a9y United States
12y Patent Application Publication o) Pub. No.: US 2022/0109891 Al

GLADDING et al.

43) Pub. Date:

US 20220109891 A1

Apr. 7,2022

(54)

(71)

(72)

(73)

(21)
(22)

(63)

(1)

FEATURES OF RANGE ASYMMETRIC
NUMBER SYSTEM ENCODING AND
DECODING

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Derek E. GLADDING, Poughquag,

NY (US); Sudharsan
GOPALAKRISHNAN, Milpitas, CA
(US); Shaileshkumar D. KUMBHANI,
Milpitas, CA (US); Hsu-Kuei LIN,
Mountain View, CA (US)

Assignee: Microsoft Technology Licensing, LLC,

Redmond, WA (US)
Appl. No.: 17/552,295
Filed: Dec. 15, 2021

Related U.S. Application Data

Continuation of application No. 16/456,602, filed on
Jun. 28, 2019, now Pat. No. 11,234,023.

Publication Classification

Int. CI.
HO4N 19/91 (2006.01)
HO4N 197124 (2006.01)

module | ... modulc
130 13x

|

on-chip memory 138

on-chip memory 128 {caches)

AN A T I G A SN e e el

= 1 1 L
Ll
LI I ;
I -l ‘ | @

processing
core 110

I=

(52)

(57)

HO4N 19/176 (2006.01)

HO4N 19/68 (2006.01)

HO4N 19/98 (2006.01)

U.S. CL

CPC HO4N 19/91 (2014.11); HO4N 19/124

(2014.11); HO4N 19/98 (2014.11); HO4N
19/68 (2014.11); HO4N 19/176 (2014.11)

ABSTRACT

Innovations 1n range asymmetric number system (“RANS”)
coding and decoding are described herein. Some of the
innovations relate to hardware implementations of RANS
decoding that organize operations in two phases, which can
improve the computational efliciency of RANS decoding.
Other innovations relate to adapting RANS encoding/decod-
ing for different distributions or patterns of values for
symbols. For example, RANS encoding/decoding can adapt
by switching a default symbol width (the number of bits per
symbol), adjusting symbol width on a fragment-by-fragment
basis for diflerent fragments of symbols, switching between
different static probability models on a fragment-by-irag-
ment basis for diflerent fragments of symbols, and/or selec-
tively flushing (or retaining) the state of a RANS decoder on
a fragment-by-fragment basis for different fragments of
symbols. In many cases, such innovations can improve
compression elfliciency while also providing computation-

ally ¢

software 1830 implementing tools for one or more

innovations for range asymmetric number system
(“RANST) encoding and/or RANS decoding

oll-chip
memory

Ticient performance.

computer
system 100

game controller
input 154
media player 155

y slorage

1’70

Patent Application Publication Apr. 7, 2022 Sheet 1 of 24 US 2022/0109891 Al

e e o o o — — — computer
| special-purpose codec hardware | off-chip system 100
memory
140

network
adapter(s) 151

microphone /
_________ — camera mput 152

motion sensor/

GPU |
N | tracker input 153
core 120 core 12x | |
k=
|
|
|

game controller
input 154

media player 1355

video input 156

processing | . .. | processing
core 110 core 11x
I I <:> audio / video
output 157

|
|| 5
@
| | =
g’
1] 3
| =
-,
I'::‘
.
| o
o)
|| &
| 3
<,
|

software 180 implementing tools for one or more
innovations for range asymmetric number system

(“RANS") encoding and/or RANS decoding

Patent Application Publication Apr. 7, 2022 Sheet 2 of 24 US 2022/0109891 Al

FIG. 2a 201

RTC tool 210 RTC tool 210

encoder 220 encoder 220
decoder 270 decoder 2770

playback tool 214

decoder 270
encoding tool 212

playback tool 214
encoder 220
decoder 2770

Patent Application Publication Apr. 7, 2022 Sheet 3 of 24 US 2022/0109891 Al

input residual residual
305 318 coding
module(s) entropy bitst
370 coder(s) 340, 1 ;;Zam
including
o RANS
prediction residual re- encoder(s) /
15 e | consucton | | Wuix 350
module(s)
330
' buffer(s)
prediction 335
module(s)
310
FIG. 4 400
output residual residual re-
(3 02 | construction
module(s) DEMUX
430 410 /entropy | pitstream
decoder(s) 405

prediction 420,

442

buffer(s)
4335

including
RANS
decoder{(s)

prediction
module(s)
440

Patent Application Publication Apr. 7, 2022 Sheet 4 of 24 US 2022/0109891 Al

FIG. 5 500

portion encoded
data 542
input symbol _ encoded data
buffer 510 input output buffer 540
_ butter 522} [butfer 526
input
symbol | RANS encoder 520 |:> ux
512 550
register config info 528
<_|“ate) 2 —
initial state
symbol width 521 u ﬁ probability tnfo 529
probability model 523 Info 532
memory 330 (storing
lookup tables)
probability info for different static
probability models, different symbol widths
FIG. 6 600
portion encoded
data 612
symbol vector _ encoded data
buffer 650 outpul input buffer 620
butfer 636] |butfer 632
output
Symbol RANS decoder 630 <: DEMUA
638 610
register config info 614
<_|“at“-") o (———
initial state
symbol width 631 @ ﬁ probability info 616
probability model 633 info 642

memory 640 (storing

lookup tables)

probability info for different static
probability models, different symbol widths

Patent Application Publication Apr. 7, 2022 Sheet 5 of 24 US 2022/0109891 Al

FIG. 7a 700 FIG. 7b 750

720 760

Recelve encoded data for at least part

Encode input symbols using a . . .
putsy 5 of a bitstream, including syntax

RANS encoder that implements

elements used for implemented

innovation(s) described herein, . .
innovation(s).

thereby generating encoded data
for at least part of a bitstream.

770

730

Decode the encoded data for the

Output the encoded data for the at at least part of the bitstream using

least part of the bitstream, including

a RANS decoder that implements
innovation(s) described herein,

svntax elements used for implemented
yRas N P thereby generating output symbols.

Innovation(s).

End End

US 2022/0109891 Al

Apr.7,2022 Sheet 6 of 24

Patent Application Publication

(1d 21818

SNVY)
07K T9S1321

(ToTRIANI

JUALIND
WOI] [OQUIAS

ndinoy (18
121nq indino

OL38

Aniqeqoad

ISIOAUL

1 aseyd

098 21epdn

[d 9IS
SNV

(0d 2138

SNV
07K T21S13a1

(R1Bp
pPapOdU JO

uoniod) (¢§
I21ynq ndui

018 @repdn
Od 2I°IS

SNV

0€S
Anniqeqod

pIRAIO]

() aoseyd

(1d 218318

SNV
07K IS1331

(ToTRIANI

snoitaaxd
WOI] [OQUIAS

ndino) 018
121nq indino

Patent Application Publication

900 (example of
operations 1n
decoding stage 770)

FIG. 9a

910

Selectively update state
of RANS decoder using

probability info for output
symbol from previous
iteration.

920

Selectively merge portion
of encoded data from
input buffer into state

of RANS decoder.

930

Selectively generate output

symbol for current iteration
using state of RANS
decoder.

Apr.7,2022 Sheet 7 of 24

FIG. 9b

no

911 (example of
operations 1n
decoding stage 910)

912

Output symbol
from previous iteration
generated ?

914 yes

Determine probability info
for output symbol from
previous 1teration.

916

Adjust state of RANS decoder

using probability info, thereby

consuming at least some state
of RANS decoder.

940

no

End

End

US 2022/0109891 Al

Patent Application Publication Apr. 7, 2022 Sheet 8 of 24

921 (example of
operations 1in
decoding stage 920)

FIG. 9¢

922

State of
RANS decoder satisties
threshold?

no

Combine portion of

encoded data and state
of RANS decoder.

End

US 2022/0109891 Al

931 (example of
operations 1n
decoding stage 930)

FIG. 9d

932

State of

RANS decoder includes
sutficient info to generate
output symbol ?

no

934 yes

Determine 1inverse
probability 1nfo.

936

Find output symbol for
current 1teration using inverse

probability info and state of
RANS decoder.

End

Patent Application Publication Apr. 7, 2022 Sheet 9 of 24 US 2022/0109891 Al

1000 (example of 1050 (example of
FIG _ 1 Oa operations 1n FIG] 1 Ob operations 1n
encoding stage 720) decoding stage 770)
1010 1060

Select symbol width from among Select symbol width from among

multiple available symbol widths. multiple available symbol widths.

1020 1070

Configure RANS encoder to perform Configure RANS decoder to pertorm
RANS encoding at selected symbol RANS decoding at selected symbol
width, including selecting set of pre- width, 1including selecting set of pre-
defined lookup tables having defined lookup tables having
probability info for input symbols probability info for output symbols of
of selected symbol width. the selected symbol width.

1030 1080

Perform RANS encoding at Perform RANS decoding at

selected symbol width. selected symbol width.

End End

Patent Application Publication Apr. 7,2022 Sheet 10 of 24

1100 (example of

FIG 1 1a operations 1n

encoding stage 720)

1110

Determine whether or not state
of RANS decoder 1s to be

flushed and re-initialized for
decoding.

1120

Set syntax element that

indicates decision.

1130

no
Flush/reinitialize ?

1132

Determine 1nitial state info.

1140

Perform RANS encoding.

1142

yES
no

1150 (example of

FIG 1 1b operations 1n

decoding stage 770)

1160
Read syntax element.

1170

Based at least 1in part on the
syntax element, determine

whether or not state of RANS
decoder 1s to be flushed and re-
initialized for decoding.

1180

v v " v nO
Flush/reinitialize ?

1182

Retrieve 1nitial state info.

1184

[.oad 1nitial state.

1190

Pertorm RANS decoding.

1192

yeS
no

US 2022/0109891 Al

Patent Application Publication Apr. 7,2022 Sheet 11 of 24 US 2022/0109891 Al

1200 (example of

FIG . 1 za operations 1n

encoding stage 720)

1210

Select one of multiple

available static probability
models.

1220

Set a syntax element that
indicates selected static
probability model

1230

Configure RANS encoder to
perform RANS encoding using
the selected static prob. model.

1232

Perform RANS encoding

using selected static
probability model.

1240

yes

no

End

1250 (example of

FIG . 1 2b operations 1n

decoding stage 770)

1260
Read syntax element.

1270

Select one of multiple available
static probability models based

at least 1n part on the syntax
element.

1280

Configure RANS decoder to
perform RANS decoding using
the selected static prob. model.

1282

Perform RANS decoding on
the encoded data using selected
static probability model.

1290

yes

no

End

Patent Application Publication Apr. 7,2022 Sheet 12 of 24 US 2022/0109891 Al

1300 (example of

FIG 1 3 d operations 1n

encoding stage 720)

1310

Determine adjustment, 1f

any, to symbol width.

1320

Set syntax element that
indicates the adjustment.
1330

e

1332

Adjust symbol width.

Configure RANS encoder to

perform RANS encoding at the
(adjusted) symbol width.

1342

Perform RANS encoding.

134

4
Next fragment ?
yes
no

1350 (example of

FIG . 1 3b operations 1n

decoding stage 770)

1360
Read syntax element.

13770

Based at least 1n part on the

syntax element, determine the
adjustment to symbol width.

1380

e

1382

Adjust symbol width

Contigure RANS decoder to

perform RANS decoding at the
(adjusted) symbol width.

1392

Perform RANS decoding.

1394

yeS
no

eyl 1Ppow Apiqeqord | [Zy] WpiM [oquuks

CTH1 3e)
N3UI[eNXQ | UOTRZI[RTITUT-IT IS

OTH] P3UI ST Ty 1 3e[)

enxa (Teuondo) | p3ugg O11B)S JO UOTIII[IS 0] Juaunsnipe

US 2022/0109891 Al

(9Z1S J[QRLIBA) ()€1 BIBP PRpPOOUD ojul reuondo pue (7| Iepeay

Apr.7,2022 Sheet 13 of 24

- 0111 Siuawser]
[-8 Juawgey) J A E [yuowIsely 0IRWIRY | rrs-orqewea §

oty DId

Patent Application Publication

‘bosa™utp andano
‘Apesl ulp andano
‘UTP [0 T-HICIM WHLI ddSSEddn0oD NaW .1 andut
‘PTTRATUTD Jndut

I9pssI 03 9a2eIIDIUT //

US 2022/0109891 Al

‘UNIIBA0 I0ITID b1 IndIno
‘BUOP boax andano

‘TTeas Avaae ancut
‘aabiel Ano [o:T¢] anduTt
ele andut

‘83T 3egeydTe [0:¢71 3ndut
‘183U andut

‘HTO JnduTt

btJuco / ToI3UCD //
) ISPOOBY BTNpow

WUATSBUT ISP npu, 0nTout

Apr.7,2022 Sheet 14 of 24

APeBSI 70U WesIJsumMopr LU TINg IsIIng O9AUAS - / /
paaIerls andurt Ispesy - //
4T (Td usyy od) 1teids //
/7
ONITIYLS //
//
//
IS5IING O3AWAS 073 JI21Ing ANdINg ISp0O3D woII TOQUWAS JIaJsuvrIil — ODJAWAS 23sTdwos jndino - //
ATquasse 1073094 Toquis ATquesse I0308A TOQqUAS //
mm //
o Isggng andut 01 93TaIM - //
m IS099] Ispesg //
— /7
ﬂw CTTEA IT I97ing 4ndino 01 TOqWAS 83TiIm - //
W 978718 QNYI 23eprdn - UOTANGTIISTE 8¥sasauT a3ndwod - //
- UOTAINGTIASTY paIemIci a3nducd - ISIIng AINCGUT wWweIJ pesx - //
mw IBPOOBP ISPOD3P //
mw //
e 0 dSVHJ L dsvHd //
-
o, .
AA sdT / SUT STROSBWTY |
~
> ‘
£ TOST ECl DIA
e

! [pT]ZTos oTqel ux bax
![ges]aTge]l Ul = [[9% 97gel ux ubtsse
Y[OT][9T]TT=s aTgel udl SITM

(AQTADIQG JTOJ POJIJITWO 27Qr3 UI 03 sonjea JoO JUsUUBTSSPE]
{[0T1[9T1[6]2TURY UI SITM

F[0T]CT®s o1dqe] s4a [(0:F] bex
f[qes]laTgel 81 = [[9¢ oTge] saI ubtsse
[OT] [9T]TT®s ©Tqe] s4a (0:F] ©ITM

US 2022/0109891 Al

[AQTASIQG JIOJ PO33ITWO 27gr3 &0 03 sanjyesa Jo UswuUbIsse]
‘[oT][9T] [é6]l®aTded sx1 [Q:F] 2aITM

0Tl ZT=s =Tqel Ja [0:T-S1I9 d0dd SNV NAW .] bax
!lges]aTge)l JI = 1798 o9T7gel JI ubTtsse
YIOT][9T] TT®s oTqel JiI L0:T-S1Id dOdd SNVYd NdW . | SITHM

[AQTADIG JTOJ POIJITWO 27Qr3 JJI 03 sanjyesa JO JUSWUUDTSSPE]
CLoT] [9T] [e]laTaed JI1 [0:T-51Id dOdd SNVd NAW .] SITM

‘[0T]ZTos oTgey boag [Q:T-(S1Id d0dd SNVYY NAW.)] bax
!lqealaTgel baaxy = (798 a27ge]l bsil ubtsse
‘[oT]1[9T]1T®s =Taely baaJ [0:T1-(S1Id dOdd SN¥Y NAW.)] =ITM

(AQTASIqg J0J POIJITWO ST7gry 98rg ©3 sonjra JO JUSWUDLTSSP]
‘[0T][sT] [6]2T9ed b1y [Q:T-S1Id dOdd SNVY NAW.] S1TM

Apr.7,2022 Sheet 15 of 24

![QT]CT2s =T1Tgel 9seq (0:T—-(SII9 dOo¥dd SN¥Yd NaW.)] bsx
!fgqes]aTgel 9seg = 198 oT7gel 98y ubTtsse
[0T] [ST]TTI=Ss =TdRlY 9se(g (0 T-(SII9d dOodd SNVYd NdwW.)] =ITm

[(AQTADIQ JT0J pPo13TWO S27grRI 98P ©3 sonjeaA JO JUSWUDLISSP]
0TI [9T] [6]=aTge] oseq [Q:T1-5I1Id dOdd SNVY NAW.] SITM

‘b usI1ano (p:¢] boax
(0I2z g ©7] posdj3upIenbd
sgqsu JO # - 39geydle Ul S3Tq JO # "=°1) s3I 3J=aqeydle saTiosis // ‘(es [0:g] bax
!
Apesa wAs anduTt
‘WA S [(0:T-M INOWAS SNVYY NaW .] b1 andano
‘DTTRA WAS Indiano

WeaI3sSumMoOp 073 20vIIDIUT //

st 461 DIA

Patent Application Publication

ouUS
!od TTR2as => Td TT®eaS S5STS
0 => Td TTe3s (3sauUj)3IT
uthsag (21sau sbpsbsau JI0 IO sbpossod)p sAemTe
!7d TTRIS boaI

IAndine uo payooTg || andutrl uo poyNooTqg || TTeals Avaae = d TTE31S SITM
' {OTTeA UTP; 3% PeOT (T podu) = Jndul UC P3O0 SITM

! (Apeal wWAS] ®® TTNI Ing wAs) = 3Indino uo payO0oTd S2ITM

109390 T1Ie3as //

US 2022/0109891 Al

P{(({TTnF Ing 3InduT‘Qq,8T} < buTtutewsI InduT) 3% (ONISSIOOUd JIVISA == 23e3s TI30)) || (Z¥MdH FIVISA
== 93®3s TI3D0) || (TYAH dIVISA == ©3e3s TI30) || (Q¥AH HIVISd == ©3e3s TI3D)) ®® TINJ Jng InduTl; = PEOT (T PoO1dU 2DITM
!pbutuTtewsI andut @ T - butuTeRewSaI AnduTr ¢ sURI PS3SI TTTM = buTuTrTewsd Indul M3U [0:1-7907T INANI XYW NAW.] S9ITM
‘nd o3eas suea : {Ing andurt ‘[p:¢z]od o3els surdl ¢ sURT POSI TTTM = AnduTl yATM 923B3S surI [O:T¢] SdTM
!TTNI Ing Andul ®® sURI PO9S3I 01 AueMm = SURI P931 T[ITM SITM

IDPOO3P surlI 99Ul 03Ul JI57Ing Indul syl woead
indutr pesx 03 juem sm // () < burtuTeweI InduT) %% (IIWIT YAMOT SNVY NAW. > 0d 23els sueI) = sUBRI POST 03 JuUeM DITM

ndut AQ PSTITPOW 83e3ls sueIl T aseyd //

!peaxy aod ysntI bsaI

198 JIT Ispesy S1Aq ¢ // f¢apy bsia

!17d 23eas suead [p:T¢] bax

Ind oa3e3s suea [p:1s] bax

!pbutuTtewsa andanoe [:1s] bsax

‘pututewsa JInduT [Q:T-¢90T INANI XYW NAW.] bax
!TTNI Ing wAs baa

TTny Ing andut boax

fing andut [p:7] bax

!sgeyd bax

Apr.7,2022 Sheet 16 of 24

1973e3s TI30 /x 93e3s TI30 unmus sAsdouds ./ [Q:z] bax

indinoe butjersusb TTTAs ‘andur yaitsm auop // G, 8 = ONINIVYYJ 4dIVY1ISd
andinoe burtileasusb pue ndul burtpesi ‘s3evls burtsssooad utew // ‘B0, 8 = ONISSHOOHd dIYISd
¢ ©3Aq Iopesy I0J buritem // ‘Cr.E = CddH dIVIsd
T 92231AQq Ispesy I0I butiTtem // ‘70, = THdH {IVYISd
0 931Aq Ispesy I03 burtaTtem // ‘TR, = 0MdH WIVY1ISd
JIOMDTY sposdu ‘s83eis STpT // ‘00.¢ = ATdI dIVYIsd
/x 971e1s 7110 umus sAsdoulAs ./ [0:7] weaedTedoT

o1e3s //

Y)

Patent Application Publication

y—
-«
-~ ‘[G0]ZTos @Tged ux + ([GQlZT®s TRl 9seq - Ul JO) = X ASTP
mm P {((TIP, — GOP.) >> T) = X ©seq AUT
= G0, = bag AUT
= uthbsg ((% =< ges) 3 ([Gp]zTos ©Tqey oseq =< Ul JO))JIT OSTO Pud
N ‘[90]zT®s ©Tgel ux + ([9Q]ZTos ©Tgel ©seq — Ul JO) = X 3STP
mu {(TP, - 890P.} »>> 1) = X 9seq aul
o ‘90P, = bas AuUT
2 uthbagq ({5 =< qea) 3 ([90]¢Ies =oTQrel @seq =< UT J2O))}IT SST> pud
- ‘[L0]gTos ©Tded ux + ([LQ]ZT®s ©Tde3 9seq - Ul JO) = X ASTP
(TP, — LOP,) >> 1) = X ©seq AUTL
1100, = bag AUT
utbaq ((9 =< gea) ® ([L0]ZT2¢ @Tge] 98] =< UT JD))IT 98T pudD
‘[g0]ZTos @Tdel3 ux + ([8Q0]ZT®s oTde3 9seq - UT JO) = X 3STP
C((TP, — 80P.) >> T) = X 9seq AUT
‘80P, = bog AuUT
utbaqg ((/, =< dgea) % ([80]1ZTo2¢ oTgel 98y =< UT JD))JIT OSTS pud
‘[60]ZTos @Tded ux + ([60]1ZT®s STdR3 8seq - UT JO) = X ASTP
C((TP, — 60P,) >> T) = X 9seq AUT
60P, = bog AuUT

uthbaq ((g8 =< dgea) 3 ([60]ZT2s aTdel 8seq =< UT IO}) IT
uTbhbag quos sAemTe

Apr.7,2022 Sheet 17 of 24

‘X 38T [Q:GT] beaax
‘X @seq AUT [(:T-M INOWAS SNYd NdW.] bsx
!bos aAuT [p:¢] bax

‘u IeAuUsb

!0 T-611I9d 9d0OdMd SNYY NAW _]3anduT y3Tsm 93e3s suel = UT JO [Q:T-S1I9 dO¥d SN¥Y NdW .] =ITm
UOTAINQTILSTP SSIDAUT T aseyd //

g @ opadweToun ges ¢ 0T > padwueToun ges = padwueTo ges [0:¢] SaITMm
{PTS2TF z 0APY’Qd, ¢} - S3IT 3I=qeydlie = paduweloun ges [(Q:g] 2aTM
‘[or¢glIng Indut = PISTF b Qapy [0:¢] 2aTM
‘[grL]Ing Indut = PISTF Z QIPY [Q:T] 2aTM

!TTeas Aeaae; %% bal UuTp = ApesI urlp ubtsse

IAndano ucT payooTd; ®® () == o9seyd) ®»® peOT T pPodU = bai urtp ubtsse

Is511Ing andur //

st PST DA

Patent Application Publication

!bututewusI Indino

T — bututewsa 3ndiano ¢ ((p < buturTewsa Indiano) ®x TTINI INg WAS 1X3Uu) = buTtuTrTewaI Indino msau [:1¢] S2dITM
IanduT yaTtm 273818 surd = Td 83e]ls sUuRdI MBU [O:T¢] SITM

{0 < bututewsI 3Indanoc) ®% (ITIWIT HAMOT SNYY NAW . < AnduT yaTm 923B1s sued) = TINJ INg WAS 1IXSU SITM

od TTR2AS ®® (0 == o9seyd) 3% TTNI Ing WAS = PDITeA WAS ubtrsse

S31e31s sueI msu pure ndino sandwod //

US 2022/0109891 Al

15ds18 AUT + X 98B AUT = WAS M3U [O:T1-M INOWAS SNYY NAW.] =ITM
(8T << [GT:TglTnu ppe) = sdojs AUT [Q:T-M INOWAS SNYY NAW.] 2ITM
< 'JI x X 3STP = Tnu ppre [Q:T1g] =ITM
o~ 38s33c andutr // ! [bos AUT] ZT9s 97QrRl Ul = ux SAITM
Jm 1ITYs // ! [bos AUT] ZT9S 97Qrl $I = S I 0] SITM
o TeocoadIoaa asIsauUT // ! [bos AUT] ZTos 97Qgrl JI = JI [0:CcT] SaITM
o
Mu PUD
- PUD
m\ﬂu 'L00]zTes oTqel3 ux + ([Q0]ZT9s dTgel 9seq - Ul JO) = X 3871p
00P, = X 98B AUT
MM 00P,y = bas AuT
— UTbhbaq 2872 pus
GM CLT0JzTes oTqed ux + ([T0]ZT9s dTgely 9seq - UT JO) = X 38TP
= (TP, = TOP.) >> 1) = X @seq aAul
- T0p, = bas AUT
LMW utbsq ([T0]ZTos oTdel 98 =< UT JD)}JIT 9STS pPUD
‘lzo]ZTes o©Tgel ux + ([Z0]ZT®s oTqel 9seq - Ul JO) = X 38TIP
C{((To, — 20P.) >> T) = X 9seq AUT
Y0P, = bos AuT
utbaq ((1T =< ged) % ([g0lzZTo9s o1gel 9seq =< Ul JO))JIT 9STd pus
CleplZTes oTgel ux + ([€Q]ZT®s oTqel 9seq - Ul JO) = X 381Pp
(IO, — €0P.) >> T) = X 9seq AUT
0P, = bos AUuT
utbaq ((g =< ged) ® ([¢QlzTos o1gel 9seq =< Ul JO))JIT 9STd pus
Yy 0]ZTes 9Tgel ux + ([pQ]ZT®s oTqel 9seq - Ul JO) = X 381p
(TP, - POP.) >> 1) = X @seq AuT
L0, = bag AUT

utbaq ((¢ =< ged) ® ([pQlZT9s ©1gel 9seq =< Ul JO))JT 9STd pus

w96 "Dl

Patent Application Publication

US 2022/0109891 Al

Apr.7,2022 Sheet 19 of 24

Patent Application Publication

! [bos pmI]ZTo9s TRl baay =

! [bos pmI]ZToS oTRY 281

!1I1e38bos pMmJg

Y00P,

T0L,) >>
utbaq (
200, >> 1
utbaq (
cor.) >> 1
utbaq {
FOL,) >> 1
utbaq {
SOP,) >> T
utbaq {
30P,) >> T
utbsq |
LOR,) >> 1
utbsq |
300, >> T
utbaq |
0L, >> 1

T)

6T
6T

23 PMJ
S pMm]

Y00P.,

* 10D,

SATM
SATM

ouUS

OUD
1IP1sbas pMy
bas pm3J
uThag 9878 pus
1IP1sbas pMy
bas pmyJ

[QJWAS)JIT SST® PUD

)

1Ielsbhas pmyJ

1201, bos pmJ

[TJWAS)}JT SST® PUdD

)

1Ie1sbos pmJ

0P, bos pmJ

[ZJWAS)JT SST® PUdD

)

1Ie1sbhbos pmyT

700, bos pmJ

[(CJWAS)}IT 28TS pPUD

)

1Ie1shbos pmJ

S0P, boss pmJ

([FJWAS)IT 28TS pUD

)

1IP1sbas pMy

190p, bss pmJg

[GJWAS) JIT 9STS pPUS

)

1IP1sbas pMy

100, bos pmJ

[G]WAS) JIT 9STS pPUS

)

1Ir1sbas pMJ

1301, bos pmJ

[LJWAS)JIT 9STS pUS

)

[0 T-M ILOOWAS SN¥Yd NARW]
!bos pMT
UOTIANQTIIASTL pPIMIO]

1Ie1sbos pmJ
boas pMmT

([8lWAS) JT
UThbaq quod sAemTe

Y600,
uthaq

[0:¢]
10 oseyd //

9061

bax
bax

JS1T DIA

I971els pus TebaT; ® (0 == burturtewsai Indino)

US 2022/0109891 Al

Apr.7,2022 Sheet 20 of 24

uthbaq

gd 223e38 sura mau) | |

IIWNIT JddMOT SNYd NARW) (LINIT dUMOT SNV NAdKW .

rIo oM — d pmI + ([9T:T€]Td 23B3S SUBRI x I DPMT)

P[0 T-S1I9 d0dd SNYY NAW .] 1d ©3e3s suel = d pmg
‘eJ0 pmd T ¢ {0 == ©J0 pMT) = JO pMm7

‘eI pMJ -2 pmJy & (0 == BJD pMT) = J pm7

! {sdors pMI L BT pPMI) + Sseg pMmI = eI0 pMmI
I1I1e3sbos pMmT - WAS = sdols pmT

Patent Application Publication

Y{ {0 T10]T
C{{0P.GI0T
{{0U.,SI1Id dOodd SN¥d NAW .} 0
Y{{0U,SI1Id dOdd SNYd NAW .} 07
Y{{0U,S1Id d0dd SN¥d NANW . 10

uTbaq

' 0

7-
7-
7-

(oseyd;)

» PITEA WAS => UNIIDAC I0IID

3t

UTbhbaq 2879 pus
=> bevi3y Jad ysniyg

0
B
B
B

=> £Ipy

el ux
el sI
qel Ja

7198 oTqel bsiag
7TOS oTgel ase(
‘0 => bTausiano

‘0

=> Jed

=> UNIIDAO JO0IID
10 => 2Uop
‘0 => Ing andurt
‘0 => TInF Ing 3ndut

‘0 => TINnI Ing wAs

* 0

—> UWAS

10 => buTuTewsI 3Indino
0 => bututewsa InduTt

{{{(9T << IIWIT ddMOT SN¥d NAKW .}
nd 83e]s suraI MsUu))

od 23e]s gurld MDU

0
0
0
0

ﬁ

-l
b
-l

I9TdI HIYISA

uTbaq

LOST

Td ®3®as suea
nd ©o3e1s suead

10 => oseyd

—> 37318 TJI3D
(3sauj)
(1sa1Uu Sbpsbsasu 10 YMTO Sbposod)p sAemTe

3t

a3epdn //

nd 291el1s surlI M3DU)

L0 T¢E]
-S1Id dOo¥dd SN¥d NAKW |
-S1Id dOdd SN¥d NAKW |
-S1Id dOodd SN¥d NAKW |
(—-SL1Id dOoYdd SNYd NdW |
0:T-M INOWAS SN¥d NANW ..

