cycles and
network bandwidth. Based on evaluation results, sending
and receiving ACK messages mncurs up to approximately
25% overhead 1 a TCP connection, which 1s aligned with
previous studies.

[0095] Second, an MCN DIMM can only use a single
channel bandwidth and cannot interleave the memory
accesses across multiple memory channels. That being said,
the maximum theoretical MCN bandwidth 1s 12.8 GB/s,
which 1s the maximum bandwidth of a single memory
channel. Although the bandwidth of each MCN node 1is
limited to the bandwidth of a single memory channel, this
bandwidth 1s far from being a bottleneck as the bandwidth
of a single memory channel alone 1s more than 100 Gbps.
Nonetheless, each MCN DIMM can communicate with the
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host or each other independently, providing aggregate band-
width proportional to the total number of memory channels
in the system.

[0096] The MCN architecture may deploy use of a spe-
clalized TCP/IP stack for the MCN processor 150 that
resembles a user space TCP stack such as mTCP. When
communicating between MCN DIMMs, the MCN network
stack 415 may not rely on the conventional TCP/IP stack,
and instead may resemble a shared memory communication
channel between host and MCN nodes.

[0097] The present disclosure enables the MCN architec-
ture without changes 1n the software stack and the host
processor architecture. In the following paragraphs, we
identily some 1nefliciencies 1n the naive MCN 1mplementa-
tion and exploit some unique properties ol a memory
channel to further increase the bandwidth and decrease the
latency of MCN. Specifically, we first look to optimize the
software stack which does not demand any hardware
change. Second, we propose to optimize the memory sub-
system architecture if permitted to slightly change the host
processor architecture as well.

[0098] In some embodiments, the MCN architecture may
first exploit the features 1n the OS and conventional proces-
sors, and use an eflicient polling mechanism to reduce the
communication latency between the host processor 122 and
the MCN processors 150. Second, the MCN architecture
may exploit the fact that the Bit Error Rate (BER) of a
memory channel 1s orders of magnitude lower than that of a
network link and thus may bypass the checksum calculation
to detect any error 1n a received packet and adopt a larger
frame size for the packets.

[0099] A core (on the host processor 122) running a
polling function (such as a tasklet or thread) to determine
whether network packets (e.g., MCN messages) are avail-
able for transmission in the local bufler 180 can neither sleep
nor accept a timer to reschedule. Consequently, the polling
function can overwhelm the core by continually reschedul-
ing 1tself. To more efliciently support a polling mechanism,
the host processor 122 can employ a high-resolution (HR)
timer that reschedules a polling function call at a specific
time with a nanosecond resolution. Specifically, whenever
the HR-timer routine 1s invoked, the HR timer schedules a
tasklet for running the polling function and then exits. The
host processor 122 may be programmed to schedule a tasklet
because the interrupts in the HR timer service routine are
disabled and directly calling the polling function can result
in missing the interrupts from other devices while doing the
polling. Hence, any function called inside an HR timer
should be very short (e.g., scheduling a tasklet). Note that a
tasklet 1s interruptible and does not negatively impact a high
priority process.

[0100] In various embodiments, the network stack 415
ispects a Cyclic Redundancy Check (CRC) value or check-
sum of a network packet to detect any error before 1t delivers
the network packet to the next network layer. Since the
checksum calculation for each packet consumes host and
MCN processors cycles, the checksum calculation may limait
the maximum bandwidth and the mimmum latency. To
reduce such an overhead, the network stack 4135 may support
an interface to offload the checksum calculations to hard-
ware 1n the NIC. We propose a much simpler mechanism to
ciliciently handle checksum calculations. Since a memory
channel 1s protected by ECC-based error detection and

correction (and CRC in DDR4), the network stack 415 need
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not redundantly generate a checksum value for an MCN
message. Therefore, the header checksum checkmg in the
TCP/IP network stack 415 may be disabled without aflecting
the reliability of TCP.

