a9y United States
12y Patent Application Publication o) Pub. No.: US 2022/0091860 A1

Russell et al.

US 20220091860A1

43) Pub. Date: Mar. 24, 2022

(54) INTEGRATING LEARNING DATA Publication Classification
PROVIDED BY AN EXTERNAL LEARNING (51) Int. Cl
PLATFORM TO CREATE A CUSTOM GOE? F 9 45T (2006.01)
LEARNER EXPERIENCE WITHIN THE 041 29/08 (200 6.01)
CONTEXT OF AN APPLICATION PROVIDED (52) US. Cl '
BY A CLOUD COMPUTING PLATFORM CPC GO6F 9/451 (2018.02); HO4L 67/2804
(71) Applicant: salesforce.com, inc., San Francisco, CA (2013.01); HO4L 67/2838 (2013.01); HO4L
67/34 (2013.01)
(US)
(72) Inventors: Shaun Russell, South Kingstown, RI (57) ABSTRACT
(US); John Bracken, Woodside, CA
(US); Adam Torman, Silver Spring, Technologies are provided for integrating learning data
MD (US); Cloves Carneiro Junior, provided by an external learning platform (ELP) to create a
Hollywood, FL (US); Carles Enrique custom learner experience within a context of an application
Mogollan Jimenez, San Francisco, CA provided by a cloud computing platform (CCP). The system
(US) can include the CCP, the ELP, learner APIs that expose a
| | common learning data schema on the CCP, and a user
(73) Assignee: salesforce.com, inc., San Francisco, CA interface plattorm (UIP). The UIP can include a compiler
(US) that transforms source code of UICs of a componentized
learner user interface for usage on the CCP, and a bundler
(21) Appl. No.: 17/447,889 that generates a package of Ul components (UICs) that are
- compatible for usage on the CCP. The UICs are specific to
(22) Filed: Sep. 16, 2021 the learning data schema shared with the learner APIs. The
Y UIP exports the package to the CCP, which composes the
Related U.S. Application Data learning data provided via learner APIs and UICs from the
(60) Provisional application No. 63/080,608, filed on Sep. package to provide the custom learner experience within the
18, 2020. context of the application.
300
320-1
Cloud 320-2
y omputin .
Ul Platform Common) EXpOS@ Diatf P CCP External Leamlng
Learning—{ Learner APIs }_Common atform (CCP) Platform
Ul Source Code Data Learning —
7 achans Data Application] Resources]
310 __ Schema Platform —
316
¥~
| 345

Transform Source Code of Ul Components
for Usage on Cloud Computing Platform

340~

Package User
Interface Component Source Code and
Metadata for Usage on the Cloud
Computing Platform

Package

350

Use the Learner APls and the User
Interface Components from the Package to
Provide a Learner Experience within the

/

Context of an Application

360~

External

I ' Eventing Integration Function

Learning
Platform

Features

Patent Application Publication Mar. 24, 2022 Sheet 1 of 11 US 2022/0091860 Al

100
110
113

Source Platform
112

Common Schema

116
Ul Source Code

117 _
Compiler & Bundler

114

Platform specific Platform Platform
packaging of metadata Specific Specific External AP

configuration, source Package Package

code, assets Designed Designed

for 120-N

for 120-1
- -

Application Application

Platform Platform
126-1 126-N

Custom
User

Custom
User _
EXxperience Experience

128-1 128-N-

120-1 120-N
FIG. 1

US 2022/0091860 A1l

Mar. 24, 2022 Sheet 2 of 11

Patent Application Publication

(sfenuapal))

TSN

uonejidwon
[Woljeld

1

o)ISqo/\
[BUJSIXT

(pesyjies]
Se

e09)
uoneidady
puiules
[eUJOIXT

|
!
i

Fplpmir e -

ek oyl e Seewr e welew e SR

Jajidwon

Wiopeld
v2e

AN MMM EEA anam amaal

¢ 9Ol $2.njea4 wloje|d
T bulules jeulsix3
uoneolddy Jaulea
bunnsey Lojsn? Y SJUBAT JOSMOIY
uoneolddy oo
-8¢¢
9p0) 9¢¢ SaljNu
uoneolddy onesBal mc_%mmw._ [\ Juonesbayul |dvy
WIojield wioneld [UENe WIOjEld

(p09°92.10js9jes “ba) wioje|d bupndwo) pno|) CGC L-0¢¢

._m_m%:m sjusuodwo) |dV
1M 30
Js|ldwo) 9p07) 82IN0Q pid
L 4%
91¢
eled
buluies
¢lc~_| ewsayos ejeq | e
puiies] |
Uowiwon
wiojje|d Bujuies
0LC

US 2022/0091860 A1l

2022 Sheet 3 of 11

b/

Mar. 24

Patent Application Publication

¢ Ol
Sa.njes
Wwiojield
puluies
VIV

uonoun4 uonelbajul bunusa3

09¢

0/€
UoI1ei|ddy ue JO 1X8juo)
aU) UIUNIM a2usliadx3 JauleaT e apinoid
0] abeyoed sy} woJj sjusuodwon) adeLs)uj
JaS(8] pue S|4V Jauiea ayj as

0G¢
abeyoed
/
Gie
9¢¢
A
_ wiofe|d i
E co_“mo__an_(@c_w‘_mm._m.._
Wiogeld LOWWO
soucet i) | (90 aiei O
Z2-02¢ pNOJY)

-0Z¢
005 —"

wJiojje|d buindwon
pNo|Y) ay} uo abes(1o} ejepelo
pUB 8p07) 924N0G Jusuodwon) adelsu|
19s sbeyoed

0ve

wJoje|d bunndwon pnojn uo abesn Joj
SjusuodwoY | JO 8POD 8AINOS WIOJSU.I] |

0€¢
91¢€
ewayog /S 0LE
2illg
S|4V Joulea puiuies OPOQ RUINOS 1N
UOWwo9 WIOHE|d I

7le asodx3

0k a0 61 21| vonesveuny seleues: e pre e s cssm g vasada ALY

) 2 Y098 Wser) © ﬂ._aﬁﬁmmgwgg S SHIBS N0 et Senardde pupseapod oy Uoiad 8y 1{sHoSUGAS SAnDexy

(Sitdfiee) efugeys

$32UN0STY
58588001 $8]8S INCA BULRC
QI387} JNO4 I0] Ul

salhals A3y NG SULRQ
SIEGE) 4N0A USIgES3

Wea) 04 JaYIES
S9ANRS(00 bunues |

goitle |

Sl G 11007 @
BJEAST ailk |

310y Jaheld Aoy

.___E&mﬂ%ﬁ%ﬁﬁﬁ% m_mw
IS s 4 cambBatueenl 8 piluciid Sgeb 0 BL) 58NS 5B0) SRS JH0L TONED PR SUE BONE LG
01 BUseid o sseams eaUp 10f o) £smeseq juelodn & Siemotsyess Inok Jo dnosd b g foseen Bilogy
B8} SSRNS T AUESE O B 5% S0l UL PORABRN B 8l HOA 0 SSRISHE sk L) SIBlIAUBS: Jeas ned Jegleuy
wiea| Jno) Jayier)

‘Secf) ssaUisng 108 s N0k djat e Samies; NGy saieg Moy o) AN ajeal a0k stjay sipow S|
‘Sl 5530008 1m0 S0l || ASU1 20U SUE) SHES 10y SI0S SSaUIY 104 BUNERR() »

"BROYY (B Lym 3 5ebUe |1t B8} S3(RS INSA MOl J0y U] »

03 88 80 & oA Un sig Busdwien Ay

saanaalqe Bunes™

BNO|7 S9|BS YIM SSEIANEG J0) SSIUISNE JNOA LIORISO

0EY

US 2022/0091860 A1l

¥ Ol

00 sfied e ke
iim % (0

_ T — {1 Aljgeun S3i15¢ peg
e O 0 e s | S MCL%ME ,_"MH ey _._m_m_gm

e A A S S P A IR B el s
ity i s s gy Hols] pie S 661 SSaldg

SllIEY] G
gz Emumﬁmmm_ it El maﬁm___m__wmgﬁ [l H 3 _mmﬁw_.% e CEpiRtat £31 AI] S0 S 6]
|HefBhle &) -

_ ; \ SHEBNR LA
S50 S AEOVED 00T B S ENCE OVALORRN 1] e S | % m @%

: al .
S — ——— e T

(00545
i N sy 0l
fod] eheid Aoy JOTRYD ATARY S|IERg
. DB O g S _
(£ S0 3 0L, Y LU0 S 5 . 1 LB 82 LA) At Bl O

e stsemaupials res e s gpam e gy | [TRIRGE (TSRO JURETANR [SiRGo
;ﬁﬁmmﬁ%ﬁ&%:ﬁﬁgﬁma._”_ﬁgg%_ﬁgma.%g

WE) NG U380
S SSERID. 0l LU0, L) Sh AR B 40, .ﬁ%ﬁﬁgjm R

EOENEEE

SI0j2I84R0

[10{7 SB1ES UM $8800TIS 1) $58UISRY JN04 UBNISO § ABeieng nomy shixn sajes

Wl mm,mﬁ___m___ﬁ__.__m__s%_w__fﬁt__wﬁ._ Wmm_wm_h_h_m_gmmmm__m__ﬁ% dllild) =

RO SA1BC (3 B0 100 0625 Seyes 1o, ol 0k Uy o L I ﬁmﬁﬁu_m_j_wwmﬂm H

_ }mmammemMm}m_:ﬂega:mmémm__..Emmmg._,m:
~ SU00d 005 V52 , o“_ ..-__ u_,_nu ._mxm{h:,w_{m_j
&) ueluoj wepy’ | MO _ @

ON _ N 7 ¢ 40] mc_xﬁE alat NOA 1BUM 51U &

8¢ SICA 902+

SOIBEY
Ul BIuoD pRoiD $9|eS

9IRPAJ

Mar. 24, 2022 Sheet 4 of 11

T SRIG] 902+

fR0p55) 5B IE BCE) SHES V10158) 3l S8y ¢y 50k Wesl {shosn puj
'S5a201 S8jes Azp-Gpten aif Jnode ol &) oy o tosieday] | e Mﬁmw_mm_wma _mm%m
AGo1RAS N0HOY PRGN 89188

NPl

OLY

SMIC] §0g+

AUMISNDOId $9]8S
NP

CLD WS

Iy

@
@
&

N
D

0y S[IC 902+

sousliadyy Buuub Jos AN
INPCA

Buieas pajsshbng

LUK NOA dialL) 8m UBD TBUA D)

L A 20N A SIOBNK

Buluies peyssdbng —» | mm

Patent Application Publication

108)ad 8Ie SMBIAISIT YOu I B AJRRU9SST

L B5 501 ok Ji m_% gmﬂgsmﬁ
saAlaian dusuies

BEO|] SBEQ (JIA SSB2INE 10] SSEUISAG INT) UOISOS &

oy

SSalbold Liai]
ugjuonbulies

waonbulIesT

,_ 5500
M wsionBues

aipeg

abpegbuiules paweabulesT

ABluIngG
JsnBuiea

Emey { 10N DO
pushar] jpqwAig weibe

'SLOUMSIA
|{eUIS/SjIGOW 40

‘paunduns
QIOW g B Si jely

yied

e ULI0j O} {y01g a1}
PEyoEs UBHD 1soW
st Jeul 8|1} pajebuo|y

pud e ul pesn
UBY0 1S0W 8l 8J07)

Y

L L L LT

IS [USIUGO-Sp]]

_10eduwos-

A, PTLTRL ErL Ly

0Cv

1434

G Old

'1SIT1 HUN) pUe 1gpeaH JUajuo) |3 oM suJeyed | pPegyied| 0] sdew Siy |

'M3IA S|NPOW S} SI SIY |

SUIL O+ S0 Q02+
ANIALIONPOIL $3|BS

US 2022/0091860 A1l

00—~

S|INPOA

- SUIW (f+ SJuI0d 00Z+ 1%

ﬂ gousliadx3 Buiupybit Jo) NN

- "WId)| 3SI7 JUBJUOY [|BD am Uid)jed |N pesyjlel| e 0] dew $a9ald Jusjuod asay] || ST

._w . Buiuies poysohbbng

= M3IA 1SI| S)INSaJ Y2Jeas au) S SIy|

.

~

~

< 'SLIOAMBIA 'PBIIAWIS ‘yled

s [ews/a[igow o} 2J0W JI0 B S| ey} B W0y 0} (Syouq axi)

S 100149d 818 SMBIA JSIT XYoL IUlW B Ajlennuassy payoels ua)o jsow 'pIID B Ul pasn
LS} 1oedwioo-] st jey) o pejebuolg usyo jsow aj 8I0D

S ISI-JUSIU0-SP) YOLG-JU8JU0d-S] YOLG-JUSJU03-SP] SII-JUSJU0J-SP]

=

5 — Py

- S — —_—

= O == —

= e

]

-

«

,m ¥a-11

=

=5

9 Ol

¥ ™29
I 079

0v9

US 2022/0091860 A1l

G09 /09 ~CV9

679 | "\
r09{[Koo | wosseood | o1
Wwa)sAg bunesadp % E
| JOAId

auIbu3 bulessaold ejeQ 309

4%

¢ed AJ0]28.1(] BleQ
719 [ESIOAIUN

J0jeJauan
ISENY

919 9¢9

: IVEEIRIS SU9810Q Elepela\ EIEPEIRI
__ SPRIG0 _ wojsny | _ DIEPUEIS 7iueus] | | Liueusy |
929 229 | e e

7¢9
lojesaues) ddy swiuny aseqejeq jueua]-njInA

0¢9 ddy ddy R~0L9
Z Jueus| | Jueus ‘
8¢9 8¢9 089

209—" R~009

Mar. 24, 2022 Sheet 6 of 11

Patent Application Publication

Patent Application Publication Mar. 24, 2022 Sheet 7 of 11 US 2022/0091860 Al

Environment 716

22 System

= &=———
System Program Process
Data Code Space
Storage
724

Applrcatron 718 Processor
Platform System

Network Interface

S

714

Cleorc

712 /12

User System ¢ oo User System

Patent Application Publication Mar. 24, 2022 Sheet 8 of 11 US 2022/0091860 Al

Tenant Space

. Tenant Data

I Application
Metadata

Tenant DB

Tenant System \ 802
Process

Vianagement

936 Process
804 -804
334 Tenant 1|{Tenant 2| . _|Tenant N|[}-804
PL/SOQL Process || Process Process
AP|)

AP :

-l-n.._IIlllII
——
"_
——
—

323
(22

716

I’
ik
ﬂ‘#
i
- il
'l'h.- ﬂl-
i Iﬂ-'
i~

Environment 700, 014 700N

710~
819 812B w
812A System System . . 812
812C System System ol
812D

FIG. 8

US 2022/0091860 A1l

Mar. 24, 2022 Sheet 9 of 11

Patent Application Publication

956

abel01g
aseqgele(

YOIMS 40

lemaul4
SOV

_. YOIMS
/

076

V6 Ol

¢ YUMS
9109

| YIJIMS
9109

lemai

clLo

Z 19]1N0Y
o9bp3

306

7\
K>
|, JOINOY
9bp3

"~006

706

US 2022/0091860 A1l

Mar. 24, 2022 Sheet 10 of 11

Patent Application Publication

90Ue)Su]
aseqele(

SJONISS

ddy W/
N

SEINELS
yoieg

SJONIBS
SOV

SJoXapU|

g
| IS
< s

| SIOAIBG
ol 4

e

n
=

SETNETS
- Alenpd

N S4AN N
0 o | 1s0ueleg
NS

_ PeOT]
@@@‘ 826

R wenw Feen Aeiwic e P e e mee W T e et o we e siwine o owieee owieiel dwieiel deieiee owieied el Sl winieile dieieied i i el el e W sieiir el e e A o e wewis T welele PRl e vl e Awmler e et e e it Beeeee e et Rwieie A e il e W e Tieimi wee e Wy At wieie Y mmee it it Wil il e A oWk T A e Wi o el o Teeeer e Al e e