({8 <<

S1e]1S pus” TebaT SITM
I0ss32IdWeD 3yl UT bUTUWTII ©3 anp ATIed ATIUDTITS S310UTWID] UBD aMm //

SITM
SITM
SITM
SITM
SITM
SITM

36T 'O

PuUS
OUD
0 => Td 93e1s suel
0 => d 93e3s sued
10 => 2Uop
!19bIe] Ino =»> buTuTeEPWwaI Indino
!0¥MdH 9IVISA => ©3e3s TI10
utbsg (ob) IT
younel Io0J buritem // uthbosq :9TIdI dIVISd
(971e]8 TI1D) 2SED
T 4dSYH4A //
utbsq (1d TTe3s|) IT 98T pusd
PUD
ouUD
0 => TINI Ing wAs
UTS JI0J aTgeus // XXy, => WAs //
uThaq (ApesI WAS 3% pITea WAS) JIT
andine s1puey //

US 2022/0109891 Al

puUS
‘T => TIn3 Ing 3ndut
‘uTpe => Ing 3ndut
utbsq (PTTeA UTL B% ApeSI UIP) IT
ndut a1puery //

Apr.7,2022 Sheet 21 of 24

SSBOPUD
dou // pus urTbsqg :3TneIsp
PUD
PUD
f17d 221]s surI => (Od 93v1s$ sueld
uthsg 2872 pus
‘nd s3el1s surad mou => pd 93e]ls surld
utbsq (TTnI Ing wiAs) IT
uTbasq :9ONINIVIQ dIVISd ‘ONISSHDOYd HIVISd
(971838 TI31D) B8ed
931e3s SNVYI Mmdu sjebedoad //

utbsgq (pd TTe3s|) IT
0 ASVYHA //

sosT - YST DA

Patent Application Publication

puUs
ouUs
‘0 => TIn3 Ing 3ndut
'ONISSHDOOId dIVISd => 23e3s TI30
f7¢7 + {[p:/]buTtuTtewsaa andut ‘Ing InduTt} => buTtutewal InduTt
utbsq (TTng Ing andut) IT
Ispesy jJuswbeil © JO 93AQ PITYI Io0F buritem // urtbsq :gddH IIVISA
puUS
puUS
puUsS
PONISSHOOAd dIVISd => ©93rls TI30
T + {Ing 3andur ‘0g,6} => bututewsa 3nduTt
uThbag 2872 pus
!7ddH 9IVISA => ©23e3s TI10
!{Ing 3ndut “‘Qg.,6} => buTuTewsIa 3ndut

utbsq (gapy) IT

US 2022/0109891 Al

! (b jusIaIns] T79s8 a1ge] uad => 7198 o97de]l Ul
! (b jusIaIns] TT79s8 a1ge] $aI => 7198 o7de]l sa
! [busI1ano] 7798 o7ge] JI1 => 7198 o7de]l J41

! ThTusIano] [T9s TRl bal1l => 7128 a7gel bsiag
! ThTjusIano] [T9s oTgrRl 9seq => 7198 a1gel aseq
‘0 => TInF Ing 3ndut
utbosq (TTNI Ing 3ndut) IT
Ispesy jJuswbell © JO 91AJ pucoss I07 butiatem // utbsqg :TYdH 4IVISA
PUD
puUS
‘0 => TIn3 Ing 3ndut
fpadueTo ges => ges
![p]Ing andut => beay iad ysniZg
'[G]Ing Indut => £IpYy
1oty b papy => b jusIiano
'THdH dI¥1Sd => 931e31S TI30
‘0 => butuTrtewsa 3nduTt
utbsq (TTng Ing 3andut) IT
Iopesay jusuwbei e JO S3AQ 3IsATI 103 buritem // utbsq :0¥dH dIVISAd

Apr.7,2022 Sheet 22 of 24

0061

Patent Application Publication

161 DIH

LuUs
[SIVES
PUD
T => BUOP
YA JIVISd => 93eils TI30
uthsg 2879 pus
pPus
g => Td ®3e3s suel
‘0 => pdoa3eas suel
utbsg (beaz zad ysnTI) IT
C0MAH JIVISd => 81e3s TIJ0
UThbag (0 < butuTeuwsy ndino mdu} JIT
utbaq (LIWIT HIMOT SNYd NAW ., => Td ®3ej}s sueld Mau) JT
ITTNI NG WAS AX9U =3 TINI ING WAS
IWAS mdU => WAS
!buTuTtewaa Indino T Msu => DUTuUTRWSI 3INndinoe
ITdTenens surI MU => Td T®lras suril
uThbaq (ONINIVIJ dIVLISA
PUD
OUS
PUSD
ATdI dIYISd => S3e3s TA30
(T => BUOP
utbhsg sg78 puUS
DUS
PONINIYHAd JI¥ISdHd => 23838 T30
uThag 2878 pus
DUS
10 => Td ej3e3s suRd
uthag (beazy zad ysniiy) It
0¥ dIYISg => ©23els TIl0

US 2022/0109891 Al

Apr.7,2022 Sheet 23 of 24

UTbaq {IIWIT JdEMOT SNYY NAW . == Td 23838 suel MdU) IT
utheq (0 < buturtewss ndinoe msau) IJT
uTbag () == buturtewsa 3ndutl mMsu)} JT

!TTNI Ing wAs IXaUu => TTnI Ing wWAS
IWASTMBU => WAS
fsuea p®SI TTITM; ® TIng Ing ndut => TIng Ing ndurt
!butuTtewsI Indino T Msu => DbuTuTRWSI 3Indinc
DuTuTerwel Indut TmMeu => buTuTrterweI jndut
{74 93RS gurd MBU => [d 8731v3s surld

uThboq ONISSIIOUd dIVISd

0161

Patent Application Publication

[GT 'O

US 2022/0109891 Al

STNPoUPUS
puUS
puUS
!oseyd~ => oseyd
puUS
(23els TI32) 28D // 28ROPUD
YHTIJdI dIVYISd => ©33s TI30
»3TNeIsp

mer o ST DId

Apr.7,2022 Sheet 24 of 24

Patent Application Publication

US 2022/0109891 Al

FEATURES OF RANGE ASYMMETRIC
NUMBER SYSTEM ENCODING AND
DECODING

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as 1t appears in the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

[0002] With the emergence of media streaming over the
Internet and other digital networks, digital processing of
media has become commonplace. Engineers use compres-
sion to process media efliciently while still maintaining
quality. One goal of media compression 1s to represent a
media signal 1n a way that provides maximum signal quality
for a given amount of bits. Stated differently, this goal 1s to
represent the media signal with the least bits for a given level
of quality. Other goals such as limiting computational com-
plexity, improving resiliency to transmission errors, and
limiting overall delay due to encoding/transmission/decod-
ing apply 1n some scenarios.

[0003] Media compression typically includes one or more
stages ol prediction, frequency transformation, and quanti-
zation, followed by entropy coding. Corresponding media
decompression typically includes entropy decoding fol-
lowed by one or more stages of inverse quantization, inverse
frequency transformation, and prediction. In general,
entropy coding converts input symbols to encoded data
having a lower bitrate, by exploiting redundancy 1n the input
symbols (e.g., exploiting a pattern of many mput symbols
having common values, and few input symbols having rare
values). Entropy decoding converts encoded data to output
symbols, which correspond to the mput symbols. There are
many variations of entropy coding/decoding, which offer
different tradeotls in terms of compression efliciency (reduc-
tion 1n bitrate) and computational complexity. For example,
Huilman coding/decoding 1s computationally simple but has
poor compression efliciency for some distributions of values
of mput symbols. On the other hand, arithmetic coding/
decoding usually has much better compression efliciency, at
the cost of much higher computational complexity.

[0004] Asymmetric number system (“ANS”’) coding/de-
coding potentially offers high compression efliciency (com-
parable to arithmetic coding/decoding) and low computa-
tional complexity (comparable to Huflman coding/
decoding). In particular, range ANS (“RANS”) coding/
decoding can work well when symbols have many possible
values (large alphabet) but certain values (such as zero) are
very common. RANS encoding/decoding also permits inter-
leaving of output from multiple RANS encoders into a
single output bitstream of encoded data, with multiple
RANS decoders being usable to decode symbols from the
bitstream concurrently, which can speed up the RANS
encoding/decoding process.

[0005] Considerning the importance of entropy coding/
decoding to the overall efliciency of media compression and
decompression, entropy coding/decoding has attracted sig-
nificant attention in research and development. Although

Apr. 7,2022

previous RANS encoding/decoding approaches provide
good performance for many scenarios, there 1s room for
improvement in terms of the computational ethciency and
adaptiveness of RANS encoding/decoding.

SUMMARY

[0006] Insummary, the detailed description presents inno-
vations 1n range asymmetric number system (“RANS”)
coding and decoding. Some of the mmnovations relate to
hardware implementations of RANS decoding that organize
operations 1n two phases, which can improve the computa-
tional efliciency of RANS decoding. Other innovations
relate to adapting RANS encoding/decoding for different
distributions or patterns of values for symbols. For example,
RANS encoding/decoding can adapt by switching a default
symbol width (the number of bits per symbol), adjusting
symbol width on a fragment-by-fragment basis for different
fragments of symbols (where a fragment can include a
variable number of symbols and variable amount of encoded
data), switching between different static probability models
on a fragment-by-fragment basis for diflerent {fragments of
symbols, and/or selectively flushing (or retaiming) the state
of a RANS decoder on a fragment-by-fragment basis for
different fragments of symbols. In many cases, such inno-
vations can improve compression efliciency while also pro-
viding computationally eflicient performance.

[0007] According to a first set of mnovations described
herein, a computer system includes an encoded data bufler
and a RANS decoder. The encoded data bufler 1s configured
to store encoded data for at least part of a bitstream. The
RANS decoder 1s configured to perform operations 1n mul-
tiple phases using special-purpose hardware. In particular,
the RANS decoder i1s configured to perform operations in a
first phase and second phase. The operations include, as part
of a first phase, selectively updating state of the RANS
decoder using probability information for an output symbol
from a previous 1teration. The operations further include, as
part ol a second phase, selectively merging a portion of the
encoded data from an input buller into the state of the RANS
decoder, and selectively generating an output symbol for a
current iteration using the state of the RANS decoder. In this
way, the RANS decoder can decode the encoded data 1n a
computationally eflicient manner using the special-purpose
hardware.

[0008] According to a second set of innovations described
herein, a computer system includes a RANS encoder and an
encoded data bufler. The RANS encoder 1s configured to
encode input symbols, thereby generating encoded data for
at least part of a bitstream. In particular, for the encoding, the
RANS encoder 1s configured to perform operations that
include selecting a symbol width from among multiple
available symbol widths, configuring the RANS encoder to
perform RANS encoding at the selected symbol width, and
performing the RANS encoding at the selected symbol
width. As part of the configuration of the RANS encoder, the
RANS encoder 1s configured to select a set of pre-defined
lookup tables having probability information for the selected
symbol width. In this way, the RANS encoder can adapt to
different symbol widths for mput symbols of different
streams (or adapt to diflerent probability distributions for
input symbols of different streams), potentially improving
compression efliciency. The encoded data bufler 1s config-
ured to store, for output, the encoded data for the at least part
of the bitstream.

US 2022/0109891 Al

[0009] For corresponding decoding, a computer system
includes an encoded data bufler and a RANS decoder. The
encoded data bufler 1s configured to receive and store
encoded data for at least part of a bitstream. The RANS
decoder 1s configured to decode the encoded data for the at
least part of the bitstream, thereby generating output sym-
bols. In particular, for the decoding, the RANS decoder 1s
configured to perform operations that include selecting a
symbol width from among multiple available symbol
widths, configuring the RANS decoder to perform RANS
decoding at the selected symbol width, and performing the
RANS decoding at the selected symbol width. As part of the
configuration of the RANS decoder, the RANS decoder 1s
configured to select a set of pre-defined lookup tables having
probability information for output symbols of the selected
symbol width. In this way, the RANS decoder can adapt to
different symbol widths for output symbols of different
streams (or adapt to different probability distributions for
output symbols of different streams), which can allow the
RANS decoder to benefit from improved compression etli-
cilency.

[0010] According to a third set of imnovations described
herein, a computer system includes a RANS encoder and an
encoded data bufler. The RANS encoder 1s configured to
encode mput symbols, thereby generating encoded data for
at least part of a bitstream. In particular, for the encoding, the
RANS encoder 1s configured to perform operations that
include determiming whether or not state of a RANS decoder
1s to be flushed and re-mitialized for decoding of the
encoded data for the at least part of the bitstream, setting a

syntax element that indicates that decision, and performing
RANS encoding. In this way, the RANS encoder can decide,

on a fragment-by-fragment basis, whether a RANS decoder
will (a) flush and re-1nitialize its state for decoding of a given
fragment, or (b) continue to use the state from decoding of
the previous fragment, which can improve compression
elliciency. The encoded data bufler 1s configured to store, for
output, the encoded data for the at least part of the bitstream.
A header 1n the at least part of the bitstream includes the
syntax element that indicates whether or not the state of the

RANS decoder 1s to be flushed and re-initialized for decod-
ing of the encoded data for the at least part of the bitstream.

[0011] For corresponding decoding, a computer system
includes an encoded data bufller and a RANS decoder. The
encoded data bufler 1s configured to receive and store
encoded data for at least part of a bitstream. A header in the
at least part of the bitstream includes a syntax element that
indicates whether or not state of the RANS decoder 1s to be
flushed and re-nitialized for decoding of the encoded data
for the at least part of the bitstream. The RANS decoder 1s
configured to decode the encoded data for the at least part of
the bitstream, thereby generating output symbols. In par-
ticular, for the decoding, the RANS decoder 1s configured to
perform operations that include reading the syntax element,
determining (based at least 1n part on the syntax element)
whether or not the state of the RANS decoder 1s to be flushed
and re-initialized for decoding of the encoded data for the at
least part of the bitstream, and performing RANS decoding
of the encoded data. In this way, the RANS decoder can
decide, on a fragment-by-fragment basis, whether the RANS
decoder will (a) flush and re-initialize its state for decoding
of a given fragment, or (b) continue to use the state from

Apr. 7,2022

decoding of the previous fragment, which can allow the
RANS decoder to benefit from 1mproved compression eili-
clency.

[0012] According to a fourth set of innovations described
herein, a computer system includes a RANS encoder and an
encoded data bufler. The RANS encoder 1s configured to
encode input symbols, thereby generating encoded data for
at least part of a bitstream. In particular, for the encoding, the
RANS encoder 1s configured to perform operations that
include selecting, for the encoded data for the at least part of
the bitstream, one of multiple available static probability
models, setting a syntax element that indicates the selected
static probability model, configuring the RANS encoder to
perform RANS encoding using the selected static probabil-
ity model, and performing RANS encoding using the
selected static probability model. In this way, the RANS
encoder can quickly and efliciently adapt to different prob-
ability distributions for 1nput Synlbels on a fragment by-
fragment basis, potentially improving compression eili-
ciency. The encoded data bufler 1s configured to store, for
output, the encoded data for the at least part of the bitstreanl.
A header 1n the at least part of the bitstream includes the
syntax element that indicates the selected static probability
model for the encoded data for the at least part of the

bitstream.

[0013] For corresponding decoding, a computer system
includes an encoded data bufler and a RANS decoder. The

encoded data bufler 1s configured to receive and store
encoded data for at least part of a bitstream. A header in the
at least part of the bitstream includes a syntax element that
indicates a selection of a static probability model, for the
encoded data for the at least part of the bitstream, from
among multiple available static probability models. The
RANS decoder 1s configured to decode the encoded data for
the at least part of the bitstream, thereby generating output
symbols. In particular, for the decoding, the RANS decoder
1s configured to perform operations that include reading the
syntax element, selecting (based at least 1n part on the syntax
clement) one of the multiple available static probability
models, configuring the RANS decoder to perform RANS
decoding using the selected static probability model, and
performing RANS decoding of the encoded data using the
selected static probability model. In this way, the RANS
decoder can quickly and efliciently adapt to different prob-
ability distributions for output symbols on a fragment-by-
fragment basis, which can allow the RANS decoder to
benefit from 1mproved compression efliciency.

[0014] According to a fifth set of innovations described
herein, a computer system includes a RANS encoder and an
encoded data bufler. The RANS encoder 1s configured to
encode input symbols, thereby generating encoded data for
at least part of a bitstream. In particular, for the encoding, the
RANS encoder 1s configured to perform operations that
include determining an adjustment to symbol width for the
encoded data for the at least part of the bitstream, setting a
syntax element that indicates the adjustment to symbol
width, configuring the RANS encoder to perform RANS
encoding at the adjusted symbol width, and performing the
RANS encoding at the adjusted symbol width. In this way,
the RANS encoder can quickly and efliciently adapt to
different symbol widths for input synlbe s on a fragnlent-
by-fragmen’[basis, potentially 1 1n1prev1ng compression eili-

ciency. The enceded data bufler 1s configured to store, for
output, the encoded data for the at least part of the bitstream.

US 2022/0109891 Al

A header 1n the at least part of the bitstream includes the
syntax element that indicates the adjustment to symbol
width for the encoded data for the at least part of the
bitstream.

[0015] For corresponding decoding, a computer system
includes an encoded data bufller and a RANS decoder. The
encoded data bufler 1s configured to receive and store
encoded data for at least part of a bitstream. A header in the
at least part of the bitstream includes a syntax element that
indicates an adjustment to symbol width for the encoded
data for the at least part of the bitstream. The RANS decoder
1s configured to decode the encoded data for the at least part
of the bitstream, thereby generating output symbols. In
particular, for the decoding, the RANS decoder 1s configured
to perform operations that include reading the syntax ele-
ment, determining (based at least in part on the syntax
clement) the adjustment to symbol width, configuring the
RANS decoder to perform RANS decoding at the adjusted
symbol width, and performing the RANS decoding at the
adjusted symbol width. In this way, the RANS decoder can
quickly and etliciently adapt to different symbol widths for
output symbols on a fragment-by-fragment basis, which can
allow the RANS decoder to benefit from 1mproved com-
pression efliciency.

[0016] The innovations described herein include, but are
not limited to, the mnovations covered by the claims and
table of features at the end of the application. The respective
innovations can be implemented as part of a method, as part
ol a computer system configured to perform the method, or
as part of computer-readable media storing computer-ex-
ecutable instructions for causing one or more processors 1n
a computer system to perform the method. The various
innovations can be used in combination or separately. This
summary 1s provided to introduce a selection of concepts 1n
a simplified form that are further described below in the
detailed description. This summary 1s not mtended to 1den-
tily key features or essential features of the claimed subject
matter, nor 1s i1t intended to be used to limit the scope of the
claimed subject matter. The foregoing and other objects,
features, and advantages of the invention will become more
apparent from the following detailed description, which
proceeds with reference to the accompanying figures and
illustrates a number of examples. Examples may also be
capable of other and different applications, and some details
may be modified in various respects all without departing,
from the spirit and scope of the disclosed mnovations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The following drawings 1llustrate some features of
the disclosed mnnovations.

[0018] FIG. 1 1s a diagram 1illustrating an example com-
puter system in which some described examples can be
implemented.

[0019] FIGS. 2a and 256 are diagrams 1llustrating example
network environments 1n which some described examples
can be implemented.

[0020] FIGS. 3 and 4 are diagrams illustrating an example
media encoder system and an example media decoder sys-
tem, respectively, in which some described examples can be
implemented.

[0021] FIGS. 5 and 6 are diagrams illustrating an example
RANS encoder system and an example RANS decoder
system, respectively, in which some described examples can
be implemented.

Apr. 7,2022

[0022] FIGS. 7a and 7b are flowcharts illustrating
example techmques for RANS encoding and RANS decod-
ing, respectively, according to some examples described
herein.

[0023] FIG. 8 1s a diagram 1illustrating phases of example
two-phase RANS decoding according to some examples
described herein.

[0024] FIGS. 9a-9d are flowcharts illustrating example
techniques for two-phase RANS decoding according to
some examples described herein.

[0025] FIGS. 10¢ and 106 are flowcharts illustrating
example techmiques for switching symbol width during
RANS encoding and RANS decoding, respectively, accord-
ing to some examples described herein.

[0026] FIGS. 11a and 115 are flowcharts illustrating
example techniques for controlling selective flushing/re-
initialization of RANS decoder state on a fragment-by-
fragment basis during RANS encoding and RANS decoding,
respectively, according to some examples described herein.
[0027] FIGS. 12¢ and 126 are flowcharts illustrating
example techniques for switching static probability models
on a fragment-by-fragment basis during RANS encoding
and RANS decoding, respectively, according to some
examples described herein.

[0028] FIGS. 13¢ and 136 are flowcharts illustrating
example techmques for adjusting symbol width on a frag-
ment-by-fragment basis during RANS encoding and RANS
decoding, respectively, according to some examples
described herein.

[0029] FIG. 14 1s a diagram 1llustrating an example bit-
stream, according to some examples described herein.
[0030] FIGS. 15a-15k are code listings 1llustrating an
example decoder module according to some examples
described herein.

DETAILED DESCRIPTION

[0031] The detailed description presents innovations in
range asymmetric number system (“RANS”) coding and
decoding. Some of the imnnovations relate to hardware 1mple-
mentations of RANS decoding that organize operations in
two phases, which can improve the computational efliciency
of RANS decoding. Other mnovations relate to adapting
RANS encoding/decoding for different distributions or pat-
terns of values for symbols. For example, RANS encoding/
decoding can adapt by switching a default symbol width (the
number of bits per symbol). Or, for diflerent fragments of
symbols, RANS encoding/decoding can adapt by adjusting
symbol width on a fragment-by-fragment basis, switching
between diflerent static probability models on a fragment-
by-fragment basis, and/or selectively flushing (or retaining)
the state of a RANS decoder on a fragment-by-fragment
basis. In many cases, such mnovations can 1mprove com-
pression eiliciency while also providing computationally
cilicient performance.

[0032] In the examples described herein, 1dentical refer-
ence numbers 1n different figures indicate an 1dentical com-
ponent, module, or operation. More generally, various alter-
natives to the examples described herein are possible. For
example, some of the methods described herein can be
altered by changing the ordering of the method acts
described, by splitting, repeating, or omitting certain method
acts, etc. The various aspects of the disclosed technology can
be used 1n combination or separately. Some of the mnnova-
tions described herein address one or more of the problems

US 2022/0109891 Al

noted 1n the background. Typically, a given technique/tool
does not solve all such problems. It 1s to be understood that
other examples may be utilized and that structural, logical,
software, hardware, and electrical changes may be made
without departing from the scope of the disclosure. The
following description 1s, therefore, not to be taken 1n a
limited sense. Rather, the scope of the present invention 1s
defined by the appended claims and table of features.

I. Example Computer Systems.

[0033] FIG. 1 illustrates a generalized example of a suit-
able computer system (100) i which several of the
described innovations may be implemented. The innova-
tions described herein relate to RANS encoding and/or
RANS decoding. Aside from 1ts use in RANS encoding
and/or RANS decoding, the computer system (100) 1s not
intended to suggest any limitation as to scope of use or
functionality, as the innovations may be implemented 1n
diverse computer systems, including special-purpose com-
puter systems adapted for operations i RANS encoding

and/or RANS decoding.