[0101] The standard MTU of an Ethernet frame 1s 1.5 KB,
as discussed above. A larger MTU can better amortize the
protocol processing soiftware overhead and improve the
network performance. Although the network stack 415 can
support a larger MTU, i1 the network stack 415 uses the
default size as a larger packet going through the conven-
tional Ethernet links, the larger packet 1s more likely to be
corrupted and incur a higher cost for a re-transmaission.
However, the MCN architecture can efliciently deploy a
larger frame size as the BER of a memory channel is
typically multiple orders of magnitude lower than that of an
Ethernet link. Exploiting such an advantage, the size of the
MTU employed within the MCN architecture may be
increased, e.g., up to at least 9 KB. This can be done by
configuring the interface via the Linux ifconfig utility. The
unique MCN message format described with reference to
FIG. 3B may seamlessly support any MTU size.

[0102] Even with a large MTU size, the network stack 4135
may still need to divide a bulk user data chunk 1into multiple
MTU-s1zed packets. Each of these packets undergoes TCP/
IP processing and pays the overhead of segmentation. To
optimize bulk data transfer, modern NICs support TCP
segmentation offload (TSO), which offloads the segmenta-
tion to the NIC hardware. The driver of a TSO-enabled NIC
provides a TCP/IP header along with a large data chunk to
the NIC. The TSO-enabled NIC may perform the following
actions to send the data chunk. First, the TSO-enabled NIC
may divide the data chunk into several MTU sized segments.
Next, the TSO-enabled NIC may copy the TCP/IP header at
the beginning of each data segment. Next, the TSO-enabled
NIC may calculate and set the Total Length, Header Check-
sum, and Sequence Number fields of each TCP/IP header.
Next, the TSO-enabled NIC may send out each MTU sized
packet. The MCN drivers may support TSO by ensurmg that
there 1s sullicient space 1n the TX and RX buflers 184, 186
for the largest possible user data chunk allowed by the
network stack. Since the network stack 415 can also bypass
the performing the checksum, the network stack 415 may
also be updated to set the Total Length field of the TCP/IP
header to the user data chunk size and then transmait the
unsegmented packet to the destination MCN node.

[0103] There are two bottlenecks to being able to accom-
plish a higher bandwidth and lower latency in the MCN
architecture, including the lack of an mterrupt mechanism to
notily the host processor of the received packets from MCN
DIMMs and a memory-to-memory copy accelerator to efli-
ciently transier the packet data from (to) the host processor
122 to (from) an local bufler 180 1 an MCN node. To
resolve these limitations, we propose to slightly change the
memory subsystem 110 of the host processor as a set of
optional optimizations as will be discussed.

[0104] In some embodiments, a high-resolution (HR)
timer may be implemented within the polling agent 410A to
more elliciently implement the polling agent 410A. How-
ever, whenever the HR-timer 1s called, an interrupt is
asserted, which incurs a performance overhead 11 the polling
fails and no packet 1s received. If the timer interval is
increased to minimize the overhead, then the average packet
transmission latency increases as well. Additionally, upon
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receiving an HR-timer interrupt, the driver scans across the
MCN DIMMs on all channels, which further increases the

overhead of the polling.

[0105] To further reduce the host-side polling overhead,
the MCN-DIMMSs may leverage an existing hardware inter-
rupt-like signal (e.g., ALERT N 1n the DDR4 standard, or
other similar signal that can be repurposed) that may be sent
to the host MC 130A or 130B. More specifically, the host
protocol interface 160 may transmit the hardware interrupt-
like signal as a hardware interrupt to the host MC 130A or
130B, to notlfy the MC 130A or 130B of data available 1n
the local bufler 180. The host MC receiving the hardware
interrupt (e.g., the ALERT_N signal) from a memory chan-
nel may then identily (e.g., via polling the local buflers 180)
which DIMM on the channel has asserted the hardware
interrupt. The MC 130A or 130B may then relay the signal
to a core of the host processor 122 as an interrupt, e.g., as an
alert that data 1s stored in an identified local builfer 180 for
transmission to the host MC. This mechamism not only
climinates the need for periodic polling, but also allows the
MCN dniver(s) to immediately know which local memory

channel should be checked.

