a9y United States
12y Patent Application Publication o) Pub. No.: US 2022/0078248 Al

US 20220078248A1

Upton et al. 43) Pub. Date: Mar. 10, 2022
(54) SYSTEM AND METHOD FOR SOFTWARE (52) U.S. CL.
SERVICES PLATFORM ARCHITECTURE CPC ... HO4L 67/16 (2013.01); HO4L 67/1002

(71)

(72)

(21)
(22)

(1)

FOR SUPPORTING STANDALONE
SERVICES OR DEVELOPMENT
ENVIRONMENTS

Applicant: SailPoint Technologies, Inc.,
Wilmington, DE (US)

Inventors: Jeffrey Allen Upton, Cedar park, TX
(US); Vasil Shlapkou, Austin, TX (US)

Appl. No.: 17/014,343
Filed: Sep. 8, 2020

Publication Classification

Int. CL.
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)

(2013.01); HO4L 65/1073 (2013.01); HO4L
67/146 (2013.01)

(57) ABSTRACT

Embodiments of a software services platform with a services
infrastructure that allows standalone service to be run 1n
association with other services deployed on a deployment
platform. The service infrastructure and services may coop-
erate to ensure that that communications (associated with the
standalone service are routed to that standalone service
while communications for other services deployed in the
solftware services may also continue communicating to
receive and servicing requests for those services.

310 OBTAIN CONFIGURATION

REGISTER SERVICE FOR TENANT
AS STANDALONE SERVICE

340 SEND HEARTBEAT

342

DEREGISTER SERVICE
FOR TENANT 344

dl 9I40L

’#‘

9Ll

JOV4d41NI
NOILVOO1 40IA4S

US 2022/0078248 Al

8Ll

V1vQd NOILVOO'I
JOIAA4S

vil

NOLLYHNOIANOD
| 3OIAYIS/INYNAL

Mar. 10, 2022 Sheet 1 of 13

N OIdO1 vV OIdO1
791 791

2Ll

JOV4H3LNI
NOILVHNOIANOD

791 JOVIYHALNI INIAT

091 WHO4LVid INJAS

Ol VI DId

Patent Application Publication

001

UzQ| 3F0INY3S

- qz0l 3J0IAN3S Bzl 30IAYS

< d1 ‘DI
3 uzo! 9zo} qeoL || ZezoL 1ezol | {_ -+OL

S _ | _

S 3038 [o0 [0S || °°° || 30U | oo« | I0US ||| {303 | oo [30NIS.

—

2

-

ceyGl N INVNAL ¥04 3n3no

€qyGl NINVYNAL HO4 3n3N0

2]

| 3OV4NILNT
ONIOVSSdN

$GlL O INYNILYO4ININD |oco| G OINVYNALHO43NAND || pEpGL O INVNAL HO4 INAND

$G| 91INYNIL ¥04 3IN3AND Z0pG| GINVNALYMO43N3AND || ZeySlL 9 .LINVNALHO4 3n3anD

Gl VINVYN3L¥HO4 IN3INO LQPGL VINVNILYHO43N3NO || LeyGl V.INVNILYHO4IN3N0 NY041V1d

Mar. 10, 2022 Sheet 2 of 13

3OVSSIN
S3N3NO FOVSSIN SININD IOVSSIN g, SININD JOVSSIN VS5
GGl JOINN3S J0IA3S NS GG
4
|
V1 ‘D14 NOYA

Patent Application Publication

¢ DId

voc ucoc ucoc 4coc¢ 4c0c

JOIAYLS | 0 0 o | JDIAMSS °e° J0IAH3S | o o o | JOIAHIS

UZo¢ d9IAddS qQz07 30INY3S

ALAVE Lec0¢

JOING3S | 0 0 o | JOIAHAS

US 2022/0078248 Al

Bz0z 3J0IAY3S

ATANE

172 JOVAHALNI AHLSIOAY d0IANSS JOV4HdLINI NOILVOO1 dOIAYAS | OL7

Gic
JOIAdd

Mar. 10, 2022 Sheet 3 of 13

Ad1SIOZY V1Va NOILVOOT NOILVANDIANOD

JO0INAS JO0IAHS JOIAGIS/INVNAL

)
e 6¢C 8l 1474

JOV4431INI NOLLVHNOIANOD YA X4

Patent Application Publication

00<

Patent Application Publication Mar. 10, 2022 Sheet 4 of 13 US 2022/0078248 Al

OBTAIN CONFIGURATION

REGISTER SERVICE FOR TENANT
AS STANDALONE SERVICE

> @

ELAPSE?
DEREGISTER SERVICE
340 SEND HEARTBEAT COR TENANT

FIG. 3A

RECEIVE REGISTRATION
FOR SERVICE FOR TENANT
CREATE ENTRY IN SERVICE

REGISTRY FOR SERVICE/TENANT

' HEARTBEAT

RECEIVED?

DELETE ENTRY FOR
RESET TIMER SERVICE/TENANT

FIG. 3B

DEREGISTRATION
REQUEST?

366

Patent Application Publication Mar. 10, 2022 Sheet 5 of 13 US 2022/0078248 Al

420 RECEIVE LOCATION FOR
SERVICE FOR TENANT

410~ REQUEST LOCATION FOR
SERVICE FOR TENANT

SEND REQUEST TO

430 RECEIVED ROUTE FOR
SERVICE FOR TENANT

FI1G. 4A

450 CHECK SERVICE REGISTRY
FOR SERVICE AND TENANT

440 RECEIVE REQUEST FOR
LOCATION SERVICE FOR TENANT

SERVICE
FOR TENANT IN
STANDALONE
MODE?

NO | RETURN LOCATION
OF SERVICE

480

460

YES

RETURN LOCATION OF
470 STANDALONE SERVICE FOR TENANT

FIG. 4B

VS ‘DI b 90

US 2022/0078248 Al

39YSSIN | o 0o | IDYSSIN JOVSSIN | o oo [39vSsaN | | | [3ovsSaW | oo o | 3DVSSIN L2S
—— NINVN3L — N INVNAL —— N INVN3L JOVAAINT |
PS5 yos3nano V5SS 4043n3n0 | £8V55 404 3n3n0 AMLSTOTY 30IAY3S

39vSSaN | o 0o | 3OVSSTN 39vSSaN | o oo | 30vssan | | 3ovssan | o o o [39vSSaN

A INVYNAL 7 INVNAL A INVNAL 6CS
GG ooo | YAYGG 17427418

V59 wo43n3nd 404 3N3ND 404 3N3ND AYLSIOTY

—— g INVYNAL
CEYSS yo4anano =

[30vssa] << [3ovssan] ||| vonvunorano

v INVNAL 3DIAYIS/INYNAL
LBYSS yo43nano

— g INVNIL | ==——= gINVYNIL
PSS wo43nano ¢A¥SS yo43nanD

— v INVNAL | —— VINVN3L
PSS yodanano LAYSS yod43nano

Mar. 10, 2022 Sheet 6 of 13

SANAND FOVSSIN SAN3N0 F9OVSSIN SANAN0 F9YSSIN << =
CCC JOIAYAS JOIAMAS CCC 40IAY4S CCC
— 715
GG AOVAHALINI ONIOVSSIN YNNI |
NOLLYHNOIANOD

0GG WMO4LY1d JOVSSIN

Patent Application Publication

US 2022/0078248 Al

Mar. 10, 2022 Sheet 7 of 13

Patent Application Publication

¥0G dS DIA

ATANS, Lucosg ¢4¢0S 14¢04 ¢ec04 ATANS
UzOG 3DIAN3S qzZ0G 30IAY3S BZ0G 3DIAY3S
gecos .
] [=
_ \
VS 'O14 NOY aCS

J0IAd0

Patent Application Publication Mar. 10, 2022 Sheet 8 of 13 US 2022/0078248 Al

002 OBTAIN MESSAGE QUEUES
604 DETERMINE IF SAME SERVICE
HAS STANDALONE SERVICE
606

STANDALONE VES
SERVICE FOR ANY
TENANT?

608

OBTAIN MESSAGES FROM

NO
OBTAIN MESSAGES FROM QUEUES NOT ASSOCIATED
612 ANY MONITORED QUEUES WITH TENANTS OF

STANDALONE SERVICE
610 SERVICE MESSAGES

MESSAGE

SCAN TIME ELAPSED
?

614

YES

FIG. 6A

OBTAIN MESSAGE QUEUES

TO MONITOR FOR SERVICE 616
AND ASSOCIATED TENANT

OBTAIN MESSAGES 618
FROM MONITORED QUEUE

SERVICE MESSAGES 620

FIG. 6B

US 2022/0078248 Al

Mar. 10, 2022 Sheet 9 of 13

Patent Application Publication

V/. ‘OIq oL/ m\.dw..._o.r

._.zm>m_ ._.Zm_>m

Hzm>m ooo| INIAT |

G9/ NNOILILIYVd GO/ NNOILILYVd

00

INdAd |ooo ._.Zm_>m
.zm>m ._.Zm_>m

G99/ 4 zOH._.:.m_ai

INJAS |oo ._.zm>m ._.zm>m coo ._.Zm_>m

i@..M. v ZOH._.H._.mEn_ N. Y ZOH._.H._.NEn_
b9) — N J1dOl V OIdOL 19/

INAAd |ooo} INdAd |
._.Zm_>m _.z.u._>m_

m on._.H._.mEm

¢9/ HOVAHALINI INSAS

09/ WYO4LY1d IN3AT

004

clL
JOVAHILINI AHLSIOAN NOILLILHVd

LTl
J0V-RIILNI AMLSIOTY FOIAYIS

6.L
AYLSIOTY NOILLILYVd

6CL
AdLSIOFY J0IA84S

viL
NOLLVHNOIANOD JOIAGAS/INVNAL

2L
JOVAHSLNI NOLLVHNOIANOD

US 2022/0078248 Al

Mar. 10, 2022 Sheet 10 of 13

Patent Application Publication

0/ d. DIAd

¢cuci/ Lluco/ ¢4¢0. 14¢0.L 4-TAV)A Lec0L
uzo/ 3DIAY3S qz0/ 30IAY3S ez0/ 3DIAY3S
gecil .
] [=
_ \
V. ‘914 NOY- aC.