€66

066

30UB)Su|
aseqele(

606
n
>

>
SJOAIDS SIENVETS
yoJeag yoleg
JUSIU0Y JUsJU0)
S X
_M _M
796

Wiphiphjel ojubipig iiejels Wbl g gl Dipiuie] vhyoiubiy pighlple el jebpigh ol g bbb Gl el il g Apinhpigy oy gl dpkiphel i,

O W TR TRITWE TR e W TR T T TOTTTR R S e pweivil Dol sl g skl vieivisielk Yl dhemm DWW TR PR TR PR TR Wil o weeew v veseed dniinel ininiml leieiel

Patent Application Publication Mar. 24, 2022 Sheet 11 of 11 US 2022/0091860 A1l

1000~
1002 ‘ . 010
Processing Device
l Processing | Video Display
1026 1030

1004 1012
Alpha-Numeric
. Input Device

1022

1006 1014

Static Memory Cursor Control
Device
1005 1016
Network Interface Signal Generation

Device Device

1018 Data Storage Device

Machine-Readable
Storage Medium

“|‘|‘|\

1020

1022

FIG. 10

US 2022/0091860 Al

INTEGRATING LEARNING DATA
PROVIDED BY AN EXTERNAL LEARNING
PLATFORM TO CREATE A CUSTOM
LEARNER EXPERIENCE WITHIN THE
CONTEXT OF AN APPLICATION PROVIDED
BY A CLOUD COMPUTING PLATFORM

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/080,608, filed Sep. 18, 2020,
which 1s incorporated herein by reference 1n 1ts entirety. The

present application 1s related to co-pending application Ser.
No. , titled “PROVISIONING AN ESCROW USER

ACCOUNT FOR TRACKING LEARNING PROGRESS
OF AN END USER OF A CLOUD COMPUTING PLAT-
FORM WHILE INTERACTING WITH VIRTUAL
LEARNING ENTITIES OF THE CLOUD COMPUTING
PLATFORM THAT REPRESENT CONTENT OF AN
EXTERNAL LEARNING APPLICATION,” also filed on
Sep. 17, 2021, by inventors John Bracken et al., which 1s
incorporated herein by reference 1n 1ts entirety.

TECHNICAL FIELD

[0002] Embodiments of the subject matter described
herein relate generally to cloud computing platforms, and
more particularly, embodiments of the subject matter relate
to methods, systems and non-transient processor-readable
media that are provided for integrating learning data pro-
vided by an external learning platform to create a custom
learner experience within the context of an application
provided by a cloud computing platform.

BACKGROUND

[0003] Today many enterprises now use cloud-based com-
puting platforms that allow services and data to be accessed
over the Internet (or via other networks). Infrastructure
providers of these cloud-based computing platforms offer
network-based processing systems that often support mul-
tiple enterprises (or tenants) using common computer hard-
ware and data storage. “Cloud computing” services provide
shared resources, software, and information to computers
and other devices upon request. In cloud computing envi-
ronments, software can be accessible over the Internet rather
than installed locally on in-house computer systems. This
“cloud” computing model allows applications to be provided
over a platform “as a service” supplied by the infrastructure
provider. The infrastructure provider typically abstracts the
underlying hardware and other resources used to deliver a
customer-developed application so that the customer no
longer needs to operate and support dedicated server hard-
ware. Cloud computing typically involves over-the-Internet
provision of dynamically scalable and often virtualized
resources. Technological details can be abstracted from the
users, who no longer have need for expertise 1, or control
over, the technology inirastructure “in the cloud” that sup-
ports them. The cloud computing model can often provide
substantial cost savings to the customer over the life of the
application because the customer no longer needs to provide
dedicated network infrastructure, electrical and temperature
controls, physical security and other logistics in support of
dedicated server hardware.

Mar. 24, 2022

[0004] Multi-tenant cloud-based architectures have been
developed to improve collaboration, integration, and com-
munity-based cooperation between customer tenants with-
out compromising data security. Generally speaking, multi-
tenancy relers to a system where a single hardware and
soltware platform simultaneously supports multiple organi-
zations or tenants from a common data storage element (also
referred to as a “multi-tenant database”). The multi-tenant
design provides a number of advantages over conventional
server virtualization systems. First, the multi-tenant plat-
form operator can often make improvements to the platform
based upon collective information from the entire tenant
community. Additionally, because all users in the multi-
tenant environment execute applications within a common
processing space, it 1s relatively easy to grant or deny access
to specific sets of data for any user within the multi-tenant
platform, thereby improving collaboration and integration
between applications and the data managed by the various
applications. The multi-tenant architecture therefore allows
convenient and cost-eflective sharing of similar application
feature software between multiple sets of users.

[0005] In general, businesses use a customer relationship
management (CRM) system (also referred to as a database
system or system) to manage business relationships and
information associated with the business relationship. For
example, a multi-tenant system may support an on-demand
CRM application that manages the data for a particular
organization’s sales stail that 1s maintained by the multi-
tenant system and facilitates collaboration among members
of that organization’s sales stafl (e.g., account executives,
sales representatives, and the like). This data may include
customer and prospect contact information, accounts, leads,
and opportunities 1n one central location. The information
may be stored in a database as objects. For example, the
CRM system may include “account™ object, “contact” object
and “opportunities” object.

[0006] Learming to use applications and services provided
by a cloud computing platform can be time consuming for
end users. In one approach to help facilitate learming within
a cloud computing platform, an external learning system
may provide data to the cloud computing platform, and a
platiorm developer can build their own Ul (e.g., represen-
tation of the data) without importing the application func-
tionality and style of the application at the external learming
platform. This can allow an end user or “learner” to learn
within the context of an application provided by the cloud
computing platform, but the end user will not have the same
user experience as they would if interacting with a learming,
application provided by the external learning platform. In
most case, the look and feel, application functionality,
information architecture, iteraction behavior, style and/or
branding of the external learning application provided by the
external learning platform will be diflerent than 11 the end
user were interacting with the learning application provided
by the external learning platiorm.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more complete understanding of the subject
matter may be derived by referring to the detailed descrip-
tion and claims when considered 1n conjunction with the
tollowing figures, wherein like reference numbers refer to
similar elements throughout the figures.

US 2022/0091860 Al

[0008] FIG. 1 1s a schematic block diagram of an example
of a computing environment in accordance with the dis-
closed embodiments.

[0009] FIG. 2 1s a schematic block diagram of another
example of a cloud computing environment for implement-
ing a learning platform architecture (LPA) in accordance
with the disclosed embodiments.

[0010] FIG. 3 1s a flowchart of a method 1n accordance
with the disclosed embodiments.

[0011] FIG. 4 15 a set of screenshots that 1llustrates various
user interfaces that are presented to an end user during a
learner experience when interacting with the learning plat-
form architecture (LPA) of FIG. 2.

[0012] FIG. 5 1s a screenshot of a user interface that shows
the user interface elements of FIG. 4 1n greater resolution.
[0013] FIG. 6 15 a schematic block diagram of an example
ol a multi-tenant computing environment in which features
of the disclosed embodiments can be implemented 1n accor-
dance with the disclosed embodiments.

[0014] FIG. 7 shows a block diagram of an example of an
environment 1n which an on-demand database service can be
used 1n accordance with some implementations.

[0015] FIG. 8 shows a block diagram of example imple-
mentations of elements of FIG. 4 and example interconnec-
tions between these elements according to some 1implemen-
tations.

[0016] FIG. 9A shows a system diagram illustrating
example architectural components of an on-demand data-
base service environment according to some 1mplementa-
tions.

[0017] FIG. 9B shows a system diagram further illustrat-
ing example architectural components of an on-demand
database service environment according to some 1mplemen-
tations.

[0018] FIG. 10 1s a block diagram that illustrates a dia-
grammatic representation ol a machine 1n the exemplary
form of a computer system within which a set of instruc-
tions, for causing the machine to perform any one or more
of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0019] It would be desirable to provide a cloud computing
platform with the ability to integrate and leverage third-party
data, features, user interface design patterns, and branding
from external third-party content platforms (e.g., data
sources) 1nto an application provided by the cloud comput-
ing platform. However, this can present a number of tech-
nical challenges. For example, in some core cloud comput-
ing platforms, such as the Salesforce.com® platform, when
third-party data from an external third-party content plat-
form or other data source 1s to be incorporated into an
application provided by the cloud computing platform, it 1s
imported via APIs, then reformatted to meet constraints of
the cloud computing platform. At that point, developers on
the cloud computing platform then have to create user
interfaces (Uls) to represent that data from scratch. In
addition, the resulting user experience i1s not entirely cus-
tomizable. The Ul components are opinionated and support
a small number of modifications (by design) to ensure
continuity throughout the integration. Additionally, the APIs
for the components are strict, so there must be work done 1n
the platform integration process to aggregate and serialize
the data such that 1t 1s compatible with the Ul components.
As a result, this process 1s time-consuming and prone to

Mar. 24, 2022

error since 1t requires time and effort to reformat the third-
party data and then build new Ul(s) from scratch.

[0020] To help address the problems described above,
technologies and methodologies are provided for packaging
Ul components that are designed to represent third-party
data from an external third-party content platform (or data
source). They retain the interactivity, formatting, and look/
teel intended for the user interface by the third-party content
platform. For example, the platform has some hierarchy of
entities so they provide a Ul component that encapsulates a
design pattern for displaying a nested list of the entities and
their relationships. This way the data for these entities can be
displayed consistently between platforms where the third
party 1s integrated (the Ul would be the same 1n Salesforce®,
Oracle®, SAP®, Shopily®, etc) with reasonable customi-
zation capabilities. This mechanism also allows to seam-
lessly carry over the branding associated with the Ul from
the external platiorm. Each UI package 1s compatible for
usage on a particular application platform and specifically
compiled for interoperability with that particular application
plattorm. Each Ul package can be used by a platform
integrator of a particular target platform (e.g., a cloud
computing platform such as the Salestforce.com® platiorm)
to compose Ul components from that package instead of
building them from scratch. This way, the disclosed tech-
nologies and methodologies can allow the design “lan-
guage” ol the external third-party content platiorm (or data
source) to be retained. The disclosed technologies and
methodologies can eliminate the need to reformat the third-
party data to meet constraints of the cloud computing
platform, while also eliminating the need to create user
interfaces (to represent that data) from scratch on the cloud
computing platform. As such, the disclosed technologies and
methodologies are less time-consuming, less prone to error
and save considerable time and effort that would otherwise
be required.

[0021] The disclosed embodiments can provide methods,
systems and non-transient processor-readable media for
integrating learning data (e.g., learning content and contex-
tual user information) provided by an external learming
platform to create a custom learner experience within the
context of an application provided by a target application
platform (e.g., a cloud computing platform). Examples of
contextual user information can include any information
about the user’s relationship with the learning data includ-
ing, but not limited to, learning lists which are user specified
lists of learming content. An end user can have many learning
lists. Each learning list can have many learning items. An
end user has relationships with each learning list, such as,
learning or “learner” progress, learming start date time that
specifies the date and time started, learming completed date
and time that specifies when the learning module was
completed, learning time remaining to complete, learning
reward information, learning submission attempt dates and
times, learning submissions, modules bookmarked by an
end user, modules favorited by an end user, etc.

[0022] In some embodiments, the system can include the
cloud computing platform, the external learning platiorm,
learner application programming interfaces (APIs) that
expose a common learning data schema on the cloud com-
puting platform, and a user interface platform. The learner
APIs and the user interface components have an implicit
shared knowledge of the common learming data schema that
results 1n mteroperability between them. The user interface

US 2022/0091860 Al

platform can include a compiler and a bundler. The compiler
1s configured to transform (e.g., transpile) source code of
user interface components of a componentized learner user
interface for usage on the cloud computing platform. The
user interface components are specific to the common learn-
ing data schema shared with the learner APIs. The bundler
1s configured to generate a package of user interface com-
ponents that are compatible for usage on the cloud comput-
ing platform. The user interface platform 1s configured to
export the package to the cloud computing platform. The
cloud computing platform composes the learming data pro-
vided via the learner application programming interfaces
and the user interface components from the package to
provide a custom learner experience within the context of
the application provided by the cloud computing platform.
Depending on the implementation, the cloud computing
platform may compose the learner application interfaces and
the user mterface components from the package via one or
more of: application code, composition 1 an experience
builder by an administrator, or an automation application.

[0023] Thus, the user interface platform can create pack-
ages for any number ol application platforms to provide
learning data and UI components from a single source such
that a design and features are consistently represented across
integrations. These packages be used to create “custom
learner experiences” with the context of applications pro-
vided by those application platiorms. The custom learner
experiences will all retain the same (or similar) look and
feel, application functionality, information architecture,
interaction behavior (events), style and/or branding. For
example, the user interface platform can facilitate the inte-
gration of external learning data (provided via the learner
APIs) and Ul components provided via a platiorm package
to create a custom learner experience within the context of
an application provided by the cloud computing platform.
Similarly, the user interface platform can {facilitate the
integration of external learming data and Ul components
provided via another platform package to create another
custom learner experience within the context of an external
learning application provided by the external learning plat-
form. Likewise, the user interface platform can also facili-
tate the integration of external learning data and UI com-
ponents provided to create any number of other custom
learner experiences within the context of any number of
other applications provided by any number of other appli-
cation platforms, while retaining same (or similar) look and
teel, application functionality, information architecture,
interaction behavior (events), style and/or branding across
all of these application platforms including, but not limited
to, the cloud computing platform and the external learming,
platform.

[0024] In some non-limiting embodiments, the cloud com-
puting platform 1mplements external learning entities that
are instances of the learner APIs that make the common
learning data schema available within the cloud computing
platform. The external learning entities comprise the learn-
ing data, and have attributes expected by the user interface
components.

[0025] In some non-limiting embodiments, the package of
user interface components 1s specific to the cloud computing,
platform, and can include transformed source code, assets,
configuration and metadata of the user interface compo-
nents. In one embodiment, the package comprises source
code specifically compiled for interoperability with the

Mar. 24, 2022

cloud computing platform. In one non-limiting 1implemen-
tation, the package can include, for example, metadata,
configuration, JavaScript, stylesheets, images, and other
artifacts of the packaging performed by the bundler.

[0026] In some non-limiting embodiments, the cloud com-
puting platform comprises a platiorm compiler that 1s con-
figured to: transform (e.g., transpile) the source code of the
package into application code of the cloud computing plat-
form.

[0027] In some non-limiting embodiments, the user inter-
face components provide an eventing function for commu-
nication with the cloud computing platiorm that allows for
integration with the application provided by the cloud com-
puting platform.

[0028] In some non-limiting embodiments, the user inter-
face components provide an eventing integration function
for interacting with resources from the external learning
plattorm system within an 1Frame, wherein the eventing
integration function allows for the external learning platform
to communicate with the application provided by the cloud
computing platform.

[0029] In one embodiment, a cloud-based computing sys-
tem 1s provided. The cloud-based computing system can
include a cloud computing platform as described above. The
cloud computing platform can include a multitenant data-
base system that 1s configurable to provide applications and
services to a plurality of clients. Each client can be, for
example, a tenant or organization of the cloud computing
platform.