[0106] The host processor 122 and MCN processor 150
may each be responsible for copying packets between local
buffers and the MCN physical memory space with the
memcpy function. Consequently, the host and MCN proces-
SOrs 1ssuing many memory requests can become a bottle-
neck, especially when they exchange many packets. The
host processor 122 may also be responsible for routing
packets between MCN nodes, potentially creating another
bottleneck when there 1s a spike 1n the traflic between MCN

nodes. These bottlenecks can be resolved by implementing
MCN DMA engines (MCN-DMA) in the memory controller

(MC) of both the host and MCN processors to which to
offload memory requests. The MCN-DMA performs the
memory copy operations on behalf of the host and MCN
processors, and frees up processor cycles for other tasks.
Except the fact that an MCN-DMA 1s to be cognizant of the
memory channel interleaving, the MCN-DMA operates
similar to a conventional DMA engines 1n an 1/0 device.

[0107] As a proof of concept, we developed a prototype
MCN system using an experimental buflered DIMM and an
IBM POWERS S824L system shown in FIG. 9A and FIG.
9B, respectively. The prototype MCN DIMM couples two
32 GB DDR3-1066 DIMMs with an Intel (Altera) Stratix V
FPGA that interfaces directly with the host memory channel,
the IBM Daiflerential Memory Interface (DMI). We mmple-
mented an MCN DIMM architecture based on a soft IP core,
NIOS II embedded processor acting as an MCN processor n
the FPGA. We also implemented the MCN local builer with
BRAM blocks, custom glue logic to connect the buller with
DMI/Avalon interface, and used Intel’s Avalon as the inter-
nal bus in the FPGA. Finally, we developed the drnivers for
the IBM host processor and the NIOS II processor based on
the previously provided descriptions. FIG. 9C depicts the
prototype system architecture.

[0108] FIG. 10 illustrates an example machine of a com-
puter system 1000 within which a set of instructions, for
causing the machine to perform any one or more of the
methodologies discussed herein, can be executed. In some
embodiments, the computer system 1000 can correspond to
a host system (e.g., the host system 120 of FIG. 1) that
includes, 1s coupled to, or utilizes a memory sub-system
(e.g., the memory sub-system 110 of FIG. 1A) or can be used
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to perform the operations of a host MC 130A or 130B, the
host OS 125, or the host driver 127. In other embodiments,
the computer system 1000 can correspond to an MCN
module (e.g., DIMM) of FIG. 1B that includes or 1s coupled
to the MCN MC 170 (FIG. 1C), the MCN OS 1385, or the
MCN driver 157. In alternative embodiments, the machine
can be connected (e.g., networked) to other machines 1n a
LAN, an intranet, an extranet, and/or the Internet. The
machine can operate in the capacity of a server or a client
machine 1n client-server network environment, as a peer
machine 1n a peer-to-peer (or distributed) network environ-
ment, or as a server or a client machine 1n a cloud computing
infrastructure or environment.

[0109] The machine can be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, a switch or bridge, or any machine capable
ol executing a set of instructions (sequential or otherwise)
that specily actions to be taken by that machine. Further,
while a single machine 1s illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

[0110] The example computer system 1000 includes a
processing device 1002, a main memory 1004 (e.g., read-

only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM

(SDRAM) or Rambus DRAM (RDRAM), efc.), a static
memory 1006 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage system 1018,
which communicate with each other via a bus 1030.

[0111] Processing device 1002 represents one or more
general-purpose processing devices such as a microproces-
sor, a central processing unit, or the like. More particularly,
the processing device can be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing,
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processing device 1002 can also
be one or more special-purpose processing devices such as
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
1002 1s configured to execute instructions 1026 for perform-
ing the operations and steps discussed herein. The computer
system 1000 can further include a network interface device
1008 to communicate over the network 1020.