J0IAd0

Patent Application Publication Mar. 10, 2022 Sheet 11 of 13 US 2022/0078248 Al

802 CREATE TOPIC AND
NUMBER OF PARTITIONS
804 CREATE ENTRY FOR TOPIC
806 RESERVE GENERAL
PARTITIONS IN TOPIC
808 UPDATE ENTRY WITH
RESERVATION FOR PARTITION

NO | RETURN

FAILURE

810 Tes 812

DETERMINE AND
814 RETURN PARTITIONS
UPDATE PARTITION REGISTRY
816 FOR TENANT AND SERVICE

FIG. 8A

UNRESERVED
PARTITIONS?

INVN4L d04 NOILILYVd 8t8
J3Ad4S3d OL INJAd HST18Nd

SdA 0£g

AENYERE
NOILLLYVa

0¥8

INVN4L 804 NOILLI1dVd
Ol IN3JAG HSIENd

ovQ S3A

(INVN3L VY ¥H04
Q3AHISTY 10N)

US 2022/0078248 Al

ON NOILI1ldVd Ol
~IN3JAd HST8Nd

(LINVN3L VY 3O

Q3AY3S3Y LON) AELYEREN

NOILIl¥Vd Ol NOILI1LHVd
IN3Ad HST18Nd OId0OL1 HO4d INVN4L HOA GEQ
SNOILILHVYd ANY 41 ANIWNYE130
ON 7eg pes
T, HAHLO 41 HO JaAH4S 3 ;
JId0Ol HO4 INVYN4L

INVN3L H04
INAAS

SIA IN3AZ F1ANVH

d04 SNOLLLLYVd
ANV Al ANINYS140

Mar. 10, 2022 Sheet 12 of 13

JIdO1 ANV INVN3L 404
INJAD J41VEINGD

OIdOl1 H04 SNOILILYVd AdNIV1O
NO¥4 INJAd JAIJOdA

_
_
|
_
|
|
_
|
|
|
" J4AH353d SNOLLILYEVd
_
|
|
|
|
|
|
|

JOIAHAS
SdA T A
CC8

INVN4L HO4 O1d01 d39IH¥0S8NS H04
NOILILYVd FAHISIY O1 1S3N0IY 0¢C8

Patent Application Publication

US 2022/0078248 Al

Mar. 10, 2022 Sheet 13 of 13

Patent Application Publication

¢68

-
|
|
|
|

NOILILHVd

A3INIVIO

NO INdAJ SdA
HSI19Nd-3d

D8 'DIA
lllllllllllll - - - - -
068 E LNVN3L HO4 NOLLLLYYd | -0/8
0L INJAT HSITaNd
agg ON 808

998

ACENYERE}.
NOILIlavd

(INVN3L VY HOA
A3AY3S3Y 1ON)

AGETYERE}.

NOILILYVd SJA | NOILILYVd OL

INJAd HST'19Nd

088 INVN3L ¥04
Q3AY3S3IH NOILILYVd
ANV 41 INIWNE 130 A3AY3SIY SNOILILHYd
¥3H10 41 HO Q3AY3S3Y
DIdO1 HO4 INVNAL OQ
INIAT HO4 INVYN3L 404 SNOILLILYVd
88 INIWY3L3d ANV 41 INIWY313Q
2IdOL WO¥A DIdOL ANV INVN3L ¥04
88 INELEENEREN INIAT F1LVHINIO 298

088 098

US 2022/0078248 Al

SYSTEM AND METHOD FOR SOFTWARE
SERVICES PLATFORM ARCHITECTURE
FOR SUPPORTING STANDALONE
SERVICES OR DEVELOPMENT
ENVIRONMENTS

TECHNICAL FIELD

[0001] This disclosure relates generally to distributed net-
worked computer services platforms. In particular, this dis-
closure relates to distributed and networked computing
environments providing Software as a Service (SaaS) plat-
forms. Even more specifically, this disclosure relates to
cloud based architectures for SaaS platforms that support
standalone services or development environments.

BACKGROUND

[0002] An emerging information technology (IT) delivery
model 1s a services model, by which shared resources,
software or information are provided on-demand over a
network to computers and other devices. Many times such
services are provided in the context of cloud computing.

[0003] The use of cloud based services 1n this manner,
while highly advantageous, 1s not without some problems. In
many cases, it may be desired to run a standalone service in
association with the other services that comprise a software
platform. This situation often occurs, for example, when a
developer 1s developing a service. The developer may be
developing the service on his device, but in order to test or
run the service under development as a standalone service
the developer may need to interact with the other set of
services ol the software platform. However, for a variety of
reasons, it may be diflicult to have such a standalone service
interact with the other deployed software services of the
platiorm (e.g., deployed on the cloud computing platiorm).
[0004] What 1s desired therefore, are improved systems
and methods for allowing standalone services to run 1n
conjunction with deployed services of a software platform.

SUMMARY

[0005] Some additional context to particular embodiments
may be useful. Many times the services of a software
platform (e.g., sometimes referred to as web services) are
provided in the context of cloud computing. A cloud com-
puting based service generally refers to a service that allows
requesters (e.g., clients such as other services or systems) to
access operations provided by the service through one or
more requests sent over a network (the Internet, for
example) using an interface.

[0006] Many software providers have taken advantage of
these new delivery models to implement their software
solutions or applications (referred to as their software plat-
form or solution) as a set of these services. Typically, the set
ol services providing the software platiorm are deployed 1n
a cloud computing environment, as discussed. The use of
cloud based services can be problematic in certain scenarios.
In many cases, it may be desired to run a standalone service
(e.g., a standalone 1nstance of a service that 1t 1s desired to
run outside the deployed set of services of the software
platform) 1n association with the other services that com-
prise a software platform. This situation often occurs 1n the
context of development of services of such a software
plattorm (e.g., when creating a new service or making
updates or fixes to an existing service). A user may be

Mar. 10, 2022

developing the service on his device, but in order to test or
run the service under development as a standalone service
the service may need to interact with the other set of services
of the software platform.

[0007] However, for a variety of reasons, it may be
difficult to have such a standalone service interact with the
other software services of the platform deployed on the
cloud computing platform. Some of these reasons have to do
with that fact that the standalone service may have corre-
sponding services in the set of services of the deployed
soltware platform (e.g., services that are identical or that
substantially duplicate the functionality and interfaces of the
standalone service). Moreover, in many cases, each of the set
of services deployed in the cloud may have many executing
instances (e.g., duplicative processes executing the same
service) 1n the set of deployed service. Not only that, but 1n
many cases, the set of services deployed as the software
platform may provide so-called “multitenant™ support.

[0008] Usually, then, the communication or other infra-
structures implemented 1n such software platforms to coor-
dinate the operations of the set of services are implemented
to allow the services to interoperate or communicate on what
may be referred to as a non-deterministic basis, whereby any
instance of a particular service may operate to service
requests for that service (e.g., across tenants). In most cases,
however, when running a standalone service 1t 1s often
desirable to ensure that requests are routed or serviced 1n a
particular manner for testing or other operational purposes,
(e.g., to ensure that requests for the service implemented by
the standalone service are routed to the standalone service,
or responses to requests from the standalone service are
routed back to the standalone service, etc.). Integrating a
standalone service with such a services platform infrastruc-
ture 1n such a determimistic manner 1s extremely diflicult.

[0009] What 1s desired therefore, are improved systems
and methods for allowing standalone services to run 1in
conjunction with deployed services of a software platiorm.

[0010] Accordingly, to ameliorate or address these 1ssues,
among other ends, embodiments of a software services
platiorm that 1s adapted to allow the operation of instances
ol standalone services 1n association with the set of services
of the services platform are disclosed. In particular, embodi-
ments of a services platform as disclosed may provide a
standalone mode of operation whereby an instance of a
standalone service may integrate with the service infrastruc-
ture and the other services of the services platform, and
communications to or from the standalone service may be
handled by the services platform in at least a partially
deterministic manner. Specifically, a multitenant services
plattorm may provide a standalone mode for standalone
services and a standalone aware mode for at least some of
the other deployed services of the services platform. A
standalone service may be associated with a specific tenant
of the services platform. This tenant may, for example, be
provisioned explicitly for a developer or other entity that
desires to operate a standalone service.

[0011] The standalone service may operate 1n a standalone
mode 1n a virtual private network (VPN) or virtual private
cloud (VPC) with the services infrastructure and the set of
deployed services of the service platform. The standalone
service may be configured for operation substantially simi-
larly to instances of the same service deployed on the
deployment platform. The standalone service may also use
a service registry interface provided by the services inira-

US 2022/0078248 Al

structure to register with the service infrastructure by, for
example, sending a registration request with registration
information to the service registry interface. The registration
information for the standalone service may include an
identifier for the tenant associated with the standalone
service and an identifier of the service (e.g., the type of the
service or instance of the service or both). The registration
information may also include location information. Such
registration information may be stored in a registration entry
1n a service registry maintained by the service infrastructure.
The service registry thus comprises entries for all standalone
services (and their associated tenants) that are running in
standalone mode at a particular time.