[0030] FIG. 1 1s a schematic block diagram of an example
of a computing environment 100 1n accordance with the
disclosed embodiments. As 1llustrated in FIG. 1, the com-
puting environment 100 can include an external user inter-
tace (UI) source platform 110, a first application platform
120-1, and a second application platform 120-N. In this
embodiment, the first application platform 120-1 and the
second application platform 120-N are independent of one
another, and 1t should be appreciated that while two appli-
cation platforms 120-1, 120-N are 1illustrated in FIG. 1 for
purposes of illustration, the disclosed embodiments can be
applied to work with any number of additional application
platforms that are not illustrated for sake of simplicity.

[0031] The UI source platform 110 includes a shared,
common data schema 112, data 113, UI source code 116, a
compilation module 117, and external application program-
ming interfaces (APIs) 114. The external APIs 114 t expose
the common data schema 112 on the first application plat-
form 120-1 and the second application platform 120-2. In
accordance with the disclosed embodiments, the data 113
provided by the external APIs 114 and the user interface
components provided by platform packages 118-1, 118-N
have an implicit shared knowledge of the common data
schema 112 that results 1n (or allows for) interoperability
between them. As will be explained below, the APIs 114 can
be bound to packages 118, and the Ul components from Ul
source code 116 are designed to pair with the learner APIs
114. The common data schema 112 specifies the names and
data types of the attributes for the learning related entities.
The shared knowledge of the common data schema 112
between the Ul components 116 and the APIs 114 allows
them to be composed to build custom learner experiences.
To explain further, the common data schema 112 1s “shared
by” the UI components 116 and the APIs 114 to assure that
the learnming data provided by the APIs 114 1s compatible

US 2022/0091860 Al

with the Ul components 116. Without a shared common data
schema 112 there 1s no assurance that the APIs 114 provide
all the information needed to render the Ul components 116.
It also eliminates the need to reformat the data.

[0032] As will be explained below, the Ul source platiorm
110 can facilitate the mtegration of external data 113 (that
includes content and contextual user information) and UI
components (via platform packages 118-1, 118-N) to create
a custom user experience within the context of an applica-
tion 128-1 provided by the first application platform 120-1
and to create another, different custom user experience
within the context of another application 128-N provided by
the second application platform 120-N.

[0033] A user interface can include any number of user
interface components, which can collectively be described
as an atomic composable user interface. The user 1nterface
components can include, but are not limited to, visual
representations of entities, lists of the entities, summaries of
the entities, detailed learning components, evaluation com-
ponents, content bricks that provide summary level detail of
the learning, etc. The user interface source platform 110 can
perform a transform/compilation process to generate one or
more platform packages 118-1 . . . 118-N of user interface
components (or “bundle” of Ul components). One platiform
package 118-1 (or Ul package 118-1) 1s compatible for
usage on the first application platform 120-1, whereas
another platform package 128-N (or UI package 118-2) is
compatible for usage on the second application platiorm
120-N. In most cases, the platform packages 118 that are
generated are different as will be described below (e.g., each
platform package 1s compatible for usage on a particular
application platform and specifically compiled for interop-
crability with that particular application platform). In addi-
tion, 1t should be appreciated that the user interface source
plattorm 110 can generate any number of additional plat-
form packages (not shown) of user interface components

that are compatible for usage on other platforms that are not
illustrated 1n FIG. 1.

[0034] To generate platform package(s), 1n one embodi-
ment, the user mterface source platform 110 can include a
compilation module 117 that includes a compiler and bun-
dler. The compiler 1s configured to transform (e.g., transpile)
UI source code 116 of user interface components for usage
on the first application platform 120-1. The user interface
components are specific to the common data schema 112
shared with the external APIs 114. In one embodiment, the
compiler takes source code and assets as mput and provides
transformed or transpiled source code and assets as output.
The bundler 1s configured to generate platform packages 118
of user interface components (or “bundles” of Ul compo-
nents) that are compatible for usage on the first application
plattorm 120-1. The platform package 118-1 of user inter-
face components 1s specific to the first application platiorm
120-1, meaning that a particular application platform may
have specific packaging specifications that the platform
package 118-1 must comply with, whereas a different second
application platform 120-N may have other, diflerent spe-
cific packaging specifications that another platform package
118-N must comply with. In one embodiment, the bundler
takes transpiled source code as input and provides a platform
package of source code, assets, configuration and metadata
as output. In one embodiment, each platform package can

Mar. 24, 2022

include, for example, transformed Ul source code, assets,
configuration and metadata of the user interface compo-
nents.

[0035] Using the common schema 112 and Ul source code
116, the user interface source platform 110 can generate two
separate platform packages 118-1, 118-N ifor the first appli-
cation platform 120-1 and the second application platiorm
120-2, respectively. In most cases, the two platform pack-
ages 118-1, 118-N that are generated are different, but 1n
some cases could be the same or similar. To explain further,
cach platform package 118 i1s compatible for usage on a
particular application platform and specifically compiled for
interoperability with that particular application platiorm,
and therefore, 1n some cases, 11 two application platforms are

different then their respective platform packages may be
different.

[0036] The external APIs 114 of the user interface source
plattorm 110 are consumed by both the first application
platform 120-1 and the second application platform 120-2.
The external APIs 114 provide (or export) data 113 to the
first application platform 120-1 and the second application

platform 120-N.

[0037] The user mterface source platform 110 1s config-
ured to export data 113 (via the external API 114) and the
plattorm package 118-1 to the first application platform
120-1, and to export data 113 (via the external API 114) and
the platform package 118-N to the second application plat-
form 120-N. This way, the first application platform 120-1
can receive the data 113 and the package 118-1 from the Ul
source platform 110, whereas the second application plat-
form 120-N can receive the data 113 and a separate/difierent

platform package 118-N from the same Ul source platform
110.

[0038] In some embodiments, a platiorm integration mod-
ule 126-1 of the first application platiorm 120-1 composes
the data 113 provided via the external APIs 114 and the user
interface components from the platform package 118-1 to
provide to provide application code for a custom user
experience within the context of the application 128-1
provided by the first application platform 120-1. Depending
on the implementation, the platform integration module
126-1 of the first application platform 120-1 may compose
the APIs 114 and the user interface components from the
plattorm package 118-1 via one or more of: application
code, composition 1n an experience builder by an admainis-
trator, or an automation application.

[0039] Similarly, a platform integration module 126-N of
the second application platform 120-N composes the data
113 provided via the external APIs 114 and the user interface
components from the platform package 118-N to provide to
provide application code for a custom user experience
within the context of the application 128-N provided by the
second application platform 120-N. Depending on the
implementation, the platform integration module 126-N of
the second application platform 120-N may compose the
application iterfaces and the user interface components
from the platform package 118-N via one or more of:
application code, composition 1n an experience builder by an
administrator, or an automation application, as will be
explained 1n greater detail below.

[0040] FIG. 2 1s a schematic block diagram of another
example of a cloud computing environment 200 for 1mple-
menting a learming platform architecture (LPA) 1n accor-
dance with the disclosed embodiments. As illustrated in FIG.

US 2022/0091860 Al

2, the cloud computing environment 200 (or “cloud-based
computing system”) can include an external learner user
interface (Ul) platform 210, a target cloud computing plat-
form 220-1, an external learning platform 220-2, and learner
application programming interfaces (APIs) 214 that expose
a common learning data schema 212 on the cloud computing
platform 220-1. In one non-limiting embodiment, the cloud
computing platform 220-1 can include a multitenant data-
base system that 1s configurable to provide applications and
services to a plurality of clients, where each client can be, for
example, a tenant or organization of the cloud computing
platform 220-1. Examples of a cloud computing platform
like this will be described below with reference to FIGS.
6-9B. A specific, non-limiting example of such a cloud
computing platform 1s Salesforce.com®; however, it should
be appreciated that the cloud computing platform could
include other platforms such as SAP®, Oracle®, etc. Non-
limiting examples of external learning platform 220-2 can
include, for example, Trailhead.com®, Microsoit Learn®,
Microsoit CRM Dynamics®, SAP Concur Expenses®,
Workday HRMS®, Comerstone On-Demand®, Instruc-
ture®, and Lessonly®, etc. It should be appreciated that the
disclosed embodiments can be applied to work with any
number of application platforms and that two (1.e., the cloud
computing platform 220-1 and the external learning plat-
form 220-2) are 1illustrated 1n FIG. 2 for purposes of 1llus-
tration.

[0041] The Ul platform 210 can include a common leamn-
ing data schema 212, learning data 213, learner APIs 214,
source code of Ul components 216, and a compiler and
bundler 217. As will be explained below, the Ul platform
210 provides external learning data 213 (that includes learn-
ing content and contextual user information) to the applica-
tion platforms 220-1, 220-2 via the learner APIs 214, and
provides Ul components 216 to the application platforms
220-1, 220-2 via separate/different platform packages 218
that 1t generates for the application platforms 220-1, 220-2.
Examples of contextual user information are described
above, and will not be repeated here for sake of brevity.

[0042] In accordance with the disclosed embodiments, the
data provided by the learner APIs 214 and the user interface
components 216 provided by the platform packages 218
have an implicit shared knowledge of the common learning,
data schema 212 that results 1 (or allows for) interoper-
ability between them (e.g., the attributes and data types for
the learner API entities 214 conform to the type definitions
of the Ul components 216). As will be explained below, the
learner APIs 214 can be bound to packages 218, and the Ul
components 216 are designed to pair with the learner APIs
214. The common learning data schema 212 specifies the
names and data types of the attributes for the learning related
entities. The shared knowledge of the common learning data
schema 212 between the Ul components 216 and the learner
APIs 214 allows them to be composed to build custom
learner experiences. To explain further, the common leamn-
ing data schema 212 1s “shared by” the Ul components 216
and the APIs 214 to assure that the learming data provided by
the APIs 214 1s compatible with the Ul components 216.
Without a shared common learning data schema 212 there 1s
no assurance that the APIs 214 provide all the information
needed to render the Ul components 216. It also eliminates
the need to reformat the data.

[0043] For example, the Ul platform 210 can facilitate the
integration of external learning data 213 (provided via the

Mar. 24, 2022

learner APIs 214) and Ul components 216 (provided via a
platform package 218) to create a custom learner experience
within the context of an application 228-1 provided by the
cloud computing platform 220-1. Similarly, the UI platform
210 can facilitate the integration of external learning data
213 and UI components 216 (provided via another platiorm
package 218) to create another custom learner experience
within the context of an external learning application 228-2
provided by the external learning platiorm 220-2.

[0044] A user interface of the can be made up of any
number of user interface components, which can collec-
tively be described as an atomic composable user interface.
As will be explained below, the user interface components
are composable to create a standardized, packaged, learning
experience applicable to many applications within the cloud
computing platform. The user interface components are
specific to the common learning data schema 212 shared
with the learner APIs 214. The user interface components
can include, but are not limited to, visual representation(s) of
entities, lists of entities, subsets of entities, summaries of
entities, actions that can be performed on said entities, etc.

[0045] The user interface platform 210 can perform a
transform/compilation process to generate packages 218 of
user interface components (or “bundle” of Ul components).
One package 218 i1s compatible for usage on the cloud
computing platform 220-1 (e.g., 1s specifically compiled for
interoperability with the cloud computing platform 220-1
and uses formats that are compatible with application code
of the cloud computing platform 220-1), whereas another
package 218 1s compatible for usage on the external learming
platform 220-2 (e.g., 1s specifically compiled for interoper-
ability with the external learning platform 220-2 and uses
formats that are compatible with application code of the
external learning platform 220-2). In addition, the user
interface platform 210 can generate additional packages of
user mterface components that are compatible for usage on
other platforms that are not illustrated 1n FIG. 2.

[0046] To generate package(s), in one embodiment, the
user interface platform 210 can include a compiler and
bundler 217. Each platform 220-1, 220-2 may have its
own/different expectations for Ul packaging, and therefore,
the platform specific compilation steps can vary {from one
platform 220-1 to another platform 220-2. In addition, the
platform specific compilation steps can change as require-
ments or expectations for Ul packaging of a platform 220 are
developed or change. In general terms, the compiler 217 1s
a translator that takes the original source code written 1n a
programming language as its mput and repackages it to
produce equivalent source code 1n the same or a different
programming language for a respective target platform, such
as cloud computing platform 220-1. The compiler 217 can
transform (e.g., transpile) source code 216 of user intertace
components of a componentized learner user interface for
usage on the cloud computing platform 220-1. For example,
in one embodiment, the compiler 217 takes source code and
assets as mput and provides transpiled source code and
assets as output.

[0047] The bundler 217 1s configured to generate the
package 218 of user interface components (or “bundle” of
user mterface components) that are compatible for usage on
the cloud computing platform 220-1. The package 218 of
user interface components 1s specific to the cloud computing
plattorm 220-1, meaning that a particular cloud computing
plattorm may have specific packaging specifications that the

US 2022/0091860 Al

package 218 must comply with, whereas a different appli-
cation platform (like the external learning platform 220-2)
may have other, different specific packaging specifications
that another platform package must comply with. In one
embodiment, the bundler 217 takes transpiled source code as
input and provides a package of source code, assets, con-
figuration and metadata as output.

[0048] In one embodiment, the package 218 can include,
for example, transformed source code, assets, configuration
and metadata of the user iterface components 216 that 1s
specifically compiled for interoperability with the target
platiorm 1t 1s being distributed to. The package can be a file
or directory that specifically compiled for interoperability
with the varies depending on the requirements of the par-
ticular target platform that a package 218 1s being distributed
to. For instance, the package can be a file or directory that
1s described, for istance, by a package.json file, xml files,
manifest files, etc. In some non-limiting embodiments, the
package 218 can include, for example, one or more of
metadata, configuration, JavaScript, stylesheets, images,
other artifacts of the packaging performed by the bundler
217, etc. For instance, the package 218 can include artifacts
of a build process such as a manifest (e.g., list of items 1n the
bundle), type references, source maps, labels, publishing
information, metadata, etc.

[0049] The learner APIs 214 of the user interface platform

210 are consumed by both the cloud computing platform
220-1 and the external learning platform 220-2. The external
APIs 114 provide (or export) learning data 213 to the cloud

computing platform 220-1 and the external learning plat-
form 220-2.

[0050] The user interface platform 210 1s configured to
export learning data 213 (via the learner API 214), and to
export a package 218 to the cloud computing platform
220-1. In some non-limiting embodiments, the cloud com-
puting platform 220-1 can include a platform compiler 224
that can transform (e.g., transpile) the source code 216 of the
package 218 (or “user interface bundle™) ito application
code of the cloud computing platform 220-1. To explain
turther, the user interface components from the package 218
are built to work with any web browser; however, 1n some
cases, the cloud computing platform 220-1 may need to
compile the normal source code of the user interface com-
ponents (provided 1n the package 218) first so that they can
be utilized at the cloud computing platform 220-1. The
platform compiler 224 can compile the package 218 directly
within the cloud computing platform 220-1. The UI package
218 eliminates the need for a developer to create any markup
or CSS. Learning data and learning Ul can be imported and
will work 1n the flow of the application.

[0051] Insome non-limiting embodiments, the cloud com-
puting platform 220-1 implements external learning entities
222 that allow for API integration with the cloud computing
plattorm 220-1. The external learning entities 222 are
instances of the learner APIs 214 that make the common
learning data schema 212 available within the cloud com-
puting platform 220-1. The external learning entities 222 can
include learning data 213 (e.g., learning content and con-
textual user information), and have attributes expected by
the user interface components. Non-limiting examples of
learning content attributes can include, but are not limited to,
for example, title, description, points, published date, path,
image, estimated time, pretitle, pretitle link, type, etc. Non-
limiting examples of contextual user information about the

Mar. 24, 2022

learning content can include, but are not limited to, for
example, finished at, estimated time left, percentage com-
plete, points earned, eftc.