[0034] With reference to FIG. 1, the computer system
(100) 1includes one or more processing cores (110 . . . 11x)
of a central processing unit (“CPU”) and local, on-chip
memory (118). The processing core(s) (110 . . . 11x) of the
CPU execute computer-executable mstructions. The number
of processing core(s) (110 . . . 11x) depends on 1implemen-
tation and can be, for example, 4 or 8. The local memory
(118) may be volatile memory (e.g., registers, cache, RAM),
non-volatile memory (e.g., ROM, EEPROM, flash memory,
etc.), or some combination of the two, accessible by the
respective processing core(s) (110 . . . 11x). For software-
based mmplementations of RANS encoding/decoding, the
local memory (118) can store software (180), in the form of
computer-executable instructions for operations performed
by the respective processing core(s) (110 . . . 11x), imple-
menting tools for one or more mnovations for RANS
encoding and/or RANS decoding. Alternatively, for GPU-
accelerated implementations of RANS encoding/decoding
or hardware-accelerated implementations of RANS encod-
ing/decoding, the local memory (118) can store soltware
(180), 1n the form of computer-executable 1nstructions for
operations performed by the respective processing core(s)
(110 . . . 11x) for one or more drivers or other software
layers, to implement tools for one or more 1nnovations for
RANS encoding and/or RANS decoding.

[0035] The computer system (100) further includes one or
more processing cores (120 . . . 12x) of a graphics processing,
unit (“GPU”) and local, on-chip memory (128). The pro-
cessing cores (120 . . . 12x) of the GPU execute computer-
executable instructions (e.g., for shader routines for media
coding/decoding operations). The number of processing
core(s) (120 ... 12x) depends on implementation and can be,
for example, 64 or 128. The local memory (128) may be
volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or
some combination of the two, accessible by the respective
processing core(s) (120 . . . 12x). For GPU-accelerated
implementations of RANS encoding/decoding, the local
memory (128) can store software, 1in the form of computer-
executable instructions for operations performed by the
respective processing core(s) (120 . . . 12x), implementing,
tools for one or more innovations for RANS encoding and/or

RANS decoding.

Apr. 7,2022

[0036] The computer system (100) also includes one or
more modules (130 . . . 13x) of special-purpose codec
hardware (e.g., an application-specific integrated circuit
(“ASIC”) or other integrated circuit) along with local, on-
chip memory (138). In some example implementations, the
module(s) (130 . . . 13x) include one or more RANS decoder
modules, a feeder module (configured to provide encoded
data to input bufllers for the respective RANS decoder
modules), and a decoder array module configured to manage
the RANS decoder module(s). FIG. 6 shows an example
RANS decoder (630) and associated buflers, which are part
of a RANS decoder system (600). FIGS. 15a-15% show code
listings (1501-1511) for an example RANS decoder module.
The module(s) (130 . . . 13x) can instead, or additionally,
include one or more RANS encoder modules, an output
module (configured to interleave output from the respective
RANS encoder modules), and an encoder array module
configured to manage the RANS encoder module(s). FIG. 5
shows an example RANS encoder (520) and associated
buflers, which are part of a RANS decoder system (500).
The local memory (138) may be volatile memory (e.g.,
registers, cache, RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the
two, accessible by the respective module(s) (130 . . . 13x).

[0037] More generally, the term “processor” may reler
generically to any device that can process computer-execut-
able 1instructions and may include a microprocessor, micro-
controller, programmable logic device, digital signal pro-
cessor, and/or other computational device. A processor may
be a processing core of a CPU, other general-purpose unit,
or GPU. A processor may also be a specific-purpose pro-
cessor implemented using, for example, an ASIC or a
field-programmable gate array (“FPGA™).

[0038] The term “control logic” may refer to a controller
or, more generally, one or more processors, operable to
process computer-executable instructions, determine out-
comes, and generate outputs. Depending on implementation,
control logic can be implemented by software executable on
a CPU, by software controlling special-purpose hardware
(e.g., a GPU or other graphics hardware), or by special-
purpose hardware (e.g., in an ASIC).

[0039] With reference to FIG. 1, the computer system
(100) includes shared memory (140), which may be volatile
memory (e.g., RAM), non-volatile memory (e.g., ROM,
EEPROM, flash memory, etc.), or some combination of the
two, accessible by the processing core(s). The memory (140)
stores soitware (180) implementing tools for one or more
innovations for RANS encoding and/or RANS decoding.

[0040] The computer system (100) includes one or more
network adapters (151). As used herein, the term network
adapter indicates any network intertace card (“NIC”), net-
work interface, network interface controller, or network
interface device. The network adapter(s) (151) enable com-
munication over a network to another computing entity (e.g.,
server, other computer system). The network can be a
telephone network, wide area network, local area network,
storage arca network, or other network. The network adapter
(s) (151) can support wired connections and/or wireless
connections, for a wide-area network, local-area network,
personal-area network or other network. The network adapt-
er(s) (151) convey information such as computer-executable
instructions, encoded media, or other data i1n a modulated
data signal over network connection(s). A modulated data
signal 1s a signal that has one or more of its characteristics

US 2022/0109891 Al

set or changed 1n such a manner as to encode information 1n
the signal. By way of example, and not limitation, the
network connections can use an electrical, optical, RF, or
other carrier.

[0041] A camera mput (152) accepts video input 1n analog
or digital form from a video camera, which captures natural
video. An audio input accepts audio mnput in analog or digital
form from a microphone (152), which captures audio.

[0042] The computer system (100) optionally includes a
motion sensor/tracker mput (153) for a motion sensor/
tracker, which can track the movements of a user and objects
around the user. For example, the motion sensor/tracker
allows a user (e.g., player of a game) to interact with the
computer system (100) through a natural user interface using
gestures and spoken commands. The motion sensor/tracker
can incorporate gesture recogmtion, facial recognition and/
Or voice recognition.

[0043] A game controller input (154) accepts control sig-
nals from one or more game controllers, over a wired
connection or wireless connection. The control signals can
indicate user inputs from one or more directional pads,
buttons, triggers and/or one or more joysticks of a game
controller. The control signals can also indicate user inputs
from a touchpad or touchscreen, gyroscope, accelerometer,
angular rate sensor, magnetometer and/or other control or
meter of a game controller.

[0044] The computer system (100) optionally includes a
media player (155) and video mput (156). The media player
(155) can play DVDs, Blu-ray disks, other disk media and/or
other formats of media. The video mput (156) can accept
input video in analog or digital form (e.g., from a cable
input, HDMI input or other mnput). A graphics engine (not
shown) can provide texture data for graphics 1n a computer-
represented environment.

[0045] A wvideo output (157) provides video output to a
display device. The video output (157) can be an HDMI
output or other type of output. An audio output (157)
provides audio output to one or more speakers.

[0046] The storage (160) may be removable or non-
removable, and includes magnetic media (such as magnetic
disks, magnetic tapes or cassettes), optical disk media and/or
any other media which can be used to store information and
which can be accessed within the computer system (100).
The storage (160) stores instructions for the software (180)

implementing one or more mnovations for RANS encoding
and/or RANS decoding.

[0047] The computer system (100) may have additional
features. For example, the computer system (100) includes
one or more other mput devices and/or one or more other
output devices. The other mput device(s) may be a touch
input device such as a keyboard, mouse, pen, or trackball, a
scanning device, or another device that provides input to the
computer system (100). The other output device(s) may be
a printer, CD-writer, or another device that provides output
from the computer system (100).

[0048] An interconnection mechanism (not shown) such
as a bus, controller, or network interconnects the compo-
nents of the computer system (100). Typically, operating
system soltware (not shown) provides an operating envi-
ronment for other software executing in the computer sys-
tem (100), and coordinates activities of the components of
the computer system (100).

Apr. 7,2022

[0049] The computer system (100) of FIG. 1 1s a physical
computer system. A virtual machine can include components
organized as shown i FIG. 1.

[0050] The term “application” or “program” may refer to
software such as any user-mode instructions to provide
functionality. The software of the application (or program)
can further include instructions for an operating system
and/or device drivers. The software can be stored 1n asso-
ciated memory. The software may be, for example, firm-
ware. While 1t 1s contemplated that an approprately pro-
grammed general-purpose computer or computing device
may be used to execute such software, 1t 1s also contem-
plated that hard-wired circuitry or custom hardware (e.g., an
ASIC) may be used 1 place of, or 1n combination with,
soltware instructions. Thus, examples described herein are
not limited to any specific combination of hardware and
soltware.

[0051] The term “computer-readable medium” refers to
any medium that participates in providing data (e.g., mstruc-
tions) that may be read by a processor and accessed within
a computing environment. A computer-readable medium
may take many forms, including but not limited to non-
volatile media and volatile media. Non-volatile media
include, for example, optical or magnetic disks and other
persistent memory. Volatile media include dynamic random
access memory (“DRAM”). Common forms of computer-
readable media include, for example, a solid state drive, a
flash drive, a hard disk, any other magnetic medium, a
CD-ROM, Diagital Versatile Disc (“DVD™), any other optical
medium, RAM, programmable read-only memory
(“PROM?”), erasable programmable read-only memory
(“EPROM”), a USB memory stick, any other memory chip
or cartridge, or any other medium from which a computer
can read. The term “computer-readable memory” specifi-
cally excludes transitory propagating signals, carrier waves,
and wave forms or other intangible or transitory media that
may nevertheless be readable by a computer. The term
“carrier wave” may refer to an electromagnetic wave modu-
lated 1n amplitude or frequency to convey a signal.

[0052] The mnovations can be described in the general
context of computer-executable instructions being executed
in a computer system on a target real or virtual processor.
The computer-executable instructions can include nstruc-
tions executable on processing cores of a general-purpose
processor to provide functionality described herein, mnstruc-
tions executable to control a GPU or special-purpose hard-
ware to provide functionality described herein, instructions
executable on processing cores of a GPU to provide func-
tionality described herein, and/or instructions executable on
processing cores ol a special-purpose processor to provide
functionality described herein. In some implementations,
computer-executable instructions can be organized in pro-
gram modules. Generally, program modules include rou-
tines, programs, libraries, objects, classes, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. The functionality of the pro-
gram modules may be combined or split between program
modules as desired in various embodiments. Computer-
executable 1nstructions for program modules may be
executed within a local or distributed computer system.

[0053] Numerous examples are described 1n this disclo-
sure, and are presented for illustrative purposes only. The
described examples are not, and are not intended to be,
limiting in any sense. The presently disclosed mnovations

US 2022/0109891 Al

are widely applicable to numerous contexts, as 1s readily
apparent from the disclosure. One of ordinary skill 1n the art
will recognize that the disclosed mnovations may be prac-
ticed with various modifications and alterations, such as
structural, logical, software, and electrical modifications.
Although particular features of the disclosed innovations
may be described with reference to one or more particular
examples, 1t should be understood that such features are not
limited to usage 1n the one or more particular examples with
reference to which they are described, unless expressly
specified otherwise. The present disclosure 1s neither a literal
description of all examples nor a listing of features of the
invention that must be present 1n all examples.

[0054] When an ordinal number (such as “first,” “second,”
“thaird” and so on) 1s used as an adjective before a term, that
ordinal number 1s used (unless expressly specified other-
wise) merely to indicate a particular feature, such as to
distinguish that particular feature from another feature that
1s described by the same term or by a similar term. The mere
usage of the ordinal numbers “first,” “second,” “third,” and
so on does not indicate any physical order or location, any
ordering in time, or any ranking in importance, quality, or
otherwise. In addition, the mere usage of ordinal numbers
does not define a numerical limit to the features i1dentified
with the ordinal numbers.

[0055] When mntroducing elements, the articles “a,” “an,
“the,” and “said” are intended to mean that there are one or
more of the elements. The terms “comprising,” including,”
and “having” are imtended to be inclusive and mean that
there may be additional elements other than the listed
clements.

[0056] When a single device, component, module, or
structure 1s described, multiple devices, components, mod-
ules, or structures (whether or not they cooperate) may
instead be used 1n place of the single device, component,
module, or structure. Functionality that 1s described as being,
possessed by a single device may 1nstead be possessed by
multiple devices, whether or not they cooperate. Similarly,
where multiple devices, components, modules, or structures
are described herein, whether or not they cooperate, a single
device, component, module, or structure may instead be
used 1n place of the multiple devices, components, modules,
or structures. Functionality that 1s described as being pos-
sessed by multiple devices may instead be possessed by a
single device. In general, a computer system or device can
be local or distributed, and can include any combination of
special-purpose hardware and/or hardware with software
implementing the functionality described herein.

[0057] Further, the techniques and tools described herein
are not limited to the specific examples described herein.
Rather, the respective techniques and tools may be utilized

independently and separately from other techniques and
tools described herein.

[0058] Device, components, modules, or structures that
are 1 communication with each other need not be 1n
continuous communication with each other, unless expressly
specified otherwise. On the contrary, such devices, compo-
nents, modules, or structures need only transmit to each
other as necessary or desirable, and may actually refrain
from exchanging data most of the time. For example, a
device 1n communication with another device via the Inter-
net might not transmit data to the other device for weeks at
a time. In addition, devices, components, modules, or struc-

e 1

Apr. 7,2022

tures that are 1n communication with each other may com-
municate directly or indirectly through one or more inter-
mediaries.

[0059] As used herein, the term “send” denotes any way of
conveying information from one device, component, mod-
ule, or structure to another device, component, module, or
structure. The term “‘receive” denotes any way of getting
information at one device, component, module, or structure
from another device, component, module, or structure. The
devices, components, modules, or structures can be part of
the same computer system or different computer systems.
Information can be passed by value (e.g., as a parameter of
a message or function call) or passed by reference (e.g., 1n
a bufler). Depending on context, mnformation can be com-
municated directly or be conveyed through one or more
intermediate devices, components, modules, or structures.
As used herein, the term “connected” denotes an operable
communication link between devices, components, mod-
ules, or structures, which can be part of the same computer
system or different computer systems. The operable com-
munication link can be a wired or wireless network connec-
tion, which can be direct or pass through one or more
intermediaries (e.g., of a network).

[0060] A description of an example with several features
does not imply that all or even any of such features are
required. On the contrary, a variety of optional features are
described to illustrate the wide variety of possible examples
of the mnnovations described herein. Unless otherwise speci-
fied explicitly, no feature 1s essential or required.

[0061] Further, although process steps and stages may be
described 1n a sequential order, such processes may be
configured to work 1n different orders. Description of a
specific sequence or order does not necessarily indicate a
requirement that the steps/stages be performed 1n that order.
Steps or stages may be performed 1n any order practical.
Further, some steps or stages may be performed simultane-
ously despite being described or implied as occurring non-
simultaneously. Description of a process as including mul-
tiple steps or stages does not imply that all, or even any, of
the steps or stages are essential or required. Various other
examples may omit some or all of the described steps or
stages. Unless otherwise specified explicitly, no step or stage
1s essential or required. Sumilarly, although a product may be
described as including multiple aspects, qualities, or char-
acteristics, that does not mean that all of them are essential
or required. Various other examples may omit some or all of
the aspects, qualities, or characteristics.

[0062] Many of the techniques and tools described herein
are 1llustrated with reference to a media coder/decoder
system such as a video coder/decoder system, audio coder/
decoder system, or texture coder/decoder system. Alterna-
tively, the technmiques and tools described herein can be
implemented 1 a data coder/decoder system for use 1n
coding/decoding text data or other data, generally.

[0063] Anenumerated list of items does not imply that any
or all of the 1items are mutually exclusive, unless expressly
specified otherwise. Likewise, an enumerated list of items
does not imply that any or all of the 1items are comprehensive
ol any category, unless expressly specified otherwise.

[0064] For the sake of presentation, the detailed descrip-
tion uses terms like “determine” and “select” to describe
computer operations 1 a computer system. These terms
denote operations performed by one or more processors or
other components 1n the computer system, and should not be

US 2022/0109891 Al

confused with acts performed by a human being. The actual
computer operations corresponding to these terms vary
depending on implementation.

II. Example Network Environments.

[0065] FIGS. 2q and 256 show example network environ-
ments (201, 202) that include media encoders (220) and
media decoders (270). The encoders (220) and decoders
(270) are connected over a network (250) using an appro-
priate commumnication protocol. The network (250) can
include the Internet and/or another computer network.
[0066] In the network environment (201) shown 1n FIG.
2a, each real-time communication (“RTC”) tool (210)
includes both an encoder (220) and a decoder (270) for
bidirectional communication. A given encoder (220) can
produce output compliant with a media codec format or
extension of a media codec format, with a corresponding
decoder (270) accepting encoded data from the encoder
(220). The bidirectional communication can be part of a
conference call or other two-party or multi-party communi-
cation scenario. Although the network environment (201) 1n
FIG. 2a includes two real-time communication tools (210),
the network environment (201) can instead include three or
more real-time communication tools (210) that participate in
multi-party communication.

[0067] A real-time communication tool (210) 1s config-
ured to manage encoding by an encoder (220). FIG. 3 shows
an example encoder system (300) that can be included 1n the
real-time communication tool (210). Alternatively, the real-
time communication tool (210) uses another encoder sys-
tem. A real-time communication tool (210) 1s also config-
ured to manage decoding by a decoder (270). FIG. 4 shows
an example decoder system (400), which can be included 1n
the real-time communication tool (210). Alternatively, the
real-time communication tool (210) uses another decoder
system.

[0068] In the network environment (202) shown in FIG.
2b, an encoding tool (212) includes an encoder (220) that 1s
configured to encode media for delivery to multiple play-
back tools (214), which include decoders (270). The unidi-
rectional communication can be provided for a surveillance
system, web monitoring system, remote desktop conferenc-
ing presentation, gameplay broadcast, or other scenario 1n
which media 1s encoded and sent from one location to one
or more other locations for playback. Although the network
environment (202) in FIG. 26 includes two playback tools
(214), the network environment (202) can include more or
tewer playback tools (214). In general, a playback tool (214)
1s configured to communicate with the encoding tool (212)
to determine a stream of encoded media for the playback
tool (214) to receive. The playback tool (214) 1s configured
to receilve the stream, bufller the received encoded data for an
appropriate period, and begin decoding and playback.
[0069] FIG. 3 shows an example encoder system (300)
that can be included i the encoding tool (212). Alterna-
tively, the encoding tool (212) uses another encoder system.
The encoding tool (212) can also include server-side con-
troller logic for managing connections with one or more
playback tools (214). FIG. 4 shows an example decoder
system (400), which can be included 1n the playback tool
(214). Alternatively, the playback tool (214) uses another
decoder system. A playback tool (214) can also include
client-side controller logic for managing connections with
the encoding tool (212).

Apr. 7,2022

III. Example Media Encoder Systems.

[0070] FIG. 3 1s a block diagram of an example encoder
system (300) in conjunction with which some described
examples may be implemented. The encoder system (300)
can be a general-purpose encoding tool capable of operating
in any ol multiple encoding modes such as a low-latency
encoding mode for real-time communication, a transcoding
mode, and a higher-latency encoding mode for producing
media for playback from a file or stream, or it can be a
special-purpose encoding tool adapted for one such encod-
ing mode. The encoder system (300) can be adapted for
encoding of a particular type of content (e.g., camera video
content, screen content, texture content for graphics). The
encoder system (300) can be implemented as part of an
operating system module, as part of an application library, as
part of a standalone application, using GPU hardware,
and/or using special-purpose hardware. Overall, the encoder
system (300) 1s configured to receive mput (305) from a
source and produce encoded data in a bitstream (395) as
output to a channel. For example, the source can be a video
camera (for natural video), screen capture module (for
screen content), graphics engine (for texture), or microphone
(for audio).

[0071] The encoder system (300) includes one or more
prediction modules (310), one or more residual coding
modules (320), one or more residual reconstruction modules
(330), one or more butlers (335), one or more entropy coders
(340), and a multiplexer (350). The encoder system (300)
can mclude other modules (not shown) that are configured to
perform pre-processing operations (e.g., for color space
conversion, sub-sampling, etc.), control operations (e.g.,
receiving feedback from modules, providing control signals
to modules to set and change coding parameters during
encoding, setting syntax elements that indicate decisions
made during encoding, so that a corresponding decoder can
make consistent decisions), filtering operations, or other
operations.

[0072] The prediction module(s) (310) are configured to
predict a current unit of media (e.g., frame, block, object,
set) using previously reconstructed media content, which 1s
stored 1n the bufler(s) (335). In general, for video or 1image
content, a block 1s an mxn arrangement of sample values,
and a frame 1s an arrangement of blocks 1n one or more color
planes. For audio content, a block or frame 1s a series of
sample values. For texture content, a set of sample values
may represent texture values for points of a graphics object.
For example, for video content, the prediction module(s)
(310) can be configured to perform operations for motion
compensation relative to previously encoded/reconstructed
pictures (inter-picture prediction). Or, as another example,
for video content or image content, the prediction module(s)
(310) can be configured to perform operations for intra
spatial prediction or intra block copy prediction within a
picture (intra-picture prediction). In some types of encoder
system (300), the prediction module(s) (310) are arranged
differently. For example, for audio content, the prediction
module(s) (310) can be configured to perform operations for
linear prediction. In other types of encoder system (300),
there are no prediction module(s).

[0073] In FIG. 3, the prediction module(s) (310) are
configured to produce a prediction (315) for the current unit
of media. The encoder system (300) 1s configured to deter-
mine differences between the current unit of media from the
iput (303) and 1ts prediction (315). This provides values of

US 2022/0109891 Al

the residual (318). For lossy coding, the values of the
residual (318) are processed by the residual coding module
(s) (320) and residual reconstruction module(s) (330). For
lossless coding, the residual coding module(s) (320) and
residual reconstruction module(s) (330) can be bypassed.

[0074] The residual coding module(s) (320) are config-
ured to encode the values of the residual (318). Typically, the
residual coding module(s) (320) include a frequency trans-
former and scaler/quantizer. A frequency transformer 1is
configured to convert input-domain values into frequency-
domain (1.e., spectral, transform) values. For block-based
coding, the frequency transformer can apply a discrete
cosine transform (“DCT”), an integer approximation
thereol, or another type of forward block transform to blocks
of residual values (or sample values i1 the prediction (315)
1s null), producing blocks of frequency transform coetl-
cients. The scaler/quantizer 1s configured to scale and quan-
tize the transform coellicients. Alternatively, the residual
coding module(s) (320) can include a scaler/quantizer but
not a frequency transformer, in which case values of the
residual (318) are directly scaled/quantized.

[0075] The residual reconstruction module(s) (330) are
configured to reconstruct values of the residual (318), which
typically produces an approximation of the values of the
residual (318). Typically, the residual reconstruction module
(s) (320) include a scaler/inverse quantizer and an inverse
frequency transformer. The scaler/inverse quantizer 1s con-
figured to perform inverse scaling and inverse quantization
on the quantized transform coeflicients. When the transform
stage has not been skipped, an inverse frequency transformer
1s configured to perform an inverse frequency transiorm,
producing reconstructed residual values or sample values. IT
the transform stage has been skipped, the inverse frequency
transform 1s also skipped. In this case, the scaler/inverse
quantizer can be configured to perform inverse scaling and
inverse quantization on residual values (or sample value
data), producing reconstructed values.

[0076] The encoder system (300) 1s configured to combine
the reconstructed values of the residual (318) and the
prediction (315) to produce an approximate or exact recon-
struction of the original content from the mput (305). The
reconstruction 1s stored in the bufler(s) (335) for use in
subsequent prediction operations. (In lossy compression,
some 1mnformation is lost from the mput (305).) It the residual
coding module(s) (320) and residual reconstruction module
(s) (330) are bypassed (for lossless compression), the values
of the residual (318) can be combined with the prediction
(315). If residual values have not been encoded/signaled, the
encoder system (300) can be configured to use the values of
the prediction (315) as the reconstruction.

[0077] The entropy coder(s) (340) are configured to
entropy code the output from the residual coding module(s)
(320) (e.g., quantized transform coetlicients) as well as side
information from the prediction module(s) (310) (e.g.,
parameters indicating how prediction has been performed)
and other side information (e.g., parameters indicating deci-
sions made during encoding). The entropy coder(s) (340)
can be configured to determine parameters that represent
quantized transiform coellicients, side information, etc. The
entropy coder(s) (340) can be configured to predict values of
parameters based on contextual information, then encode
differences between the actual values and predicted values.
For input symbols that represent the values to be encoded,
the entropy coder(s) (340) can be configured to perform

Apr. 7,2022

entropy coding in various ways. Typical entropy coding
techniques include Exponential-Golomb coding, Golomb-
Rice coding, context-adaptive binary arithmetic coding
(“CABAC”), differential coding, Huflman coding, run
length coding, Lempel-Ziv (“*LZ”) coding, dictionary cod-
ing, RANS encoding and other variations of ANS coding,
and combinations of the above. The entropy coder(s) (340)
can be configured to use different coding techniques for
different kinds of data and to apply multiple techniques 1n
combination. In particular, the entropy coder(s) (340)
include one or more RANS encoders. Examples of RANS
encoders are described below with reference to FIG. 5. The
multiplexer (350) 1s configured to format the encoded data
for output as part of the bitstream (395).

[0078] Depending on implementation and the type of
compression desired, modules of an encoder system (300)
can be added, omitted, split into multiple modules, com-
bined with other modules, and/or replaced with like mod-
ules. In alternative embodiments, encoder systems with
different modules and/or other configurations of modules
perform one or more of the techniques described herein.
Specific embodiments of encoder systems typically use a
variation or supplemented version of the encoder system
(300). The relationships shown between modules within the
encoder system (300) indicate general flows of information
in the encoder system; other relationships are not shown for
the sake of simplicity.

[0079] An encoded data bufler (not shown) 1s configured
to store the encoded data for the bitstream (395) for output.
In general, the encoded data contains, according to the
syntax of an elementary coded media bitstream, syntax
clements for various layers of bitstream syntax. Media
metadata can also be stored in the encoded data bufler. A
channel encoder (not shown) can be configured to 1mple-
ment one or more media system multiplexing protocols or
transport protocols, in which case the channel encoder can
be configured to add syntax elements as part of the syntax of
the protocol(s). The channel encoder can be configured to
provide output to a channel, which represents storage, a
communications connection, or another channel for the
output.

IV. Example Media Decoder Systems.

[0080] FIG. 4 1s a block diagram of an example decoder
system (400) 1n conjunction with which some described
examples may be implemented. The decoder system (400)
can be a general-purpose decoding tool capable of operating
in any of multiple decoding modes such as a low-latency
decoding mode for real-time communication and a higher-
latency decoding mode for media playback from a file or
stream, or 1t can be a special-purpose decoding tool adapted
for one such decoding mode. The decoder system (400) can
be implemented as part of an operating system module, as
part of an application library, as part of a standalone appli-
cation, using GPU hardware, and/or using special-purpose
hardware.

[0081] Coded data 1s received from a channel, which can
represent storage, a communications connection, or another
channel for coded data as input. A channel decoder (not
shown) can process the coded data from the channel. For
example, the channel decoder can be configured to 1mple-
ment one or more media system demultiplexing protocols or

US 2022/0109891 Al

transport protocols, 1n which case the channel decoder can
be configured to parse syntax elements added as part of the
syntax ol the protocol(s).