[0012] The service infrastructure of the services platiform
may then operate to ensure that the standalone service can
run in association with the other standalone aware services
deployed on the deployment platiform, including where the
deployed services include other instances of the same ser-
vice that 1s under development. Specifically, the service
infrastructure and standalone aware services may cooperate
to ensure that that communications (e.g., requests or
response) associated with the standalone service 1n stand-
alone mode and the tenant associated with the standalone
service are routed to that standalone service, while commu-
nications for the other services deployed in the services
platform may continue communicating to receive and ser-
vicing requests for those services (and mstances of deployed
services that are of the same service as the standalone
service continue receiving communications for that service
for other tenants).

[0013] One mode of communication between services
may be through the 1ssuance of direct commumnications (e.g.,
requests or the like) from one service to a destination service
(e.g., through an interface, such as a RESTTul interface or
the like, provided by the service being requested) using
specific protocols such as Hypertext Transfer Protocol
(HTTP). A response to that request can then be returned to
the requesting service.

[0014] In one embodiment, then, the service location
interface can determine 1f a requested service for an asso-
ciated tenant 1s associated with a standalone service by
accessing the service registry. Thus, the service registry and
the location for a standalone service may be utilized to send
communications directly to the standalone service instance=

[0015] In addition to such direct communications, how-
ever, there may be other modes by which services of a
services platform communicate to through the services inira-
structure. As an example, another method of communication
between services of a software services platform may
include messaging. In one embodiment, then, it 1s desired to
ensure that messages for a standalone service for a tenant are
routed to that standalone service, while allowing messages
for the same service for other tenants or messages for other
services are still routed to the appropnate service (e.g., a
standalone service for that combination of service and tenant
if 1t 1s runming or an 1stance of the service on the deploy-
ment platform of the services platform). This configuration
may be accomplished by having each instance of a service
configure the messages queues 1t monitors based on the
service registry having entries for standalone services, as
discussed.

[0016] Another method of communication between ser-
vices ol a software services platform may include events. In
some embodiments, then, 1n addition to a messaging plat-

Mar. 10, 2022

form and direct requests, a service inirastructure may also
provide an event platform as yet another mode by which
services of the service platform may communicate with one
another. Standalone services may reserve partitions of event
topics for their use. Thus, when a service 1s going to publish
an event for a tenant 1n a topic the service may determine 1f
any partitions for that topic are reserved for that tenant or 1f
any other partitions are reserved for any other tenants for the
topic and publish messages accordingly.

[0017] Specifically, in particular embodiments, a software
services platform may comprise a services platform provid-
ing a set of multitenant services by executing a set of
instances of each service and a services infrastructure for
communicating between the set of mstances of each of the
set of services. The services infrastructure can comprise a
service registry storing a registration entry for a standalone
service 1nstance of a first service for a first tenant executing,
on a platform distinct from the services platform, the reg-
istration entry including first location information associated
with the distinct plattorm on which the standalone service
instance 1s executing.

[0018] Service location data can comprise second location
information for the first service, the second location infor-
mation associated with the services platform. A service
location 1interface can be adapted to receive a first request for
a first location from an 1nstance of a second service execut-
ing on the service platiform, the first request identifying the
first service and the first tenant and access the service
registry to determine that the registration entry for the
standalone service instance of the first service for the first
tenant exists i the service registry. The service location
interface can determine the first location associated with the
standalone service instance of the first service for the first
tenant based on the first location imformation in the regis-
tration entry for the standalone service mnstance of the first
service for the first tenant 1n the service registry and return
the first location of the standalone service instance of the
first service on the platform distinct from the service plat-
form 1n response to the request.

[0019] The service location interface can also receive a
second request for a second location from the instance of the
second service executing on the services platform, the
second request 1dentifying the first service and a second
tenant, and access the service registry to determine that no
registration entry corresponding to the first service for the

second tenant exists in the service registry. The second
location associated with second service for the second tenant
can be determined based on the second location information
in the service location data associated with the first service
and the location of the standalone service instance of the first
service on the platform distinct from the service platform
returned 1n response to the request.

[0020] In some embodiments, the services platform 1is
deployed on a cloud based computing platform.

[0021] In a particular embodiment, the first location infor-
mation includes an IP address or port associated with the
distinct platform of the standalone service instance.

[0022] In another embodiment, the standalone service
instance 1s adapted to register with the services infrastruc-
ture when the standalone service instance 1s started and the
registration entry 1s created in the service registry by the
services infrastructure in response to the registration by the
standalone service instance.

US 2022/0078248 Al

[0023] In some embodiments, the services infrastructure
has a messaging platform, the messaging platform including
a set of message queues for the first service, the set of
message queues for the first service including a first message
queue associated with the first tenant that 1s associated with
the standalone service instance. Each instance of the first
service on the services platform may be adapted to deter-
mine that the standalone service instance of the first service
1s associated with the first tenant based on the service
registry, and obtain a first message for the first service
associated with the second tenant from at least one of the set
of message queues for the first service not including the first
message queue associated with the first tenant. The stand-
alone service mstance may be adapted to only monitor the
first message queue to obtain a second message for the first
service associated with the first tenant from the first message
queue.

[0024] In yet other embodiments, the services infrastruc-
ture comprises an event platform including a topic associ-
ated with the first service, wherein the topic 1s divided into
a set of partitions, each partition including events for the
topic for the first service, wherein the standalone service
instance obtains events only from a first partition of the topic
reserved by the standalone service mstance. Each of the set
of instances of each service can be adapted to determine that
the first partition of the topic 1s reserved for the first tenant
and to publish events for the topic and the first tenant to the
first partition.

[0025] In certain embodiments, the services infrastructure
includes a partition registry storing a partition reservation
entry for the topic, the partition reservation entry for the
topic comprising an identifier for the first partition associ-
ated with the first tenant.

[0026] Embodiments thus provide numerous advantages
over previously available systems and methods for software
services platforms. Some of these advantage relate to pro-
viding the ability of developers to only run the services that
they are actively developing (typically one or two) locally
on their machines, while the rest of the software services
system can be run 1n a shared environment 1n the cloud. This
shifts the developer resource cost from scaling with the
number of services 1n total to the number of services being
developed by a single developer. Moreover, the software
services platform can stay i a valid state, even 1f the
developer pauses a process 1in a debugger, or the process dies
or stalls.

[0027] Thus, embodiments may achieve a drastic reduc-
tion 1n resource requirements for developer machines. Other
advantages include significantly less developer environment
maintenance (e.g., no 1mages to download, no developer
stack to maintain, etc.) and the fact that standalone services
can continue to operate with a normally deployed infrastruc-
ture rather than local, mocked copies

[0028] These, and other, aspects of the disclosure will be
better appreciated and understood when considered in con-
junction with the following description and the accompa-
nying drawings. It should be understood, however, that the
following description, while indicating various embodi-
ments of the disclosure and numerous specific details
thereol, 1s given by way of illustration and not of limitation.
Many substitutions, modifications, additions and/or rear-
rangements may be made within the scope of the disclosure

Mar. 10, 2022

without departing from the spirit thereot, and the disclosure
includes all such substitutions, modifications, additions and/
Or rearrangements.

BRIEF DESCRIPTION OF THE FIGURES

[0029] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
invention. A clearer impression of the invention, and of the
components and operation of systems provided with the
invention, will become more readily apparent by referring to
the exemplary, and therefore nonlimiting, embodiments
illustrated 1n the drawings, wherein i1dentical reference
numerals designate the same components. Note that the
teatures 1llustrated 1n the drawings are not necessarily drawn
to scale.

[0030] FIGS. 1A and 1B are a block diagram of a distrib-
uted networked computer environment including a software
services platiorm.

[0031] FIG. 2 1s a block diagram of a distributed net-
worked computer environment including one embodiment
ol a software services platiorm.

[0032] FIGS. 3A and 3B are flow diagrams of embodi-
ments of a method for communication that may be employed
by a soltware services platiorm.

[0033] FIGS. 4A and 4B are flow diagrams of embodi-
ments of a method for communication that may be employed
by a soltware services platform.

[0034] FIGS. SA and 5B are a block diagram of a distrib-
uted networked computer environment including one
embodiment of a soltware services platiorm.

[0035] FIGS. 6A and 6B are flow diagrams of embodi-
ments of a method for communication that may be employed
by a soltware services platform.

[0036] FIGS. 7A and 7B are a block diagram of a distrib-
uted networked computer environment including one
embodiment of a software services platiorm.

[0037] FIGS. 8A, 8B and 8C are flow diagrams of embodi-
ments of a method for communication that may be employed
by a software services platform

DETAILED DESCRIPTION

[0038] The invention and the various features and advan-
tageous details thereof are explained more fully with refer-
ence to the non-limiting embodiments that are illustrated 1n
the accompanying drawings and detailed in the following
description. Descriptions of well-known starting materials,
processing techniques, components and equipment are omit-
ted so as not to unnecessarily obscure the invention 1n detail.
It should be understood, however, that the detailed descrip-
tion and the specific examples, while indicating some
embodiments of the invention, are given by way of 1llustra-
tion only and not by way of limitation. Various substitutions,
modifications, additions and/or rearrangements within the
spirit and/or scope of the underlying inventive concept will
become apparent to those skilled 1n the art from this disclo-
SUre

[0039] Belore delving into more detail regarding the spe-
cific embodiments disclosed herein, some context may be
helptul. Many times the services of a software platform
(e.g., sometimes referred to as web services) are provided 1n
the context of cloud computing. A cloud computing based
service generally refers to a service that allows requesters
(e.g., clients such as other services or systems) to access

US 2022/0078248 Al

operations provided by the service through one or more
requests sent over a network (the Internet, for example)
using an interface (e.g., a Representational State Transter, or
RESTTul, interface or the like) provided by the service. In
this manner, a service may, as examples, provide Software
as a Service (SaaS) by hosting applications; Infrastructure as
a Service (laaS) by hosting equipment (servers, storage
components, network components, etc.); or a Platform as a
Service (PaaS) by hosting a computing platform (operating
system, hardware, storage, etc.). These services are gener-
ally referred to by the umbrella term SaaS.