[0052] Insome embodiments, a platform integration mod-
ule 226 of the cloud computing platform 220-1 composes
the learming data 213 provided via the learner APIs 214 and
the user interface components from the package 218 to
provide application code for a custom learner experience
within the context of the application 228 provided by the
cloud computing platform 220-1. For instance, 1n one non-
limiting example, where a feature on the platform 1s a
“Learning Homepage”, this UX may include lists of learning
content (e.g., 1n progress, new, assignments, etc.). A plat-
form developer would query the data for these learmings lists
from the learning API. The platform developer would also
import the Ul for learning lists from the learning Ul pack-
age. Then the developer would “compose” (create a list of
lists 1n this case) these learning lists to represent the speci-
fied application UX. The platform developer would then
provide the data to the UI.

[0053] Depending on the implementation, the platform
integration module 226 of the cloud computing platiorm
220-1 may compose the learning data 213 provided via the
learner APIs 214 and the user interface components from the
package 218 via one or more of: application code, compo-
sition 1n an experience builder by an administrator, or via an
automation application. For instance, in one implementa-
tion, the platform can have features that allow developers to
build applications with code, 1n which case they use a
plattorm Ul package 1n their UI, and the API to provide data.
In another implementation, the user interface components
are composable, for example, 1n an experience builder by an
administrator of an application within the cloud computing
plattorm. For example, the platform can provide a builder
that allows developers or customers to use a GUI to “piece
together” an application from a platform UI package and
API data. In yet another implementation, the platform can
have intelligent capabilities for building applications from
metadata criteria, 1n which case 1t evaluates Ul and API
metadata and creates an application.

[0054] Using the same learning data schema 212 and UI
source code 216, the user interface Ul platform 210 can
generate a separate platform package for the external leamn-
ing platform 220-2 that 1s configured for interoperability
with the external learning platform 220-2. In most cases, the
two platform packages that are generated for the cloud
computing platform 220-1 and the external learning plat-
form 220-2 are different, but in some cases could be the
same or similar. The user interface Ul platform 210 1s
configured to export learning data 213 (via the learner API
214) and another platform package 218 to the external
learning platform 220-2. This way, the external learning
platiorm 220-2 can receive the data 213 and a separate/
different platform package from UI platform 210. The
external learning platform 220-2 can then compose the
learning data 213 provided via the learner APIs 214 and the
user interface components from the package 218 to provide
application code for a custom learner experience within the
context of the application 228-2 provided by the cloud
computing platform 220-1.

[0055] In some non-limiting embodiments, the user inter-
face components provide an eventing function for commu-
nication with the cloud computing platform 220-1 that
allows for integration with the application 228 provided by

US 2022/0091860 Al

the cloud computing platform 220-1, and an eventing inte-
gration function for interacting with resources from the
external learming platform 220-2 system within an iFrame
234. The eventing integration function allows for the exter-
nal learning platform 220-2 to communicate with the appli-
cation 228 provided by the cloud computing platiorm 220-1.
Interactions within the i1Frame can change state of the
platform application 228-1. User interaction with 1Frame
234 1s communicated to host so that the host can perform
actions keyed ofl the user iteractions with the iFrame. The
iFrame 234 1s an external source (that may be part of the Ul
plattorm 210) that interacts with the platform app 228-1
through browser events. The iFrame 234 1s tied into the
platform 220-1 with the application code 226 that 1s imple-
mented for a feature such that the behavior within the iIFrame
1s integrated with the application 228-1 (and custom learner
experience).

[0056] For example, when a user interacts with a link 1n a
learning 1tem that emits a browser event indicating the user
clicked the link, then the application listens to that event and
determines that the user wants to see the i1Frame and
transitions the screen to the iFrame. In one implementation,
handlers are bound to specific user interactions, such as
clicking a link, that leverage the browser postMessage API
to send a payload to a web component 1n the application
platform that encapsulates the iFrame. The web component
in turn can trigger events within the platform.

[0057] FIG. 3 1s a flowchart of a method 300 1n accordance
with the disclosed embodiments. The method 300 can inte-
grating learning data (e.g., learning content and contextual
user information) provided by an external learning platform
to create a custom learner experience within the context of
an application provided by a cloud computing platiorm 1n
accordance with the disclosed embodiments. As 1llustrated
in FIG. 3, the method 300 can be implemented 1n a cloud
computing environment that can include an external learner
user interface (UI) platform 310, a cloud computing plat-
form 320-1, an external learning platform 320-2, and learner
application programming interfaces (APIs) 314. It should be
appreciated that the disclosed embodiments can be applied
to work with any number of application platforms and that
two application platforms (1.e., the cloud computing plat-
form 320-1 and the external learning platform 320-2) are
illustrated 1n FIG. 3 for purposes of illustration. With respect
to FIG. 3, the steps of the method shown are not necessarily
limiting. Steps can be added, omitted, and/or performed
simultaneously without departing from the scope of the
appended claims. The method may include any number of
additional or alternative tasks, and the tasks shown need not
be performed 1n the illustrated order. The method may be
incorporated into a more comprehensive procedure or pro-
cess having additional functionality not described 1n detail
herein. Moreover, one or more of the tasks shown could
potentially be omitted from an embodiment of the method as
long as the intended overall functionality remains intact.
Further, the method 1s computer-implemented 1n that various
tasks or steps that are performed 1n connection with the
method may be performed by software, hardware, firmware,
or any combination thereof. For illustrative purposes, the
tollowing description of each method may refer to elements
mentioned above in connection with FIG. 2. In certain
embodiments, some or all steps of this process, and/or
substantially equivalent steps, are performed by execution of
processor-readable 1nstructions stored or included on a pro-

Mar. 24, 2022

cessor-readable medium. For instance, 1n the description of
FIG. 3 that follows, the external learner user interface (UI)
plattorm 310, the cloud computing platform 320-1, the
external learning platform 320-2, and the learner application
programming interfaces APIs 314 can be described as per-
forming various acts, tasks or steps, but it should be appre-
ciated that this refers to processing system(s) of these
entities executing nstructions to perform those various acts,
tasks or steps. Depending on the implementation, some of
the processing system(s) can be centrally located, or distrib-
uted among a number of server systems that work together.
Furthermore, in the description of FIG. 3, a particular
example 1s described in which a platform performs certain
actions by interacting with other elements of FIG. 3.

[0058] A user interface of the external learning platform
320-2 can be made up of any number of user interface
components, which can collectively be described as an
atomic composable user interface. Non-limiting examples of
the user interface components are described above 1n con-
junction with FIGS. 1 and 2. In accordance with the dis-
closed embodiments, the learner APIs 314 and the user
interface components have an implicit shared knowledge of
a common learning data schema that results in (or allows
for) iteroperability between them. The learner APIs 314
expose a common learning data schema on the cloud com-
puting platform 320-1. As will be explained below, the cloud
computing environment can help facilitate learning while 1n
a flow of work within an application (not illustrated) pro-
vided by the application platform 326 by integrating learn-
ing data (that includes learning content and contextual user
information) provided by the external learming platform
320-2 to create a custom learner experience within the
context of the application (not illustrated) provided by the
application platform 326. In this regard, a work flow 1s a
depiction of a sequence of operations. Learning 1n the tlow
of work means introducing learning tasks sometime in the
sequence to integrate learning and productivity tasks for
greater success ol completing the task more accurately. It’s
desirable to keep the user of the application 1n their tlow of
work by not redirecting them outside of their core produc-
tivity tools and enable them to integrate work and learning
within the same tasks such as selling or providing a service
to a customer.

[0059] As will be described below, the user interface
platform 310 can perform a transform/compilation process
to generate one or more packages of user interface compo-
nents (or “bundle” of Ul components). In the embodiment
that 1s 1llustrated 1n FIG. 3, one package 345 1s compatible
for usage on the cloud computing platform 320-1, whereas
another package (not shown) could be generated that is
compatible for usage on the external learning platform
320-2. In addition, the user interface platform 310 can
generate additional packages of user interface components
that are compatible for usage on other platforms that are not
illustrated 1n FIG. 3. In one embodiment, the user interface
platform 310 can 1nclude a compiler and a bundler that are
not 1llustrated.

[0060] At 330, to generate one or more package(s), the
compiler component of the user interface platform 310 can
transform (e.g., transpile) source code 316 of user interface
components (of a componentized learner user interface) for
usage on the cloud computing platform 320-1. The user
interface components are specific to the common learning
data schema shared with the learner APIs 314. In one

US 2022/0091860 Al

embodiment, the compiler takes source code and assets 316
as input and transforms them to provide transpiled source
code and assets as output.

[0061] At 340, the bundler component of the user interface
plattorm 310 can generate the package 343 of user interface
components (or “bundle” of Ul components) that are com-
patible for usage on the cloud computing platiorm 320-1. In
this embodiment, the package 345 of user interface compo-
nents 1s specific to the cloud computing platiorm 320-1,
meaning that a particular cloud computing platform has
specific packaging specifications that the package 345 1s to
comply with, whereas a different application platform 320-2
may have other, different specific packaging specifications
that another platform package must comply with. In one
non-limiting embodiment, the bundler takes transpiled
source code as mput and provides a package of source code,
assets, configuration and metadata as output. In one embodi-
ment, the package 345 can include, for example, trans-
tormed source code 316, assets, configuration and metadata
of the user interface components. In some non-limiting
embodiments, the package 345 comprises source code 316
specifically compiled for interoperability with the cloud
computing platform 320-1. In one non-limiting implemen-
tation, the package 345 can include, for example, metadata,
configuration, JavaScript, stylesheets, images, and other
artifacts of the packaging performed by the bundler.

[0062] At 345, the user interface platform 310 exports the
package 345 to the cloud computing platform 320-1. In
some embodiments, the cloud computing platform 320-1
can then transform (e.g., transpile) the source code 316 of
the package 345 (or “user interface bundle™) mto application
code of the cloud computing platform 320-1. To explain
turther, the user interface components from the package 3435
can be built to work with any web browser; however, 1n
some cases, the cloud computing platform 320-1 may need
to compile the normal source code of the user interface
components provided in the package 3435 first so that they
can be utilized at the cloud computing platform 320-1.

[0063] The cloud computing platform 320-1 can imple-
ment instances ol the learner APIs 314 that make the
common learning data schema available within the cloud
computing platform 320-1. Learning data can have attributes
expected by the user interface components. At 350, the cloud
computing platform 320-1 composes the learning data 313
provided via the learner APIs 314 and the user interface
components Ifrom the package 345 to provide application
code a custom learner experience (not illustrated) provided
by the application platform 326 within the context of the
application (not 1illustrated) provided by the application
plattorm 326 of the cloud computing platform 320-1. As
noted above, depending on the implementation, the cloud
computing platform 320-1 may compose the learner appli-
cation interfaces 314 and the user interface components
from the package 345 via one or more of: application code,
composition 1n an experience builder by an administrator, or
an automation application.

[0064] Thus, without having to leave the application that
1s provided by the application platiform 326, a user experi-
ence from the external learning platform 320-2 (e.g., Trail-
head) can be imported so that it 1s shared between an
external learning application that 1s provided by the external
learning platform 320-2 and the cloud computing platform
320-1, while retaining same look and feel, application
functionality, information architecture, interaction behavior

Mar. 24, 2022

(events), style and/or branding of the external learning
application provided by the external learning platform 320-

2

[0065] FIG. 4 1s a set of screenshots 400 1s a set of
screenshots 410, 420, 430, 440 that 1llustrates various user
interfaces that are presented to an end user during a user
learner experience when interacting with the for implement-
ing a learning platform architecture (LPA) of FIG. 2. In FIG.
4, the screenshot 414 shows an example of different permu-
tations of Ul components that are exported as part of a Ul
package 218 in one non-limiting implementation. The
screenshot 410 represents an example of a learning list
design pattern created from the Ul components of the Ul
package 218 of FIG. 2, where 416 represents one subset of
the Ul components 416 that are displayed as part of the
learning list design pattern. The screenshot 412 represents a
common learning data schema 212 of FIG. 2 for an API data
model that 1s described 1n detail 1n U.S. Provisional Appli-
cation No. 63/080,608, filed Sep. 18, 2020, which 1s 1ncor-
porated herein by reference 1n 1ts entirety. The underlying
learning data schema 212 1n screenshot 412 1s exposed to an
API that can be consumed by the Ul components 1n screen-
shot 414 such as lists, summaries, tiles, etc. The manifesta-
tion of these Ul elements 1s shown in screenshot 416 which
take the underlying schema, exposed 1 the Ul components
and render them in an orderly fashion within the app
container that 1s screenshot 410. The screenshot 420 1s a Ul
of an application 228-1 that illustrates a custom learner
experience as experienced at the target cloud computing
platiorm 220-1 1n one non-limiting implementation, whereas
the screenshot 430 represents 1s a Ul of an application 228-2
(e.g., an origmnal learning application) that illustrates a
custom learner experience as experienced at the external
learning platform 220-2 1n one non-limiting implementation.
The custom learner experience as experienced at the target
cloud computing platform 220-1 shows an Iframe imple-
mentation ol learning content 422 generated at the at the
target cloud computing platform 220-1. The custom learner
experience as experienced at the external learning platform
220-2 shows the same learning content that 1s displayed as
custom learner experience as experienced at the target cloud
computing platiorm 220-1, but shows how the learning
content would be displayed differently on the external
learning platform 220-2.

[0066] FIG. 5 1s a screenshot 500 of a user interface that
shows the user interface elements 410, 414 of FIG. 4 1n
greater resolution in accordance with the disclosed embodi-
ments. 414 1llustrates the Ul components that are exported
as part of a Ul package 218 1n greater resolution. As
illustrated, the Ul components include a Ul component
having a core tile format most often used 1 a grid, a Ul
component having a brick format (e.g., an elongated tile that
1s most oiten stacked to form a path), a UI component having
a compact brick format, a Ul component having a list
format, etc. The user interface 410 1llustrates a search results
list view 416 that can be displayed. These content pieces
map to a Ul pattern called Content List Item using many
different formats (e.g., tile format, brick format, compact
brick format, list format, etc.) as shown at 414. The diflerent
formats 414 can be constructed to include various entities

from a data model 412 and presented 1n different formats at
416.

[0067] As noted above, in one implementation, the tech-
nologies described above with reference to FIGS. 1-5 can be

US 2022/0091860 Al

used 1n conjunction with a core cloud computing platform,
such as a multitenant database system, that provides appli-
cations and services to multiple tenants or organizations via
the cloud computing platform. One example of such a

system will now be described below with reference to FIGS.
6-10.

[0068] FIG. 6 1s a schematic block diagram of an example
ol a multi-tenant computing environment in which features
of the disclosed embodiments can be implemented 1n accor-
dance with the disclosed embodiments. As shown in FIG. 6,
an exemplary cloud-based solution may be implemented 1n
the context of a multi-tenant system 600 including a server
602 that supports applications 628 based upon data 632 from
a database 630 that may be shared between multiple tenants,
organizations, or enterprises, referred to herein as a multi-
tenant database. The multi-tenant system 600 can be shared
by many different organizations, and handles the storage of,
and access to, diflerent metadata, objects, data and applica-
tions across disparate organizations. In one embodiment, the
multi-tenant system 600 can be part of a database system,
such as a multi-tenant database system.

[0069] The multi-tenant system 600 can provide applica-
tions and services and store data for any number of organi-
zations. Fach organization 1s a source ol metadata and data
associated with that metadata that collectively make up an
application. In one 1mplementation, the metadata can
include customized content of the organization (e.g., cus-
tomizations done to an instance that define business logic
and processes lor an organization). Some non-limiting
examples ol metadata can include, for example, customized
content that describes a build and functionality of objects (or
tables), tabs, fields (or columns), permissions, classes, pages
(e.g., Apex pages), triggers, controllers, sites, communities,
workilow rules, automation rules and processes, etc. Data 1s
associated with metadata to create an application. Data can
be stored as one or more objects, where each object holds
particular records for an organization. As such, data can
include records (or user content) that are held by one or more
objects.