[0082] An encoded data buffer (not shown) 1s configured
to store encoded data that i1s output from the channel
decoder. The encoded data contains, according to the syntax
of an elementary coded media bitstream, syntax elements at
various levels of bitstream syntax. The encoded data bufler
can also be configured to store media metadata. In general,
the encoded data bufler 1s configured to temporarily store
encoded data until such encoded data 1s used by the decoder
system (400). At that point, encoded data 1s transierred from
the encoded data bufler to the decoder system (400). As
decoding continues, new coded data 1s added to the encoded
data bufler, and the oldest coded data remaining in the
encoded data bufler i1s transferred to the decoder system
(400).

[0083] The decoder system (400) 1s configured to receive
encoded data 1n a bitstream (405) and produce reconstructed
media as output (495). The decoder system (400) includes a
demultiplexer (410), one or more entropy decoders (420),
one or more residual reconstruction modules (430), one or
more prediction modules (440), and one or more bullers
(435). The decoder system (400) can 1nclude other modules
(not shown) that are configured to perform control opera-
tions (e.g., receiving feedback from modules, providing
control signals to modules to set and change decoding
parameters during decoding), filtering operations, post-pro-
cessing operations (e.g., for color space conversion, up-
sampling, etc.), or other operations.

[0084] The encoded data bufler 1s configured to receive
and store encoded data in the bitstream (405), and make the
received encoded data available to the demultiplexer (410).
The demultiplexer (410) 1s configured to parse encoded data
from the bitstream (4035) and provide it to the appropriate
entropy decoder(s) (420). The entropy decoder(s) (420) are
configured to entropy decode the encoded data, producing
output symbols for parameters. The parameters can repre-
sent data to be provided to the residual reconstruction
module(s) (430) (e.g., quantized transform coellicients), side
information to be provided to the prediction module(s) (440)
(e.g., parameters indicating how prediction has been per-
formed), or other side information (e.g., parameters indicat-
ing decisions were made during encoding). The entropy
decoder(s) (420) can be configured to predict values of
parameters based on contextual information, decode differ-
ences between the actual values and predicted values, and
combine the differences and predicted values. Thus, the
entropy decoder(s) (420) can be configured to reconstruct
parameters that represent quantized transform coefhicients
and side iformation. The entropy decoder(s) (420) can be
configured to perform entropy decoding i various ways.
Typical entropy decoding techniques include Exponential-
Golomb decoding, Golomb-Rice decoding, context-adap-
tive binary arithmetic decoding, Hullman decoding, run
length decoding, Lempel-Z1v (“LZ”") decoding, dictionary
decoding, RANS decoding and other variations of ANS
decoding, and combinations of the above. The entropy
decoder(s) (420) can be configured to use diflerent decoding
techniques for different kinds of data and to apply multiple
techniques in combination. In particular, the entropy decod-
er(s) (340) include one or more RANS decoders. Examples
of RANS decoders are described below with reference to
FIG. 6.

Apr. 7,2022

[0085] The residual reconstruction module(s) (430) are
configured to reconstruct values of the residual (432), which
typically produces an approximation of the original values
of the residual (432). For example, the residual reconstruc-
tion module(s) (430) include a scaler/inverse quantizer and
an mverse frequency transformer. The scaler/inverse quan-
tizer 1s configured to perform inverse scaling and inverse
quantization on quantized transform coetlicients. When the
transform stage has not been skipped, an inverse frequency
transformer 1s configured to perform an mnverse frequency
transform, producing reconstructed residual values or
sample values. The mnverse frequency transform can be an
inverse DCT, an integer approximation thereol, or another
type of mverse frequency transform. If the transform stage
has been skipped, the mverse frequency transform 1s also
skipped. In this case, the scaler/inverse quantizer can be
configured to perform 1nverse scaling and inverse quantiza-
tion on residual values (or sample value data), producing
reconstructed values. For lossless decompression, the
residual reconstruction module(s) (330) can be bypassed.
[0086] The prediction module(s) (440) are configured to
predict a current unit of media (e.g., frame, block, object,
set) using previously reconstructed media content, which 1s
stored 1n the butler(s) (435). For example, for video content,
the prediction module(s) (440) can be configured to perform
operations for motion compensation relative to previously
encoded/reconstructed pictures (inter-picture prediction).
Or, as another example, for video content or 1mage content,
the prediction module(s) (440) can be configured to perform
operations for intra spatial prediction or intra block copy
prediction within a picture (intra-picture prediction). In
some types of decoder system (400), the prediction module
(s) (440) are arranged differently. For example, for audio
content, the prediction module(s) (440) can be configured to
perform operations for linear prediction. In other types of
decoder system (440), there are no prediction module(s).
[0087] In FIG. 4, the prediction module(s) (440) are
configured to produce a prediction (442) for the current unit
of media. The decoder system (400) 1s configured to com-
bine the reconstructed values of the residual (432) and the
prediction (442) to produce an approximate or exact recon-
struction of the media content. The reconstruction 1s stored
in the bufler(s) (435) for use in subsequent prediction
operations. IT residual values have not been encoded/sig-
naled, the decoder system (400) can be configured to use the
values of the prediction (442) as the reconstruction.

[0088] Depending on implementation and the type of
decompression desired, modules of the decoder system
(400) can be added, omitted, split into multiple modules,
combined with other modules, and/or replaced with like
modules. In alternative embodiments, decoder systems with
different modules and/or other configurations of modules
perform one or more of the techniques described herein.
Specific embodiments of decoder systems typically use a
variation or supplemented version of the decoder system
(400). The relationships shown between modules within the
decoder system (400) indicate general flows of information
in the decoder system; other relationships are not shown for
the sake of simplicity.

V. RANS Encoding/Decoding, 1n General.

[0089] Asymmetric number system (“ANS”) coding/de-
coding potentially offers high compression efliciency and
low computational complexity. In particular, range ANS

US 2022/0109891 Al

(“RANS”) coding/decoding can work well when symbols
have many possible values (large alphabet) but certain
values are very common. RANS encoding/decoding also
permits interleaving of output from multiple RANS encod-
ers mmto a single output bitstream of encoded data, with
multiple RANS decoders being usable to decode symbols
from the bitstream concurrently, which can speed up the
RANS encoding/decoding process.

[0090] A RANS encoder encodes a symbol s by modifying
an mput state x, producing an updated state x. The state X can
be expressed as a single natural number. The main coding
function for RANS encoding can be expressed as:

C(s,x)=tloor(x/f) <<u+mod(x f,)+cC,,

where floor(input) 1s a function that accepts a real number as
input and returns the greatest integer less than or equal to the
input, mod(a, b) 1s a function that gives the remainder of a
divided by b, and <<n indicates a left shift by n bits. The
value n indicates a number of bits used to represent prob-
abilities of values for the symbols 1n the range 0 . . . 2"-1.
The value n depends on implementation. For example, n 1s
16. The value {_ represents a factor for the symbol s accord-
ing to a spread function. In general, the spread function
tracks the frequency of the respective values possible for the
symbol s, as sub-ranges within the range 0 . . . 2”-1. A more
probable value for the symbol s has a larger sub-range and
larger value of t_, and a less probable value for the symbol
s has a smaller sub-range and smaller value offs. For
example, 1f the range 1s 0 . . . 65535, {_can be 16384 for a
value occurring 25% of the time, 4096 for a value occurring,
6.25% of the time, 655 for a value occurring 1% of the time,
and so on. The sum of the probabilities 1s 100%. Similarly,
for a range represented with n bits, the sum of the values of
t. 1s 2n. The value c_ represents an oflset for the symbol s,
where the offset ¢ 1s the sum of sub-ranges from {,up to 1_,,
not including 1.

[0091] A RANS decoder decodes a symbol s from an 1mnput
state X, producing the symbol s and an updated state x. The
state X can be expressed as a single natural number. The
main decoding function for RANS decoding can be
expressed as:

D(x)=(sf *(x>>n)+(x & mask)-c),

where >>n 1ndicates a right shift by n bits, for a value n as
defined above, and & indicates a bitwise AND operation.
The value mask 1s an n-bit value 2”-1. Thus, mask includes
n 1-bits. In the decoding function, the updated value of the
state X 1s given by 1 *(x>>n)+(x & mask)-c_. The value of
the symbol s 1s found such that ¢ <=mod(x, 2")<c__,.
[0092] The coding function C(s, X) increases the value of
the state x. Ifly 1s large, the value of floor(x/1) tends to be
smaller, and the resulting increase in the value of the state x
tends to be smaller. On the other hand, 111 1s small, the value
of floor(x/t) tends to be larger, and the resulting increase 1n
the value of the state x tends to be larger. Thus, for more
common values of symbols, the increase 1n state x 1s smaller.
In any case, to prevent the state x from overflowing what-
ever bufler holds it, bits are selectively shifted out of the
state X as output encoded data.

[0093] Conversely, the decoding function D(x) decreases
the value of the state x. If 1_ 1s large, the value of {_*(x>>n)
tends to be larger, and the resulting decrease in the value of
the state x tends to be smaller. On the other hand, 1f 1, 1s
small, the value of 1 _*(x>>n) tends to be smaller, and the
resulting decrease 1n the value of the state x tends to be

Apr. 7,2022

larger. Thus, for more common values of symbols, the
decrease 1n state x 1s smaller. In any case, to prevent the state
x from underflowing (since a RANS decoder typically does
not include state for all encoded symbols at the start of
decoding), bits are selectively shifted into the state x as input
encoded data.

[0094] For implementations in which encoded data 1is
streamed from an encoder system (including one or more
RANS encoders) to a decoder system (including one or more
RANS decoders), the coding function C(s, X) can be embed-
ded 1n logic that selectively shifts encoded data out of the
state x as output. Similarly, the decoding function D(x) can
be embedded 1n logic that selectively shifts encoded data
into the state x as input.

[0095] For example, the coding tunction C(s, x) and logic
that selectively shifts encoded data out of the state x can be
represented as follows.

while more_ symbols do
while x > upper__threshold[s] do
write_ to_ output (mod(x, b))
x = floor(x, b)
end while
x = C(s, X)
end while

[0096] The outer while loop continues so long as there are
more symbols to encode (1.e., more_symbols 1s true). For a
given symbol s to be encoded, the RANS encoder performs
operations that include operations of an inner while loop and
coding function C(s, x). The RANS encoder selectively
outputs encoded data from the state x 1n chunks of log,(b)
bits so long as the state x 1s greater than upper_threshold[s].
The value log,(b) indicates a number of bits of encoded data
(state) to be output. For example, log,(b) 1s 8 to output a byte
at a time, and b 1s 256. The value of upper_threshold[s] 1s the
upper limit of an interval within which the state x of the
RANS encoder should fall in order to encode the symbol s.
If the state x 1s higher than the upper limit of the interval, bits
are shifted out of the state x until the state x falls within the
interval. The function write_to_output (mod(x, b)) outputs

log,(b) bits produced by mod(x, b), which are the log,(b)

least-signmificant bits of the state x.

The state x 1s then
adjusted by shifting log,(b) bits out of the state x, according
to tloor(x, b). When the state x 1s less than or equal to the
upper limit of the interval (that 1s, x<=upper_threshold][s]),
the symbol s 1s encoded using the coding function C(s, x),
producing an updated state x.

[0097] For corresponding decoding, the decoding function
D(x) and logic that selectively shitts encoded data into the
state X can be represented as follows.

while more encoded data do
(s, X) = D(x)
use(s)
while x < lower__threshold do
X = b x X + new__input
end while
end while

[0098] The outer while loop continues so long as there 1s

more encoded data to decode (1.e., more_encoded_data 1s
true). For a given symbol s to be decoded, the RANS
decoder performs operations that include the decoding func-

US 2022/0109891 Al

tion D(s, x), a function to use the symbol s, and operations
of an mmner while loop. The symbol s 1s decoded using the
coding function D(x), which also produces an updated state
X. The symbol s 1s used (as indicated by the use(s) function).
Then, the RANS decoder selectively inputs encoded data 1n
chunks of log,(b) bits into the state x, so long as the state x
1s less than lower_threshold. The value log,(b) indicates a
number of bits of encoded data (state) to be mput. For
example, log,(b) 1s 8 to input a byte at a time, and b 1s 256.
The value of lower threshold 1s the lower limit of an interval
within which the state of the RANS decoder should fall in
order to decode the next symbol s. If the state x 1s lower than
the lower limit of the interval, bits are shifted into the state
until the state x falls within the interval. Specifically, the
state x 1s shifted by log,(b) bits and a value new_input 1s
added 1, according to bxx+new_input. The value new_
input has log,(b) bits.

[0099] For additional explanation of RANS encoding and
RANS decoding, see, e.g., Duda, “Asymmetric Numeral
Systems: Entropy Coding Combining Speed of Huflman
Coding with Compression Rate of Arithmetic Coding,” 24
pp. (2014) and Duda et al., “The Use of Asymmetric
Numeral Systems as an Accurate Replacement for Huflman
Coding,” IEEE, pp. 65-69 (2015).

VI. Example RANS Encoders and RANS Decoders.

[0100] Previous RANS encoding/decoding approaches
provide good performance 1n many scenarios, but there 1s
room for improvement in terms of computational efliciency
for hardware implementations of RANS decoding and adap-
tiveness of RANS encoding/decoding. This section
describes mnovative features of RANS encoders and RANS
decoders. The features include, but are not limited to, the
tollowing.

[0101] Two-phase implementation of RANS decoding. A
RANS decoder can be implemented in hardware using a
two-phase structure. In one phase (phase 0), RANS decoder
state 15 selectively updated, potentially consuming encoded
data. In the other phase (phase 1), new encoded data is
selectively merged into the RANS decoder state, and an
output symbol 1s selectively generated. The two-phase struc-
ture offers high throughput for a given amount of area and
power. Also, compared to other RANS decoding implemen-
tations, the two-phase structure can permit higher clock
rates. Also, the two-phase structure permits simultaneous
(concurrent) decoding of multiple data streams (e.g., two
data streams).

[0102] Configurable symbol width. A RANS encoder and
RANS decoder can have a default symbol width that is
configurable. For example, the default symbol width for
symbols of a stream can be set to d bits, where d 1s between
2 and 9. This allows the same RANS encoder and RANS
decoder to be used for various types of symbols.

[0103] Switchable static probability models. A RANS
encoder and RANS decoder can switch between multiple
static probability models. This can allow the RANS encoder/
decoder to adapt quickly to changes 1n probability distribu-
tions ol symbols. The static probability models can be
represented 1n lookup tables or other “pluggable” structures.
A selected static probability model can be signaled with a
syntax element 1n a bitstream, which consumes few bits. A
moderate number of probability models (e.g., 8, 16, or 32)
can provide good compression efliciency without consum-
ing too much storage or memory resources.

Apr. 7,2022

[0104] Selectively flushing RANS decoder state. A RANS
decoder can selectively flush state between fragments during
decoding. If compression efliciency 1s helped, the final state
alter decoding of one fragment can be used as the initial state
for decoding of the next fragment. On the other hand, 1f
compression efliciency 1s better when decoding for the next
fragment starts with a new 1nitial state, the state of the RANS
decoder can be flushed and remnitialized. The decision about
whether to flush RANS decoder state can be signaled with
a syntax element 1n a bitstream, which consumes few bits.
[0105] Adjusting symbol width between fragments. A
RANS encoder and RANS decoder can selectively adjust the
symbol width of symbols for a fragment. Even 1if the
symbols of a stream all have the same default symbol width,
symbols 1n one fragment of the stream may have only low
values (less than a threshold). In this case, the RANS
encoder/decoder can adjust (narrow) the symbol width for
the symbols 1n that fragment, thereby improving compres-
sion efliciency. The adjustment to symbol width can be
signaled using a syntax element in the bitstream, which
consumes few bits.

[0106] The foregoing mnovative features can be used 1n
combination or separately.

[0107] A. Example Configurations of RANS Encoders/
Decoders.
[0108] FIG. 5 shows an example RANS encoder system

(500) 1n which some described examples can be 1mple-
mented. The RANS encoder system (500) includes a single
RANS encoder (520), but in practice a RANS encoder
system (500) can include multiple instances of RANS
encoder (520). The modules shown 1 FIG. § are imple-
mented with dedicated, special-purpose computing hard-
ware (encoder logic, buflers, etc.) but can alternatively be
implemented 1n software with general-purpose computing
hardware.

[0109] In general, the RANS encoder (520) 1s configured
to accept a stream ol mput symbols, encode the input
symbols, and output encoded data as part of a bitstream. In
some example implementations, the input symbols have an
indicated symbol width, and the encoded data 1s arranged as
bytes. Typically, the total number of bits output 1s less than
the total number of bits input, providing compression.

[0110] The input symbol butler (510) 1s configured to store
input symbols for encoding. The input symbols have a
symbol width (number of bits per symbol). The input
symbols can represent parameters for quantized transform
coellicients from media (e.g., video, 1images, audio, texture
for graphics), parameters for other residual data from media,
or other data. In general, RANS encoding/decoding tends to
provide good compression efliciency for prediction residual
values, for which symbols having a value of zero are most
common, symbols having values close to zero are less
common, and symbols having values further from zero are
gven more rare.

[0111] The mnput bufler (522) 1n the RANS encoder (520)
1s configured to store an input symbol (512), which 1is

provided from the mput symbol bufler (510). One or more
registers (524) in the RANS encoder (520) are configured to

store state information. The RANS encoder (520) 1s config-
ured to encode the mput symbol (512) using state informa-
tion stored in the register(s) (524). As needed, the RANS
encoder (520) writes encoded data to the output butler (526),
shifting the encoded data out of state information in the

register(s) (524). The output buller (526) 1s configured to

US 2022/0109891 Al

store a portion (527) of encoded data. For example, the
output buitler (526) 1s configured to store a byte of encoded
data.

[0112] The encoded data butler (540) 1s configured to store
the portion (527) of encoded data, which 1s provided by the
output butler (526). The encoded data buller (540) can store
multiple portions of encoded data, until the encoded data
(542) 1s provided to the multiplexer (550). The multiplexer
(550) 1s configured to multiplex the encoded data (542) from
the encoded data bufler (540) with other information (e.g.,

configuration information (528), mmtial state information
(529), and data from other instances of RANS encoders).

[0113] In some example implementations, the RANS
encoder (520) has a variable symbol width. For example, the
RANS encoder (520) has an mput parameter that indicates
a default symbol width for input symbols provided from the
input symbol butler (510). Typically, the mnput parameter 1s
set when the RANS encoder (520) 1s imitialized. This allows
the RANS encoder (520) to switch between different default
symbol widths for different encoding sessions. For example,
the default symbol width can be a value 1n the range of 2 bits
to 9 bits. Alternatively, the default symbol width can have
some other value (e.g., 1 bit, 10 bits, 12 bits, or more bits).
In alternative example implementations, the input parameter
that indicates the default symbol width can be changed
during encoding. In other alternative example implementa-
tions, the RANS encoder (520) always encodes mput sym-
bols having a single, pre-defined symbol width.

[0114] In some example implementations, the RANS
encoder (520) can change configuration parameters between
fragments of mput symbols/encoded data. A fragment can
include a variable number of mput symbols and variable
amount of encoded data. The RANS encoder (520) is
configured to set boundaries between fragments based on
various factors. Primarily, the RANS encoder (520) 1s con-
figured to change configuration parameters when doing so
improves compression eiliciency. The RANS encoder (520)
can also be configured to set a boundary between fragments
at an existing boundary in media content (e.g., picture,
frame, coding unit, object) or to improve resilience to data
loss (by allowing faster recovery from a known 1nitial state).

[0115] In some example implementations, as shown 1in
FIG. 5, the RANS encoder (520) 1s configured to access
lookup tables that store probability information for different
static probability models, for different symbol widths, dur-
ing RANS encoding. Memory (530) 1s configured to store
the lookup tables. In some example i1mplementations,
memory (530) 1s configured to store lookup tables for 16
different static probability models, for each symbol width
possible. The RANS encoder (520) 1s configured to use a
symbol width (521) and static probability model selector
(523) as indices to the lookup tables, and 1s configured to
receive probability information (532) in return. Alterna-
tively, memory (530) can be configured to store lookup
tables for more or fewer static probability models (e.g., a
single static probability model), or the RANS encoder (520)
can be configured to use a dynamic probability model.
Instead of using lookup tables, a probability model can be
represented 1n some other way (e.g., a formula or equation,
which may use less storage but be slower than lookup
operations). In the examples shown in FIG. 5 (with multiple
static probability models), the RANS encoder (520) 1s
configured to signal, as part of configuration information
(528), a syntax element that indicates which static probabil-

Apr. 7,2022

ity model 1s used during encoding and decoding. When the
RANS encoder (520) switches configuration parameters
between fragments, the RANS encoder (520) can switch

static probability models from fragment to fragment. This
allows the RANS encoder (520) to switch, in mid-stream, to
a static probability model that provides more eflicient com-
pression given the local probability distribution of values of
input symbols.

[0116] In some example implementations, the RANS
encoder (520) 1s configured to adjust symbol width, relative

to the default symbol width, for RANS encoding. This
allows the RANS encoder (520) to decrease symbol width

used for RANS encoding/decoding if the mput symbols
being encoded all have values below certaimn threshold
values. For example, 11 the default symbol width 1s 8 bits for
input symbols having values 1n the range of 0 . . . 255, but
all of the input symbols have values less than 64, the symbol
width used for compression can be 6 bits (because 2°=64, for
a range of 0 . .. 63). In general, for a default symbol width
d, values can be checked against thresholds 27, 2972, 293,
and so on to determine whether symbol width can be
decreased. In some example implementations, the adjust-
ment to symbol width can be 0, -1, -2, or -3. Alternatively,
other values for the adjustment to symbol width can be used.
The RANS encoder (520) 1s configured to signal, as part of
configuration information (328), a syntax element that 1ndi-
cates an adjustment to symbol width used during encoding
and decoding. When the RANS encoder (520) switches
configuration parameters between fragments, the RANS
encoder (520) can switch the adjustment to symbol width
from fragment to fragment. This allows the RANS encoder
(520) to switch, in mid-stream, to a symbol width that
provides more ellicient compression given the local values
of mput symbols. In alternative example implementations,

the RANS encoder (520) does not switch between diflerent
symbol widths.

[0117] In some example implementations, the RANS
encoder (520) 1s configured to decide whether a correspond-
ing RANS decoder will flush 1ts state for a new fragment or
use the final state from decoding the previous fragment as
the mitial state for the new fragment. The RANS encoder
(520) 1s further configured to, when the RANS decoder state
1s flushed, determine and signal initial state information
(529) for the new fragment. In practice, the initial state
information (529) can be signaled as the first portions of the
encoded data (542) for the new fragment. For example, the
initial state information (529) includes four bytes of encoded
data (542) or some other amount of encoded data (542). The
RANS encoder (520) 1s configured to signal, as part of
configuration information (528), a syntax element that indi-
cates whether RANS decoder state should be flushed for a
new Iragment. The RANS encoder (520) can signal the
syntax element per fragment. This allows the RANS encoder
(520) to selectively retain RANS decoder state or flush
decoder state, depending on which option provides more
cllicient compression. Even 1f the retained RANS decoder
state 1s not 1deal, using it saves signaling of initial state
information (3529) for the new fragment. In alternative
example implementations, the RANS encoder (520) always
flushes RANS decoder state between fragments. In other
alternative example implementations, the RANS encoder
(520) always retains RANS decoder state between frag-
ments.

US 2022/0109891 Al

[0118] FIG. 6 shows an example RANS decoder system
(600) in which some described examples can be imple-
mented. The RANS decoder system (600) includes a single
RANS decoder (630), but in practice a RANS decoder
system (600) can include multiple instances of RANS
decoder (630). The modules shown in FIG. 6 are imple-
mented with dedicated, special-purpose computing hard-
ware (decoder logic, buflers, etc.) but can alternatively be
implemented 1n software with general-purpose computing
hardware.

[0119] In general, the RANS decoder (630) 1s configured
to recerve encoded data as part of a bitstream, decode output
symbols, and generate a stream of output symbols. In some
example implementations, the encoded data 1s arranged as
bytes, and the output symbols have an indicated symbol
width. Typically, the total number of bits output 1s greater
than the total number of bits mput, providing decompres-
S1011.

[0120] The demultiplexer (610) 1s configured to demulti-
plex the encoded data (612) from the input bitstream, along,
with demultiplexing other information (e.g., configuration
information (614), 1nitial state information (616), and data
for other 1nstances of RANS decoders). The demultiplexer
(610) 1s conﬁgured to provide the encoded data (612) to the
encoded data butfer (620), which 1s configured to store the
encoded data (612) and provide it, as needed, to the RANS
decoder (630). The encoded data bufler (620) can store
multiple portions (e.g., bytes) of encoded data, until the
respective portions (622) are provided to the RANS decoder
(630).

[0121] The mput bufler (632) i1s configured to store a
portion of encoded data provided by the encoded data bufler
(620). For example, the input bufler (632) 1s configured to
store a byte of encoded data. The RANS decoder (630) 1s
configured to read a portion of encoded data from the 1nput
builer (632), as needed, shifting the portion of encoded data
into state information. One or more registers (634) in the
RANS decoder (630) are configured to store the state
information. The RANS decoder (630) 1s configured to
decode an output symbol using state information stored in
the register(s) (634). The RANS decoder (630) can perform
decoding using a two-phase structure, as described 1n the
next section, or some other approach. The output bufler
(636) 1n the RANS decoder (630) 1s configured to store an
output symbol (638), which 1s subsequently provided to the
symbol vector buller (650).

[0122] The symbol vector bufler (650) 1s configured to
store output symbols generated in the decoding. The output
symbols have a symbol width (number of bits per symbol).
The output symbols can represent parameters for quantized
transform coeflicients from media (e.g., video, i1mages,
audio, texture for graphics), parameters for other residual
data from media, or other data.

[0123] In some example implementations, the RANS
decoder (630) has a variable symbol width. For example, the
RANS decoder (630) has an mnput parameter that indicates
a default symbol width for output symbols generated by the
RANS decoder (630). Typically, the input parameter 1s set
when the RANS decoder (630) 1s mitialized. This allows the
RANS decoder (630) to switch between different default
symbol widths for different decoding sessions. For example,
the default symbol width can be a value 1n the range of 2 bits
to 9 bats. Alternatively, the default symbol width can have
some other value (e.g., 1 bit, 10 bits, 12 bits, or more bits).

Apr. 7,2022

In alternative example implementations, the input parameter
that indicates the default symbol width can be changed
during decoding. In other alternative example implementa-
tions, the RANS decoder (6300) always decodes output
symbols having a single, pre-defined symbol width.

[0124] In some example implementations, the RANS
decoder (630) can change configuration parameters between
fragments of output symbols/encoded data. A fragment can
include a variable number of output symbols and variable
amount of encoded data. The RANS decoder (630) is
configured to determine boundaries between Iragments
based on information signaled in the bitstream (e.g., counts
of bytes of encoded data in the respective fragments, pres-
ence of start codes or other markers 1n the bitstream).