[0040] Many software providers have taken advantage of
these new delivery models to implement their software
solutions or applications (referred to as their software plat-
form or solution) as a set of these services. Typically, the set
ol services providing the soitware platform are deployed 1n
a cloud computing environment, as discussed. Cloud com-
puting resources are usually housed in large server farms
that run these services, in many cases using a virtualized
architecture wherein the service runs inside virtual servers,
or so-called “virtual machines” (VMs) or “containers™, that
are mapped onto physical servers in a data center facility.
Many providers of cloud computing platforms currently
exist, such as Amazon Web Services (AWS), Google Cloud
Platform, Microsoit Azure, etc. Thus, 1n many cases soit-
ware providers, such as enterprises or the like, may deploy
their software platform as a set of services on a third-party
cloud computing platform such as AWS, alleviating the need
for such enterprises to provide the hardware infrastructure
for running such services.

[0041] The use of cloud based services can be problematic
in certain scenarios. In many cases, 1t may be desired to run
a standalone service (e.g., a standalone mnstance of a service
that it 1s desired to run outside the deployed set of services
of the software platform) in association with the other
services that comprise a software platform. This situation
often occurs in the context of development of services of
such a software platform (e.g., when creating a new service
or making updates or fixes to an existing service). A user
may be developing the service on his device, but 1n order to
test or run the service under development as a standalone
service the service may need to interact with the other set of
services of the software platform.

[0042] However, for a variety of reasons, 1t may be
difficult to have such a standalone service interact with the
other solftware services of the platform deployed on the
cloud computing platiform. Some of these reasons have to do
with that fact that the standalone service may have corre-
sponding services in the set of services of the deployed
soltware platiorm (e.g., services that are identical or that
substantially duplicate the functionality and interfaces of the
standalone service). Moreover, in many cases, each of the set
of services deployed 1n the cloud may have many executing
instances (e.g., duplicative processes executing the same
service) 1n the set of deployed service. Not only that, but 1n
many cases, the set of services deployed as the software
plattorm may provide so-called “multitenant” support
(sometimes referred to as multitenant single deployment),
whereby each of the set of services may handle requests
associated with different tenants (e.g., enfities, organiza-
tions, groups, or any collection or group of associated
devices, soltware or users).

[0043] Usually, then, the communication or other infra-
structures implemented in such software platforms to coor-

Mar. 10, 2022

dinate the operations of the set of services are implemented
to allow the services to interoperate or communicate on what
may be referred to as a non-deterministic basis, whereby any
instance of a particular service may operate to service
requests for that service (e.g., across tenants). In most cases,
however, when running a standalone service 1t 1s often
desirable to ensure that requests are routed or serviced 1n a
particular manner for testing or other operational purposes,
(e.g., to ensure that requests for the service implemented by
the standalone service are routed to the standalone service,
or responses to requests from the standalone service are
routed back to the standalone service, etc.). Integrating a

standalone service with such a services platform 1nfrastruc-
ture 1n such a determinmistic manner 1s extremely diflicult.

[0044] Accordingly, integrating a standalone service with
a deployed, cloud service based, software platform has
heretofore been almost impossible. To run such a standalone
service then, in most cases, users (e.g., developers) have run
such standalone services on their devices, and have addi-
tionally downloaded images of all the other services of the
soltware platform and run those services on the same device
as well. Thus, the user requires a closed ecosystem of a full
set of locally running services of the software platform to
run the standalone service on the their device i a desired
manner.

[0045] Fach of these services, however, requires a base
amount of processor and memory resources. This require-
ment 1s not a significant 1ssue when the services are runnmng
on a (e.g., containerized) environment 1n the cloud, but 1t
poses some problems on user machines. User machines are
often limited to a certain amount of memory or processor
cores. When the number of services surpassed twenty five or
s0, the resources required exceeded the available amount for
typical user devices. This situation causes services to crash
or run slowly which, 1n turn, usually causes users to disable
services they deemed “unnecessary” for whatever tasks they
are attempting to accomplish with the standalone service.
The set of “necessary” services changes at a frequent enough
cadence that this solution 1s impractical. While users may be
given more powerlul devices (e.g., with more cores or
memory), such a solution 1s prohibitively expensive and of
limited scalability. In addition, the maintenance of a local
(e.g., containerized) environment 1s very slow, as container
image sizes may be large and users may spend a good deal
of time downloading the latest images each time an update
to their local environment was needed (e.g., when any other
service of the software platform 1s updated).

[0046] Moreover, certain trends with respect to soltware
services exacerbate these problems. One trend 1s that
increasingly services are being implemented as so-called
microservices, whereby each of the services of the software
plattorm may be implemented on a more granular scale.
While this increased specialization has many advantages,
one of the disadvantages for the scenario above is the
increase 1n the number of services comprising the software
plattorm (and thus increasing the resources needed to
execute the services of such a software platform on a user’s
device).

[0047] What 1s desired therefore, are improved systems
and methods for allowing standalone services to run 1n
conjunction with deployed services of a software platiorm.
Betore delving into particular embodiments, it may now be

US 2022/0078248 Al

useiul to describe architectures for software services plat-
forms and how communications are accomplished 1n such
soltware services platforms.

[0048] Turning then to FIGS. 1A and 1B then, a software

services platform 100 1s depicted. The software services
platiorm 100 may include a service platform comprising a
set of services 102 (e.g., 102a, 1025, 1027) that may
cooperate to implement particular functionality (e.g., solu-
tions, applications, etc.) along with services infrastructure
plattorm 110 that provides the communications and other
inirastructure that allows the services 102 to interoperate or
otherwise coordinate with one another to implement that
functionality. Services 102 may be deployed on deployment
plattorm 104 and may be deployed according to a micros-
ervices architecture. A microservices architecture 1s a ser-
vice-oriented architecture where the services usually have a
more fined-grained or the protocols used may be more
lightweight.

[0049] The deployment platform 104 on which the ser-
vices 102 are deployed may be, for example, a cloud
computing platform or service (collectively cloud based
computer services, cloud service providers or just cloud
services or platform, all used herein interchangeably) such
as AWS, Google Cloud Platform, Microsoit Azure, or the
like, or a proprietary platform that includes a set of (virtual
or physical) servers, that runs these services 102 and allow
them to be accessed over network 106 (e.g., the Internet, an
intranet, an internet, a Wide Area Network (WAN), a Local
Area Network (LAN), a cellular network, a wireless or

wired network, or another type of network).

[0050] Accordingly, requesters (e.g., clients such as other
services or systems associated with third parties or services
102 of the set of services 102) may access operations
provided by the services 102 through one or more requests
sent over a network 106 using an interface (e.g., a Repre-
sentational State Transfer (REST1ul) interface or the like)
provided by at least one of the services 102.

[0051] In many cases, the set of services 102 for the
services platform may be multitenant services such that each
of the set of services 102 may handle requests associated
with different tenants (e.g., entities, organizations, groups, or
any collection or group of associated devices, soltware or
users). To facilitate the handling of a large number of these
requests across multiple tenants, each service (e.g., 102a,
1025, 102#, etc.) may have multiple instances of that service
102 executing on the deployment platform 104 (e.g., service
102a may have executing instance 102q1, 102q2, etc.).
Thus, a service (e.g., 102a) may be thought of as single
logical service implemented by multiple executing instances
(e.g., 102al, 10242, etc.) of that service (e.g., 102a). The
multiple executing instances (e.g., 102q1, 102a2, etc.) are
thus adapted to service the requests intended for the logical
service (e.g., 102a). Services 102 of the service platform
thus cooperate to perform the functionality of the software
service platform 100.

[0052] Services infrastructure platform 110 may provide
tfunctionality to allow services 102 to be configured (e.g., for
particular tenants, according to network addresses, etc.) and
provide a communication infrastructure to allow service 102
to communicate with one another such as, for example, to
1ssue requests to another service 102, to recerve a response
from another service 102 or to otherwise communicate
between the services 102. Services 102 may, for example, be
adapted to utilize the services inirastructure platform 110

Mar. 10, 2022

through the inclusion of libraries associated with the inter-
faces of the services inirastructure platform 110. The ser-
vices infrastructure platform 110 may 1itself be implemented
as a set of services, applications or other functionality that
1s accessed through one or more interfaces that may include
RESTIul interfaces, Application Programming Interfaces
(APIs) or other types of intertfaces. Additionally, the services
infrastructure platform 110 may also be deployed on a
deployment platform, which may be the same as, or difler-
ent, than a cloud computing platform 104 on which the set
of services 102 of the service platform are deployed.