[0070] The multi-tenant system 600 allows users of user
systems 640 to establish a communicative connection to the
multi-tenant system 600 over a network 645 such as the
Internet or any type of network described herein. Based on
a user’s interaction with a user system 640, the application
platform 610 accesses an organization’s data (e.g., records
held by an object) and metadata that 1s stored at one or more
database systems 630, and provides the user system 640 with
access to applications based on that data and metadata.
These applications are executed or run in a process space of
the application platform 610 will be described 1n greater
detail below. The user system 640 and various other user
systems (not illustrated) can interact with the applications
provided by the multi-tenant system 600. The multi-tenant
system 600 1s configured to handle requests for any user
associated with any organization that 1s a tenant of the
system. Data and services generated by the various appli-
cations 628 are provided via a network 6435 to any number
of user systems 640, such as desktops, laptops, tablets,
smartphones or other client devices, Google Glass™, and
any other computing device implemented in an automobile,
aircraft, television, or other business or consumer electronic
device or system, including web clients.

[0071] Each application 628 is suitably generated at run-
time (or on-demand) using a common application platform

Mar. 24, 2022

610 that securely provides access to the data 632 in the
database 630 for each of the various tenant organizations
subscribing to the system 600. The application platform 610
has access to one or more database systems 630 that store
information (e.g., data and metadata) for a number of
different organizations including user information, organi-
zation information, custom information, etc. The database
systems 630 can include a multi-tenant database system 630
as described with reference to FIG. 6, as well as other
databases or sources of information that are external to the
multi-tenant database system 630 of FIG. 6. In accordance
with one non-limiting example, the service cloud 600 1s
implemented 1n the form of an on-demand multi-tenant
customer relationship management (CRM) system that can
support any number of authenticated users for a plurality of
tenants.

[0072] As used herein, a “tenant” or an “organization”
should be understood as referring to a group of one or more
users (typically employees) that share access to common
subset of the data within the multi-tenant database 630. In
this regard, each tenant includes one or more users and/or
groups associated with, authorized by, or otherwise belong-
ing to that respective tenant. Stated another way, each
respective user within the multi-tenant system 600 1s asso-
ciated with, assigned to, or otherwise belongs to a particular
one of the plurality of enterprises supported by the system

600.

[0073] Each enterprise tenant may represent a company,
corporate department, business or legal organization, and/or
any other entities that maintain data for particular sets of
users (such as their respective employees or customers)
within the multi-tenant system 600. Although multiple ten-
ants may share access to the server 602 and the database 630,
the particular data and services provided from the server 602
to each tenant can be securely 1solated from those provided
to other tenants. The multi-tenant architecture therefore
allows different sets of users to share functionality and
hardware resources without necessarily sharing any of the
data 632 belonging to or otherwise associated with other
organizations.

[0074] The multi-tenant database 630 may be a repository
or other data storage system capable of storing and manag-
ing the data 632 associated with any number of tenant
organizations. The database 630 may be implemented using
conventional database server hardware. In various embodi-
ments, the database 630 shares processing hardware 604
with the server 602. In other embodiments, the database 630
1s implemented using separate physical and/or virtual data-
base server hardware that communicates with the server 602
to perform the various functions described herein.

[0075] In an exemplary embodiment, the database 630
includes a database management system or other equivalent
soltware capable of determining an optimal query plan for
retrieving and providing a particular subset of the data 632
to an 1nstance of application (or virtual application) 628 in
response to a query imtiated or otherwise provided by an
application 628, as described 1n greater detail below. The
multi-tenant database 630 may alternatively be referred to
herein as an on-demand database, 1n that the database 630
provides (or 1s available to provide) data at run-time to
on-demand virtual applications 628 generated by the appli-
cation platform 610, as described 1n greater detail below.

[0076] In practice, the data 632 may be organized and
formatted 1n any manner to support the application platform

US 2022/0091860 Al

610. In various embodiments, the data 632 i1s suitably
organized into a relatively small number of large data tables
to maintain a semi-amorphous “heap”-type format. The data
632 can then be organized as needed for a particular virtual
application 628. In various embodiments, conventional data
relationships are established using any number of pivot
tables 634 that establish indexing, uniqueness, relationships
between entities, and/or other aspects of conventional data-
base organization as desired. Further data manipulation and
report formatting 1s generally performed at run-time using a
variety of metadata constructs. Metadata within a universal
data directory (UDD) 636, for example, can be used to
describe any number of forms, reports, workilows, user
access privileges, business logic and other constructs that
are common to multiple tenants.

[0077] Tenant-specific formatting, functions and other
constructs may be maintained as tenant-specific metadata
638 for each tenant, as desired. Rather than forcing the data
632 into an inflexible global structure that 1s common to all
tenants and applications, the database 630 1s organized to be
relatively amorphous, with the pivot tables 634 and the
metadata 638 providing additional structure on an as-needed
basis. To that end, the application platform 610 suitably uses
the pivot tables 634 and/or the metadata 638 to generate
“virtual” components of the virtual applications 628 to
logically obtain, process, and present the relatively amor-

phous data 632 from the database 630.

[0078] The server 602 may be implemented using one or
more actual and/or virtual computing systems that collec-
tively provide the dynamic application platform 610 for
generating the virtual applications 628. For example, the
server 602 may be implemented using a cluster of actual
and/or virtual servers operating in conjunction with each
other, typically in association with conventional network
communications, cluster management, load balancing and
other features as appropriate. The server 602 operates with
any sort of conventional processing hardware 604, such as
a processor 605, memory 606, input/output features 607 and
the like. The mput/output features 607 generally represent
the interface(s) to networks (e.g., to the network 645, or any
other local area, wide area or other network), mass storage,
display devices, data entry devices and/or the like.

[0079] The processor 605 may be implemented using any
suitable processing system, such as one or more processors,
controllers, microprocessors, microcontrollers, processing
cores and/or other computing resources spread across any
number of distributed or integrated systems, including any
number ol “cloud-based” or other virtual systems. The
memory 606 represents any non-transitory short-term or
long-term storage or other computer-readable media capable
ol storing programming instructions for execution on the
processor 605, including any sort of random-access memory
(RAM), read only memory (ROM), tlash memory, magnetic
or optical mass storage, and/or the like. The computer-
executable programming instructions, when read and
executed by the server 602 and/or processor 605, cause the
server 602 and/or processor 605 to create, generate, or
otherwise Tfacilitate the application platform 610 and/or
virtual applications 628 and perform one or more additional
tasks, operations, functions, and/or processes described
herein. It should be noted that the memory 606 represents
one suitable implementation of such computer-readable
media, and alternatively or additionally, the server 602 could
receive and cooperate with external computer-readable

Mar. 24, 2022

media that 1s realized as a portable or mobile component or
platform, e.g., a portable hard drive, a USB flash drive, an
optical disc, or the like.

[0080] The server 602, application platform 610 and data-
base systems 630 can be part of one backend system.
Although not 1llustrated, the multi-tenant system 600 can
include other backend systems that can include one or more
servers that work 1n conjunction with one or more databases
and/or data processing components, and the application
platform 610 can access the other backend systems.

[0081] The multi-tenant system 600 includes one or more
user systems 640 that can access various applications pro-
vided by the application platform 610. The application
platform 610 1s a cloud-based user interface. The application
platform 610 can be any sort of software application or other
data processing engine that generates the virtual applications
628 that provide data and/or services to the user systems
640. In a typical embodiment, the application platform 610
galns access to processing resources, communications nter-
faces and other features of the processing hardware 604
using any sort of conventional or proprietary operating
system 608. The virtual applications 628 are typically gen-
erated at run-time 1n response to mput recerved from the user
systems 640. For the illustrated embodiment, the application
platiorm 610 includes a bulk data processing engine 612, a
query generator 614, a search engine 616 that provides text
indexing and other search functionality, and a runtime
application generator 620. Each of these features may be
implemented as a separate process or other module, and
many equivalent embodiments could include different and/

or additional features, components or other modules as
desired.

[0082] The runtime application generator 620 dynamically
builds and executes the virtual applications 628 in response
to specific requests received from the user systems 640. The
virtual applications 628 are typically constructed 1n accor-
dance with the tenant-specific metadata 638, which
describes the particular tables, reports, interfaces and/or
other features of the particular application 628. In various
embodiments, each wvirtual application 628 generates
dynamic web content that can be served to a browser or
other client program 642 associated with its user system 640,
as appropriate.

[0083] The runtime application generator 620 suitably
interacts with the query generator 614 to efliciently obtain
multi-tenant data 632 from the database 630 as needed in
response to mput queries initiated or otherwise provided by
users of the user systems 640. In a typical embodiment, the
query generator 614 considers the identity of the user
requesting a particular function (along with the user’s asso-
ciated tenant), and then builds and executes queries to the
database 630 using system-wide metadata 636, tenant spe-
cific metadata 638, pivot tables 634, and/or any other
available resources. The query generator 614 1n this example
therefore maintains security of the common database 630 by
ensuring that queries are consistent with access privileges
granted to the user and/or tenant that mitiated the request.

[0084] With continued reference to FIG. 6, the data pro-
cessing engine 612 performs bulk processing operations on
the data 632 such as uploads or downloads, updates, online
transaction processing, and/or the like. In many embodi-
ments, less urgent bulk processing of the data 632 can be
scheduled to occur as processing resources become avail-

US 2022/0091860 Al

able, thereby giving priority to more urgent data processing
by the query generator 614, the search engine 616, the
virtual applications 628, efc.

[0085] In exemplary embodiments, the application plat-
form 610 1s utilized to create and/or generate data-driven
virtual applications 628 for the tenants that they support.
Such virtual applications 628 may make use of interface
features such as custom (or tenant-specific) screens 624,
standard (or universal) screens 622 or the like. Any number
of custom and/or standard objects 626 may also be available
for integration into tenant-developed virtual applications
628. As used herein, “custom”™ should be understood as
meaning that a respective object or application 1s tenant-
specific (e.g., only available to users associated with a
particular tenant 1n the multi-tenant system) or user-specific
(e.g., only available to a particular subset of users within the
multi-tenant system), whereas “standard” or “universal”
applications or objects are available across multiple tenants
in the multi-tenant system.

[0086] The data 632 associated with each virtual applica-
tion 628 1s provided to the database 630, as appropriate, and
stored until 1t 1s requested or 1s otherwise needed, along with
the metadata 638 that describes the particular features (e.g.,
reports, tables, functions, objects, fields, formulas, code,
etc.) of that particular virtual application 628. For example,
a virtual application 628 may include a number of objects
626 accessible to a tenant, wherein for each object 626
accessible to the tenant, information pertaining to 1ts object
type along with values for various fields associated with that
respective object type are maintained as metadata 638 1in the
database 630. In this regard, the object type defines the
structure (e.g., the formatting, functions and other con-
structs) of each respective object 626 and the various fields
associated therewaith.

[0087] Stll referring to FIG. 6, the data and services
provided by the server 602 can be retrieved using any sort
of personal computer, mobile telephone, tablet or other
network-enabled user system 640 on the network 643. In an
exemplary embodiment, the user system 640 includes a
display device, such as a monitor, screen, or another con-
ventional electronic display capable of graphically present-
ing data and/or information retrieved from the multi-tenant
database 630, as described 1n greater detail below.

[0088] Typically, the user operates a conventional browser
application or other client program 642 executed by the user
system 640 to contact the server 602 via the network 645
using a networking protocol, such as the hypertext transport
protocol (HTTP) or the like. The user typically authenticates
his or her identity to the server 602 to obtain a session
identifier (“SessionlD”) that identifies the user 1n subsequent
communications with the server 602. When the identified
user requests access to a virtual application 628, the runtime
application generator 620 suitably creates the application at
run time based upon the metadata 638, as appropriate.
However, 11 a user chooses to manually upload an updated
file (through either the web-based user interface or through
an API), it will also be shared automatically with all of the
users/devices that are designated for sharing.

[0089] As noted above, the virtual application 628 may
contain JAVA®, ActiveX, or other content that can be
presented using conventional client software running on the
user system 640; other embodiments may simply provide
dynamic web or other content that can be presented and
viewed by the user, as desired. As described 1n greater detail

Mar. 24, 2022

below, the query generator 614 suitably obtains the
requested subsets of data 632 from the database 630 as
needed to populate the tables, reports or other features of the
particular virtual application 628.

[0090] Objects and Records

[0091] In one embodiment, the multi-tenant database sys-
tem 630 can store data i the form of records and customi-
zations. As used herein, the term “record” can refer to a
particular occurrence or instance of a data object that 1s
created by a user or administrator of a database service and
stored 1n a database system, for example, about a particular
(actual or potential) business relationship or project. The
data object can have a data structure defined by the database
service (a standard object) or defined by a subscriber (cus-
tom object).

[0092] An object can refer to a structure used to store data
and associated metadata along with a globally unique 1den-
tifier (called an 1dentity field) that allows for retrieval of the
object. In one embodiment implementing a multi-tenant
database, all of the records for the tenants have an i1dentifier
stored 1n a common table. Each object comprises a number
of fields. A record has data fields that are defined by the
structure of the object (e.g. fields of certain data types and
purposes). An object 1s analogous to a database table, fields
ol an object are analogous to columns of the database table,
and a record 1s analogous to a row 1n a database table. Data
1s stored as records of the object, which correspond to rows
in a database. The terms “object” and “‘entity” are used
interchangeably herein. Objects not only provide structure
for storing data, but can also power the interface elements
that allow users to interact with the data, such as tabs, the
layout of fields on a page, and lists of related records.
Objects can also have bult-in support for features such as
access management, validation, formulas, triggers, labels,
notes and attachments, a track field history feature, security
features, etc. Attributes of an object are described with
metadata, making 1t easy to create and modity records either
through a visual interface or programmatically.

[0093] A record can also have custom fields defined by a
user. A field can be another record or include links thereto,
thereby providing a parent-child relationship between the

records. Customizations can include custom objects and
fields, Apex Code, Visualiorce, Worktlow, etc.

[0094] Examples of objects include standard objects, cus-
tom objects, and external objects. A standard object can have
a pre-defined data structure that 1s defined or specified by a
database service or cloud computing platform. A standard
object can be thought of as a default object. For example, 1n
one embodiment, a standard object includes one or more
pre-defined fields that are common for each orgamzation
that utilizes the cloud computing platform or database
system or service.

[0095] A few non-limiting examples of different types of
standard objects can include sales objects (e.g., accounts,
contacts, opportunities, leads, campaigns, and other related
objects); task and event objects (e.g., tasks and events and
their related objects); support objects (e.g., cases and solu-
tions and their related objects); salestorce knowledge objects
(e.g., view and vote statistics, article versions, and other
related objects); document, note, attachment objects and
their related objects; user, sharing, and permission objects
(e.g., users, profiles, and roles); profile and permission
objects (e.g., users, profiles, permission sets, and related
permission objects); record type objects (e.g., record types

US 2022/0091860 Al

and business processes and their related objects); product
and schedule objects (e.g., opportumties, products, and
schedules); sharing and team selling objects (e.g., account
teams, opportunity teams, and sharing objects); customiz-
able forecasting objects (e.g., includes forecasts and related
objects); forecasts objects (e.g., includes objects for collab-
orative forecasts); territory management (e.g., territories and
related objects associated with territory management); pro-
cess objects (e.g., approval processes and related objects);
content objects (e.g., content and libraries and their related
objects); chatter feed objects (e.g., objects related to feeds);
badge and reward objects; feedback and performance cycle
objects, etc. For example, a record can be for a business
partner or potential business partner (e.g. a client, vendor,
distributor, etc.) of the user, and can include an entire
company, subsidiaries, or contacts at the company. As
another example, a record can be a project that the user 1s
working on, such as an opportunity (e.g. a possible sale)
with an existing partner, or a project that the user 1s working,
on

[0096] By contrast, a custom object can have a data
structure that 1s defined, at least in part, by an organization
or by a user/subscriber/admin of an organization. For
example, a custom object can be an object that 1s custom
defined by a user/subscriber/administrator of an organiza-
tion, and includes one or more custom fields defined by the
user or the particular organization for that custom object.
Custom objects are custom database tables that allow an
organization to store information unique to their organiza-
tion. Custom objects can extend the functionality that stan-
dard objects provide.