[0125] In some example implementations as shown in
FIG. 6, the RANS decoder (630) i1s configured to access
lookup tables that store probability information for different
static probability models, for different symbol widths, dur-
ing RANS decoding. Memory (640) 1s configured to store
the lookup tables. In some example implementations,
memory (640) 1s configured to store lookup tables for 16
different static probability models, for each symbol width
possible. The RANS decoder (640) 1s configured to use a
symbol width (631) and static probability model selector
(633) as indices to the lookup tables, and 1s configured to
receive probability information (642) in return. Alterna-
tively, memory (640) can be configured to store lookup
tables for more or fewer static probability models (e.g., a
single static probability model), or the RANS decoder (630)
can be configured to use a dynamic probability model.
Instead of using lookup tables, a probability model can be
represented 1n some other way (e.g., a formula or equation,
which may use less storage but be slower than lookup
operations). In the examples shown i FIG. 6 (with multiple
static probability models), the RANS decoder (630) 1s
configured to receive, as part of configuration information
(614), a syntax element that indicates which static probabil-
ity model 1s used during decoding. When the RANS decoder
(630) switches configuration parameters between fragments,
the RANS decoder (630) can switch static probability mod-
cls from fragment to fragment. This allows the RANS
decoder (630) to switch, 1n mid-stream, to a static probabil-
ity model that provides more eflicient compression given the
local probability distribution of values of input symbols.

[0126] In some example implementations, the RANS
decoder (630) 1s configured to adjust symbol width, relative
to a default symbol width, for RANS decoding. This allows
the RANS decoder (520) to decrease symbol width used for
RANS decoding 1f the output symbols being decoded all
have values below certain threshold values, as explained
above. In some example implementations, the adjustment to
symbol width can be 0, -1, -2, or -3. Alternatively, other
values for the adjustment to symbol width can be used. The
RANS decoder (630) 1s configured to receive, as part of
configuration information (614), a syntax element that indi-
cates an adjustment to symbol width used during decoding.
When the RANS decoder (630) switches configuration
parameters between fragments, the RANS decoder (630) can
switch the adjustment to symbol width from fragment to
fragment. This allows the RANS decoder (630) to switch, 1n
mid-stream, to a symbol width that provides more eflicient
compression given the local values of input symbols. In
alternative example implementations, the RANS decoder
(630) does not switch between different symbol widths.

US 2022/0109891 Al

[0127] In some example implementations, the RANS
decoder (630) 1s configured to decide whether to flush 1ts
state for a new fragment or use the final state from decoding
the previous fragment as the imitial state for the new frag-
ment. The RANS decoder (630) 1s further configured to,
when the RANS decoder state 1s flushed, receive initial state
information (616) for the new fragment. In practice, the
initial state mmformation (616) can be signaled as the first
portions of the encoded data (612) for the new fragment. For
example, the mitial state information (616) includes four
bytes of encoded data (612) or some other amount of
encoded data (612). The RANS decoder (630) 1s configured
to receive, as part of configuration information (614), a
syntax element that whether RANS decoder state should be
flushed for a new fragment. The RANS decoder (630) can
receive the syntax element per fragment. This allows the
RANS decoder (630) to selectively retain RANS decoder
state or flush decoder state. In alternative example 1mple-
mentations, the RANS decoder (630) always flushes RANS
decoder state between {ragments. In other alternative
example implementations, the RANS decoder (630) always
retains RANS decoder state between fragments.

[0128] B. Generalized RANS Encoding/Decoding Tech-
niques.
[0129] FIGS. 7a and 756 show an example technique (700)

for RANS encoding and example technique (750) for RANS
decoding, respectively. The example technique (700) for
RANS encoding can be performed, for example, by an
encoding tool that implements a RANS encoder as described
with reference to FIG. 5 or other RANS encoder. The
example technique (750) for RANS decoding can be per-
formed, for example, by a decoding tool that implements a

RANS decoder as described with reterence to FIG. 6 or
other RANS decoder.

[0130] With reference to FIG. 7a, the encoding tool
encodes (720) mput symbols using a RANS encoder,
thereby generating encoded data for at least part of a
bitstream. Typically, the input symbols are for residual data
for media (e.g., video, 1mage, audio, texture for graphics)
but alternatively the mput symbols can be for some other
type of data. The RANS encoder implements one or more of
the mnnovations described herein. For example, the RANS
encoder implements operations as described with reference
to FIG. 10q, FIG. 11a, FIG. 124, and/or FIG. 13a. Alterna-
tively, the RANS encoder implements other and/or addi-
tional operations for RANS encoding.

[0131] The encoding tool outputs (730) the encoded data
for the at least part of the bitstream. The encoded data can
include syntax elements that indicate configuration params-
eters, as described with reference to FIG. 11a, FIG. 12a,
and/or FI1G. 13a. Alternatively, the encoded data can include
syntax elements that indicate other and/or additional con-
figuration parameters.

[0132] The example technique (700) can be performed as
a method by an encoding tool. A computer system that
includes a RANS encoder and encoded data bufler can be
configured to perform the example techmque (700). One or
more computer-readable media can have stored thereon
computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the
example technique (700). Further, one or more computer-
readable media may have stored thereon encoded data
produced by the example technique (700).

Apr. 7,2022

[0133] With reference to FIG. 7b, the decoding tool
receives (760) encoded data for at least part of a bitstream.
The encoded data can be stored, for example, 1n an encoded
data bufler that 1s configured to store the encoded data. The
encoded data can include syntax elements that indicate
configuration parameters, as described with reference to
FIG. 1156, FIG. 125, and/or FIG. 13b. Alternatively, the
encoded data can include syntax elements that indicate other
and/or additional configuration parameters.

[0134] The decoding tool decodes (770) the encoded data
for the at least part of the bitstream using a RANS decoder,
thereby generating output symbols. Typically, the output
symbols are for residual data for media (e.g., video, 1image,
audio, texture for graphics) but alternatively the output
symbols can be for some other type of data. The RANS
decoder implements one or more of the innovations
described herein. For example, the RANS decoder imple-
ments operations as described with reference to FIGS.
9q-9d, FIG. 105, FIG. 1156, FIG. 126, and/or FIG. 135.
Alternatively, the RANS decoder implements other and/or
additional operations for RANS decoding.

[0135] The example technique (750) can be performed as
a method by a decoding tool. A computer system that
includes an encoded data bufler and a RANS decoder can be
configured to perform the example techmque (750). One or
more computer-readable media can have stored thereon
computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the
example technique (750). Further, one or more computer-
readable media may have stored thereon encoded data
organized for decoding according to the example technique

(750).

[0136] C. Examples of RANS Decoding with a Two-Phase
Structure.

[0137] This section describes two-phase implementations

of RANS decoding that are computationally simple and fast.
In special-purpose hardware, the two-phase implementa-
tions can be realized 1n compact configurations of compo-
nents. In terms of compression efliciency, the two-phase
implementations benefit from the compression efliciency of
RANS encoding. In particular, when implemented with
fragment-adaptive selection of static probability models and
adjustable symbol widths, the two-phase implementations of
RANS decoding provide excellent overall performance 1n
many scenarios.

[0138] FIG. 8 shows phases of an example two-phase
structure (800) for RANS decoding according to some
examples described herein. In the approach shown 1in FIG. 8,
RANS decoding operations are divided into two phases. In
one phase (phase 0), a RANS decoder consumes input
encoded data. In the other phase (phase 1), the RANS
decoder generates output symbols. In some example 1mple-
mentations, each phase happens in a separate clock cycle. In
alternative example implementations, the two phases happen
in the same clock cycle. The phases shown 1n the two-phase
structure (800) are logical phases. Decoding operations are
iteratively performed in phase 0 processing, then phase 1
processing, then phase 0 processing, then phase 1 process-
ing, and so on.

[0139] The output builer (810) 1s configured to store an
output symbol from a previous iteration, i there 1s a valid
output symbol from the previous iteration. The register (820)
1s configured to store state information, which 1s shown as
RANS state P1 as phase 0 begins. In some example imple-

US 2022/0109891 Al

mentations, the decoder state 1s a 32-bit value. Alternatively,
the decoder state can have some other number of bits.

[0140] In phase O, the RANS decoder selectively updates
the RANS decoder state, potentially consuming encoded
data 1n the RANS decoder state. The RANS decoder deter-
mines whether there 1s an output symbol from the previous
iteration (valid output symbol) 1n the output bufler (810). If
s0, the RANS decoder determines (830) forward probability
information for the output symbol (e.g., using one or more
lookup tables) and updates (840) the RANS decoder state
using the forward probability information. Thus, 1f the
output bufler (810) stores an output symbol from a previous
iteration (valid output symbol), the RANS decoder state 1s
updated using the forward probability information for that
output symbol, producing RANS state PO. Otherwise (no
valid output symbol), RANS decoder state 1s unchanged in
phase 0 (that 1s, RANS state PO 1s set to RANS state P1). In
particular, if the state x (that 15, RANS state P1) 1s updated
in phase 0O, the new state x (that 1s, RANS state P0O) 1s
calculated using operations equivalent to the following,
which are explained 1n section V:

x=fF(x>>n)+(x & mask)—c_

[0141] An example of such operations 1s explained 1n
section VI.M. This consumes encoded data as the encoded
data 1s shifted out of the state. In some 1terations, however,

the RANS decoder state 1s not updated, and encoded data 1s
not consumed.

[0142] Adfter phase O processing, the register (820) stores
the selectively updated RANS decoder state, which 1s des-
ignated RANS state PO.

[0143] As part of phase 1 processing, the RANS decoder
selectively merges (860) a portion (e.g., byte) ol encoded
data from the mput bufler (850) into the RANS decoder
state. IT the RANS decoder state (shown as RANS state PO
as phase 1 begins) 1s below a threshold amount, the RANS
decoder shifts the RANS decoder state and adds the portion
of encoded data from the input bufler (850). Otherwise, the
RANS decoder state 1s unchanged 1n phase 1 (that 1s, RANS
state P1 1s set to RANS state PO). Thus, in some 1iterations,
no encoded data 1s merged into the RANS decoder state. In

any case, after phase 1 processing, the register (820) stores
the RANS decoder state (shown as RANS state P1 as phase

1 ends).

[0144] In some example implementation, the RANS
decoder state 1s a 32-bit value, and the 32-bit value 1s
compared to a threshold. For example, the threshold is 2°°.
If the RANS decoder state 1s less than the threshold, the
RANS decoder state 1s shifted to the left by 8 bits, and a byte
of encoded data 1s added to the RANS decoder state. That 1s,
the state x 1s updated using operations equivalent to the
tollowing.

x=x<<8+encoded_data_byte.

An example of such operations 1s explained in section VI.M.

[0145] According to the example two-phase structure
(800) shown 1n FIG. 8, at most one portion of encoded data
1s added to the RANS decoder state per iteration of phase 1
processing. I a portion of encoded data 1s added to the
RANS decoder state, a new portion of encoded data can be
read into the mput butler (e.g., as part of phase 0 processing,
in the next iteration). To merge multiple portions of encoded
data into the RANS decoder state, the portions are added 1n
successive 1terations of phase 1 processing, until the RANS

Apr. 7,2022

decoder state 1s no longer less than the threshold, at which
point a new output symbol can be generated.

[0146] Stull as part of phase 1 processing, the RANS
decoder selectively generates an output symbol from the
RANS decoder state. The RANS decoder determines
whether the RANS decoder state (RANS state P1, after the
selective merger of encoded data) 1s suflicient to generate an
output symbol. If so, the RANS decoder determines imnverse
probability information (e.g., using one or more lookup
tables) and generates an output symbol. The RANS decoder
evaluates some section of the state of the RANS decoder,
which indicates rolling probabilities for diflerent values of
the output symbol, 1n order to find the output symbol. On the
other hand, 1f the RANS decoder state (RANS state P1, after
the selective merger of encoded data) i1s not sufficient to
generate an output symbol, no output symbol 1s generated.
Thus, 1n some 1terations, no output symbols are generated.

[0147] When an output symbol 1s generated, the output
symbol 1s stored in the output bufler (810). Processing
continues in another iteration of phase 0 processing.

[0148] Overall, the sequence of RANS decoding opera-
tions with the two-phase structure 1s different than prior
approaches in several respects. With the two-phase structure,
input encoded data 1s consumed at a limited rate (e.g., at
most one byte at a time), while additional encoded data 1s
needed 1n the RANS decoder state. Also, selective merging
operations to merge at most one byte of encoded data are
interleaved with operations to selectively generate at most
one output symbol and operations to selectively update the
RANS decoder state. The stages for selective updating
RANS decoder state, selective merging encoded data into
RANS decoder state, and selectively generating an output
symbol are discrete, predictable, and structured, which
makes them well-suited for hardware implementations.

[0149] D. Examples of RANS Decoding with Two-Phase
Structure.
[0150] FIG. 9a shows an example technique (900) for

RANS decoding with a two-phase structure. The example
technique (900) can be performed, for example, by a decod-
ing tool that implements a RANS decoder as described with
reference to FIG. 6 or other RANS decoder, as part of the
decoding stage (770) shown 1n FIG. 7b. In any case, the
RANS decoder 1s configured for perform various operations
for RANS decoding with a two-phase structure. The two
phases are logical phases, whose operations can be per-
formed 1n different clock cycles or in the same clock cycle.
FIGS. 956-94 show details of operations that can be per-
formed for operations shown more generally in FIG. 9a.

[0151] The decoding tool can imitialize the RANS decoder
by reading one or more syntax elements from a header for
at least part of a bitstream (e.g., for a fragment) and
configuring the RANS decoder based at least 1n part on the
syntax element(s). For example, the syntax element(s) can
include a syntax element that indicates an adjustment to
symbol width for the encoded data for the at least part of the
bitstream, 1n which case the decoding tool configures the
RANS decoder to perform RANS decoding at the adjusted
symbol width. Or, as another example, the syntax element(s)
can include a selection of a static probability model from
among multiple available static probability models, 1n which
case the decoding tool configures the RANS decoder to
perform RANS decoding using the selected static probabil-
ity model. Or, as another example, the syntax element(s) can
include a syntax element that indicates whether or not the

US 2022/0109891 Al

state of the RANS decoder 1s to be flushed and re-initialized
for decoding of the encoded data for the at least part of the
bitstream, 1 which case the RANS decoder selectively
flushes and reloads the state of the RANS decoder. To reload
the state of the RANS decoder, the RANS decoder can
retrieve 1nitial state information for the at least part of the
bitstream and load an 1nitial state, as the state of the RANS
decoder, based at least in part on initial state information.
Alternatively, the decoding tool can configure the RANS
decoder 1n other ways. In some example implementations,
the RANS decoder 1s mitialized as part of iterations of
processing with a two-phase structure, with configuration
operations happening in one or both of the phases for some
iterations. Alternatively, the RANS decoder can be 1nitial-
1zed with separate operations, before iterations of processing
with the two-phase structure begin.

[0152] As part of a first phase (phase 0 1n some examples
described herein), the RANS decoder selectively updates
(910) the state of the RANS decoder using probability
information for an output symbol from a previous 1teration.
In some example implementations, as shown in FIG. 95, the
RANS decoder determines (912) whether an output symbol
from the previous iteration was generated. If so, the RANS
decoder determines (914) probability information for the
output symbol from the previous iteration, and adjusts (916)
the state of the RANS decoder using the probability infor-
mation. Adjusting the state of the RANS decoder consumes
at least some of the state of the RANS decoder (and hence
consumes some of the encoded data). For example, the
probability information used during phase 0 processing 1s
torward probability information. The RANS decoder can
determine the probability information for the output symbol
from the previous iteration by performing lookup operations
in one or more lookup tables (e.g., using a symbol width
and/or selected static probability model as indexes to the
lookup table(s)), or in some other way. When the state of the
RANS decoder 1s updated in the first phase, a value for the
state X 1s calculated using operations equivalent to the
following, which are explained 1n section V:

x=f*(x>>n)+(x & mask)-c..

[0153] Section VI.M describes one example of such
operations. In that example, the probability information for
the output symbol from the previous iteration includes a
sub-range size fwd_1 and a cumulative sub-range threshold
twd_cf. To adjust the state x of the RANS decoder, the

RANS decoder performs adjustments equivalent to:

x=fwd_jfxx[upper|+x[lower]|-fwd_cf,

where X represents the state of the RANS decoder after the
adjusting, x[upper]| represents an upper portion of the state
of the RANS decoder belore the adjusting, and x[lower]
represents a lower portion of the state of the RANS decoder
before the adjusting.

[0154] On the other hand, 1f the RANS decoder deter-
mines that no output symbol from the previous iteration was
generated (that 1s, no valid output symbol was generated),
the RANS decoder skips the adjusting the state of the RANS
decoder. In this case, the state of the RANS decoder 1s
unchanged (e.g., RANS state PO 1s set to RANS state P1 in
FIG. 8).

[0155] Alternatively, the RANS decoder performs other
operations to selectively update (910) the state of the RANS
decoder using probability information for an output symbol
from a previous iteration.

Apr. 7,2022

[0156] As part of a second phase (phase 1 in some
examples described herein), the RANS decoder selectively
merges (920) a portion (e.g., byte) of encoded data from an
input bufller into the state of the RANS decoder. The mput
bufler can be configured to store one byte of the encoded
data at a time or some other amount of encoded data.

[0157] In some example implementations, as shown 1n
FIG. 9¢, the RANS decoder determines (922) whether the
state of the RANS decoder satisfies a threshold. For
example, the RANS decoder compares the state of the
RANS decoder to the threshold. The state of the RANS
decoder satisfies the threshold i1f the state of the RANS
decoder 1s less than the threshold.

[0158] If the state of the RANS decoder satisfies the
threshold, the RANS decoder combines (924) the portion of
the encoded data and the state of the RANS decoder. For
example, the RANS decoder shifts the state of the RANS
decoder by a given number of bits, and adds the portion of
the encoded data, which has the given number of bits. In
some example implementations, the state x of the RANS
decoder 1s tracked as a 32-bit value, and the state x 1s
updated using operations equivalent to the following.

x=x<<¥+encoded_data_ byte.

Section VI.M describes an example of such operations.

[0159] On the other hand, 1f the state of the RANS decoder
does not satisiy the threshold, the RANS decoder skips

combining the portion of the encoded data and the state of
the RANS decoder. In this case, no mput encoded data 1s
merged 1nto the state of the RANS decoder for the current
iteration.

[0160] Alternatively, the RANS decoder performs other

operations to selectively merge (920) a portion of the

encoded data from the input bufler into the state of the
RANS decoder.

[0161] As part of the second phase, the RANS decoder

also selectively generates (930) an output symbol for a
current iteration using the state of the RANS decoder. For
example, the output symbol 1s for residual data for media.
Alternatively, the output symbol 1s for some other type of
data.

[0162] In some example implementations, as shown 1n
FIG. 9d, the RANS decoder determines (932) whether the

state of the RANS decoder includes sufhicient information to
generate the output symbol for the current iteration.

[0163] If so, the RANS decoder determines (934) imnverse
probability information. For example, the RANS decoder
performs lookup operations in one or more lookup tables.

The RANS decoder then finds (936) the output symbol for

the current iteration using the mmverse probability informa-
tion and the state of the RANS decoder. For example, the
RANS decoder determines a sub-range of the state of the
RANS decoder that 1s associated with the output symbol for
the current 1teration. Section VI.M describes an example of
such operations.

[0164] On the other hand, 1f the state of the RANS decoder
does not include suflicient information to generate an output
symbol for the current iteration, the RANS decoder skips
finding the output symbol for the current iteration. In this
case, no output symbol 1s generated for the current iteration.

[0165] Alternatively, the RANS decoder performs other
operations to selectively generate (930) an output symbol for
the current iteration using the state of the RANS decoder.

US 2022/0109891 Al

[0166] With reference to FIG. 9a, the RANS decoder
checks (940) whether to continue and, if so, continues
processing 1n the first phase. In this way, the RANS decoder
iteratively performs processing for the first phase and pro-
cessing for the second phase. Thus, the RANS decoder
repeats the selective updating (910), selective merging
(920), and selective generating (930) 1n successive 1tera-
tions, until there are no more output symbols to decode 1n the
encoded data for the at least part of the bitstream.

[0167] As part of the first phase, the RANS decoder can
perform other operations (not shown). For example, the
RANS decoder can selectively re-fill the mput bufler from
the encoded data bufler, adding a new portion (e.g., byte) of
encoded data. Or, as another example, the RANS decoder
can selectively write the output symbol from the previous
iteration to a symbol vector butler.

[0168] In some example implementations, the RANS
decoder 1s implemented with special-purpose hardware. The
special-purpose hardware includes the mnput builer, an out-
put butler, and a state register. The output builer 1s config-
ured to store the output symbol from the previous iteration,
if any, until replacement with the output symbol for the
current iteration, if any. The state register 1s configured to
store a value that represents the state of the RANS decoder.
The special-purpose hardware further includes logic
(coupled to the output builer and to the state register)
conﬁgured to perform the selective updating (910) opera-
tions, logic (coupled to the state register and the input butler)
conﬁgured to perform the selective merging (920) opera-
tions, and logic (coupled to the state register and the output
builer) configured to perform the selective generating (930)
operations. Alternatively, the RANS decoder can be imple-
mented using other components.

[0169] E. Examples of RANS Encoding/Decoding with
Adaptive Symbol Widths.

[0170] Insome previous approaches, a RANS encoder and
RANS decoder process symbols having a single, pre-defined
symbol width. Such a RANS encoder and RANS decoder

are unable to process symbols having different symbol
widths.

[0171] This section describes examples of a RANS
encoder and RANS decoder with a configurable symbol
width. In particular, 1n some example implementations, an
input parameter to a hardware-based RANS encoder or
hardware-based RANS decoder indicates a symbol width to
use for an encoding/decoding session. Having a configurable
symbol width allows the RANS encoder/decoder to work
with symbols having any symbol width within a range of
different symbol widths.

[0172] FIG. 10a shows an example technique (1000) for
RANS encoding with adaptive symbol width. The example
technique (1000) can be performed, for example, by an
encoding tool that implements a RANS encoder as described
with reference to FIG. 5 or other RANS encoder, as part of
the encoding stage (720) shown 1n FIG. 7a.

[0173] To start, as part of encoding input symbols using a
RANS encoder, the encoding tool selects (1010) a symbol
width from among multiple available symbol widths. For
example, the multiple available symbol widths include 1 bat,
2 bits, 3 bits, 4 bits, 5 bits, 6 bits, 7 bits, 8 bits, 9 bits, 10 bits,
11 bits, and 12 bits. Alternatively, the multiple available
symbol widths include other and/or additional symbol
widths.

Apr. 7,2022

[0174] The encoding tool configures (1020) the RANS
encoder to perform RANS encoding at the selected symbol
width. In particular, the encoding tool selects a set of
pre-defined lookup tables having probability information for
the selected symbol width. For example, the set of pre-
defined lookup tables includes one or more pre-defined
lookup tables with forward probability information for the
selected symbol width and one or more pre-defined lookup
tables with inverse probability information for the selected
symbol width. The set of pre-defined lookup tables can
incorporate a static probability model, for encoded data,
selected from among multiple available static probability
models for different sets of pre-defined lookup tables. Alter-
natively, the pre-defined lookup tables can include probabil-
ity information for only a single static probability model for
the selected symbol width, or the RANS encoder can use a
dynamic probability model for the selected symbol width.

[0175] The encoding tool performs (1030) the RANS
encoding at the selected symbol width. As part of the RANS
encoding, the encoding tool can selectively determine 1nitial
state information for a RANS decoder (e.g., for a fragment).
In this case, the encoded data output by the RANS encoder
includes the 1nmitial state information.

[0176] FIG. 106 shows an example techmique (1050) for
RANS decoding with adaptive symbol width. The example
technique (1050) can be performed, for example, by a
decoding tool that implements a RANS decoder as described
with reference to FIG. 6 or other RANS decoder, as part of
the decoding stage (770) shown in FIG. 7b.

[0177] To start, as part of decoding encoded data using a
RANS decoder, the decoding tool selects (1060) a symbol
width from among multiple available symbol widths. For
example, the multiple available symbol widths include 1 bat,
2 bits, 3 bits, 4 bits, 5 bits, 6 bits, 7 bits, & bits, 9 bits, 10 bits,
11 bits, and 12 bits. Alternatively, the multiple available
symbol widths 1nclude other and/or additional symbol
widths.

[0178] The decoding tool configures (1070) the RANS
decoder to perform RANS decoding at the selected symbol
width. In particular, the decoding tool selects a set of
pre-defined lookup tables having probability information for
output symbols of the selected symbol width. For example,
the set of pre-defined lookup tables includes one or more
pre-defined lookup tables with forward probability informa-
tion for the selected symbol width and one or more pre-
defined lookup tables with 1inverse probability information
for the selected symbol width. The set of pre-defined lookup
tables can 1ncorporate a static probability model, for
encoded data, selected from among multiple available static
probability models for different sets of pre-defined lookup
tables. Alternatively, the pre-defined lookup tables can
include probability information for only a single static
probability model for the selected symbol width, or the
RANS decoder can use a dynamic probability model for the
selected symbol width.

[0179] The decoding tool performs (1080) the RANS
decoding at the selected symbol width. The RANS decoding

can 1nclude operations that use a two-phase structure, as
described with reference to FIGS. 94-9d. Alternatively, the

RANS decoding can use other operations that implement
RANS decoding. As part of the RANS decoding, the decod-
ing tool can receive initial state information for the RANS
decoder (e.g., for a fragment) and set the RANS decoder

US 2022/0109891 Al

state according. In this case, the encoded data received by
the RANS decoder includes the initial state information.
[0180] For the examples described with reference to FIGS.
10a and 1054, a header 1n the bitstream can include a syntax
clement that indicates the selected symbol width. Depending
on which features of fragment-adaptive RANS encoding are
used, the header 1n the bitstream can also include (a) a syntax
clement that indicates whether or not state of the RANS
decoder 1s to be flushed/re-mnitialized for decoding, (b) a
syntax element that indicates an adjustment to the selected
symbol width, (¢) a syntax element that indicates a selection
ol a static probability model, and/or (d) one or more other
syntax elements that indicate configuration parameters.
[0181] F. Examples of Selectively Flushing RANS
Decoder State Between Fragments.

[0182] When a RANS decoder finishes generating output
symbols from encoded data for a fragment, the state of the
RANS decoder may still contain useful state information.
That useful state mnformation is lost 1f the RANS decoder
flushes and re-1nitializes the RANS decoder state for decod-
ing of another fragment.