[0053] In particular, the service inirastructure platiorm
110 may include a configuration interface 112 for allowing
services 102 to obtain configuration data for purposes of
configuring themselves according to one or more configu-
ration variables. Specifically, configuration data 114 may be
maintained by the service infrastructure platform 110. This
configuration data may include configuration data for each
type of service 102 and, 1n some cases, include configuration
data 114 defined on a per service, per tenant basis. Thus, a
service 102 (e.g., an executing instance of a service 102)
may send a request to the configuration intertace 112 speci-
tying the service 102 (e.g., the name or type of the service)
and may, 1n some cases, also specily one or more tenants.
Such a request can, for example, be sent at the time the
service 102 1s started.

[0054] The configuration interface 112 may access stored
configuration data 114 defining configuration parameters for
that service 102 based on the identified service or tenant.
This configuration data 114 may be stored, for example, 1n
DynamoDB tables or the like. These configuration param-
cters may include host names that may be used, signing
keys, passwords, or other data that the service 102 may
require for operation, or to access functionality of the service
infrastructure platform 110. The service 102 can receive
such configuration data from the configuration interface 112
and configure 1tself accordingly (e.g., by storing the received
values for later use or by setting local or global variables to
those values).

[0055] While executing then, an instance of a service 102
may need to i1ssue requests or otherwise communicate or
interact with other services 102 of the software platform.
Services 102 may also need to obtain communications (or
other 1nteractions) mtended for that service 102 from one or
more other services 102 of the software services platform
100. Service mirastructure platform 110 may therefore pro-
vide one or more communication pathways or associated
interfaces and infrastructure to facilitate communication or
coordination between the services 102, to allow requests and
responses to be 1ssued and received by services 102 or to
otherwise allow the services to interoperate or communicate.

[0056] For example, one mode of communication between
services 102 may be through the 1ssuance of direct commu-
nications (e.g., requests or the like) from one service 102 to
a destination service 102 (e.g., through an interface, such as
a RESTTul interface or the like, provided by the service 102
being requested) using specific protocols such as Hypertext
Transier Protocol (HTTP). A response to that request can
then be returned to the requesting service 102. To facilitate
these direct communications the services inirastructure 110
may include a service location interface 116 through which
services 102 may make requests for location data (e.g.,
routing information, IP addresses, ports, etc.) for desired
services 102. The service location interface 116 may access

US 2022/0078248 Al

the service location data 118 to determine a location for the
desired service 102 and return this location to the service
102 which requested the location. The service 102 receives
the location for the desired service and can then issue a
request to this location. The determination of such a location
for a service 102 may be done, for example, utilizing
Domain Name System (DNS) lookups or the like.

[0057] Another method of communication between ser-
vices 102 of the software services platform 100 may include
messaging. To facilitate this messaging, services inifrastruc-
ture 110 may include a messaging platform 150 which may
be based on a messaging broker such as Reddis, RabbitMQ)
or the like. Messaging platform 150 may thus maintain sets
155 of message queues 154. Each set of queues 155 may be
associated with a particular service 102, while each queue
154 within each set 155 of queues 154 may be associated
with a particular tenant (e.g., entity). Thus, each service 102
may have one or more corresponding sets 1335 of queues 154
where each of those queues 154 of the set 1535 may be
associated with a different tenant that can request various
services or functionality from the software platform 100. In
that manner, messages associated with servicing requests for
a tenant (or otherwise performing tasks associated with
requests from those tenants) may be separated into a mes-
sage queue 154 specific to that tenant.

[0058] So, with reference to the depicted example, mes-
sage queues 154a may be associated with service 102a. Each
of these messages queues 154a for service 102a¢ may be
associated with a different tenant. Thus, for example, mes-
sage queue 154al for service 102a may be associated with
“Tenant A”, message queue 154a2 for service 102a may be
associated with “Tenant B”, message queue 154a3 {for
service 102a associated with “Tenant N7, etc. Likewise,
message queue 154561 for service 1026 may be associated
with “Tenant A”, while message queue 15462 for service
1026 may be associated with “Tenant B”, message queue
15453 for service 1025 may be associated with “Tenant N,
etc. It will be noted here that while not depicted in FIG. 1,
there may be multiple sets 1535 of message queues, or
message queues 154, associated with each service 102,
where each of these message queues 154 may be associated
with the same or a different set 155 of queues 154 or tenant.

[0059] Thus, when a service 102 wishes to send a message
to another service 102 (e.g., to make a request to another
service 102) the sending service 102 may send a message to
that service 102 using message interface 152. Specifically,
the service 102 sending the message may form the message
associated with a particular tenant and service 102 and send
a request to the messaging interface with the message and
identifving the service and associated tenant. The messaging
interface 152 can then place the message on the message
queue 154 associated with the 1dentified service and tenant.
Again, 1 there are multiple sets 155 of queues 154 associ-
ated with a particular service 102, the set 155 of queues 154
on which to place the message for the service 102 may also
be 1dentified in the request to the messaging interface 152
from the sending service 152.

[0060] To continue with the above example, suppose a
service 102a (e.g., executing instance of that service 102q1)
wishes to send a message to service 1025 where that
message 1s associated with performing functionality for
Tenant A. The service 102a (e.g., executing instance of that
service 102aq1) may send the message to the message
interface 152 along with an identification of service 10256

Mar. 10, 2022

and that tenant (Tenant A). The messaging interface 152 can
then place the received message on message queue 153451 of

the set 1555 of message queues 154bH corresponding to
service 1026 and Tenant A.

[0061] Thus, services 102 are configured to monitor
queues 154 (e.g., associated with that service 102). Specifi-
cally, services 102 may be updated periodically with a
configuration ol which queues 154 to monitor such that
when a message 1s available on one of the monitored queues
154 the service 102 may scan the queues it 1s configured to
monitor using messaging interface 152 obtain the message
from the monitored queue 154. The service 102a can then
process any obtained messages (e.g., perform the service
requested by the message). Specifically, each instance of a
service 102 may scan queues 1354 associated with that
service 102 and all tenants to obtain the messages for that
service 102 on the queues 154 being scanned to obtain
messages associated with all tenants. So for example,
instances 102aql, 102a2 of service 102a may each scan
queues 154al for Tenant A, 15442 for Tenant B, 154a4 for
Tenant C, 15443 for Tenant N, etc. using message interface
152 to obtain messages for that service 102a and process
those messages.

[0062] In addition to messaging platform 150 and direct
requests, service infrastructure may also provide an event
plattorm 160 as yet another method services 102 of the
service platform 100 may utilize to communicate with one
another. Such an event platform 160 may be based on
Apache’s Katka stream processing platiorm or the like.
Here, events may be grouped by topic 164, where the events
of each topic 164 may be subdivided 1nto partitions 165. The
number of partitions 165 for a given topic may be config-
urable. Events for diflerent tenants that utilize service plat-
form 100 may thus be co-located across the different parti-
tions of a topic. In particular, in some cases each topic 164
may be associated with a pod comprising a group of tenants
of the software services platform 100. Events for tenants of
that pod may thus be co-located and intermingled across the
partitions of that topic 164 for the pod.

[0063] Accordingly, services 102 may operate as publish-
ers (producers) and consumers of events. When publishing
an event for another service 102, a service 102 may deter-
mine the tenant with which the event 1s associated and
publish the event to the topic 164 using the event interface
162 of the event platform 160. The event can then be placed
on a partition 1635 of that topic 164 by the event interface
162. Conversely, services 102 may subscribe to particular
topics 164 using the event interface 162 of the event
plattorm 160. The event platform 160 can then deliver
events on the partitions 165 of topics 164 to those services
102 (e.g., services istances) subscribed to that topic. When
a service 102 receives an event from the event platform 160
the service 102 can then process the event accordingly.

[0064] As can be seen then, a services inifrastructure may
provide a robust, eflicient and fault tolerant method for
services ol a software platform to communicate with one
another. Significantly, the use of the services infrastructure
may facilitate the interoperation of multiple 1nstances of
cloud based services to cooperatively handle a large number
of requests associated with the performing of services in a
multitenant environment.

[0065] The use of such a services infrastructure and cloud
based services can, however, be problematic in certain
scenar1os. In many cases, 1t may be desired to run a

US 2022/0078248 Al

standalone service (e.g., a service that 1t 1s desired to run
outside the deployed set of services of the software plat-
form) 1n association with the (e.g., deployed) services that
comprise a software platform. This situation often occurs 1n
the context of development of services of such a software
plattorm (e.g., when creating a new service or making
updates or fixes to an existing service). For example, a user
may be developing a service (e.g., on his own computing,
device), but in order to test or run the service under
development as a standalone service the service may need to
interact with the other set of services of the software
platform. With an increasing number of services 1t becomes
difficult, 11 not impossible, to run the entire set of services
locally on a developer’s computing devices. Accordingly,
the developer may wish to execute a standalone service (e.g.,
the service under development) that interacts with the
remainder of the services deployed on the deployment
platform of the services infrastructure (e.g., 1n the cloud).

[0066] It may, however, be diflicult to have such a stand-
alone service iteract with the other software services
deployed on the deployment platform (e.g., the cloud plat-
form). Some of these reasons have to do with that fact that
the standalone service under development may have corre-
sponding mstances of that same service 1n the set of services
of the deployed software platform (e.g., services that are
identical or that substantially duplicate the functionality and
interfaces of the standalone service under development),
whereby each instance of a service may handle requests
associated with diflerent tenants (e.g., entities, organiza-
tions, groups, or any collection or group of associated
devices, soltware or users).