[0097] In one embodiment, an object can be a relationship
management entity having a record type defined within
platform that includes a customer relationship management
(CRM) database system for managing a company’s relation-
ships and interactions with their customers and potential
customers. Examples of CRM entities can include, but are
not limited to, an account, a case, an opportunity, a lead, a
project, a contact, an order, a pricebook, a product, a
solution, a report, a forecast, a user, etc. For instance, an
opportunity can correspond to a sales prospect, marketing
project, or other business-related activity with respect to
which a user desires to collaborate with others.

[0098] An account object may include information about
an organization or person (such as customers, competitors,
and partners) mvolved with a particular business. Fach
object may be associated with fields. For example, an

=R B 4] 4

account object may include fields such as “company”, “zip”,
“phone number”, “email address™, etc. A contact object may
include contact information, where each contact may be an
individual associated with an “account”. A contact object

- R Y S

may include fields such as “first name”, “last name™, “phone
number”, “accountID”, etc. The “accountID” field of the
“contact” object may be the ID of the account that 1s the
parent of the contact. An opportunities object includes
information about a sale or a pending deal. An opportunities
object may include fields such as “amount”, “accountID”,
etc. The “accountID” field of the “opportunity” object may
be the 1D of the account that i1s associated with the oppor-
tunity. Each field may be associated with a field value. For

example, a field value for the “zip” field may be “94105”.

[0099] External objects are objects that an organization
creates that map to data stored outside the organization.
External objects are like custom objects, but external object

Mar. 24, 2022

record data 1s stored outside the orgamization. For example,
data that’s stored on premises 1n an enterprise resource
planning (ERP) system can be accessed as external objects
in real time via web service callouts, mstead of copying the
data into the organization.

[0100] The following description 1s of one example of a
system 1n which the features described above may be
implemented. The components of the system described
below are merely one example and should not be construed
as limiting. The features described above may be imple-
mented 1n any other type of computing environment, such as
one with multiple servers, one with a single server, a
multi-tenant server environment, a single-tenant server envi-
ronment, or some combination of the above.

[0101] FIG. 7 shows a block diagram of an example of an
environment 710 1n which an on-demand database service
can be used 1n accordance with some implementations. The
environment 710 includes user systems 712, a network 714,
a database system 716 (also referred to herein as a “cloud-
based system™), a processor system 717, an application
platform 718, a network interface 720, tenant database 722
for storing tenant data 723, system database 724 for storing
system data 725, program code 726 for implementing vari-
ous functions of the system 716, and process space 728 for
executing database system processes and tenant-specific
processes, such as running applications as part of an appli-
cation hosting service. In some other implementations, envi-
ronment 710 may not have all of these components or
systems, or may have other components or systems instead
of, or 1n addition to, those listed above.

[0102] In some implementations, the environment 710 1s
an environment in which an on-demand database service
exists. An on-demand database service, such as that which
can be implemented using the system 716, 1s a service that
1s made available to users outside of the enterprise(s) that
own, maintain or provide access to the system 716. As
described above, such users generally do not need to be
concerned with building or maintaining the system 716.
Instead, resources provided by the system 716 may be
available for such users’ use when the users need services
provided by the system 716; that 1s, on the demand of the
users. Some on-demand database services can store infor-
mation from one or more tenants into tables of a common
database 1mage to form a multi-tenant database system
(MTS). The term “multi-tenant database system” can refer to
those systems 1n which various elements of hardware and
soltware of a database system may be shared by one or more
customers or tenants. For example, a given application
server may simultaneously process requests for a great
number of customers, and a given database table may store
rows of data such as feed items for a potentially much
greater number of customers. A database image can include
one or more database objects. A relational database man-
agement system (RDBMS) or the equivalent can execute

storage and retrieval of information against the database
object(s).

[0103] Application platiorm 718 can be a framework that
allows the applications of system 716 to execute, such as the
hardware or software infrastructure of the system 716. In
some 1mplementations, the application platiorm 718 enables
the creation, management and execution of one or more
applications developed by the provider of the on-demand
database service, users accessing the on-demand database

US 2022/0091860 Al

service via user systems 712, or third-party application
developers accessing the on-demand database service via
user systems 712.

[0104] In some implementations, the system 716 imple-
ments a web-based customer relationship management
(CRM) system. For example, 1n some such implementations,
the system 716 includes application servers configured to
implement and execute CRM soltware applications as well
as provide related data, code, forms, renderable webpages
and documents and other information to and from user
systems 712 and to store to, and retrieve from, a database
system related data, objects, and Webpage content. In some
MTS implementations, data for multiple tenants may be
stored 1n the same physical database object 1in tenant data-
base 722. In some such implementations, tenant data 1s
arranged 1n the storage medium(s) of tenant database 722 so
that data of one tenant 1s kept logically separate from that of
other tenants so that one tenant does not have access to
another tenant’s data, unless such data 1s expressly shared.
The system 716 also implements applications other than, or
in addition to, a CRM application. For example, the system
716 can provide tenant access to multiple hosted (standard
and custom) applications, including a CRM application.
User (or third-party developer) applications, which may or
may not mclude CRM, may be supported by the application
plattorm 718. The application platiorm 718 manages the
creation and storage of the applications into one or more
database objects and the execution of the applications 1n one

or more virtual machines in the process space of the system
716.

[0105] According to some implementations, each system
716 1s configured to provide webpages, forms, applications,
data and media content to user (client) systems 712 to
support the access by user systems 712 as tenants of system
716. As such, system 716 provides security mechanisms to
keep each tenant’s data separate unless the data 1s shared. IT
more than one MTS 1s used, they may be located in close
proximity to one another (for example, 1n a server farm
located 1n a single building or campus), or they may be
distributed at locations remote from one another (for
example, one or more servers located 1n city A and one or
more servers located 1n city B). As used herein, each MTS
could include one or more logically or physically connected
servers distributed locally or across one or more geographic
locations. Additionally, the term “server” 1s meant to refer to
a computing device or system, including processing hard-
ware and process space(s), an associated storage medium
such as a memory device or database, and, 1n some
instances, a database application (for example, OODBMS or
RDBMS) as 1s well known 1n the art. It should also be
understood that “server system” and ““server” are often used
interchangeably herein. Similarly, the database objects
described herein can be mmplemented as part of a single
database, a distributed database, a collection of distributed
databases, a database with redundant online or offline back-
ups or other redundancies, etc., and can include a distributed
database or storage network and associated processing intel-
ligence.

[0106] The network 714 can be or include any network or
combination of networks of systems or devices that com-
municate with one another. For example, the network 714
can be or include any one or any combination of a LAN
(local area network), 7AN (wide area network), telephone
network, wireless network, cellular network, point-to-point

Mar. 24, 2022

network, star network, token ring network, hub network, or
other appropriate configuration. The network 714 can
include a TCP/IP (Transter Control Protocol and Internet
Protocol) network, such as the global internetwork of net-
works often referred to as the “Internet” (with a capital “I”).
The Internet will be used 1n many of the examples herein.
However, it should be understood that the networks that the
disclosed implementations can use are not so limited,
although TCP/IP 1s a frequently implemented protocol.

[0107] The user systems 712 can communicate with sys-
tem 716 using TCP/IP and, at a higher network level, other
common Internet protocols to communicate, such as HT'TP,
FTP, AFS, WAP, etc. In an example where HTTP 1s used.,
cach user system 712 can include an HT'TP client commonly
referred to as a “web browser” or simply a “browser” for
sending and receiving HTTP signals to and from an HTTP
server of the system 716. Such an HTTP server can be
implemented as the sole network nterface 720 between the
system 716 and the network 714, but other techniques can be
used 1n addition to or mstead of these techniques. In some
implementations, the network interface 720 between the
system 716 and the network 714 includes load sharing
functionality, such as round-robin HTTP request distributors
to balance loads and distribute incoming HTTP requests
evenly over a number of servers. In MTS implementations,
each of the servers can have access to the MTS data;
however, other alternative configurations may be used
instead.

[0108] The user systems 712 can be implemented as any
computing device(s) or other data processing apparatus or
systems usable by users to access the database system 716.
For example, any of user systems 712 can be a desktop
computer, a work station, a laptop computer, a tablet com-
puter, a handheld computing device, a mobile cellular phone
(for example, a “smartphone”), or any other Wi-Fi-enabled
device, wireless access protocol (WAP)-enabled device, or
other computing device capable of interfacing directly or
indirectly to the Internet or other network. The terms “user
system” and “computing device” are used interchangeably
herein with one another and with the term “computer.” As
described above, each user system 712 typically executes an
HTTP client, for example, a web browsing (or simply
“browsing”’) program, such as a web browser based on the
WebKit platform, Microsoit’s Internet Explorer browser,
Netscape’s Navigator browser, Opera’s browser, Mozilla’s
Firefox browser, or a WAP-enabled browser 1n the case of a
cellular phone, PDA or other wireless device, or the like,
allowing a user (for example, a subscriber of on-demand
services provided by the system 716) of the user system 712
to access, process and view information, pages and appli-

cations available to 1t from the system 716 over the network
714.

[0109] Each user system 712 also typically includes one or
more user input devices, such as a keyboard, a mouse, a
trackball, a touch pad, a touch screen, a pen or stylus or the
like, for interacting with a graphical user interface (GUI)
provided by the browser on a display (for example, a
monitor screen, liquid crystal display (LCD), light-emitting
diode (LED) display, among other possibilities) of the user
system 712 in conjunction with pages, forms, applications
and other information provided by the system 716 or other
systems or servers. For example, the user interface device
can be used to access data and applications hosted by system
716, and to perform searches on stored data, and otherwise

US 2022/0091860 Al

allow a user to interact with various GUI pages that may be
presented to a user. As discussed above, implementations are
suitable for use with the Internet, although other networks
can be used instead of or 1n addition to the Internet, such as

an 1ntranet, an extranet, a virtual private network (VPN), a
non-TCP/IP based network, any LAN or WAN or the like.

[0110] The users of user systems 712 may differ 1n their
respective capacities, and the capacity of a particular user
system 712 can be enftirely determined by permissions
(permission levels) for the current user of such user system.
For example, where a salesperson 1s using a particular user
system 712 to interact with the system 716, that user system
can have the capacities allotted to the salesperson. However,
while an administrator 1s using that user system 712 to
interact with the system 716, that user system can have the
capacities allotted to that administrator. Where a hierarchical
role model 1s used, users at one permission level can have
access to applications, data, and database information acces-
sible by a lower permission level user, but may not have
access to certamn applications, database information, and
data accessible by a user at a higher permission level. Thus,
different users generally will have different capabilities with
regard to accessing and moditying application and database
information, depending on the users’ respective security or
permission levels (also referred to as “authorizations™).

[0111] According to some implementations, each user
system 712 and some or all of 1ts components are operator-
configurable using applications, such as a browser, including
computer code executed using a central processing unit
(CPU) such as an Intel Pentium® processor or the like.
Similarly, the system 716 (and additional instances of an
MTS, where more than one 1s present) and all of 1its
components can be operator-configurable using application
(s) including computer code to run using the processor
system 717, which may be implemented to include a CPU,
which may include an Intel Pentium® processor or the like,
or multiple CPUs.

[0112] The system 716 includes tangible computer-read-
able media having non-transitory instructions stored
thereon/in that are executable by or used to program a server
or other computing system (or collection of such servers or
computing systems) to perform some of the implementation
of processes described herein. For example, computer pro-
gram code 726 can implement instructions for operating and
configuring the system 716 to mntercommunicate and to
process webpages, applications and other data and media
content as described herein. In some implementations, the
computer code 726 can be downloadable and stored on a
hard disk, but the entire program code, or portions thereof,
also can be stored in any other volatile or non-volatile
memory medium or device as 1s well known, such as a ROM
or RAM, or provided on any media capable of storing
program code, such as any type of rotating media including
floppy disks, optical discs, digital versatile disks (DVD),
compact disks (CD), microdrnives, and magneto-optical
disks, and magnetic or optical cards, nanosystems (including
molecular memory ICs), or any other type of computer-
readable medium or device suitable for storing instructions
or data. Additionally, the entire program code, or portions
thereol, may be transmitted and downloaded from a software
source over a transmission medium, for example, over the
Internet, or from another server, as 1s well known, or
transmitted over any other existing network connection as 1s
well known (for example, extranet, VPN, LAN, etc.) using

Mar. 24, 2022

any communication medium and protocols (for example,
TCP/IP, HITP, HITPS, Ethernet, etc.) as are well known. It
will also be appreciated that computer code for the disclosed
implementations can be realized 1n any programming lan-
guage that can be executed on a server or other computing
system such as, for example, C, C++, HIML, any other
markup language, JAVA®, JAVASCRIPT®, ActiveX®, any
other scripting language, such as VBScript®, and many
other programming languages as are well known may be
used. (JAVA™ 15 a trademark of Sun Microsystems, Inc.).

[0113] FIG. 8 shows a block diagram of example imple-
mentations of elements of FIG. 7 and example interconnec-
tions between these elements according to some 1implemen-
tations. That 1s, FIG. 8 also 1llustrates environment 710, but
FIG. 8, various elements of the system 716 and various
interconnections between such elements are shown with
more specificity according to some more specific implemen-
tations. Elements from FIG. 7 that are also shown 1n FIG. 8
will use the same reference numbers in FIG. 8 as were used
in FIG. 7. Additionally, in FIG. 8, the user system 712
includes a processor system 812A, a memory system 812B,
an 1nput system 812C, and an output system 812D. The
processor system 812A can include any suitable combina-
tion of one or more processors. The memory system 812B
can include any suitable combination of one or more
memory devices. The mput system 812C can include any
suitable combination of input devices, such as one or more
touchscreen interfaces, keyboards, mice, trackballs, scan-
ners, cameras, or interfaces to networks. The output system
812D can include any suitable combination of output
devices, such as one or more display devices, printers, or
interfaces to networks.

[0114] In FIG. 8, the network interface 720 of FIG. 7 1s
implemented as a set of HI'TP application servers 8001-
800N. Each application server 800, also referred to herein as
an “app server,” 1s configured to communicate with tenant
database 722 and the tenant data 823 therein, as well as
system database 724 and the system data 825 therein, to
serve requests received from the user systems 812. The
tenant data 823 can be divided into 1ndividual tenant storage
spaces 813, which can be physically or logically arranged or
divided. Within each tenant storage space 813, tenant data
814 and application metadata 816 can similarly be allocated
for each user. For example, a copy of a user’s most recently
used (MRU) 1tems can be stored to tenant data 814. Simi-
larly, a copy of MRU 1tems for an entire organization that 1s
a tenant can be stored to tenant storage space 813.