[0183] This section describes various aspects of selective
flushing of RANS decoder state between fragments. A
RANS encoder can decide whether RANS decoder state
should be retained or flushed/re-1nitialized for decoding of a
new fragment. For example, for a fragment (or the first p
symbols of the fragment, where p 1s a number such as 1, 3,
5, 10, or 15 that depends on implementation), the RANS
encoder can evaluate compression etliciency with the RANS
decoder state retained versus compression etliciency with
RANS decoder state flushed/re-initialized. In doing so, the
RANS encoder can account for the overhead cost of signal-
ing state information 1f the RANS decoder state 1s flushed/
re-mitialized. Alternatively, the RANS encoder can perform
other operations to decide whether RANS decoder state
should be retained or flushed/re-1nitialized for decoding of a
new Iragment.

[0184] The RANS encoder sets a syntax element that
indicates whether RANS decoder state for a fragment should
be retained or flushed/re-mitialized. In some example 1mple-
mentations, the syntax element 1s a 1-bit flag 1n a header for
the fragment. I the RANS decoder state 1s flushed/re-
mitialized, the RANS encoder also determines and signals
state information for the fragment. In some example 1mple-
mentations, the state information is signaled as the first few
bytes (e.g., 4 bytes) of encoded data for the fragment. Thus,
retaining RANS decoder state from a previous fragment
saves encoded data.

[0185] A RANS decoder receives and parses the syntax
clement that indicates whether RANS decoder state for a
fragment should be retained or flushed/re-mitialized. If
RANS decoder state 1s retained, the RANS decoder uses the
final RANS decoder state from the previous fragment as the
initial RANS decoder state for the new fragment. Otherwise,
the RANS decoder flushes (sets to zero) the RANS decoder
state and re-initializes 1t by loading state information sig-
naled for the new fragment (e.g., as part of encoded data for
the fragment).

[0186] . Examples of RANS Encoding/Decoding with
Selective Flushing of RANS Decoder State Between Frag-
ments.

[0187] FIG. 11a shows an example techmque (1100) for

RANS encoding with selective flushing of RANS decoder
state between fragments. The example technique (1100) can

Apr. 7,2022

be performed, for example, by an encoding tool that imple-
ments a RANS encoder as described with reference to FIG.
5 or other RANS encoder, as part of the encoding stage (720)
shown 1n FIG. 7a.

[0188] To start, as part of encoding input symbols using a
RANS encoder, the encoding tool determines (1110)
whether or not state of a RANS decoder i1s to be flushed and
re-initialized for decoding of encoded data for at least part
of the bitstream (1n FI1G. 114, for a fragment). The encoding
tool sets (1120) a syntax element that indicates whether or
not the state of the RANS decoder 1s to be flushed/re-
iitialized for decoding of the encoded data for the at least
part of the bitstream.

[0189] The encoding tool checks (1130) whether the
RANS decoder state 1s to be flushed/reinitialized. It so, the
encoding tool determines (1132) 1nitial state information for
the encoded data for the at least part of the bitstream. In this
case, the bitstream includes (e.g., as part of the encoded
data) the 1mitial state information. For example, the mitial
state information 1s a 32-bit value. Otherwise, the bitstream
lacks 1nitial state information for the encoded data for the at
least part of the bitstream. The encoding tool performs

(1140) RANS encoding.

[0190] The encoding tool can repeat the technique (1100)
on a fragment-by-fragment basis. In FIG. 11a, the encoding
tool checks (1142) whether to continue for the next fragment
and, 1f so, determines (1110) whether or not state of a RANS
decoder 1s to be flushed/re-imitialized for decoding of
encoded data for the next fragment. In this case, each of the
fragments 1ncludes its own header having a syntax element
that indicates whether or not the state of the RANS decoder
1s to be tlushed/re-initialized for decoding of encoded data
for that fragment.

[0191] FIG. 115 shows an example technique (1150) for
RANS decoding with selective flushing of RANS decoder
state between fragments. The example technique (1150) can
be performed, for example, by a decoding tool that imple-
ments a RANS decoder as described with reference to FIG.
6 or other RANS decoder, as part of the decoding stage (770)
shown 1 FIG. 7b.

[0192] To start, as part of decoding encoded data using a
RANS decoder, the decoding tool reads (1160) a syntax
clement. The syntax element indicates whether or not state
of a RANS decoder 1s to be flushed/re-1mnitialized for decod-

ing of the encoded data for at least part of the bitstream (in
FIG. 115, for a fragment).

[0193] Based at least 1in part on the syntax element, the

decoding tool determines (1170) whether or not the state of
the RANS decoder 1s to be flushed/re-mitialized for decod-

ing of the encoded data for the at least part of the bitstream.

[0194] The decoding tool checks (1180) whether the
RANS decoder state 1s to be flushed/reinitialized. It so, the
decoding tool retrieves (1182) initial state information for
the encoded data for the at least part of the bitstream, flushes
the state of the RANS decoder, and loads (1184) an initial
state, as the state of the RANS decoder, based at least in part
on the 1nitial state information. In this case, the bitstream
includes (e.g., as part of the encoded data) the imitial state
information for the encoded data for the at least part of the
bitstream. For example, the imitial state information 1s a
32-bit value. Otherwise, the bitstream lacks 1nitial state
information for the encoded data for the at least part of the
bitstream.

US 2022/0109891 Al

[0195] The decoding tool performs (1190) RANS decod-
ing of the encoded data for the at least part of the bitstream.
The RANS decoding can include operations that use a
two-phase structure, as described with reference to FIGS.
9a-9d. (In some example implementations, the first four
bytes of encoded data for a fragment can be used to re-fill
RANS decoder state (stages 1182, 1184), as four iterations
through phase 1 processing when there 1s not enough RANS
decoder state to generate an output symbol.) Alternatively,

the RANS decoding can use other operations that implement
RANS decoding.

[0196] The decoding tool can repeat the techmque (1150)
on a fragment-by-fragment basis. In FIG. 115, the decoding
tool checks (1192) whether to continue for the next fragment
and, 1iI so, reads (1160) a syntax element for the next
fragment. In this case, each of the fragments includes 1ts own
header having a syntax element that indicates whether or not
the state of the RANS decoder 1s to be flushed/re-initialized
for decoding of encoded data for that fragment.

[0197] Forthe examples described with reference to FIGS.
11a and 115, a header in the bitstream includes the syntax
clement that indicates whether or not the state of the RANS
decoder 1s to be flushed/re-initialized for decoding of the
encoded data for the at least part of the bitstream. Depending
on which features of fragment-adaptive RANS encoding/
decoding are used, the header in the bitstream can also
include (a) a syntax element that indicates an adjustment to
the selected symbol width, (b) a syntax element that indi-
cates a selection of a static probability model from among
multiple available static probability models, and/or (¢) one
or more other syntax elements that indicate configuration
parameters.

[0198] H. Examples of Switching Between Multiple Static
Probability Models for Fragments.

[0199] Insome previous approaches, a RANS encoder and
RANS decoder using a single static probability model or a
single dynamic probability model. When a single static
probability model 1s used, compression efliciency suflers i
the distribution of values for symbols deviates from the
expected distribution reflected in the single static probability
model. Using a dynamic probability model helps compres-
s1on efliciency even 1f the distribution of values for symbols
deviates from an expected distribution, but updating the
dynamic probability model can be computationally costly,
especially for hardware implementations of RANS decod-
ng.

[0200] This section describes various aspects of switching
static probability models for fragments of symbols during
RANS encoding/decoding. A RANS encoder and RANS
decoder store values for multiple static probability models.
Different static probability models can differ in terms of
expected distribution of values of symbols. In some example
implementations, values for static probability models are
organized as one or more lookup tables, indexed by 1denti-
fier of static probability model. Alternatively, a static prob-
ability model can be represented in some other way (e.g., a
formula or equation). A static probability model can be a
piece-wise linear approximation of a curve for a cumulative
probability function for values of symbols. The curve mono-
tonically increases. For some static probability models, the
curve 1s flatter. For other static probability models, the curve
1s steeper for common values (e.g., zero, low values).
Section VI.M describes examples of static probability mod-
els.

Apr. 7,2022

[0201] A RANS encoder selects one of the static prob-
ability models to use for a fragment of symbols, signaling a
syntax element that indicates the selected static probability
model. In some example implementations, there are 16 static
probability models, and the selected static probability model
1s signaled with a 4-bit fixed length value. Alternatively, the
RANS encoder and RANS decoder can use more or fewer
static probability models.

[0202] In general, the symbols of a fragment are encoded/
decoded using the same static probability model. The RANS
encoder selects one of the static probability models depend-
ing on the distribution of values for the symbols of the
fragment. The selection process depends on implementation.
For example, the RANS encoder can evaluate v 1nput
symbols (where v 1s 1, 10, 20, 100, or some other number of
input symbols) to determine which static probability model
provides the highest compression efliciency for the v input
symbols, and what the relative benefit of switching to that
static probability model would be. If switching to a new
static probability model involves starting a new fragment,
the RANS encoder considers the signaling overhead (header
bytes) for the switch. (Although the RANS encoder could
potentially switch for very short fragments of symbols, the
overhead costs would be high.) The RANS encoder can
decide whether the improvement 1n compression etliciency
for a switch to another static probability model (for another
fragment) justifies the overhead cost of switching fragments.
In this way, the RANS encoder can consider which static
probability models to use when determining where to intro-
duce fragment boundaries, with associated switches 1n static
probability models.

[0203] Compared to using a single static probability
model, switching between multiple static probability models
can help RANS encoding/decoding handle streams of mput
symbols that have different probability distributions (e.g.,
more zeros than expected; fewer zeros than expected).
Although storing values for multiple static probability mod-
cls can be expensive 1n terms of storage, static probability
models can be switched using simple and eflicient signaling.
Sending a syntax element to select one of the multiple static
probability models uses less bitrate than sending a new static
probability model, and it 1s simpler (and faster) than updat-
ing a dynamic probability model.

[0204] 1. Examples of RANS Encoding/Decoding with
Switching Static Probability Models Between Fragments.

[0205] FIG. 12a shows an example techmque (1200) for
RANS encoding with switching of static probability models
between fragments. The example technique (1200) can be
performed, for example, by an encoding tool that imple-
ments a RANS encoder as described with reference to FIG.
5 or other RANS encoder, as part of the encoding stage (720)
shown 1 FIG. 7a.

[0206] TTo start, as part of encoding 1nput symbols using a
RANS encoder, the encoding tool selects (1210), for
encoded data for at least part of a bitstream, one of multiple
available static probability models. For example, the mul-
tiple available static probability models include static prob-
ability models for which residual data values are succes-
sively more likely to be zero. The static probability models
are pre-defined, and a given static probability model does
not dynamically change during encoding/decoding. The
static probability models can be represented in values of
pre-defined lookup tables with probability information for

US 2022/0109891 Al

the static probability models, respectively. Alternatively, the
static probability models can be represented in some other
way.

[0207] When it selects the static probability model, the
encoding tool can consider any of various factors. For
example, the encoding tool can select the static probability
model based at least 1n part on evaluation of probability
distribution of values of the mput symbols. Or, as another
example, the encoding tool can select the static probabaility
model based at least 1n part on estimation of which of the
multiple available static probability models results 1n lowest
bitrate for the encoded data for the at least part of the
bitstream. Or, as another example, the encoding tool can
select the static probability model based at least in part on
encoding with each the multiple available static probability
models to assess which one results 1n lowest bitrate for the
encoded data for the at least part of the bitstream. Alterna-
tively, the encoding tool can select the static probability
model 1n some other way.

[0208] The encoding tool sets (1220) a syntax element that
indicates the selected static probability model. For example,
the syntax element 1s an n-bit value, which indicates one of
2" static probability models.

[0209] The encoding tool configures (1230) the RANS
encoder to use the selected static probability mode. Then, the
encoding tool performs (1232) RANS encoding using the
selected static probability model.

[0210] The encoding tool can repeat the technique (1200)
on a fragment-by-fragment basis. In FIG. 12a, the encoding
tool checks (1240) whether to continue for the next fragment
and, 11 so, selects (1210), for the next fragment, one of the
multiple available static probability models. In this case,
cach of the fragments includes 1ts own header having a
syntax element that indicates a selected static probability
model for that fragment.

[0211] FIG. 12b shows an example technique (1250) for
RANS decoding with switching of static probability models
between fragments. The example technique (1250) can be
performed, for example, by a decoding tool that implements
a RANS decoder as described with reference to FIG. 6 or
other RANS decoder, as part of the decoding stage (770)
shown 1n FIG. 7b.

[0212] To start, as part of decoding encoded data using a
RANS decoder, the decoding tool reads (1260) a syntax
clement that indicates a selection of a static probability
model, for encoded data for at least part of a bitstream, from
among multiple available static probability models. For
example, the syntax element 1s an n-bit value, which indi-
cates one of 2n static probability models.

[0213] Based at least 1in part on the syntax element, the
decoder tool selects (1270), for the encoded data for the at
least part of the bitstream, one of the multiple available static
probability models. For example, the multiple available
static probability models include static probability models
for which residual data values are successively more likely
to be zero. The static probability models are pre-defined, and
a given static probability model does not dynamically
change during encoding/decoding. The static probability
models can be represented 1n values of pre-defined lookup
tables with probability information for the static probability
models, respectively. Alternatively, the static probability
models can be represented 1n some other way.

[0214] The decoding tool configures (1280) the RANS
encoder to use the selected static probability mode. Then, the

Apr. 7,2022

decoding tool performs (1282) RANS decoding of the
encoded data using the selected static probability model. The
RANS decoding can include operations that use a two-phase
structure, as described with reference to FIGS. 94-9d. Alter-
natively, the RANS decoding can use other operations that
implement RANS decoding.

[0215] The decoding tool can repeat the technique (1250)
on a fragment-by-fragment basis. In FIG. 125, the decoding
tool checks (1290) whether to continue for the next fragment
and, 1f so, reads (1260) a syntax element that indicates a
selection of a static probability model for the next fragment.
In this case, each of the fragments includes its own header
having a syntax element that indicates a selection of a static
probability model for that fragment.

[0216] Forthe examples described with reference to FIGS.
12a and 125, a header 1n the bitstream 1ncludes the syntax
clement that indicates the selected static probability model
for the encoded data for the at least part of the bitstream.
Depending on which features of fragment-adaptive RANS
encoding/decoding are used, the header 1n the bitstream can
also include (a) a syntax element that indicates whether or
not state of the RANS decoder 1s to be flushed/re-initialized
for decoding, (b) a syntax element that indicates an adjust-
ment to the selected symbol width, and/or (¢) one or more

other syntax elements that indicate configuration param-
eters.

[0217] J. Examples of Adjusting Symbol Widths for Dii-
ferent Fragments.

[0218] When a default symbol width 1s set for symbols of
a stream, values of symbols vary within the stream. Long
series of values may be much less than the highest possible
value for the stream (considering the default symbol width).

[0219] This section describes various aspects of adjust-
ment of symbol width during RANS encoding/decoding. A
RANS encoder and RANS decoder can adjust symbol width
(relative to a default symbol width) on a fragment-by-
fragment basis, which can improve compression efliciency
because higher values (which are possible with the default
symbol width but not with the adjusted symbol width) need

not be considered for sub-ranges in probability values or
RANS decoder state.

[0220] The RANS encoder decides whether to adjust the
symbol width for a fragment. In general, the RANS encoder
can decide to adjust (decrease) the symbol width for a
fragment after evaluating the symbols of the fragment. For
example, i the default symbol width 1s 8 bits (so that the
range ol possible values 1s 0 . . . 255), but the highest value
among the symbols of the fragment 1s 61, the symbol width
can be decrease by 2 bits (so that the range of values for the
symbols 15 O . . . 63). More generally, for a default symbol
width d and adjustment z, the RANS encoder can find the
largest value of z such that 2977 is greater than the highest
value among the symbols of the fragment.

[0221] The RANS encoder signals the adjustment to sym-
bol width for the fragment. For example, a syntax element
in a header for the fragment indicates the adjustment to
symbol width for the fragment. In some example implemen-
tations, the syntax element 1s a 2-bit value, which can
indicate an adjustment of O bits, —1 bit, -2 bits, or =3 bits
relative to a default symbol width. Alternatively, the adjust-
ment can have some other range 1n bits. The RANS encoder
adjusts symbol width accordingly, configures the RANS
encoder for RANS encoding at the (adjusted) symbol width,
and performs RANS encoding at the adjusted symbol width.

US 2022/0109891 Al

[0222] The RANS decoder receives the syntax element
that indicates the adjustment to symbol width. The RANS
decoder then adjusts the default symbol width accordingly,
configures the RANS decoder for RANS decoding at the
(adjusted) symbol width, and performs RANS decoding at
the adjusted symbol width.

[0223] K. Examples of RANS Encoding/Decoding with
Adjustable Symbol Width Between Fragments.

[0224] FIG. 13a shows an example technique (1300) for
RANS encoding with adjustment of symbol widths between
fragments. The example technique (1300) can be performed,
for example, by an encoding tool that implements a RANS
encoder as described with reference to FIG. 5 or other

RANS encoder, as part of the encoding stage (720) shown 1n
FIG. 7a.

[0225] To start, as part of encoding mnput symbols using a
RANS encoder, the encoding tool determines (1310) an
adjustment to symbol width for encoded data for at least part
of a bitstream. For example, the encoding tool 1dentifies a
highest value among the mput symbols and, depending on
the highest value among the input symbols, determines the
adjustment to symbol width.

[0226] The encoding tool sets (1320) a syntax element that
indicates the adjustment to symbol width. For example, the
syntax element 1s an n-bit value, which indicates a decrease
by an amount 1n the range o1 0 to 2”"—1 bits from the symbol

width.

[0227] The encoding tool checks (1330) whether symbol
width 1s to be adjusted and, 11 so, adjusts (1332) the symbol
width. The encoding tool configures (1340) the RANS
encoder to perform RANS encoding at the adjusted symbol
width. For example, the encoding tool selects a set of
pre-defined lookup tables having probability information for
the adjusted symbol width and/or pertorms other operations
to configure the RANS encoder. The encoding tool then
performs (1342) RANS encoding at the adjusted symbol
width.

[0228] The encoding tool can repeat the technique (1300)
on a fragment-by-fragment basis. In FIG. 13a, the encoding
tool checks (1344) whether to continue for the next fragment
and, 1t so, determines (1310), for the next fragment, an
adjustment to symbol width for the encoded data for that
fragment. In this case, each of the fragments includes 1ts own
header having a syntax element that indicates an adjustment
to symbol width for the encoded data for that fragment. In
some example implementations, a default symbol width 1s
set for a bitstream, and an adjusted symbol width applies for
a given fragment, thereby narrowing eflective symbol width
for that fragment for the RANS encoder/decoder.

[0229] FIG. 135 shows an example technique (1350) for
RANS decoding with adjustment of symbol widths between
fragments. The example technique (1350) can be performed,
for example, by a decoding tool that implements a RANS
decoder as described with reference to FIG. 6 or other
RANS decoder, as part of the decoding stage (770) shown 1n
FIG. 7b.

[0230] To start, as part of decoding encoded data using a
RANS decoder, the decoding tool reads (1360) a syntax
clement that indicates an adjustment to symbol width for
encoded data for at least part of a bitstream. For example, the
syntax element 1s an n-bit value, which indicates a decrease
by an amount 1n the range o1 0 to 2”"—1 bits from the symbol
width. Based at least in part on the syntax element, the

Apr. 7,2022

decoder tool determines (1370) an adjustment to symbol
width for the encoded data for the at least part of the
bitstream.

[0231] The decoding tool checks (1380) whether symbol
width 1s to be adjusted and, 11 so, adjusts (1382) the symbol
width. The decoding tool configures (1390) the RANS
decoder to perform RANS decoding at the adjusted symbol
width. For example, the decoding tool selects a set of
pre-defined lookup tables having probability information for

the adjusted symbol width and/or performs other operations
to configure the RANS decoder. The decoding tool then

performs (1392) RANS decoding at the adjusted symbol
width. The RANS decoding can include operations that use
a two-phase structure, as described with reference to FIGS.
9a-9d. Alternatively, the RANS decoding can use other
operations that implement RANS decoding.

[0232] The decoding tool can repeat the technique (1350)
on a fragment-by-fragment basis. In FIG. 135, the decoding
tool checks (1394) whether to continue for the next fragment
and, 1f so, reads (1360) a syntax element that indicates an
adjustment to symbol width for the next fragment. In this
case, each of the fragments includes 1ts own header having
a syntax element that indicates an adjustment to symbol
width for the encoded data for that fragment. In some
example implementations, a default symbol width 1s set for
a bitstream, and an adjusted symbol width applies for a

given fragment, thereby narrowing eflective symbol width
for that fragment for the RANS decoder.

[0233] For the examples described with reference to FIGS.
13a and 135, a header 1n the bitstream 1ncludes the syntax
clement that indicates the adjustment to symbol width for
the encoded data for the at least part of the bitstream.
Depending on which features of fragment-adaptive RANS
encoding/decoding are used, the header in the bitstream can
also include (a) a syntax element that indicates whether or
not state of the RANS decoder is to be flushed/re-1nitialized
for decoding, (b) a syntax element that indicates a selection
of a static probability model, and/or (¢) one or more other
syntax elements that indicate configuration parameters.

[0234] L. Example Bitstreams.

[0235] FIG. 14 shows an example bitstream (1400) that
includes multiple fragments of encoded data. Specifically,
the bitstream (1400) includes g variable-size fragments

(1410), which are numbered from fragment O to fragment
g—1 in FIG. 14.

[0236] Fach of the fragments (1410) includes a header
(1420) and optional immformation, along with one or more
bytes of encoded data (1430). The number of bytes of
encoded data (1430) 1s vaniable, which 1n turn makes the
fragments (1410) have variable size.

[0237] In general, the header (1420) includes fields for
configuration parameters and length information. For a
fragment, the header (1420) includes a field (1421) with a
syntax element indicating an adjustment to symbol width, a
field (1422) with a syntax element indicating a selection of
a static probability model, and a field (1423) with a state
re-initialization tlag. The length field (14235) indicates how
many bytes of encoded data (1430) are 1n the payload for the
fragment. If the encoded data (1430) includes more bytes
than can be indicated by the length field (1425), a field
(1424) with an extra length flag indicates the presence of
extra length information (1426). In some example 1mple-
mentations, the length field (1425) 1s one byte, the indicated
amount 1s given by the length field plus 1 (an amount in the

US 2022/0109891 Al

range of 1 . .. 257 bytes), and the extra length flag 1s a
one-bit tlag. If the encoded data (1430) includes more than
257 bytes, the extra length tlag (1424) indicates the presence
of a byte of extra length information (1426).

[0238] The adjustment to symbol width indicates an
adjustment to the default symbol width of the symbols of the
fragment. In some example implementations, the syntax
clement that indicates an adjustment to symbol width 1s a
2-bit value, which indicates a value i the range of 0. . . 3
(for a decrease o1 O bits, 1 bit, 2 bits, or 3 bits). If the symbols
of the fragment contain no values above certain thresholds
(which 1s a common scenario 1n heavily compressed streams
with high quantization), the RANS encoder/decoder can
process symbols of the stream as i1 they are narrower (have
tewer bits) than the default symbol width. For a default
symbol width d and an adjustment z, symbols of the frag-
ment are processed as having a symbol width of d-z bits. For
example, 11 the default symbol width d 1s 6 for symbols of
a stream, the range of possible values 1s 0 . . . 63. If at least
one symbol of the fragment has a value of 32 or more, the
adjustment z 1s 0. On the other hand, if the highest value 1s
in the range 16 . . . 31, the adjustment z 1s —1, and the
cllective symbol width for RANS encoding/decoding 1s 3,
for a range of values O . . . 31. If the lughest value 1s 1n the

range 8 . . . 135, the adjustment z 1s -2, and the eflective
symbol width for RANS encoding/decoding is 4, for a range
of values O . . . 15. Otherwise, since the highest value 1s less

than 8, the adjustment z 1s -3, and the effective symbol
width for RANS encoding/decoding 1s 3, for a range of
values 0. .. 7.

[0239] The selection of a static probability model indicates
one ol multiple available static probability models. In some
example implementations, the syntax element that indicates
a selection of a static probability model 1s a 4-bit value,
which indicates one of 16 static probability models. The
static probabilities vary in terms of the tightness of the
expected distribution of values of symbols around 0. For a
first static probability model, all possible values have equal
probability. For successive static probability models, the
expected frequency of zero-value symbols increases, and
probability for other values of symbols decreases. For the
last static probability model, zero-value symbols are
expected to be very common, and probabilities for most
other values of symbols are expected to be zero.

[0240] The state re-imitialization flag (also called a state
flushing flag) controls the flushing of RANS decoder state
between fragments. The flag for a fragment indicates
whether the RANS decoder should flush (set to zero) and
re-mitialize its state for decoding of the symbols of the
fragment. In some example implementations, the flag 1s a
1-bit value. If the value of the flag 1s 1, the first few bytes
of the encoded data (1430) are used to load the state of the
RANS decoder. If the value of the flag 1s 0, the RANS
decoder state at the end of decoding a fragment 1s carried
over to be the imtial RANS decoder state for the next
fragment.

[0241] M. Example Combined Implementation for RANS
Decoding.

[0242] FIGS. 15a-154 show code listing fragments (1501-
1511) 1n a hardware description language for a model of an
example decoder. The code listing fragments (1501-1511)
include code for a decoder module, which generally corre-
sponds to a single instance of a RANS decoder. The code
listing (1501-1511) fragments include placeholders for vari-

Apr. 7,2022

ous lookup tables but, for the sake of brevity, values stored
in the lookup tables are not explicitly shown. Such values
depend on implementation. Also, for the sake of brevity,
code 1s not shown for a feeder module (which writes values
from an encoded data bufler to an mnput butler) and decoder_
array module (which coordinates operations ol multiple
instances of RANS decoder, when output symbols are
interleaved 1n the encoded data).

[0243] The code listing fragment (1501) in FIG. 15qa
includes comments about operations performed in two
phases—phase 0 and phase 1—by different modules. The
code listing fragments (1501-1502) 1n FIGS. 15aq and 155
then include definitions of input parameters and output
parameters for an mstance of the decoder module. The input
parameters and output parameters include various param-
eters used for overall control and configuration. In particular,
the input parameter alphabet_bits indicates a detfault symbol
width. The input parameter out_target indicates a target
number of output symbols to be generated. Other input
parameters and output parameters are used to interface with
a feeder module. As shown 1n the code listing fragment
(1502) in FIG. 155, still other input parameters and output
parameters are used to interface with a downstream module
(e.g., indicating an output symbol in an output builer and
indicating whether the output symbol 1s a valid output
symbol).

[0244] Various variables for the instance of the decoder
module track configuration settings, which can change from
fragment to fragment. As shown 1n the code listing fragment
(1502) 1n FIG. 155, the variable eab indicates an adjusted
symbol width, which 1s later set by decreasing the default
symbol width (alphabet_bits) by an adjustment indicated by
a field 1in a header for a fragment. The variable current_g
indicates a selected static probability model, as indicated by
a field i a header for the fragment.