[0067] As has been described then, the services inirastruc-
ture enables the communication and coordination of the
operations of the set of services 1n a non-deterministic basis,
whereby any instance of a particular service may operate to
service requests for that service (e.g., across tenants). In
most cases, however, when running a standalone service it
1s often desirable to ensure that requests are routed or
serviced 1n a particular manner for testing or other opera-
tional purposes, (e.g., to ensure that requests for the service
implemented by the standalone service are routed to the
standalone service, or responses to requests from the stand-
alone service are routed back to the standalone service, etc.).
Achieving this mode of operation, however, may necessitate
handling communications between services 1 a determin-
1stic or partially deterministic manner. Achieving this type of
communication 1s quite complex, especially given that there
may be other instances of the same service still executing on
the deployment platform of the service platform. Moreover,
if the standalone service dies, stalls or fails, or 1s stopped for
debugging or otherwise ceases to execute, the other services
of the services platform, including other services having
duplicative functionality of that standalone service must
continue to function 1n a valid state. Integrating a standalone
service with a software platform, and 1n particular a services
infrastructure, 1n such a manner 1s extremely difficult.

[0068] To ameliorate or address these 1ssues, among other
ends, embodiments of a software services platform that i1s
adapted to allow the operation of instances of standalone
services 1n association with the set of services of the services
plattorm are disclosed. In particular, embodiments of a
services platform as disclosed may provide a standalone
mode of operation whereby an instance of a standalone
service (sometimes just referred to as a standalone service),

e

Mar. 10, 2022

such as a service under development or the like may
integrate with the service infrastructure and the other ser-
vices of the services platform, and communications to or
from the standalone service may be handled by the services
platform 1n at least a partially deterministic manner. Spe-
cifically, a multitenant services platform may provide a
standalone mode for standalone services and a standalone
aware mode for at least some of the other deployed services
of the services platform. A standalone service may be
associated with a specific tenant of the services platiorm.
This tenant may, for example, be provisioned explicitly for
a developer or other entity that desires to operate a stand-
alone service.

[0069] The standalone service may operate 1n a standalone
mode 1n a virtual private network (VPN) or virtual private
cloud (VPC) with the services infrastructure and the set of
deployed services of the service platform. Accordingly,
when the standalone service 1s started 1t may first obtain a
configuration for the service from the configuration interface
of the service infrastructure for allowing services to obtain
configuration data for purposes of configuring themselves
according to one or more configuration variables (e.g.,
routing information, IP addresses, ports, etc.) for use in
interacting with the services infrastructure and other service
of the services platform. In this manner, the standalone
service may be configured for operation substantially simi-
larly to instances of the same service deployed on the
deployment platiorm.

[0070] The standalone service may also use a service
registry interface provided by the services infrastructure to
register with the service infrastructure by, for example,
sending a registration request with registration information
to the service registry interface. The registration information
for the standalone service may include an identifier for the
tenant associated with the standalone service and an iden-
tifier of the service (e.g., the type of the service or instance
of the service or both). The registration information may
also include an IP address of a device where the standalone
service may be running or otherwise associated with com-
municating with the standalone service, or one or more ports
where communications (e.g., requests) to the standalone
service may be routed or addressed. Such registration infor-
mation may be stored 1n a registration entry 1n a service
registry maintained by the service infrastructure.

[0071] The registration entry for the standalone service
may also 1include a timestamp when the service was started,
a timestamp of a last heartbeat message from the standalone
service and a time for expiration (e.g., or time to live (TTL).
The standalone service may send a heartbeat signal to the
service registry interface (e.g., at regular intervals) when the
standalone service 1s running. When the service registry
interface receives such a heartbeat message the last heartbeat
time associated with the entry in the registry for that
standalone service may be updated. The service registry
interface may periodically check the service registry and
remove any entries 1n the service registry for standalone
services where the time to live associated with that entry has
expired such as where no heartbeat message has been
received from that standalone service during a time nterval
specified by the time to live. Moreover, when the standalone
service shuts down or 1s killed (e.g., or otherwise exits in a
normal fashion), the standalone service may send a dereg-
istration request to service registry interface which may
remove the entry corresponding to the standalone service

US 2022/0078248 Al

from the service registry when such a deregistration request
1s recerved. The service registry thus comprises entries for
all standalone services (and their associated tenants) that are
running in standalone mode at a particular time.

[0072] The service infrastructure of the services platform
may then operate to ensure that the standalone service can
run 1n association with the other standalone aware services
deployed on the deployment platiorm, including where the
deployed services include other instances of the same ser-
vice that 1s under development. Specifically, the service
infrastructure and standalone aware services may cooperate
to ensure that that communications (e.g., requests or
response) associated with the standalone service 1n stand-
alone mode and the tenant associated with the standalone
service are routed to that standalone service, while commu-
nications for the other services deployed in the services
platform may continue communicating to receive and ser-
vicing requests for those services (and 1nstances of deployed
services that are of the same service as the standalone
service confinue receiving communications for that service
for other tenants).

[0073] As discussed then, one mode of communication
between services may be through the 1ssuance of direct
communications (e.g., requests or the like) from one service
to a destination service (e.g., through an interface, such as a
RESTTul interface or the like, provided by the service being
requested) using specific protocols such as Hypertext Trans-
ter Protocol (HTTP). A response to that request can then be
returned to the requesting service. To facilitate these direct
communications the services infrastructure may include a
service location iterface through which services may make
requests for location data (e.g., routing information, IP
addresses, ports, etc.) for desired services. The service
location interface may access the service location data to
determine a location for the desired service and return this
location to the service which requested the location. The
service receives the location for the desired service and can
then 1ssue a request to this location. The determination of
such a location for a service may be done, for example,
utilizing Domain Name System (DNS) lookups or the like.

[0074] In one embodiment, then, the service location
interface can determine 1f a requested service for an asso-
ciated tenant 1s associated with a standalone service by
accessing the service registry. Thus, when a service desires
to send a request or other communication to another service,
the requesting service may send a request for a location
along with an identifier for the tenant to be associated with
such a request (e.g., the tenant for which the services will be
performing their services or whose data will be involved in
the performing of such services). When the service location
interface recetves such a request for a service location for a
service and tenant (e.g., a combination of service and tenant)
the service location interface can access the service registry
to determine 1f a registration entry associated with the
requested service and tenant exists in the service registry.
The presence of such a registration entry may indicate that
an instance of the service for that tenant i1s operating 1n
standalone mode. Thus, 1f a registration entry exists for that
service and tenant combination 1n the service registry the
service location interface can determine the route (e.g., IP
address of the device on which the standalone service is
executing, a port number, etc.) from the registration entry for
that service and tenant combination. This location (e.g.,
route) for the requested service may be returned to the

Mar. 10, 2022

service that requested the location data. If a registration
entry for the service and tenant does not exist (e.g., there 1s
not a service for that tenant operating 1n standalone mode)
the service location interface may access the service location
data to determine a location for an instance of the desired
service (e.g., on the deployment platform) and return this
location to the service which requested the location.

[0075] Such an embodiment 1s depicted in software ser-
vice platform of FIG. 2. Here, the software services platform
200 may include a service platform comprising a set of
services 202 (e.g., 2024, 2025, 2027) that may cooperate to
implement particular functionality (e.g., solutions, applica-
tions, etc.) along with services inirastructure platform 210
that provides the communications and other infrastructure
that allows the services 202 to interoperate or otherwise
coordinate with one another to implement that functionality.
Services 202 may be deployed on deployment platiorm 204,
such as a cloud computing platform, and may be deployed
according to a microservices architecture.

[0076] The set of services 202 for the services platiorm
may be multitenant services such that each of the set of
services 202 may handle requests associated with different
tenants (e.g., entities, organizations, groups, or any collec-
tion or group of associated devices, software or users). To
facilitate the handling of a large number of these requests
across multiple tenants, each service (e.g., 202a, 20256, 202,
ctc.) may have multiple instances of that service 202 execut-
ing on the deployment platform 204 (e.g., service 202a may
have executing instance 202al, 20242, etc.). Thus, a service
(e.g., 202a4) may be thought of as single logical service
implemented by multiple executing instances (e.g., 202al,
20242, etc.) of that service (e.g., 202a). The multiple execut-
ing instances (e.g., 202al, 20242, etc.) are thus adapted to
service the requests itended for the logical service (e.g.,
202a). Services 202 of the service platform thus cooperate
to perform the functionality of the software service platform

200.

[0077] Accordingly, requesters (e.g., clients such as other
services or systems associated with third parties or services
202 of the set of services 202) may access operations
provided by the services 202 through one or more requests
sent over a network 206 using an interface (e.g., a Repre-
sentational State Transter (RESTIul) interface or the like)
provided by at least one of the services 202.

[0078] Services infrastructure platform 210 may provide
functionality to allow services 202 to be configured (e.g., for
particular tenants, according to network addresses, etc.) and
provide a communication inirastructure to allow service 202
to communicate with one another such as, for example, to
1ssue requests to another service 202, to receive a response
from another service 202 or to otherwise communicate
between the services 202. Services 202 may, for example, be
adapted to utilize the services infrastructure platform 210
through the inclusion of libraries associated with the inter-
faces of the services inirastructure platform 210. The ser-
vices infrastructure platform 210 may 1itself be implemented
as a set of services, applications or other functionality that
1s accessed through one or more interfaces that may include
RESTIul interfaces, Application Programming Interfaces
(APIs) or other types of intertfaces. Additionally, the services
infrastructure platform 210 may also be deployed on a
deployment platform, which may be the same as, or difler-
ent, than a cloud computing platform 204 on which the set
of services 202 of the service platform are deployed.