[0115] The process space 728 includes system process
space 802, individual tenant process spaces 804 and a tenant
management process space 810. The application platform
718 includes an application setup mechanism 838 that
supports application developers’ creation and management
of applications. Such applications and others can be saved as
metadata 1into tenant database 722 by save routines 836 for
execution by subscribers as one or more tenant process
spaces 804 managed by tenant management process 810, for
example. Invocations to such applications can be coded
using PL/SOQL 834, which provides a programming lan-
guage style interface extension to API 832. A detailed
description of some PL/SOQL language implementations 1s
discussed 1n commonly assigned U.S. Pat. No. 7,730,478,
titled METHOD AND SYSTEM FOR ALLOWING
ACCESS TO DEVELOPED APPLICATIONS VIA A
MULTI-TENANT ON-DEMAND DATABASE SERVICE,

US 2022/0091860 Al

by Craig Weissman, 1ssued on Jun. 1, 2010, and hereby
incorporated by reference 1n its entirety and for all purposes.
Invocations to applications can be detected by one or more
system processes, which manage retrieving application
metadata 816 for the subscriber making the imnvocation and
executing the metadata as an application in a virtual
machine.

[0116] The system 716 of FIG. 8 also includes a user
interface (UI) 830 and an application programming interface
(API) 832 to system 716 resident processes to users or
developers at user systems 812. In some other implementa-
tions, the environment 710 may not have the same elements
as those listed above or may have other elements 1nstead of,
or 1n addition to, those listed above.

[0117] Each application server 800 can be communicably
coupled with tenant database 722 and system database 724,
for example, having access to tenant data 823 and system
data 825, respectively, via a different network connection.
For example, one application server 8001 can be coupled via
the network 714 (for example, the Internet), another appli-
cation server 800N can be coupled via a direct network link,
and another application server (not illustrated) can be
coupled by yet a different network connection. Transfer
Control Protocol and Internet Protocol (TCP/IP) are
examples of typical protocols that can be used for commu-
nicating between application servers 800 and the system
716. However, 1t will be apparent to one skilled in the art that
other transport protocols can be used to optimize the system
716 depending on the network interconnections used.

[0118] In some implementations, each application server
800 1s configured to handle requests for any user associated
with any organization that 1s a tenant of the system 716.
Because 1t can be desirable to be able to add and remove
application servers 800 from the server pool at any time and
for various reasons, 1 some implementations there 1s no
server afhinity for a user or organization to a specific
application server 800. In some such implementations, an
interface system implementing a load balancing function
(for example, an F5 Big-IP load balancer) 1s communicably
coupled between the application servers 800 and the user
systems 812 to distribute requests to the application servers
800. In one implementation, the load balancer uses a least-
connections algorithm to route user requests to the applica-
tion servers 800. Other examples of load balancing algo-
rithms, such as round robin and observed-response-time,
also can be used. For example, 1n some instances, three
consecutive requests from the same user could hit three
different application servers 800, and three requests from
different users could hit the same application server 800. In
this manner, by way of example, system 716 can be a
multi-tenant system in which system 716 handles storage of,
and access to, different objects, data and applications across
disparate users and organizations.

[0119] In one example storage use case, one tenant can be
a company that employs a sales force where each salesper-
son uses system 716 to manage aspects of their sales. A user
can maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user’s personal sales process (for example,
in tenant database 722). In an example of an MTS arrange-
ment, because all of the data and the applications to access,
view, modily, report, transmit, calculate, etc., can be main-
tained and accessed by a user system 812 having little more
than network access, the user can manage his or her sales

Mar. 24, 2022

cllorts and cycles from any of many diflerent user systems.
For example, when a salesperson 1s visiting a customer and
the customer has Internet access in their lobby, the sales-
person can obtain critical updates regarding that customer
while waiting for the customer to arrive 1n the lobby.

[0120] While each user’s data can be stored separately
from other users’ data regardless of the employers of each
user, some data can be organization-wide data shared or
accessible by several users or all of the users for a given
organization that 1s a tenant. Thus, there can be some data
structures managed by system 716 that are allocated at the
tenant level while other data structures can be managed at
the user level. Because an M'TS can support multiple tenants
including possible competitors, the MTS can have security
protocols that keep data, applications, and application use
separate. Also, because many tenants may opt for access to
an MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that can be
implemented 1n the MTS. In addition to user-specific data
and tenant-specific data, the system 716 also can maintain
system level data usable by multiple tenants or other data.
Such system level data can include industry reports, news,
postings, and the like that are sharable among tenants.

[0121] In some implementations, the user systems 812
(which also can be client systems) communicate with the
application servers 800 to request and update system-level
and tenant-level data from the system 716. Such requests
and updates can involve sending one or more queries to
tenant database 722 or system database 724. The system 716
(for example, an application server 800 1n the system 716)
can automatically generate one or more SQL statements (for
example, one or more SQL queries) designed to access the
desired information. System database 724 can generate
query plans to access the requested data from the database.
The term “query plan™ generally refers to one or more
operations used to access information in a database system.

[0122] Each database can generally be viewed as a col-
lection of objects, such as a set of logical tables, containing
data fitted into predefined or customizable categories. A
“table” 1s one representation of a data object, and may be
used herein to simplity the conceptual description of objects
and custom objects according to some implementations. It
should be understood that “table” and “object” may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or element of a table can
contain an mstance of data for each category defined by the
fields. For example, a CRM database can include a table that
describes a customer with fields for basic contact informa-
tion such as name, address, phone number, fax number, etc.
Another table can describe a purchase order, including fields
for information such as customer, product, sale price, date,
ctc. In some MTS 1implementations, standard entity tables
can be provided for use by all tenants. For CRM database
applications, such standard entities can include tables for
case, account, contact, lead, and opportunity data objects,
cach containing pre-defined fields. As used herein, the term

“entity”” also may be used interchangeably with “object” and
“table.”

[0123] Insome MTS implementations, tenants are allowed
to create and store custom objects, or may be allowed to
customize standard entities or objects, for example by cre-
ating custom fields for standard objects, including custom

index fields. Commonly assigned U.S. Pat. No. 7,779,039,

US 2022/0091860 Al

titled CUSTOM ENTITIES AND FIELDS IN A MULTI-
TENANT DATABASE SYSTEM, by Weissman et al.,
issued on Aug. 17, 2010, and hereby incorporated by refer-
ence 1n 1ts entirety and for all purposes, teaches systems and
methods for creating custom objects as well as customizing,
standard objects in a multi-tenant database system. In some
implementations, for example, all custom entity data rows
are stored 1n a single multi-tenant physical table, which may
contain multiple logical tables per organization. It 1s trans-
parent to customers that their multiple “tables” are 1n fact
stored 1n one large table or that their data may be stored 1n
the same table as the data of other customers.

[0124] FIG. 9A shows a system diagram illustrating
example architectural components of an on-demand data-
base service environment 900 according to some implemen-
tations. A client machine communicably connected with the
cloud 904, generally referring to one or more networks 1n
combination, as described herein, can communicate with the
on-demand database service environment 900 via one or
more edge routers 908 and 912. A client machine can be any
of the examples of user systems described above. The edge
routers can communicate with one or more core switches
920 and 924 through a firewall 916. The core switches can
communicate with a load balancer 928, which can distribute
server load over diflerent pods, such as the pods 940 and
944. The pods 940 and 944, which can each include one or
more servers or other computing resources, can perform data
processing and other operations used to provide on-demand
services. Communication with the pods can be conducted
via pod switches 932 and 936. Components ol the on-
demand database service environment can communicate
with database storage 956 through a database firewall 948
and a database switch 952.

[0125] As shown i FIGS. 9A and 9B, accessing an
on-demand database service environment can involve com-
munications transmitted among a variety of different hard-
ware or software components. Further, the on-demand data-
base service environment 900 1s a simplified representation
ol an actual on-demand database service environment. For
example, while only one or two devices of each type are
shown 1 FIGS. 9A and 9B, some implementations of an
on-demand database service environment can include any-
where from one to several devices of each type. Also, the
on-demand database service environment need not nclude
each device shown 1n FIGS. 9A and 9B, or can include
additional devices not shown 1n FIGS. 9A and 9B.

[0126] Additionally, 1t should be appreciated that one or
more ol the devices 1n the on-demand database service
environment 900 can be implemented on the same physical
device or on different hardware. Some devices can be
implemented using hardware or a combination of hardware
and software. Thus, terms such as “data processing appara-
tus,” “machine,” “server” and “device” as used herein are
not limited to a single hardware device, rather references to
these terms can include any suitable combination of hard-
ware and software configured to provide the described
functionality.

[0127] The cloud 904 1s intended to refer to a data network
or multiple data networks, often including the Internet.
Client machines communicably connected with the cloud
904 can communicate with other components of the on-
demand database service environment 900 to access services
provided by the on-demand database service environment.
For example, client machines can access the on-demand

Mar. 24, 2022

database service environment to retrieve, store, edit, or
process information. In some implementations, the edge
routers 908 and 912 route packets between the cloud 904 and
other components of the on-demand database service envi-
ronment 900. For example, the edge routers 908 and 912 can
employ the Border Gateway Protocol (BGP). The BGP 1s the
core routing protocol of the Internet. The edge routers 908
and 912 can maintain a table of IP networks or ‘prefixes’,
which designate network reachability among autonomous
systems on the Internet.

[0128] In some implementations, the firewall 916 can
protect the mner components ol the on-demand database
service environment 900 from Internet traflic. The firewall
916 can block, permit, or deny access to the 1inner compo-
nents of the on-demand database service environment 900
based upon a set of rules and other criteria. The firewall 916
can act as one or more of a packet filter, an application
gateway, a statetul filter, a proxy server, or any other type of
firewall.

[0129] In some implementations, the core switches 920
and 924 are high-capacity switches that transfer packets
within the on-demand database service environment 900.
The core switches 920 and 924 can be configured as network
bridges that quickly route data between different compo-
nents within the on-demand database service environment.
In some implementations, the use of two or more core
switches 920 and 924 can provide redundancy or reduced
latency.

[0130] In some implementations, the pods 940 and 944
perform the core data processing and service functions
provided by the on-demand database service environment.
Each pod can include various types of hardware or software
computing resources. An example of the pod architecture 1s
discussed 1n greater detail with reference to FIG. 9B. In
some 1mplementations, communication between the pods
940 and 944 1s conducted via the pod switches 932 and 936.
The pod switches 932 and 936 can facilitate communication
between the pods 940 and 944 and client machines com-
municably connected with the cloud 904, for example via
core switches 920 and 924. Also, the pod switches 932 and
936 may facilitate communication between the pods 940 and
944 and the database storage 956. In some implementations,
the load balancer 928 can distribute workload between the
pods 940 and 944. Balancing the on-demand service
requests between the pods can assist in improving the use of
resources, increasing throughput, reducing response times,
or reducing overhead. The load balancer 928 may include
multilayer switches to analyze and forward trafhic.

[0131] In some implementations, access to the database
storage 956 1s guarded by a database firewall 948. The
database firewall 948 can act as a computer application
firewall operating at the database application layer of a
protocol stack. The database firewall 948 can protect the
database storage 956 from application attacks such as struc-
ture query language (SQL) 1njection, database rootkits, and
unauthorized information disclosure. In some 1implementa-
tions, the database firewall 948 includes a host using one or
more forms of reverse proxy services to proxy tratlic before
passing 1t to a gateway router. The database firewall 948 can
inspect the contents of database traflic and block certain
content or database requests. The database firewall 948 can
work on the SQL application level atop the TCP/IP stack,
managing applications’ connection to the database or SQL

US 2022/0091860 Al

management interfaces as well as intercepting and enforcing
packets traveling to or from a database network or applica-
tion interface.

[0132] In some implementations, communication with the
database storage 956 i1s conducted via the database switch
952. The multi-tenant database storage 956 can include more
than one hardware or software components for handling
database queries. Accordingly, the database switch 952 can
direct database queries transmitted by other components of
the on-demand database service environment (for example,
the pods 940 and 944) to the correct components within the
database storage 956. In some implementations, the database
storage 956 1s an on-demand database system shared by
many different organizations as described above.

[0133] FIG. 9B shows a system diagram further illustrat-
ing example architectural components of an on-demand
database service environment according to some 1implemen-
tations. The pod 944 can be used to render services to a user
of the on-demand database service environment 900. In
some 1mplementations, each pod includes a variety of serv-
ers or other systems. The pod 944 includes one or more
content batch servers 964, content search servers 968, query
servers 982, file force servers 986, access control system
(ACS) servers 980, batch servers 984, and app servers 988.
The pod 944 also can include database 1nstances 990, quick
file systems (QFS) 992, and indexers 994. In some 1mple-
mentations, some or all communication between the servers
in the pod 944 can be transmitted via the switch 936.

[0134] In some implementations, the app servers 988
include a hardware or software framework dedicated to the
execution of procedures (for example, programs, routines,
scripts) for supporting the construction of applications pro-
vided by the on-demand database service environment 900
via the pod 944. In some implementations, the hardware or
software framework of an app server 988 1s configured to
execute operations of the services described herein, includ-
ing performance of the blocks of various methods or pro-
cesses described herein. In some alternative implementa-
tions, two or more app servers 988 can be included and
cooperate to perform such methods, or one or more other
servers described herein can be configured to perform the
disclosed methods.

[0135] The content batch servers 964 can handle requests
internal to the pod. Some such requests can be long-running
or not tied to a particular customer. For example, the content
batch servers 964 can handle requests related to log mining,
cleanup work, and maintenance tasks. The content search
servers 968 can provide query and indexer functions. For
example, the functions provided by the content search
servers 968 can allow users to search through content stored
in the on-demand database service environment. The file
force servers 986 can manage requests for information
stored 1n the File force storage 998. The File force storage
998 can store information such as documents, 1images, and
basic large objects (BLOBs). By managing requests for
information using the file force servers 986, the image
footprint on the database can be reduced. The query servers
982 can be used to retrieve information from one or more file
storage systems. For example, the query system 982 can
receive requests for imformation from the app servers 988
and transmit information queries to the NFS 996 located
outside the pod.

[0136] The pod 944 can share a database instance 990
configured as a multi-tenant environment 1n which different

Mar. 24, 2022

organizations share access to the same database. Addition-
ally, services rendered by the pod 944 may call upon various
hardware or software resources. In some 1mplementations,
the ACS servers 980 control access to data, hardware
resources, or soltware resources. In some 1mplementations,
the batch servers 984 process batch jobs, which are used to
run tasks at specified times. For example, the batch servers
084 can transmit instructions to other servers, such as the
app servers 988, to trigger the batch jobs.

[0137] In some implementations, the QFS 992 1s an open
source file storage system available from Sun Microsys-
tems® of Santa Clara, Calif. The QFS can serve as a
rapid-access lile storage system for storing and accessing
information available within the pod 944. The QFS 992 can
support some volume management capabilities, allowing
many disks to be grouped together 1nto a file storage system.
File storage system metadata can be kept on a separate set
of disks, which can be useful for streaming applications
where long disk seeks cannot be tolerated. Thus, the QFS
system can communicate with one or more content search
servers 968 or indexers 994 to identily, retrieve, move, or
update data stored in the network file storage systems 996 or
other storage systems.

[0138] In some implementations, one or more query serv-
ers 982 communicate with the NES 996 to retrieve or update
information stored outside of the pod 944. The NFS 996 can
allow servers located 1n the pod 944 to access information to
access files over a network 1n a manner similar to how local
storage 1s accessed. In some 1mplementations, queries from
the query servers 982 are transmitted to the NES 996 via the
load balancer 928, which can distribute resource requests
over various resources available in the on-demand database
service environment. The NFS 996 also can communicate
with the QFS 992 to update the information stored on the
NES 996 or to provide information to the QFS 992 for use
by servers located within the pod 944.

[0139] In some implementations, the pod includes one or
more database instances 990. The database instance 990 can
transmit information to the QFS 992. When information 1s
transmitted to the QFS, 1t can be available for use by servers
within the pod 944 without using an additional database call.
In some 1mplementations, database information 1s transmuit-
ted to the indexer 994. Indexer 994 can provide an index of
information available 1n the database 990 or QFS 992. The

index information can be provided to file force servers 986
or the QFS 992.