[0112] The data storage system 1018 can include a
machine-readable storage medium 1024 (also known as a
computer-readable medium) on which 1s stored one or more
sets of istructions 1026 or software embodying any one or
more of the methodologies or functions described herein.
The mnstructions 1026 can also reside, completely or at least
partially, within the main memory 1004 and/or within the
processing device 1002 during execution thereof by the
computer system 1000, the main memory 1004 and the
processing device 1002 also constituting machine-readable
storage media. The machine-readable storage medium 1024,
data storage system 1018, and/or main memory 1004 can
correspond to the memory sub-system 110 of FIG. 1A or the

MCN processor 150 of FIG. 1C.
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[0113] In one embodiment, the 1nstructions 1026 include
instructions to implement functionality corresponding to any
OS, driver, software, or network stacked described herein.
While the machine-readable storage medium 1024 1s shown
in an example embodiment to be a single medium, the term
“machine-readable storage medium™ should be taken to
include a single medium or multiple media that store the one
or more sets ol instructions. The term “machine-readable
storage medium™ shall also be taken to include any medium
that 1s capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium”™
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.

[0114] Some portions of the preceding detailed descrip-
tions have been presented 1n terms of algorithms and sym-
bolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled 1n the data
processing arts to most eflectively convey the substance of
their work to others skilled in the art. An algorithm 1s here,
and generally, concerved to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

[0115] It should be borne 1n mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convement labels
applied to these quantities. The present disclosure can refer
to the action and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories nto
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems.

[0116] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus can be
specially constructed for the mntended purposes, or 1t can
include a general purpose computer selectively activated or
reconiigured by a computer program stored in the computer.
Such a computer program can be stored in a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

[0117] The algonthms and displays presented herein are
not mherently related to any particular computer or other
apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or 1t can
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these
systems will appear as set forth 1n the description below. In
addition, the present disclosure 1s not described with refer-
ence to any particular programming language. It will be
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appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein.
[0118] The present disclosure can be provided as a com-
puter program product, or soiftware, that can include a
machine-readable medium having stored thereon instruc-
tions, which can be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). In some embodiments, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM™), random
access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory components, etc.
[0119] In the foregoing specification, embodiments of the
disclosure have been described with reference to specific
example embodiments thereof. It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of embodiments of the disclo-
sure as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative sense rather than a restrictive sense.
What 1s claimed 1s:
1. A computing device comprising:
a host processor to:
execute a host driver to create a host-side interface, the
host-side 1nterface emulating a first Ethernet inter-
face; and
assign the host-side interface a first medium access
control (MAC) address and a first Internet Protocol
(IP) address;

a substrate on which 1s disposed memory components;

and

a memory channel network (MCN) processor disposed on

the substrate and coupled between the memory com-

ponents and the host processor, the MCN processor to:

execute an MCN driver to create a MCN-side interface,
the MCN-side interface emulating a second Ethernet
interface; and

assign the MCN-side interface a second MAC address
and a second IP address, which i1dentity the MCN
processor as a MCN network node to the host
Processor.

2. The computing device of claim 1, wherein, upon receipt
of a network packet having a third IP address directed to a
second MCN-side 1interface, the host-side interface 1s to
torward the network packet to the second MCN-side inter-
face comprising a second MCN network node.

3. The computing device of claim 1, wherein the MCN
processor 1s further to configure the MCN-side interface so
that outgoing network packets from the MCN network node
are Torwarded to the host-side interface for routing.

4. The computing device of claim 1, wherein the MCN
driver, when executed by the MCN processor, 1s to:

create a network device object;

set up the network device object as an Ethernet device;

and

register the Ethernet device with a kernel of the host

processor, to make the MCN-side interface visible to a
host operating system executing on the host processor.

5. The computing device of claim 1, wherein the MCN
Processor Comprises:
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a core to execute the MCN driver; and

a local bufler coupled to the core, the local bufler to store
MCN messages that are sent to and received from the
host-side interface, each MCN message comprising a
packet length and packet data.