[0245] The code listing fragment (1502) 1n FIG. 1556 also
includes placeholders for lookup tables used by the decoder
module. In general, each lookup table 1s depicted as a 3D
array. For a lookup table, the first dimension of the 3D array
1s indexed by adjusted symbol width/eflective alphabet bits.
The second dimension 1s indexed by a selected static prob-
ability model. The third dimension 1s indexed by bit position
for the adjusted symbol width. Generally, one non-zero
value 1s stored per bit of the symbol width.

[0246] The lookup table base table stores values that
correspond to subranges 1n the range 0 to 65336. For a given
symbol width eab and selected static probability model
current_g, the lookup table base_table[eab][current_(]
stores the values for sub-ranges of the range, or, alterna-
tively, cumulative frequency values for the respective sub-

ranges. For example, for base_table[8][12], a lookup table
can store the ten values [0, 7575, 14276, 25440, 41008,

56352, 64256, 635344, 65408, 0]. This corresponds to the
nine sub-ranges 0 to 7575, 7576 to 14276, 14277 to 25440,
25441 to 41008, 41009 to 56352, 56353 to 64256, 64257 to
65344, 63345 to 65408, 65409 to 65536. The vanable
base table_sell 1s a 2D array with probability values for
different static probability models, for a given symbol width
indicated by the variable eab. The variable base_table_sel2
1s a 1D array with probability values for a selected static
probability model (current_q), for the given symbol width
(eab), as shown 1n the code listing fragment (1509) of FIG.
15i.

US 2022/0109891 Al

[0247] The lookup table freq_table stores values that relate
to the values 1n base_table. For a given symbol width eab
and selected static probability model current_g, the lookup
table freq_table[eab][current_q] stores values, each indicat-
ing a difference compared to a previous value 1n terms of log
27~1 for each position p after position 0. Alternatively, the
values can be considered widths of the respective sub-
ranges. For example, for freq_table[8][12], a lookup table
can store the ten values [7575, 6701, 5382, 3892, 1918, 494,
34, 1, 1, 0]. This corresponds to the sub-range widths 7575,
6701x1, 5382x2, 3892x4, 19188, 494x16, 34x32, 1x64,
and 1x128, for the respective sub-ranges. The variable
freq_table_sell 1s a 2D array with values for diflerent static
probability models, for a given symbol width indicated by
the vaniable eab. The vanable freq_table_sel2 1s a 1D array
with values for a selected static probability model (current_

q), for the given symbol width (eab), as shown in the code
listing fragment (1509) of FIG. 15:.

[0248] The lookup tables ri_table, rs_table, and m_table
store values for encoded versions of reciprocals of probabil-
ity values for different static probability models, for different
symbol widths. By using values from the lookup tables
ri_table, rs_table, and rn_table in bit shift operations or
addition/subtraction operations, the decoder module can
avoid explicit division operations.

[0249] In particular, the lookup table ri_table stores recip-
rocal values, for inverse probability distribution informa-
tion, which are used when determining an output symbol
based on RANS decoder state. The variable rf table sell 1s
a 2D array with reciprocal values for diflerent static prob-
ability models, for a given symbol width indicated by the
variable eab. The variable rf_table_sel2 1s a 1D array with
reciprocal values for a selected static probability model

(current_q), for the given symbol width (eab), as shown 1n
the code listing fragment (1509) of FIG. 15i.

[0250] The lookup table rs_table stores shiit values, asso-
cliated with 1inverse probability distribution information,
which are used when determining an output symbol based
on RANS decoder state. The variable rs_table sell 1s a 2D
array with shift values for different static probability models,
for a given symbol width indicated by the variable eab. The
variable rs_table_sel2 1s a 1D array with shift values for a
selected static probability model (current_q), for the given

symbol width (eab), as shown 1n the code listing fragment
(1509) of FIG. 15i.

[0251] The lookup table rn_table stores ofiset values,
associated with inverse probability distribution information,
which are used when determining an output symbol based
on RANS decoder state. The variable rn_table_sell 1s a 2D
array with oflset values for different static probability mod-
els, for a given symbol width indicated by the variable eab.
The varniable m_table_sel2 1s a 1D array with offset values
for a selected static probability model (current_q), for the

given symbol width (eab), as shown in the code listing
fragment (1509) of FIG. 15i.

[0252] As shown in the code listing fragment (1503) of

FIG. 15¢, the decoder module has multiple control states.
The multiple control states include an idle control state
(DSTATE_IDLE), three control states in which fields of
header bytes are processed (DSTATE HDRO, DSTATE_
HDR1, DSTATE_HDR?2), a main processing control state
(DSTATE_PROCESSING) in which the decoder module
reads mput encoded data and generates output symbols, and
a control state 1n which the decoder module has finished

Apr. 7,2022

processing input encoded data but 1s still generating output
symbols (DSTATE_DRAINING).

[0253] The code listing fragment (1503) of FIG. 15¢ also
shows definitions for various internal variables used by the
decoder module. For example, the variable phase tracks the
current phase—phase 0 or phase 1. The variable mput_buf
stores a byte of encoded data (or, in some cases, byte of a
header for a fragment). The variable mput_bui_full tracks
whether there 1s a byte 1n input_but. The variable sym_buil_
tull tracks whether the output bufler includes an actual
(valid) output symbol from the previous iteration. The
variable 1nput_remaining tracks how much encoded data
remains to be decoded for the fragment. The variables
rans_state_p0 and rans_state_pl track RANS decoder state
across the two phases. The variable hdr3 tracks whether
extra length information 1s present for a fragment. The
variable flush_per frag tracks whether the initial state 1s
flushed and reloaded for the fragment.

[0254] The code listing fragments (1503, 1504) in FIGS.
15¢ and 154 then show vanables used, during phase 1, when
a portion of encoded data (from the mput bufler input_buf)
1s selectively merged into the RANS decoder state. The
variable want to feed rans 1s used to track whether RANS
decoder state will be updated. The vanable want_to_feed_
rans 1s set depending on a comparison of RANS decoder
state to a threshold (rans_state pO<*MDU_RANS_
LOWER_LIMIT) and whether there 1s any input encoded
data remaining to be decoded. The variable will_feed_rans
depends on the vaniable want_to_feed_rans and whether the
input bufler includes a byte of encoded data. The varnable
rans_state_with_input 1s set to the RANS decoder state
(rans_state_p0) 1 the RANS decoder state will not be
updated. In this case, the RANS decoder state 1s unchanged.
Otherwise, 11 the RANS decoder state 1s updated, the vari-
able rans_state_with_input 1s set to include the lower-order
three bytes of the RANS decoder state (rans_state_p0) and
a new byte of encoded data. The updated RANS decoder
state 1s tracked as rans_state_with_input. The varniable new_
input_remaining tracks the amount of input encoded data
remaining to be decoded.

[0255] The code listing fragments (1503, 1504) 1n FIGS.
15¢ and 154 next show variables used, during phase 1, to
determine whether to load the mnput buller with another byte
of encoded data (tracked with need_1b_load, then din_req
and din_ready) and check various stall conditions.

[0256] The code listing fragment (1504) i FIG. 154
further shows variables set during configuration, based on
values from a byte of a header. The vaniable hdrO_z_field 1s
set from a two-bit value 1n a byte 1 the mput bufler. This
value indicates an adjustment to the default symbol width
(alphabet_bits) for a fragment. The variable hdr0_q_field 1s
set from a four-bit value 1n the byte in the mput butler. This
value indicates a selected static probability model for the
fragment. The variable eab_unclamped indicates an adjusted
symbol width for the fragment, which 1s based on the default
symbol width (alphabet_bits) and adjustment (hdr_z_field).
The variable eab_unclamped indicates the adjusted symbol
width after clamping to be no more than 9 baits.

[0257] The code listing fragments (1504, 1505) 1n FIGS.

154 and 15¢ next show varniables set when the decoder
module selectively generates an output symbol using inverse
probability information and the RANS decoder state. Spe-

US 2022/0109891 Al

cifically, the vaniable new_sym indicates a potential output
symbol, and the variable sym_valid indicates whether the
output symbol 1s valid.

[0258] The vanables inv_seg, mmv_base X, and dist_x are
set based on the RANS decoder state (in the varniable ci_in),
base table values (base_table sel2), an adjusted symbol
width (eab), and offset values (rn_table sel2). The variable
ci_in 1s set based on the updated RANS decoder state
tracked as rans_state_with_input. The array base_table_sel2
1s a 1D array with probability values for a selected static
probability model, for a given symbol width. The array
rn_table_sel2 1s a 1D array with offset values for a selected
static probability model, for a given symbol width. The
values of base table sel2 and rn table sel2 are set for a

selected static probability model (current_q), for the given
symbol width (eab), as shown in the code listing (1509) of
FIG. 15i.

[0259] The variable inv_seg indicates a segment, from 0 to
9, associated with an output symbol. The variable mv_
base_x indicates a base amount, which generally depends on
the segment. The variable dist_x indicates an adjusted state
value based on ci_in, an entry looked up 1n base_table sel2
for the segment, and shift value looked upon 1n m_table_sel2
for the segment.

[0260] The variable new_sym indicates a potential output
symbol, which 1s set using the values of the variables
inv_seg, mv_base X, and dist_x, along with values looked
up 1n ri_table_sel2 and rs_table sel2 for the segment (1nv_
seg), as shown 1n FIG. 15e. The array ri_table_sel2 1s a 1D
array with inverse reciprocal values for a selected static
probability model, for a given symbol width. The array
rs_table_sel2 1s a 1D array with shift values for a selected
static probability model, for a given symbol width. The
values of rf table sel2 and rs table sel2 are set for a
selected static probability model (current_q), for the given
symbol width (eab), as shown in the code listing (1509) of
FIG. 15:. The vanables rf and rs are set by lookup operations
in ri_table_sel2 and rs_table sel2, using mnv_seg as an
index. The variable add_mul 1s set by multiplying dist_x by
the value looked up 1n ri_table_sel2. The variable inv_steps
1s set by shifting the top 17 bits of add_mul by a shift value
looked up 1n rs_table sel2. The variable new_sym 1s set by
adding the value 1nv_steps to inv_base_x.

[0261] The vaniable sym_valid indicates whether a new
output symbol 1s valid. The variable next_sym_bui_full
tracks whether a valid symbol has been generated, which
depends on whether the RANS decoder state (tracked with
rans_state_with_input) 1s greater than a threshold amount
(‘MDU_RANS_LOWER_LIMIT) and whether there are
output symbols remaining to be generated (output_remain-
ing>0). As explained below, the variable sym_bui_full 1s set
to the value of next_sym_bufl_full. In phase O, the variable
sym_valid 1s set to indicate whether the new symbol 1s valid,
based on sym_buf_full. In this way, the decoder selectively
generates an output symbol (that 1s, a valid output symbol)
depending on the RANS decoder state. (In some cases, the
value of new_sym 1s calculated but does not indicate an
output symbol.)

[0262] The wvanable new_rans_state pl 1indicates an
updated RANS decoder state, based on the RANS decoder
state with a new byte selectively merged in (rans_state_
with_input). The variable new_output_remaining tracks out-
put symbols remaining to be generated, which 1s decre-
mented 11 a valid output symbol has been generated.

Apr. 7,2022

[0263] The code listing fragments (1506, 1507) 1n FIGS.
15/ and 15¢ show variables set when the decoder module
selectively updates RANS decoder state, depending on
whether an output symbol has been generated. Some of the
variables depend on values looked up 1n the arrays base
table_sel2 and freq_table sel2. The array base_table_sel2 1s
a 1D array with probability values for a selected static
probability model, for the given symbol width. The array
freq_table_sel2 1s a 1D array with frequency values for a
selected static probability model, for the given symbol
width. The values of base_table sel2 and freq_table sel2
are set during configuration, based on values in the header,
as described below.

[0264] The variables fwd_seg and fwd_segstart are set
based on the value of the output symbol (sym) generated in
phase 1 of the previous iteration. The variable fwd_seg
indicates a segment, from O to 9, associated with the output
symbol. The variable twd_segstart 1s a base amount, which
generally depends on the segment. The variable twd_base 1s
set by a lookup operation 1n the base table (base_table_sel2),
using fwd_seg as an index. The vanable twd_1a 1s set by a
lookup operation 1n the frequency table (Ifreq_table sel2),
using fwd_seg as an index. The variable new_rans_state_p0,
which indicates an updated RANS decoder state, 1s set using
the values of variables twd_1, fwd_p, and fwd_ct, along with
16 bits from the RANS decoder state from phase 1 (rans_
state_p1[31:16]). The vanables twd_1, fwd_p, and twd_ct

are calculated as shown 1n the code listing fragment (1507)
in FIG. 15g.

[0265] The code listing fragment (1507) in FIG. 15g
shows operations performed when the decoder module 1s
initialized (when the variable nrst 1s 0). The control state of
the decoder module 1s set to DSTATE_IDLE, and the phase
1s set to phase 1. State variables (rans_state_p0O and rans_
state_p1), the variable that tracks remaining bytes of 1nput
encoded data to be decoded (input_remaining), and the
variable that tracks remaining output symbols to be gener-
ated (output_remaining) are set to 0. Other variables 1ndi-
cating an output symbol, whether the output symbol 1s valid,
the adjusted symbol width, the selected static probability
model, and values of lookup tables are similarly mitialized.

[0266] The code listing fragments (1507-1511) 1n FIGS.
159-15% next show the main processing loop for the decoder
module (when the variable nrst 1s 1), as the decoder module
performs operations for phase 0 or phase 1, and as the
decoder module transitions from control state to control
state. In particular, the code listing fragments (1507, 1508)
in FIGS. 15g and 15/ show operations performed as part of
phase 0 processing (when the variable phase 1s 0). The
decoder module checks are error overrun condition and, 1f
decoding has not stalled, performs various operations.

[0267] If the control state of the decoder module 1s
DSTATE_PROCESSING or DSTATE_DRAINING, the
decoder module selectively updates the RANS decoder
state. If the variable sym_bui_full indicates an output sym-
bol (valid output symbol) was generated in phase 1 of a
previous 1teration (see FIGS. 15¢ and 15j), the decoder
module sets the variable rans_state_p0O to the value of the
variable new_rans_state_p0 (which 1s set as shown 1n FIG.
15g). Otherwise (the variable sym_buf full indicates an
output symbol was not generated 1n phase 1 of the previous
iteration), the decoder module sets the variable rans_state

US 2022/0109891 Al

p0 to the value of the variable rans_state_pl (that is, the
RANS decoder state 1s unchanged between phase 1 and
phase 0).

[0268] As part of phase O processing, the decoder module
next handles input, regardless of control state of the decoder
module, as shown 1n FIG. 15/. Depending on the values of
the variables din_valid and din_ready (which 1s set during
previous phase 1 processing; see FIG. 15d), the decoder
module selectively re-fills the mput bufler (input_bul) using,
another byte of encoded data (from the variable din) and
indicates the mput bufler 1s full (input_bui_full<=1).

[0269] Still as part of phase O processing, the decoder
module handles output, regardless of control state of the
decoder module, as shown 1n FIG. 15/. Depending on the
values of the variables sym_valid and sym_ready, which are
part of the interface to a downstream module (see FIG. 15a)
and (in the case of sym_valid) set during previous phase 1
processing (see FIG. 15¢), the decoder module selectively
outputs an output symbol (placeholder shown 1n FIG. 15/)
and indicates the output bufller 1s empty (sym_bui_full<=0).

[0270] This completes the 1teration of phase 0 processing.
As shown 1n the code listing fragment (1511) in FIG. 154,
the decoder module toggles the variable phase. Here, the
variable phase 1s changed from 0 to 1.

[0271] The code listing fragments (1508-1511) in FIGS.
15/-15k show operations performed as part of phase 1
processing (when the variable phase 1s 1). The operations
performed as part of phase 1 processing depends on the
control state of the decoder module, as shown 1n the case
statement that depends on ctrl_state.

[0272] As shown in the code listing fragment (1508) of
FIG. 154, if the control state of the decoder module 1s
DSTATE_IDLE, the decoder module 1s 1n an 1dle control
state. The control state of the decoder module 1s changed to
DSTATE_HDRO for subsequent processing. Variables that
track RANS decoder state (rans_state_p0 and rans_state_p1)
are 1mitialized (set to zero). The amount of output symbols
remaining to be generated 1s set to a target amount (out_
target), which 1s an mput parameter for the interface to the
decoder module. This completes the iteration of phase 1
processing (for the control state DSTATE_IDLE) and, as
shown 1n the code listing fragment (1511) in FIG. 154, the
decoder module toggles the variable phase, changing the
variable phase from 1 to O.

[0273] As shown in the code listing fragment (1509) of
FI1G. 15i, if the control state of the decoder module i1s
DSTATE_HDRO, the decoder module processes the first
byte of a header for a fragment. Assuming the input bufler
stores the first byte of the header (input_bui_full 1s 1, as set
during previous phase 0 processing when the input bufler 1s
re-filled), the decoder module 1nitializes the amount of bytes
of encoded data to be decoded to zero (input_remaining<=0)
and changes the control state of the decoder module to
DSTATE_HDRI1 {for subsequent processing. The decoder
module sets the variable current_q, which indicates a
selected static probability model for the fragment, based on
four bits of the first byte of the header, which are represented
with the variable hdrO_g_field (see FIG. 15d). The decoder
module sets the variable hdr3, which indicates whether the
header includes an extra length field, based on another bit in
the first byte of the header. The decoder module sets the
variable flush_per_flag, which indicates whether the state of
the RANS decoder 1s flushed and re-mitialized for the

fragment (or maintained from the previous fragment), based

Apr. 7,2022

on another bit 1n the first byte of the header. The decoder
module sets the variable eab, which indicates an adjusted
symbol width for the fragment, based on two bits of the first
byte of the header, which are represented with the hdr0_z_
field (see FIG. 15d) and used to calculate eab_clamped.

Finally, the decoder module sets the variable mput_buf_tull
to zero to indicate the byte in the mput bufler has been
processed. This completes the iteration of phase 1 process-

ing (for the control state DSTATE_HDRO) and, as shown 1n
the code listing fragment (1511) 1n FIG. 154, the decoder

module toggles the variable phase, changing the variable
phase from 1 to O.

[0274] As shown in the code listing fragment (1509) of
FI1G. 15i, if the control state of the decoder module 1s
DSTATE_HDRI1, the decoder module processes the second
byte of the header for the fragment, which indicates the
length of encoded data 1n the fragment. Assuming the input
bufler stores the first byte of the header (input_bui_full 1s 1,
as set during previous phase O processing when the input
bufler 1s re-filled), the decoder module sets the values of
lookup tables for base_table_sel2, freq_table_sel2, ri_table_
sel2, rs_table sel2, and rn_table sel2 based on the selected
static probability model (current_q) and adjusted symbol
width eab (see FIG. 155). The decoder module next sets the
amount ol bytes of encoded data to be decoded (1nput_
remaining). It the variable hdr3 indicates the header includes
an extra length field, the decoder modules sets the amount of
bytes of encoded data to be decoded (1nput_remaining) to
the value of the second byte of the header (in input_but), and
changes the control state of the decoder module to
DSTATE_HDR2 for subsequent processing. Otherwise (the
variable hdr3 indicates the header does not include an extra
length field), the decoder module sets the amount of bytes of
encoded data to be decoded (input_remaining) to the value
of the second byte of the header plus 1, and changes the
control state of the decoder module to DSTATE PROCESS-
ING for subsequent processing. The decoder module also
sets the variable mput_bul_full to zero to indicate the byte
in the mput builer has been processed. This completes the

iteration of phase 1 processing (for the control state
DSTATE_HDRI1) and, as shown 1n the code listing fragment

(1511) 1n FIG. 15k, the decoder module toggles the variable
phase, changing the variable phase from 1 to O.

[0275] As shown in the code listing fragment (1509) of
FI1G. 15i, it the control state of the decoder module 1s
DSTATE_HDR?2, the decoder module processes the third
byte of the header for the fragment, which indicates the extra
length of encoded data in the fragment. Assuming the mput
bufler stores the first byte of the header (input_bui_full 1s 1,
as set during previous phase 0 processing when the input
bufler 1s re-filled), the decoder module sets the amount of
bytes of encoded data to be decoded (1nput_remaining)
using the value of the third byte of the header and the value
set for input_remaining when processing the second byte of
the header. The decoder module also changes the control
state of the decoder module to DSTATE PROCESSING for
subsequent processing. The decoder module sets the vari-
able mput_bui_full to zero to indicate the byte in the mput
bufler has been processed. This completes the iteration of
phase 1 processing (for the control state DSTATE_HDR?2)
and, as shown 1n the code listing fragment (1511) i FIG.
154, the decoder module toggles the variable phase, chang-
ing the variable phase from 1 to 0.

US 2022/0109891 Al

[0276] As shown in the code listing fragment (1510) of
FIG. 15j, 11 the control state of the decoder module is
DSTATE PROCESSING, the decoder module sets the state
of the RANS decoder (rans_state_pl) to an updated RANS
decoder state (new_rans_state_pl), based on the RANS
decoder state with a new byte selectively merged into it, as
explained with reference to FIGS. 15¢ and 15e. The decoder
module updates the amount of bytes of input encoded data
remaining to be decoded (input_remaining) using the vari-
able new_input_remaining, which is set as shown in FIG.
15¢. The decoder module also updates the amount of output
symbols remaining to be generated (output remaining)
using the variable new_output_remaining, which 1s set as
shown 1n FIG. 15e. The decoder module selectively sets the
variable mput_bui_full to zero, dependmg on whether the
byte of encoded data 1n the mnput bufler has been merged 1nto
the decoder state. The decoder module selectively generates
an output symbol (sym) for the current iteration, setting the
variable sym to new_sym and setting the variable sym_bui_

tull to next_sym_bui_full, where new_sym and next_sym_
but full as set as shown 1n FIG. 15e.

[0277] So long as there 1s at least some encoded data
remaining to be decoded, the control state of the decoder
module remains DSTATE PROCESSING. On the other
hand, 1f there 1s no input encoded data remaining to be
decoded (new_input_remaining 1s 0), the decoder module
performs other operations. If there 1s at least one more
output symbol to be generated (new_output_remaining>0),
the decoder module checks the state of the RANS decoder.
I1 the state of the RANS decoder 1s not suflicient to continue
decoding (new_rans_state_ pl=—="MDU_RANS_LOWER_
LIMIT), the decoder module 1nitiates a switch to decoding
another fragment, changing the control state of the decoder
module to DSTATE_HDRO and selectively flushing the state
of the RANS decoder (depending on the value of the
variable flush_per frag). Otherwise (there 1s at least one
more output symbol to be generated, and the state of the
RANS decoder 1s suflicient to continue decoding), the
decoder module changes the control state of the decoder
module to DSTATE_DRAINING. If there are no more
output symbols to be generated, the decoder module changes
the control state of the decoder module to DSTATE IDLE

and sets a variable done to 1.

[0278] This completes the 1teration of phase 1 processing
(for the control state DSTATE_PROCESSING). As shown

in the code listing fragment (1511) 1n FIG. 15%, the decoder
module toggles the variable phase, changing the variable
phase from 1 to O.

Apr. 7,2022

[0279] As shown in the code listing fragment (1510) of
FIG. 15;, 11 the control state of the decoder module 1is
DSTATE_DRAINING, the decoder module sets the state of
the RANS decoder (rans_state_pl) to an updated RANS
decoder state (new_rans_state_pl), based on the RANS
decoder state with a new byte selectively merged into it, as
explained with reference to FIGS. 15¢ and 15¢. The decoder
module updates the amount of output symbols remaining to
be generated (output_remaining) using the variable new_
output_remaining, which 1s set as shown 1n FIG. 15e. The
decoder module selectively generates an output symbol
(sym) for the current iteration, setting the variable sym to
new_sym and setting the variable sym_buf full to next_
sym_bul_full, where new_sym and next_sym_bul_full as
set as shown 1n FIG. 15e.

[0280] So long as the state of the RANS decoder is
suflicient to continue decodmg, the control state of the
decoder module remains DSTATE_DRAINING. On the
other hand, if the state of the RANS decoder 1s not sutlicient
to continue decoding (new_rans_state_pl<="MDU_RANS_
LOWER_LIMIT), the decoder module performs other
operations. If there 1s at least one more output symbol to be
generated (new_output_remaining>0), the decoder module
initiates a switch to decoding another fragment, changing
the control state of the decoder module to DSTATE HDRO
and selectively flushing the state of the RANS decoder
(depending on the value of the vanable flush_per frag).
Otherwise (there are no more output symbols to be gener-
ated), the decoder module changes the control state of the
decoder module to DSTATE IDLE and sets a variable done
to 1.

[0281] This completes the 1teration of phase 1 processing
(for the control state DSTATE_DRAINING). As shown 1n
the code listing fragment (1511) 1n FIG. 154, the decoder
module toggles the variable phase, changing the variable
phase from 1 to 0.

[0282] Finally, as shown in the code listing fragment
(1511) mn FIG. 15k, for any other value of ctrl_state, the
decoder module changes the control state of the decoder
module to DSTATE_IDLE for subsequent processing. This
completes the 1teration of phase 1 processing (for the default
control state) and, as shown in the code listing fragment
(1511) 1n FIG. 15k, the decoder module toggles the variable
phase, changing the variable phase from 1 to O.

VII. Additional Features.

[0283] The following table shows additional features of
some ol the mnovations described herein.

RANS Encoder/Decoder Configurable to Work with Multiple Symbol Widths

Al In a computer system, a method comprising: encoding input symbols using a range asymmetric number system
(“RANS") encoder, thereby generating encoded data for at least part of a bitstream, wherein the encoding includes:
selecting a symbol width from among multiple available symbol widths; configuring the RANS encoder to perform
RANS encoding at the selected symbol width, including selecting a set of pre-defined lookup tables having
probability information for the selected symbol width; and performing the RANS encoding at the selected symbol
width; and outputting the encoded data for the at least part of the bitstream.

A2 The method of claim Al, wherein the input symbols are for residual data for media, and wherein the multiple available
symbol widths are selected from the group consisting of 1 bit, 2 bits, 3 bits, 4 bits, 5 bits, 6 bits, 7 bits, 8 bits, 9 bits,

10 bits, 11 bits, and 12 buts.

A3 The method of claim Al, wherein the set of pre-defined lookup tables includes one or more pre-defined lookup tables
with forward probability information for the selected symbol width and one or more pre-defined lookup tables with

inverse probability information for the selected symbol width.
A4 The method of claim Al, wherein the set of pre-defined lookup tables mcorporates a static probability model, for the
encoded data for the at least part of the bitstream, selected from among multiple available static probability models

for different sets of pre-defined lookup tables.

US 2022/0109891 Al Apr. 7, 2022
27

-continued

AS The method of claim Al, whereimn the performing the RANS encoding includes determining initial state information
for a RANS decoder, wherein the encoded data for the at least part of the bitstream includes the initial
state information.