US 2022/0078248 Al

[0079] In particular, the service inirastructure platiform
210 may 1nclude a configuration interface 212 for allowing
services 202 to obtain configuration data for purposes of
configuring themselves according to one or more configu-
ration variables. Specifically, configuration data 214 may be
maintained by the service infrastructure platform 210. This
configuration data may include configuration data for each
type of service 202 and, 1n some cases, include configuration
data 214 defined on a per service, per tenant basis. Thus, a
service 202 (e.g., an executing instance of a service 202)
may send a request to the configuration interface 212
specilying the service 202 (e.g., the name or type of the
service) and may, 1 some cases, also specily one or more
tenants. Such a request can, for example, be sent at the time
the service 202 1s started.

[0080] In many cases, 1t may be desired to run a stand-
alone service instance (e.g., an instance of a particular
service that 1t 1s desired to run outside the deployed set of
services ol the software platform) in association with the
(e.g., deployed) services that comprise a software platform.
This situation often occurs 1n the context of development of
services of such a software platform (e.g., when creating a
new service or making updates or fixes to an existing
service). For example, a user may be developing a service
(e.g., on his own computing device), but in order to test or
run the service under development as a standalone service
the service may need to interact with the other set of services
of the software platform. In certain instances, 1n fact, the
standalone service instance 20243 may have other instances
of the same service 202al, 20242, etc. deployed in the cloud
computing platform 204. A tenant may thus be assigned to
the developer or other user such that any standalone services
associated with that developer or other user may likewise be
associated with same tenant. Such a tenant may be distinct
from other tenants whose requests are serviced by the
service platform 200.

[0081] In an embodiment, then, a standalone service
202a3 may be deployed on a device 225. This device 2235
may, for example, be the computing device of a developer or
almost any other user who wishes to run such a standalone
service 202a3. A standalone service 20243 may be an
instance of a service 202aq running 1n a standalone mode.
Running 1n standalone mode may refer to the fact that the
standalone service 202q3 1s running remotely from the
deployment platform 204 on which the other services 20

are running without any other indicators, or may be a flag or
other indicator or variable stored locally (e.g., to the stand-

Mar. 10, 2022

alone service 202a3) or globally within the services inira-
structure 210 or platform 200 that indicates the standalone

service 202a3 1s operating as a standalone service. Thus, the
standalone service 20243 may be associated with the tenant
associated with the developer or other user who 1s running
(e.g., developing) that standalone service 202a3. The stand-
alone service may operate 1n a standalone mode 1n a virtual
private network (VPN) or virtual private cloud (VPC) with
the services infrastructure 210 and the set of deployed
services 202 of the service platform. The standalone service
20243 and the user device 225 thus have access to the
resources of the software services platform and the services
202 and services infrastructure platform 210 may have
access to the standalone service 202a3 or device 225.
[0082] Accordingly, when the standalone service 202a3 is
started 1t may first obtain a configuration for that (e.g., type
ol) service 202a3 from the configuration interface 212 of the
service inirastructure 210 for allowing services to obtain
configuration data for purposes of configuring themselves
according to one or more configuration variables (e.g.,
routing information, IP addresses, ports, etc.) for interacting
with the services infrastructure and other service of the
services platform. In this manner, the standalone service
20243 may be configured for operation substantially simi-
larly to mstances 202al, 20242 of the same service deployed
on the deployment platform.

[0083] The standalone service 20243 may also use a
service registry interface 227 provided by the services
infrastructure 210 to register with the service infrastructure
210 by, for example, sending a registration request with
registration information to the service registry interface 227.
The registration information for the standalone service
20243 may include an identifier for the tenant associated
with the standalone service 202a3 and an identifier of the
service 202a3 (e.g., the type of the service 202a or instance
of the service 202a3 or both). The registration information
may also include an IP address or host name of device 2235
where the standalone service 202¢3 may be running or
otherwise associated with communicating with the stand-
alone service 20243, or one or more ports where commu-
nications (e.g., requests) to the standalone service 202a3
may be routed or addressed. Such registration information
may be stored 1n a registration entry 1n a service registry 229
maintained by the service infrastructure 210. An example of
such a service registry 1s depicted below:

connection
id (S) (3)
170571c®4d764ea 10.255.0.93:3448
Rbd5702d57{d38ORE
2¢3b268629a641 10.255.0.93:3295
1dR60¢c9166b749b768%
6d56besb331d44 10.255.0.93:3086
bcbd7a616bich580¢0
Rded55¢0¢5e9405 10.255.0.93:3416
1a%¢ch381913{1d02¢
RIT737¢c232d5414ct 10.255.0.93:3094
a9947915655b4106
dO6¢c06d7622b461 10.255.0.93:3094
6R838e36akca/02ecl

expiration hostname service_ tenant_id
created (S) (N) (S) id (S) (8)
2020-06- 1592951735 nmougin- WgIns ~ moug-
23T13:11:34.338- 12812 infero
05:00
2020-06- 1592951385 wvschapkou- cloud- wvasil-
23T17:18:45.478- 11762.local debug test-pod
05:00
2020-06- 1592951762 brose-11550 rosetta fastfed
23T17:06:02.181-
05:00
2020-06- 1592951764 dlara-12557 ets domingo-
23115:06:03.542- mega-
05:00 org
2020-06- 1592950977 currutia- taco carlosdevOl
23T17:18:56.737- MBPR.local
05:00
2020-06- 1592951721 currutia- taco carlosdevOl
23T17:21:20.851- MBPR.local

05:00

US 2022/0078248 Al

-continued
connection expiration

id (S) (S) created (S) (N)
e3eb6bd1563cda 10.255.0.93:3365 2020-06- 1592951717
c38b471211a7e0c941 23117:23:17.385-

05:00
f64d6b27e2634¢5 10.255.0.93:3546 2020-06- 1592951720
d9853a62c67a5736¢ 23T117:25:19.915-

05:00
[0084] The registration entry for the standalone service

202a3 may also include a timestamp when the service was
started, a timestamp of a last heartbeat message from the
standalone service and a time for expiration (e.g., or time to
live (ITTL). The standalone service 20243 may send a
heartbeat signal to the service registry interface 227 (e.g., at
regular intervals) when the standalone service 202a3 1s
running. When the service registry interface 227 receives
such a heartbeat message the last heartbeat time associated
with the entry 1n the registry 229 for that standalone service
202a3 may be updated. The service registry interface 227
may periodically check the service registry and remove any
entries 1n the service registry 227 for standalone services
where the time to live associated with that entry has expired,
such as where no heartbeat message has been received from
that standalone service 20243 during a time 1nterval speci-
fied by the time to live. Moreover, when the standalone
service 202a3 shuts down or 1s killed (e.g., or otherwise
exits 1n a normal fashion), the standalone service 20243 may
send a deregistration request to service registry interface 227
which may remove the entry corresponding to the stand-
alone service 20243 from the service registry 227 when such
a deregistration request 1s received. The service registry 227
thus comprises entries for all standalone services (and their
associated tenants) that are running 1n standalone mode at a
particular time.

[0085] While executing then, an mstance of a service 202
(including standalone service 202a3) may need to 1ssue
requests or otherwise communicate or interact with other
services 202 of the software platform. Services 202 may also
need to obtain communications (or other interactions)
intended for that service 202 from one or more other services
202 of the software services platform 200. Service infra-
structure platform 210 may therefore provide one or more
communication pathways or associated interfaces and 1nfra-
structure to facilitate communication or coordination
between the services 202, to allow requests and responses to
be 1ssued and received by services 202 or to otherwise allow
the services to interoperate or communicate.

[0086] As discussed, one mode of communication
between services 202 may be through the 1ssuance of direct
communications (e.g., requests or the like) from one service
202 to a destination service 202 (e.g., through an interface,
such as a RESTIul intertace or the like, provided by the
service 202 being requested) using specific protocols. A
response to that request can then be returned to the request-
ing service 202. To facilitate these direct communications
the services inirastructure 210 may include a service loca-
tion interface 216 through which services 202 may make
requests for location data (e.g., routing information, IP
addresses, ports, etc.) for desired services 202. Such a
request for location may include a tenant 1dentifier 1denti-
tying a tenant (e.g., a tenant for whom the request to the

hostname

Mar. 10, 2022

service tenant id

id (8) (S)

mamruthal- rats mahesh

12690

rpapisetti- sweep ravi-

12824.]ocal papisetti-
3

located service will be associated). The service location
interface 216 may access the service location data 218 to
determine a location for the desired service 202 and return
this location to the service 202 which requested the location.
The service 202 receives the location for the desired service
and can then 1ssue a request to this location.

[0087] As may be understood from the discussion herein,
it 1s desirable that requests for service 202a associated with
the tenant of standalone service 20243 should be routed to
standalone service 202a3 while requests for service 202a
associated with other tenants should be routed accordingly
(e.g., to other mstances of the service 202a deployed on
deployment platform 204 or to other standalone services
(not shown) associated with that tenant).

[0088] In one embodiment, then, the service location
interface 216 can determine 1f a requested service location
for an associated tenant 1s associated with standalone service
202a3 by accessing the service registry 229. Thus, when a
service 202 desires to send a request or other communication
to another service 202, the requesting service 202 may send
a request for a service location along with an 1dentifier for
the tenant to be associated with such a request (e.g., the
tenant for which the services will be performing their
services or whose data will be involved 1n the performing of
such services) to the service location interface 216. When
the service location interface 216 recerves such a request for
a service location for a service 202 and tenant (e.g., a
combination of service and tenant) the service location
interface 216 can access the service registry 229 to deter-
mine 1f a registration entry associated with the requested
service 202 and tenant exists in the service registry 229.
[0089] The presence of such a registration entry in the
service registry 229 may indicate that an instance of the
service 202aq3 for that tenant 1s operating in standalone
mode. Thus, if a registration entry exists for that service 202
and tenant combination 1n the service registry 229, the
service location interface 216 can determine the route (e.g.,
IP address of the device on which the standalone service 1s
executing, a port number, etc.) from the registration entry for
that service 20243 and tenant combination. Here, for
example, the location may include an IP address of the
device 225 on which the standalone service 202a3 1s execut-
ing and one or more associated ports. This location (e.g.,
route) for the requested service 20243 may be returned to the
service 202 that requested the location data by the service
location interface 216. 11, however, a registration entry for
the service and tenant does not exist 1n the service registry
229 (e.g., there 1s not a service for that tenant operating 1n
standalone mode) the service location interface 216 may
access the service location data 218 to determine a location
for an instance of the desired service (e.g., on the deploy-
ment platform) and return this location to the service 202
which requested the location.