6. The computing device of claim 5, wherein, in response
to a network packet recerved at the MCN-side interface from
a network stack, the MCN-side interface 1s to:

read a transmit start pointer and a transmit end pointer

from the local bufller for the network packet;

in response to suilicient space being available 1n a trans-

mission bufller of the local bufler, write the packet
length followed by the packet data into the transmission
bufler, starting at a bufler address to which points the
transmit end pointer;

update a value for the transmit end pointer 1n the local

buffer; and

set a transmit polling field of the local bufler to a non-zero

value to indicate that a new packet 1s enqueued 1n the
transmission builer.

7. The computing device of claim 5, wherein the local
bufler comprises a transmit polling field, and the host-side
interface comprises a polling agent to:

periodically read the transmit polling field 1n a plurality of

local buflers across a plurality of MCN nodes, to
determine whether there 1s a pending network packet;
and

upon detection of a pending network packet in one of the

plurality of local builers:

read a transmit start pointer and a transmit end pointer
from the local buller for the pending network packet;

read a cache line at a location of the local buffer to
which points the transmit start pointer;

retrieve the packet length and a packet destination
MAC address from the cache line; and

transmit the pending network packet to a packet for-
warding engine of the host-side interface.

8. The computing device of claim 7, wherein the host-side
interface 1s further to:

i1 the transmit start pointer moved by a number of bytes

read from a transmission bufler of the local bufler 1s not
equal to a value of the transmit end pointer, read an
additional at least one more cache line from the local
bufler; and

i1 the transmit start pointer moved by a number of bytes

read from the transmission buller of the local bufler 1s
equal to a value of the transmit end pointer, reset a
value of a transmit polling field of the local bufler and
exit.

9. The computing device of claim 5, wherein the host-side
interface comprises a packet forwarding engine to, 1n
response to receipt of a network packet:

determine that a destination MAC address of the network

packet matches the first MAC address;

allocate a socket bufler;

copy data of the network packet from a receiving builer

of the local bufifer to the socket bufer; and

transmit the data from the socket bufler to a network stack

for processing.

10. The computing device of claim 5, wherein the host-
side interface comprises a packet forwarding engine to, 1n
response to receipt of a network packet:

determine that a destination MAC address of the network

packet matches a reserved address for broadcast;
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allocate a socket bufler; global memory channel to which 1s coupled an 1dent-

copy data of the network packet from a receiving buffer fied memory module associated with the consecutive
of the local builer to the socket bufler; addresses; and

transmit the data from the socket buffer to a network stack a host memory controller coupled to the host processor,

the host memory controller to direct the mapped
memory operations to the single global memory chan-

nel.
13. The system of claim 12, wherein the local memory
channels are 1solated from a plurality of global memory

for processing; and

transmit the data from the socket bufler to a plurality of
MCN network nodes.

11. The computing device of claim 5, wherein the host-

side interface comprises a packet forwarding engine to, 1n channels, and each memory module of the plurality of
response to receipt of a network packet: memory modules is to access its plurality of memory
determine that a destination MAC address of the network components independently of other memory modules of the
packet matches a second address of a destination MCN plurality of memory modules.
node of a plurality of MCN network nodes; and 14. The system of claim 12, wherein a copy function of
transmit the network packet to the destination MCN node. the pair of memory copy comprises a copy-to-MCN function
12. A system comprising: to cause transmission data from the host processor to be
a host processor to execute a host driver: directed to a local butier of the identified memory module

via the single global memory channel.

15. The system of claim 12, wherein a copy function of
the pair of memory copy functions comprises a copy-from-
MCN function to cause receive data to be read from a local
bufler of the 1dentified memory module via the single global
memory channel.

16. The system of claim 12, wherein the host processor 1s
to broadcast network packets to at least some of the plurality
of memory modules over the single global memory channel.

a plurality of memory modules providing near-memory
processing capability to the host processor, wherein
cach memory module of the plurality of memory mod-
ules 1s part of a memory channel network (MCN) and
comprises a local memory channel coupled to a plu-
rality of memory components,

wherein the host driver 1s to perform a pair of memory
copy functions to map memory operations, which are
directed at consecutive addresses of physical memory
space of the plurality of memory modules, to a single S I T
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