[0140] FIG. 10 illustrates a diagrammatic representation
of a machine 1n the exemplary form of a computer system
1000 within which a set of instructions, for causing the
machine to perform any one or more of the methodologies
discussed herein, may be executed. The system 1000 may be
in the form of a computer system within which a set of
instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a LAN, an
intranet, an extranet, or the Internet. The machine may
operate 1n the capacity of a server machine 1n client-server
network environment. The machine may be a personal
computer (PC), a set-top box (STB), a server, a network
router, switch or bridge, or any machine capable of execut-
ing a set of mstructions (sequential or otherwise) that specity
actions to be taken by that machine. Further, while only a
single machine 1s 1llustrated, the term “machine” shall also

US 2022/0091860 Al

be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of mnstruc-
tions to perform any one or more of the methodologies
discussed heremn. In one embodiment, computer system
1000 may represent application server 110.

[0141] The exemplary computer system 1000 includes a
processing device (processor) 1002, a main memory 1004
(e.g., read-only memory (ROM), flash memory, dynamic
random access memory (DRAM) such as synchronous
DRAM (SDRAM)), a static memory 1006 (e.g., flash
memory, static random access memory (SRAM)), and a data
storage device 1018, which communicate with each other

via a bus 1030.

[0142] Processing device 1002 represents one or more
general-purpose processing devices such as a microproces-
sor, central processing unit, or the like. More particularly,
the processing device 1002 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing,
other 1struction sets or processors implementing a combi-
nation of mnstruction sets. The processing device 1002 may
also be one or more special-purpose processing devices such
as an application specific itegrated circuit (ASIC), a field
programmable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like.

[0143] The computer system 1000 may further include a
network interface device 1008. The computer system 1000
also may include a video display unit 1010 (e.g., a liquid
crystal display (LCD) or a cathode ray tube (CRT)), an
alphanumeric mput device 1012 (e.g., a keyboard), a cursor
control device 1014 (e.g., a mouse), and a signal generation
device 1016 (e.g., a speaker).

[0144] The data storage device 1018 may include a com-
puter-readable medium 1028 on which 1s stored one or more
sets of instructions 1022 (e.g., mstructions of mm-memory
bufler service 114) embodying any one or more of the
methodologies or functions described herein. The nstruc-
tions 1022 may also reside, completely or at least partially,
within the main memory 1004 and/or within processing
logic 1026 of the processing device 1002 during execution
thereol by the computer system 1000, the main memory
1004 and the processing device 1002 also constituting
computer-readable media. The instructions may further be
transmitted or received over a network 1020 via the network
interface device 1008.

[0145] While the computer-readable storage medium 1028
1s shown 1n an exemplary embodiment to be a single
medium, the term “computer-readable storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or
associated caches and servers) that store the one or more sets
of 1nstructions. The term “computer-readable storage
medium™ shall also be taken to include any medium that 1s
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “computer-readable storage medium”™
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.

[0146] Particular embodiments may be implemented in a
computer-readable storage medium (also referred to as a
machine-readable storage medium) for use by or 1n connec-
tion with the instruction execution system, apparatus, sys-

Mar. 24, 2022

tem, or device. Particular embodiments can be implemented
in the form of control logic 1n software or hardware or a
combination of both. The control logic, when executed by
one or more processors, may be operable to perform that
which 1s described 1n particular embodiments.

[0147] A “‘processor,” “processor system,” or “processing
system” 1includes any suitable hardware and/or software
system, mechanism or component that processes data, sig-
nals or other information. A processor can include a system
with a general-purpose central processing unit, multiple
processing units, dedicated circuitry for achieving function-
ality, or other systems. Processing need not be limited to a
geographic location, or have temporal limitations. For
example, a processor can perform its functions in “real
time,” “ofiline,” 1n a “batch mode,” etc. Portions of process-
ing can be performed at diflerent times and at different
locations, by different (or the same) processing systems. A
computer may be any processor in communication with a
memory. The memory may be any suitable processor-read-
able storage medium, such as random-access memory
(RAM), read-only memory (ROM), magnetic or optical
disk, or other tangible media suitable for storing instructions
for execution by the processor.

[0148] Particular embodiments may be implemented by
using a programmed general purpose digital computer, by
using application specific integrated circuits, programmable
logic devices, field programmable gate arrays, optical,
chemical, biological, quantum or nanoengineered systems,
components and mechamisms may be used. In general, the
functions of particular embodiments can be achieved by any
means as 1s known 1n the art. Distributed, networked sys-
tems, components, and/or circuits can be used. Communi-
cation, or transfer, of data may be wired, wireless, or by any
other means.

[0149] It will also be appreciated that one or more of the
clements depicted 1in the drawings/figures can also be imple-
mented 1n a more separated or integrated manner, or even
removed or rendered as inoperable 1n certain cases, as 1s
uselul 1n accordance with a particular application. It 1s also
within the spirit and scope to implement a program or code
that can be stored 1n a machine-readable medium to permit
a computer to perform any of the methods described above.

[0150] The preceding description sets forth numerous spe-
cific details such as examples of specific systems, compo-
nents, methods, and so forth, 1n order to provide a good
understanding of several embodiments of the present inven-
tion. It will be apparent to one skilled 1n the art, however,
that at least some embodiments of the present invention may
be practiced without these specific details. In other
instances, well-known components or methods are not
described 1n detail or are presented in simple block diagram
format 1n order to avoid unnecessarily obscuring the present
invention. Thus, the specific details set forth are merely
exemplary. Particular implementations may vary from these
exemplary details and still be contemplated to be within the
scope of the present mnvention.

[0151] In the above description, numerous details are set
forth. It will be apparent, however, to one of ordinary skill
in the art having the benefit of this disclosure, that embodi-
ments of the invention may be practiced without these
specific details. In some instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, 1n order to avoid obscuring the description.

Y 1

US 2022/0091860 Al

[0152] Techniques and technologies may be described
herein 1 terms of functional and/or logical block compo-
nents, and with reference to symbolic representations of
operations, processing tasks, and functions that may be
performed by various computing components or devices.
Such operations, tasks, and functions are sometimes referred
to as being computer-executed, computerized, soltware-
implemented, or computer-implemented. In this regard, 1t
should be appreciated that the various block components
shown 1n the figures may be realized by any number of
hardware, soitware, and/or firmware components configured
to perform the specified functions. For example, an embodi-
ment of a system or a component may employ various
integrated circuit components, €.g., memory elements, digi-
tal signal processing elements, logic elements, look-up
tables, or the like, which may carry out a variety of functions
under the control of one or more microprocessors or other
control devices.

[0153] Some portions of the detailed description are pre-
sented 1n terms of algorithms and symbolic representations
ol operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled 1n the data processing arts to most
cllectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

[0154] It should be borne 1n mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the above discussion, it 1s appreciated
that throughout the description, discussions utilizing terms
such as “determiming,” “analyzing,” “identifying,” “add-
ing,” “displaying,” “generating,” “querying,” “creating,”
“selecting” or the like, refer to the actions and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(e.g., electronic) quantities within the computer system’s
registers and memories 1nto other data similarly represented
as physical quantities within the computer system memories
or registers or other such information storage, transmission
or display devices.

[0155] Embodiments of the invention also relate to an
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
or 1t may comprise a general purpose computer selectively
activated or reconfigured by a computer program stored 1n
the computer. Such a computer program may be stored 1n a
computer readable storage medium, such as, but not limited
to, any type of disk including tloppy disks, optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions.

[0156] The algorithms and displays presented herein are
not mherently related to any particular computer or other

e B 4 4

Mar. 24, 2022

apparatus. Various general purpose systems may be used
with programs in accordance with the teachings herein, or 1t
may prove convenient to construct a more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these systems will appear from the
description below. In addition, the present invention 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein.

[0157] Any suitable programming language can be used to
implement the routines of particular embodiments including
C, C++, Java, assembly language, etc. Different program-
ming techniques can be employed such as procedural or
object oriented. The routines can execute on a single pro-
cessing device or multiple processors. Although the steps,
operations, or computations may be presented 1n a speciiic
order, this order may be changed in different particular
embodiments. In some particular embodiments, multiple
steps shown as sequential 1n this specification can be per-
formed at the same time.

[0158] As used 1n the description herein and throughout
the claims that follow, “a”, “an”, and “the” includes plural
references unless the context clearly dictates otherwise.
Also, as used 1n the description herein and throughout the
claims that follow, the meaning of “in” includes “in” and
“on” unless the context clearly dictates otherwise.

[0159] The foregoing detailed description 1s merely 1llus-
trative 1n nature and 1s not intended to limit the embodiments
of the subject matter or the application and uses of such
embodiments. As used herein, the word “exemplary” means
“serving as an example, instance, or illustration.” Any
implementation described herein as exemplary 1s not nec-
essarily to be construed as preferred or advantageous over
other implementations. Furthermore, there 1s no intention to
be bound by any expressed or implied theory presented in
the preceding technical field, background, or detailed
description.

[0160] While at least one exemplary embodiment has been
presented in the foregoing detailed description, 1t should be
appreciated that a vast number of vanations exist. It should
also be appreciated that the exemplary embodiment or
embodiments described herein are not intended to limait the
scope, applicability, or configuration of the claimed subject
matter in any way. Rather, the foregoing detailed description
will provide those skilled 1n the art with a convenient road
map Jor implementing the described embodiment or
embodiments. It should be understood that various changes
can be made in the function and arrangement of elements
without departing from the scope defined by the claims,
which includes known equivalents and foreseeable equiva-
lents at the time of filing this patent application.

What 1s claimed 1s:

1. A system for itegrating learning data provided by an
external learning platform to create a custom learner expe-
rience within a context of an application provided by a cloud
computing platform, the system comprising:

learner application programming interfaces (APIs) that

expose a common learning data schema on the cloud
computing platform;

a user 1terface platform, comprising:
a compiler configured to transform source code of user

interface components of a componentized learner
user 1nterface for usage on the cloud computing

US 2022/0091860 Al

platform, wherein the user interface components are
specific to the common learning data schema shared
with the learner APIs; and

a bundler configured to: generate a package of user
interface components that are compatible for usage
on the cloud computing platform, and

wherein the user interface platform 1s configured to export

the package to the cloud computing platform, and
wherein the cloud computing platiorm composes the
learning data provided via the learner APIs and the user
interface components from the package to provide a
custom learner experience within the context of the
application provided by the cloud computing platform.

2. The system according to claim 1, wherein the learner
APIs and the user interface components have an implicit
shared knowledge of the common learning data schema that
results 1n interoperability between them.

3. The system according to claim 1, wherein the cloud
computing platform composes the learning data provided via
the learner application interfaces and the user interface
components from the package via at least one of:

application code;

composition 1n an experience builder by an administrator;
or

an automation application.

4. The system according to claim 1, wherein the cloud
computing platiorm implements external learning entities
that are 1nstances of the learner APIs that make the common
learning data schema available within the cloud computing
platiorm.

5. The system according to claim 4, wherein the external
learning entities comprise the learning data, and have attri-
butes expected by the user interface components.

6. The system according to claim 1, wherein the package
of user mterface components 1s specific to the cloud com-
puting platform, and comprises: transformed source code,
assets, configuration, and metadata of the user interface
components.

7. The system according to claim 1, wherein the learming
data comprises: learming content and contextual user infor-
mation, and wherein the package comprises: source code
specifically compiled for interoperability with the target
cloud computing platform, and includes one or more of:
metadata, configuration, JavaScript, stylesheets, images, and
other artifacts of the packaging performed by the bundler.

8. The system according to claim 1, wherein the cloud
computing platform comprises:

a platform compiler that 1s configured to: transform the
source code of the package 1nto application code of the
cloud computing platform.

9. The system according to claim 1, wherein the user
interface components provide an eventing function for com-
munication with the cloud computing platform that allows
for integration with the application provided by the cloud
computing platform.

10. The system according to claim 1, wherein ¢ user
interface components provide an eventing integration func-
tion for interacting with resources from the external learning,
platform system within an i1Frame, wherein the eventing
integration function allows for the external learning platiorm
to communicate with the application provided by the cloud
computing platform.

11. A method for integrating learning data provided by an
external learning platform to create a custom learner expe-

Mar. 24, 2022

rience within a context of an application provided by a cloud
computing platform, the method comprising:

exposing, via learner application programming interfaces

(AP), a common learning data schema on the cloud
computing platform;

transforming, via a compiler of a user interface platiorm,

source code of user interface components ol a compo-
nentized learner user interface for usage on the cloud
computing platform, wherein the user interface com-
ponents are specific to the common learning data
schema shared with the learner APIs;

generating, via a bundler of the user interface platform,

generate a package of user interface components that
are compatible for usage on the cloud computing
platform;

the package from the user interface platform to the cloud

computing platform and

composing, at the cloud computing platform, the learning

data provided via the learner APIs and the user inter-
face components from the package to provide a custom
learner experience within the context of the application
provided by the cloud computing platform.

12. The method according to claim 11, wherein the learner
APIs and the user interface components have an implicit
shared knowledge of the common learning data schema that
results 1n interoperability between them.

13. The method according to claim 11, wherein the cloud
computing platform composes the learning data provided via
the learner application interfaces and the user interface
components from the package via at least one of:

application code;

composition 1n an experience builder by an administrator;
or

an automation application.

14. The method according to claim 11, further compris-
ng:

implementing, at the cloud computing platform, external

learning entities that are instances of the learner APlIs

that make the common learning data schema available
within the cloud computing platform.

15. The method according to claim 14, wherein the
external learning entities comprise the learning data, and
have attributes expected by the user interface components.

16. The method according to claim 11, wherein the
package of user interface components 1s specific to the cloud
computing platform, and comprises: transformed source
code, assets, configuration and metadata of the user interface
components.

17. The method according to claim 11, wherein the
learning data comprises learning content and contextual user
information, and wherein the package comprises:

source code specifically compiled for interoperability
with the target cloud computing platform, and includes
one or more of: metadata, configuration, JavaScript,
stylesheets, images, and other artifacts of the packaging
performed by the bundler.

18. The method according to claim 11, further compris-
ng:
transforming, at a platform compiler of the cloud com-

puting platform, the source code of the package into
application code of the cloud computing platiform.

19. The method according to claim 11, further compris-
ng:

US 2022/0091860 Al Mar. 24, 2022

21

providing, via the user interface components, an eventing
integration function for iteracting with resources from
the external learning platform within an i1Frame,
wherein the eventing integration function allows for the
external learning platform to communicate with the
application provided by the cloud computing platform.

20. A system for itegrating learning data provided by an
external learning platform to create a custom learner expe-
rience within a context of an application provided by a cloud
computing platform, comprising:

transforming, via a compiler of a user interface plat-
form, source code of user interface components of a
componentized learner user interface for usage on
the cloud computing platform, wherein the user
interface components are specific to the common
learning data schema shared with the learner APIs;

generating, via a bundler of the user interface platiorm,
generate a package of user interface components that
are compatible for usage on the cloud computing
platiorm:;

exporting the package from the user interface platform

at least one hardware-based processor and memory,

wherein the memory comprises processor-executable

instructions encoded on a non-transient processor-read-

able media, wherein the processor-executable instruc-

tions, when executed by the processor, are configurable

to cause:

exposing, via learner application programming inter-
faces (APIs), a common learning data schema on the
cloud computing platiorm;

to the cloud computing platform; and

composing, at the cloud computing platform, the learn-
ing data provided via the learner APIs and the user
interface components from the package to provide a
custom learner experience within the context of the
application provided by the cloud computing plat-
form.

	Front Page
	Drawings
	Specification
	Claims