Ab The method of claim Al, wherein a header in the at least part of the bitstream includes a syntax element that indicates
the selected symbol width.
A7 The method of claim Al, wherein a header in the at least part of the bitstream includes: a syntax element that indicates

whether or not state of a RANS decoder is to be flushed/re-initialized for decoding of the encoded data for the at

least part of the bitstream; a syntax element that indicates an adjustment to the selected symbol width for the encoded
data for the at least part of the bitstream; and/or a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple available static probability models.

AR A computer system comprising a range asymmetric number system (“RANS”) encoder and an encoded data bufler, the
computer system beimng configured to perform the method of any one of claims Al to A7.
A9 One or more computer-readable media having stored thereon computer-executable instructions for causing one or more

processors, when programmed thereby, to perform the method of any one of claims Al to A7.

Al0 One or more computer-readable media having stored thereon encoded data produced by the method of any one of
claims Al to A7.

All In a computer system, a method comprising: receiving encoded data for at least part of a bitstream; and decoding

the encoded data for the at least part of the bitstream using a range asymmetric number system (“RANS") decoder,

thereby generating output symbols, wherein the decoding includes: selecting a symbol width from among multiple
avallable symbol widths; configuring the RANS decoder to perform RANS decoding at the selected symbol width,
including selecting a set of pre-defined lookup tables having probability information for output symbols of the
selected symbol width; and performing the RANS decoding at the selected symbol width.

Al2 The method of claim All, wherein the multiple available symbol widths are selected from the group consisting of
1 bit, 2 bits, 3 bits, 4 bits, 5 bits, 6 bits, 7 bits, & bits, 9 bits, 10 bits, 11 bits, and 12 bits.

Al3 The method of claim All, wherein the set of pre-defined lookup tables includes one or more pre-defined lookup
tables with forward probability information for the selected symbol width and one or more pre-defined lookup tables
with inverse probability mformation for the selected symbol width.

Al4 The method of claim All, wherein the set of pre-defined lookup tables incorporates a static probability model, for
the encoded data for the at least part of the bitstream, selected from among multiple available static probability models
for different sets of pre-defined lookup tables.

Al5 The method of claim All, wherein the performing the RANS decoding includes: as part of a first phase, selectively
updating state of the RANS decoder using probability information for an output symbol from a previous iteration;
as part of a second phase, selectively merging a portion of encoded data, for the at least part of the bitstream, from an
input buffer into the state of the RANS decoder; and as part of the second phase, selectively generating an output
symbol for a current iteration using the state of the RANS decoder.

Al6 The method of claim All, wheremn a header in the at least part of the bitstream includes a syntax element that indicates
the selected symbol width.

Al7 The method of claim All, wherein a header in the least part of the bitstream includes: a syntax element that indicates
whether or not state of the RANS decoder 1s to be flushed/re-1nitialized for decoding of the encoded data for the at
least part of the bitstream; a syntax element that indicates an adjustment to the selected symbol width for the encoded
data for the at least part of the bitstream; and/or a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple available static probability models.

Al8 A computer system comprising an encoded data buffer and a range asymmetric number system (“RANS”) decoder,
the computer system being configured to perform the method of any one of claims All to Al7.

Al9 One or more computer-readable media having stored thereon computer-executable instructions for causing one or
more processors, when programmed thereby, to perform the method of any one of claims All to Al7.

A20 One or more computer-readable media having stored thereon encoded data organized for decoding according to the
method of any one of claims All to Al7.

RANS Encoder/Decoder with Selective Flushing of Initial State for Fragments

Bl In a computer system, a method comprising: encoding input symbols using a range asymmetric number system
(“RANS”) encoder, thereby generating encoded data for at least part of a bitstream, including: determining whether
or not state of a RANS decoder is to be flushed and re-initialized for decoding of the encoded data for the at least part
of the bitstream; setting a syntax element that indicates whether or not the state of the RANS decoder i1s to be flushed
and re-initialized for decoding of the encoded data for the at least part of the bitstream; and performing RANS
encoding; and outputting the encoded data for the at least part of the bitstream, wherein a header in the at least part
of the bitstream includes the syntax element that indicates whether or not the state of the RANS decoder 1s to be
flushed and re-imitialized for decoding of the encoded data for the at least part of the bitstream.

B2 The method of claim B1, wheremn: if the syntax element indicates the state of the RANS decoder is to be flushed
and re-imitialized for decoding of the encoded data for the at least part of the bitstream, the bitstream further includes
initial state information for the encoded data for the at least part of the bitstream; and if the syntax element indicates

the state of the RANS decoder 1s not to be flushed and re-initialized for decoding of the encoded data for the at
least part of the bitstream, the bitstream lacks the initial state information for the encoded data for the at least part
of the bitstream.

B3 The method of claim B2, wherein the 1nitial state information i1s a 32-bit value.
B4 The method of claim B1, wherein the header 1s for one of multiple fragments, each of the multiple fragments including
its own header having a syntax element that indicates whether or not the state of the RANS decoder i1s to be flushed and

re-imitialized for decoding of encoded data for that fragment, and wherein the encoding using the RANS encoder
1s performed on a fragment-by-fragment basis.

B35 The method of claim Bl, whereimn the encoding further includes: if the state of the RANS decoder is to be flushed and
re-1nitialized for decoding of the encoded data for the at least part of the bitstream, determining initial state information
for the encoded data for the at least part of the bitstream.

B6 The method of claim B1, wherein the input symbols are for residual data for media.

B7 The method of claim B1, wherein the header in the at least part of the bitstream further includes: a syntax element that
indicates an adjustment to symbol width for the encoded data for the at least part of the bitstream; and/or a syntax

US 2022/0109891 Al Apr. 7, 2022
23

-continued

clement that indicates a selection of a static probability model, for the encoded data for the at least part of the bitstream,
from among multiple available static probability models.

B¥ A computer system comprising a range asymmetric number system (“RANS™) encoder and an encoded data buffer, the
computer system beimng configured to perform the method of any one of claims Bl to B7.
B9 One or more computer-readable media having stored thereon computer-executable imstructions for causing one or more

processors, when programmed thereby, to perform the method of any one of claims Bl to B7.

B10 One or more computer-readable media having stored thereon encoded data produced by the method of any one
of claims Bl to B7.

B1l In a computer system, a method comprising: receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates whether or not state of a range asymmetric
number system (“RANS”) decoder i1s to be flushed and re-initialized for decoding of the encoded data for the at least
part of the bitstream; and decoding the encoded data using the RANS decoder, thereby generating output symbols,
including: reading the syntax element; and based at least in part on the syntax element, determining whether or not
the state of the RANS decoder 1s to be flushed and re-initialized for decoding of the encoded data for the at least part
of the bitstream; and performing RANS decoding of the encoded data.

B12 The method of claim Bll, wherein: if the syntax element indicates the state of the RANS decoder is to be flushed and
re-imitialized for decoding of the encoded data for the at least part of the bitstream, the bitstream further includes initial
state information for the encoded data for the at least part of the bitstream; and if the syntax element indicates the state
of the RANS decoder is not to be flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream, the bitstream lacks the initial state information for the encoded data for the at least part of the bitstream.

B13 The method of claim B12, wherein the imitial state information 1s a 32-bit value.

B14 The method of claim Bl1l, wherein the header is for one of multiple fragments, each of the multiple fragments
including 1ts own header having a syntax element that indicates whether or not the state of the RANS decoder 1s to be
flushed and re-imitialized for decoding of encoded data for that fragment, and wherein the decoding using the RANS
decoder 1s performed on a fragment-by-fragment basis.

B15 The method of claim Bl1l, wherein the decoding includes, if the state of the RANS decoder is to be flushed and
re-1nitialized for decoding of the encoded data for the at least part of the bitstream: retrieving 1nitial state mnformation
for the encoded data for the at least part of the bitstream; and loading an initial state, as the state of the RANS
decoder, based at least in part on the initial state information.

B16 The method of claim Bl, wherein the performing the RANS decoding includes: as part of a first phase, selectively
updating state of the RANS decoder using probability information for an output symbol from a previous iteration;
as part of a second phase, selectively merging a portion of encoded data, for at least part of a bitstream, from an
input buffer into the state of the RANS decoder; and as part of the second phase, selectively generating an output
symbol for a current iteration using the state of the RANS decoder.

B17 The method of claim Bl1l, wherein the output symbols are for residual data for media, and wherein the header in

the at least part of the bitstream further includes: a syntax element that indicates an adjustment to symbol width for

the encoded data for the at least part of the bitstream; and/or a syntax element that indicates a selection of a static
probability model, for the encoded data for the at least part of the bitstream, from among multiple available static
probability models.

B18 A computer system comprising an encoded data buffer and a range asymmetric number system (“RANS™) decoder,
the computer system being configured to perform the method of any one of claims B11l to B17.

B19 One or more computer-readable media having stored thereon computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the method of any one of claims Bl1l to B17.

B20 One or more computer-readable media having stored thereon encoded data organized for decoding according to the
method of any one of claims B11 to B17.

RANS Encoder/Decoder with Switching Between Static Probability Models

Cl In a computer system, a method comprising: encoding mput symbols using a range asymmetric number system
(“RANS™) encoder, thereby generating encoded data for at least part of a bitstream, including: selecting, for the encoded
data for the at least part of the bitstream, one of multiple available static probability models; and setting a syntax
element that indicates the selected static probability model; configuring the RANS encoder to perform RANS encoding
using the selected static probability model; and performing RANS encoding using the selected static probability model;
and outputting the encoded data for the at least part of the bitstream, wherein a header in the at least part of the
bitstream includes the syntax element that indicates the selected static probability model for the encoded data for the
at least part of the bitstream.

C2 The method of claim C1, whereimn the syntax element 1s an n-bit value, which indicates one of 27 static
probability models.
C3 The method of claim C1, wherein the input symbols are for residual data for media, and wherein the multiple available

static probability models include static probability models for which residual data values are successively more
likely to be zero.

C4 The method of claim C1, wherein the selecting one of the multiple available static probability models i1s based at least
in part on: evaluation of probability distribution of values of the input symbols; estimation of which of the multiple
availlable static probability models results in lowest bitrate for the encoded data for the at least part of the bitstream; or
encoding with each the multiple available static probability models to assess which one results in lowest bitrate for
the encoded data for the at least part of the bitstream.

C5 The method of claim C1, wherein the header 1s for one of multiple fragments, each of the multiple fragments including
its own header having a syntax element that indicates a static probability model, for encoded data for that fragment,
selected from among the multiple available static probability models, and wherein the encoding using the RANS
encoder 1s performed on a fragment-by-fragment basis.

Cb The method of claim C1, wheremn the multiple available static probability models are represented in values
of pre-defined lookup tables with probability information for the multiple available static
probability models, respectively.

C7 The method of claim C1, wherein the header further includes: a syntax element that indicates whether or not state
of a RANS decoder is to be flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream; and/or a syntax element that indicates an adjustment to symbol width for the encoded data for the at least
part of the bitstream.

US 2022/0109891 Al Apr. 7, 2022
29

-continued
C8 A computer system comprising a range asymmetric number system (“RANS”) encoder and an encoded data bufler,
the computer system being configured to perform the method of any one of claims C1 to C7.
C9 One or more computer-readable media having stored thereon computer-executable instructions for causing one

or more processors, when programmed thereby, to perform the method of any one of claims C1 to C7.

C10 One or more computer-readable media having stored thereon encoded data produced by the method of any one of
claims C1 to C7.

Cll In a computer system, a method comprising: receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates a selection of a static probability model,
for the encoded data for the at least part of the bitstream, from among multiple available static probability models; and
decoding the encoded data using a range asymmetric number system (“RANS") decoder, thereby generating output
symbols, including: reading the syntax element; selecting one of the multiple available static probability models based at
least in part on the syntax element; configuring the RANS decoder to perform RANS decoding using the selected static
probability model; and performing RANS decoding of the encoded data using the selected static probability model.

Cl12 The method of claim C11, wherein the syntax element is an n-bit value, which indicates one of 2" static
probability models.

C13 The method of claim C11, wherein the output symbols are for residual data for media, and wherein the multiple
avallable static probability models include static probability models for which residual data values are
successively more likely to be zero.

Cl4 The method of claim C11, wherein the decoding the encoded data using the RANS decoder includes: as part of a first
phase, selectively updating state of the RANS decoder using probability information for an output symbol from a
previous Iteration; as part of a second phase, selectively merging a portion of encoded data, for at least part of a
bitstream, from an mput buffer into the state of the RANS decoder; and as part of the second phase, selectively
generating an output symbol for a current iteration using the state of the RANS decoder.

C15 The method of claim C11, wherein the header 1s for one of multiple fragments, each of the multiple fragments
including its own header having a syntax element that indicates a selection of a static probability model, for encoded
data for that fragment, from among the multiple available static probability models, and wherein the decoding using the
RANS decoder 1s performed on a fragment-by-fragment basis.

Cl16 The method of claim C11, wherein the multiple available static probability models are represented 1n values of
pre-defined lookup tables with probability information for the multiple available static probability models, respectively.

C17 The method of claim C11, wherein the header further includes: a syntax element that indicates whether or not
state of the RANS decoder is to be flushed and re-initialized for decoding of the encoded data for the at least part of the
bitstream; and/or a syntax element that indicates an adjustment to symbol width for the encoded data for the
at least part of the bitstream.

C18 A computer system comprising an encoded data buffer and a range asymmetric number system (“RANS”) decoder,
the computer system being configured to perform the method of any one of claims C11 to C17.

C19 One or more computer-readable media having stored thereon computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the method of any one of claims C11 to C17.

C20 One or more computer-readable media having stored thereon encoded data organized for decoding according to the
method of any one of claims C11 to C17.

RANS Encoder/Decoder with Selective Narrowing of Symbol Width for Fragments

D1 In a computer system, a method comprising: encoding input symbols using a range asymmetric number system
(“RANS™) encoder, thereby generating encoded data for at least part of a bitstream, including: determining an
adjustment to symbol width for the encoded data for the at least part of the bitstream; setting a syntax element that

indicates the adjustment to symbol width; configuring the RANS encoder to perform RANS encoding at the adjusted
symbol width; and performing the RANS encoding at the adjusted symbol width; and outputting the encoded data for
the at least part of the bitstream, wherein a header in the at least part of the bitstream 1ncludes the syntax element that
indicates the adjustment to symbol width for the encoded data for the at least part of the bitstream.

D2 The method of claim D1, wherein the syntax element 1s an n-bit value, which indicates a decrease by an amount in
the range of O to 2”-1 bits from the symbol width.

D3 The method of claim D2, wherein the symbol width 1s set for the bitstream, and wherein the adjustment applies for
one of multiple fragments of the bitstream, thereby narrowing effective symbol width for that fragment for the RANS
encoder and a corresponding RANS decoder.

D4 The method of claim D1, wherein the header 1s for one of multiple fragments, each of the multiple fragments including
its own header having a syntax element that indicates an adjustment to symbol width for the encoded data for that
fragment, and wheremn the encoding using the RANS encoder 1s performed on a fragment-by-fragment basis.

D3 The method of claim D1, wherein the encoding includes: 1dentifying a highest value among the input symbols;
depending on the highest value among the input symbols, determining the adjustment to symbol width.

D6 The method of claim D1, wherein the configuring the RANS encoder includes selecting a set of pre-defined
lookup tables having probability information for the adjusted symbol width.

D7 The method of claim D1, wherein the header further includes: a syntax element that indicates whether or not state of a
RANS decoder 1s to be flushed and re-initialized for decoding of the encoded data for the at least part of the bitstream;
and/or a syntax element that indicates a selection of a static probability model, for the encoded data for the at least part
of the bitstream, from among multiple available static probability models.

DY A computer system comprising a range asymmetric number system (“RANS”) encoder and an encoded data bufler,
the computer system being configured to perform the method of any one of claims D1 to D7.
D9 One or more computer-readable media having stored thereon computer-executable nstructions for causing one or

more processors, when programmed thereby, to perform the method of any one of claims D1 to D7.

D10 One or more computer-readable media having stored thereon encoded data produced by the method of any one of
claims D1 to D7.

D11 In a computer system, a method comprising: receiving encoded data for at least part of a bitstream, wherein a header
in the at least part of the bitstream includes a syntax element that indicates an adjustment to symbol width for the
encoded data for the at least part of the bitstream; and decoding the encoded data using a range asymmetric number
system (“RANS") decoder, thereby generating output symbols, including: reading the syntax element; based at least in

US 2022/0109891 Al

-continued

Apr. 7,2022

part on the syntax element, determining the adjustment to symbol width; configuring the RANS decoder to perform
RANS decoding at the adjusted symbol width; and performing the RANS decoding at the adjusted symbol width.
D12 The method of claim D11, wherein the syntax element 1s an n-bit value, which indicates a decrease by an amount in the

range of O to 2”-1 bits from the symbol width.

D13 The method of claim D12, wherein the symbol width 1s set for the bitstream, and wherein the adjustment applies for
one of multiple fragments of the bitstream, thereby narrowing effective symbol width for that fragment for the

RANS decoder.

D14 The method of claim D11, wherein the header is for one of multiple fragments, each of the multiple fragments including
its own header having a syntax element that indicates an adjustment to symbol width for the encoded data for that
fragment, and wheremn the decoding using the RANS decoder 1s performed on a fragment-by-fragment basis.

D15 The method of claim D11, wherein the decoding the encoded data using the RANS decoder includes: as part of a first
phase, selectively updating state of the RANS decoder using probability information for an output symbol from a
previous iteration; as part of a second phase, selectively merging a portion of encoded data, for at least part of a
bitstream, from an input bufler into the state of the RANS decoder; and as part of the second phase, selectively
generating an output symbol for a current iteration using the state of the RANS decoder.

D16 The method of claim D11, wherein the configuring the RANS decoder includes selecting a set of pre-defined lookup

tables having probability mfmrmatmn for the adjusted symbol width.

D17 The method of claim D11, wherein the header further includes: a syntax element that indicates whether or not state
of the RANS decoder 1s tn:::n be flushed and re-imitialized for decoding of the encoded data for the at least part of the
bitstream; and/or a syntax element that indicates a selection of a static probability model, for the encoded data for
the at least part of the bitstream, from among multiple available static probability models.

D18 A computer system comprising an encoded data buffer and a range asymmetric number system (“RANS”) decoder,
the computer system being configured to perform the method of any one of claims D11 to D17.

D19 One or more computer-readable media having stored thereon computer-executable instructions for causing one or more
processors, when programmed thereby, to perform the method of any one of claims D11 to D17.

D20 One or more computer-readable media having stored thereon encoded data organized for decoding according to

the method of any one of claims D11 to D17.

[0284] In view of the many possible embodiments to
which the principles of the disclosed invention may be
applied, 1t should be recognized that the 1llustrated embodi-
ments are only preferred examples of the mmvention and
should not be taken as limiting the scope of the invention.
Rather, the scope of the invention 1s defined by the following
claims. We therefore claim as our invention all that comes
within the scope and spirit of these claims.

1.-20. (canceled)

21. In a computer system, a method comprising:
encoding input symbols using a range asymmetric number
system (“RANS”) encoder, thereby generating encoded
data for at least part of a bitstream, including;:
determining whether or not state of a RANS decoder 1s
to be flushed/re-imtialized for decoding of the
encoded data for the at least part of the bitstream;
setting a syntax element that indicates whether or not
the state of the RANS decoder 1s to be flushed/re-
imitialized for decoding of the encoded data for the at
least part of the bitstream; and
performing RANS encoding; and
outputting the encoded data for the at least part of the
bitstream, wherein a header 1n the at least part of the
bitstream includes the syntax element that indicates
whether or not the state of the RANS decoder 1s to be
flushed/re-nitialized for decoding of the encoded data
for the at least part of the bitstream.

22. The method of claim 21, wherein the syntax element
indicates the state of the RANS decoder 1s to be flushed/re-
iitialized for decoding of the encoded data for the at least
part of the bitstream, and wherein the encoding further
includes determining 1nitial state information for the
encoded data for the at least part of the bitstream, the
bitstream further including the initial state information for
the encoded data for the at least part of the bitstream.

23. The method of claim 21, wherein the syntax element
indicates the state of the RANS decoder i1s not to be
flushed/re-imtialized for decoding of the encoded data for

the at least part of the bitstream, and wherein the bitstream
lacks 1nitial state information for the encoded data for the at
least part of the bitstream.

24. The method of claim 21, further comprising repeating,
the encoding on a fragment-by-iragment basis for each of
multiple fragments, each of the multiple fragments including
its own header having a syntax element that indicates
whether or not the state of the RANS decoder 1s to be
flushed/re-nitialized for decoding of encoded data for that
fragment.

25. The method of claim 21, wherein the determining
whether or not the state of the RANS decoder 1s to be
flushed/re-initialized for decoding of the encoded data for
the at least part of the bitstream 1ncludes, for a fragment of
the mput symbols or an mitial p input symbols of the
fragment, evaluating compression efliciency with the state
of the RANS decoder retained versus compression efliciency

with the state of the RANS decoder flushed/re-initialized.

26. The method of claim 21, wherein the encoding further
includes:

selecting a symbol width;
setting a syntax element that indicates the selected symbol

width; and
configuring the RANS encoder to perform the RANS

encoding at the selected symbol width, including
selecting a set of pre-defined lookup tables having
probability information for the selected symbol width.

277. The method of claim 21, wherein the encoding turther
includes:

selectively adjusting a default symbol width for the
encoded data for the at least part of the bitstream:;

setting a syntax element that indicates the selectively
adjusted symbol width, the header 1n the at least part of
the bitstream further including the syntax element that
indicates the selectively adjusted symbol width; and

configuring the RANS encoder to perform the RANS
encoding at the selectively adjusted symbol width,

US 2022/0109891 Al

including selecting a set of pre-defined lookup tables
having probability information for the selectively
adjusted symbol width.

28. The method of claim 21, wherein the encoding further
includes:

selecting a static probability model, for the encoded data

for the at least part of the bitstream, from among
multiple available static probability models;

setting a syntax element that indicates the selected static

probability model, the header in the at least part of the
bitstream further including the syntax element that
indicates the selected static probability model; and
configuring the RANS encoder to perform the RANS
encoding using the selected static probability model.

29. The method of claim 21, further comprising storing
the encoded data for the at least part of the bitstream on a
computer-readable medium.

30. A computer system comprising an encoded data bufler
and a range asymmetric number system (“RANS”) decoder,
the encoded data butiler being implemented 1n memory of the
computer system, and the RANS decoder being imple-
mented using one or more processors of the computer
system, wherein:

the encoded data bufler 1s configured to receive encoded

data for at least part of a bitstream, wherein a header 1n
the at least part of the bitstream includes a syntax
clement that indicates whether or not state of the RANS
decoder 1s to be flushed/re-initialized for decoding of
the encoded data for the at least part of the bitstream:;
and

the RANS decoder 1s configured to decode the encoded

data for the at least part of the bitstream, thereby

generating output symbols, by performing operations

that include:

reading the syntax element;

based at least 1n part on the syntax element, determin-
ing whether or not the state of the RANS decoder 1s
to be flushed/re-imtialized for decoding of the
encoded data for the at least part of the bitstream; and

performing RANS decoding of the encoded data for the
at least part of the bitstream.

31. The computer system of claim 30, wherein the opera-
tions further include, when the syntax element indicates the
state of the RANS decoder i1s to be flushed/re-initialized for
decoding of the encoded data for the at least part of the
bitstream:

retrieving, {rom the bitstream, 1nitial state information for

the encoded data for the at least part of the bitstream:;
and

loading an 1n1tial state, as the state of the RANS decoder,

based at least in part on the 1mitial state information.

32. The computer system of claim 31, wherein the 1nitial
state information 1s a 32-bit value.

33. The computer system of claim 30, wherein the opera-
tions further include, when the syntax element indicates the
state of the RANS decoder 1s to be flushed/re-1nitialized for
decoding of the encoded data for the at least part of the
bitstream:

loading an 1nitial state as the state of the RANS decoder.

34. The computer system of claim 30, wherein, when the
syntax element indicates the state of the RANS decoder 1s
not to be flushed/re-mitialized for decoding of the encoded
data for the at least part of the bitstream, the operations
turther include:

retaining the state of the RANS decoder.

Apr. 7,2022

35. The computer system of claim 30, wherein the RANS
decoder 1s configured to perform the operations on frag-
ment-by-fragment basis for each of multiple fragments, each
of the multiple fragments including 1ts own header having a
syntax element that indicates whether or not the state of the
RANS decoder 1s to be flushed/re-1nitialized for decoding of
encoded data for that fragment.

36. The computer system of claim 30, wherein the per-
forming the RANS decoding includes:

as part of a first phase, selectively updating the state of the

RANS decoder using probability information for an
output symbol from a previous iteration;

as part of a second phase, selectively merging a portion of

the encoded data for the at least part of the bitstream
from the encoded data builer into the state of the RANS
decoder; and

as part of the second phase, selectively generating an

output symbol for a current iteration using the state of
the RANS decoder.

37. The computer system of claim 30, wherein the opera-
tions further include:

reading, from the header in the at least part of the
bitstream, a syntax element that indicates a selection of
a symbol width;

based on the syntax element that indicates the selection,
selecting the symbol width; and

configuring the RANS decoder to perform the RANS
decoding at the selected symbol width, including
selecting a set of pre-defined lookup tables having
probability information for output symbols of the
selected symbol width.

38. The computer system of claim 30, wherein the opera-

tions further include:

reading, from the header i1n the at least part of the
bitstream, a syntax element that indicates a selective
adjustment of a default symbol width for the encoded
data for the at least part of the bitstream;

based on the syntax element that indicates the selective
adjustment, selectively adjusting the default symbol
width for the encoded data for the at least part of the
bitstream; and

configuring the RANS decoder to perform the RANS
decoding at the selectively adjusted symbol width,
including selecting a set of pre-defined lookup tables
having probability information for output symbols of
the selectively adjusted symbol width.
39. The computer system of claim 30, wherein the opera-
tions further include:
reading, from the header in the at least part of the
bitstream, a syntax element that indicates a selection of
a static probability model, for the encoded data for the
at least part of the bitstream, from among multiple
available static probability models;
based on the syntax element that indicates the selection,
selecting the static probability model for the encoded
data for the at least part of the bitstream; and
configuring the RANS decoder to perform the RANS
decoding using the selected static probability model.
40. One or more computer-readable media having stored
thereon encoded data for at least part of a bitstream, wherein
a header 1n the at least part of the bitstream 1ncludes a syntax
clement that indicates whether or not state of a range
asymmetric number system (“RANS”) decoder 1s to be
flushed/re-mnitialized for decoding of the encoded data for

US 2022/0109891 Al Apr. 7, 2022
32

the at least part of the bitstream, the encoded data for the at
least part of the bitstream being organized to facilitate
decoding by operations comprising:
reading the syntax element;
based at least in part on the syntax element, determining
whether or not the state of the RANS decoder 1s to be
flushed/re-mitialized for decoding of the encoded data
for the at least part of the bitstream; and
performing RANS decoding of the encoded data for the at
least part of the bitstream.

x x * Cx x

	Front Page
	Drawings
	Specification
	Claims