US 2022/0078248 Al

[0090] Moving now to FIGS. 3A and 3B, embodiments of
methods for registering a standalone service with a services
infrastructure are depicted. Referring first to FIG. 3A, one
embodiment of a method that may be performed by a
standalone service for registering with a services infrastruc-
ture platiorm 1s depicted. Initially, when a standalone service
1s started (e.g., or restarted, etc.) or otherwise begins execut-
ing, the standalone service may obtain a configuration for
that (e.g., type of) service from the service inirastructure
(STEP 310). This configuration may include configuration
data for purposes of configuring the standalone service
according to one or more configuration variables (e.g.,
routing information, IP addresses, ports, etc.) for interacting,
with the services infrastructure and other service of the
services platform.

[0091] The standalone service can the register with the
services inirastructure (STEP 320). This registration may
include sending a registration request with registration infor-
mation to the services infrastructure. The registration nfor-
mation for the standalone service may include an i1dentifier
for the tenant associated with the standalone service and an
identifier of the standalone service. The registration infor-
mation may also include an IP address or host name of the
device where the standalone service may be running or
otherwise associated with communicating with the stand-
alone service, or one or more ports where communications
(e.g., requests) to the standalone service may be routed or
addressed. The standalone service may send a heartbeat
signal (STEP 340) to the service registry interface (e.g., at
the expiration of a timer) (STEP 330) when the standalone
service 1s running. Moreover, when the standalone service
shuts down or 1s killed (e.g., or otherwise exits in a normal
tashion) (STEP 342), the standalone service may send a

deregistration request to service registry interface (STEP
344).

[0092] In FIG. 3B, one embodiment of a method that may
be performed by a services inirastructure platform to register
a standalone service 1s depicted. Here, a registration request
with registration information may be received from a stand-
alone service at the services iirastructure (STEP 350). This
registration information may include an identifier of the
service (such as a name for the service) and an 1dentification
of a tenant associated with the service. The registration
information may also include an IP address or host name of
device where the standalone service may be running or
otherwise associated with communicating with the stand-
alone service, or one or more ports where communications
(e.g., requests) to the standalone service 202a3 may be
routed or addressed. When this registration request 1s
received, the services inirastructure may create a registration
entry including the registration information for that stand-
alone service 1n a service registry maintained by the service
infrastructure (STEP 360). The registration entry for the
standalone service 20243 may also include a timestamp
when the standalone service was started, a timestamp of a
last heartbeat message from the standalone service or a time
for expiration (e.g., or time to live (T'TL)).

[0093] The service infrastructure can then determine 1f a
new heartbeat message has been received from that stand-
alone service (STEP 362). When a new heartbeat message 1s
received for that service and tenant the registration entry for
that service and tenant may be update with a new TTL (or
the time at which the most recent heartbeat message was
received (STEP 370). Likewise, the service infrastructure

Mar. 10, 2022

can determine 1f a TTL associated with registration entry has
expired (e.g., a certain amount of time since the last heart-
beat was received has expired) (STEP 364). If 1t has deter-
mined that a TTL has expired, the registration entry for that
service and tenant may be removed from the service registry
(STEP 372). Similarly, 1f at some point a deregistration
request 1s received from that service associated with the
tenant (STEP 366) the registration entry may be removed
from the service registry (STEP 372).

[0094] FIGS. 4A and 4B depict embodiments of methods
for utilizing this service registry of a services infrastructure
to facilitate direct communications between services (in-
cluding standalone services) of a services platform. Specifi-
cally, FIG. 4A depicts one embodiment of a method for a
service to request a location for another service to which it
1s desired to send a request or other communication. The
service that will be sending the communication may send a
request for location data (e.g., routing information, IP
addresses, ports, etc.) for a desired service to the service
inirastructure (STEP 410). This request for the location for
the service may include an identifier of a tenant associated
with such a request (e.g., the tenant for which the services
will be performing their services or whose data will be
involved 1n the performing of such services). The service
that will be sending the communication can receive the
location (e.g., the IP address, port, hostname, etc.) from the

service mirastructure (STEP 420) and send the request to the
desired service at the received location (STEP 430).

[0095] FIG. 4B depicts an embodiment of a method for a
service infrastructure for handling a request for the location
of a service. When the service infrastructure receives such a
request for a service location for a service and tenant (e.g.,
a combination of service and tenant) (STEP 440) the service
infrastructure can access the service registry to determine 1f
a registration entry associated with the requested service and
tenant exists in the service registry (STEP 450). The pres-
ence of such a registration entry in the service registry may
indicate that an instance of that service for that tenant is
operating 1n standalone mode.

[0096] Thus, 1t there 1s a registry entry for the requested
service and tenant (Y branch of STEP 460) in the service
infrastructure can determine the location of the requested
service for that tenant the (e.g., IP address of the device on
which the standalone service 1s executing, a port number,
etc.) from the registration entry for that service and tenant
combination. This location (e.g., route) for the requested
service and tenant may be returned to the service that
requested the location data by the service infrastructure
(STEP 470). If, however, a registration entry for the service
and tenant does not exist 1n the service registry (e.g., there
1s not a service for that tenant operating in standalone mode)
(N branch of STEP 460) the service infrastructure may
access service location data to determine a location for an
instance of the desired service (e.g., on the deployment
plattorm) and return this location to the service which
requested the location (STEP 480). The service that
requested this location can thus receive the location for the
desired service and can then issue a request to this location.
In this manner, requests or other communications for the
standalone service and the associated tenant may be sent
directly to that standalone service the device on which the
standalone service 1s executing while requests for that server
for other tenants or other services may still be sent to
instances of services on the deployment platform (or, 1n

US 2022/0078248 Al

cases where other standalone services (e.g., for the same or
other tenants) may be executing to the location of those
standalone services.).

[0097] In addition to such direct communications, how-
ever, there may be other modes by which services of a
services platform communicate to through the services inira-
structure. It 1s likewise desirable that the service infrastruc-
ture of a services platform adapt these other modes of
communication such that these other modes of communica-
tion may still be utilized by the services of the platform
while still ensuring that the standalone service can run in
association with the other standalone aware services
deployed on the deployment platiform, including where the
deployed services include other instances of the same ser-
vice that 1s under development.

[0098] Again 1t 1s desirable that the service inirastructure
and standalone aware services may cooperate to ensure that
that communications (e.g., requests or response) associated
with the standalone service in standalone mode and the
tenant associated with the standalone service are routed to
that standalone service, while communications for the other
services deployed in the services platform may continue
communicating to receive and servicing requests for those
services (and instances of deployed services that are of the
same service as the standalone service continue receiving
communications for that service for other tenants).

[0099] As previously referred to, another method of com-
munication between services of a software services platform
may include messaging. In some embodiments, then a set of
queues may be associated with a particular (e.g., type of)
service, where each queue within each set of queues may be
associated with a particular tenant. Thus, each service of the
services platform may have one or more corresponding sets
of queues where each of those queues of the set may be
associated with a different tenant that can request various
services or functionality from the software platform. In that
manner, messages associated with servicing requests for a
tenant (or otherwise performing tasks associated with
requests from those tenants) may be separated into a mes-
sage queue specific to that tenant.

[0100] Thus, when a service wishes to send a message to
another service (e.g., to make a request to another service)
the sending service may send a message to that service using,
a message nterface of the service inirastructure. Specifi-
cally, the service sending the message may form the message
associated with a particular tenant and service and send a
request to the messaging interface with the message and
identifying the service and associated tenant. The message
can then be placed on the message queue associated with the
identified service and tenant. The services of the services
platform are configured to monitor queues associated with
theirr (e.g., type of) service. The services of the services
infrastructure may scan the queues it 1s configured to obtain
messages ifrom the monitored queue. A service can then
process any obtained messages (e.g., perform the service
requested by the message). Specifically, each instance of a
service may scan queues associated with that service and
(e.g., all or a subset of) tenants to obtain the messages for
that service on the queues being scanned and process any
obtained messages.

[0101] Inoneembodiment, then, it 1s desired to ensure that
messages for a standalone service for a tenant are routed to
that standalone service, while allowing messages for the
same service for other tenants or messages for other services

Mar. 10, 2022

are still routed to the appropriate service (e.g., a standalone
service for that combination of service and tenant if 1t 1s
running or an instance ol the service on the deployment
platform of the services platiform). This configuration may
be accomplished by having each instance of a service
configure the messages queues it monitors based on the
service registry having entries for standalone services, as
discussed.

[0102] Specifically, according to one embodiment, at
some 1nterval (e.g., a time interval) each instance of an
executing service operating 1n standalone aware mode (e.g.,
the instances of services deployed on the deployment plat-
form of the software services platform) may scan queues
associated with 1ts type of service (e.g., the type of service
of that service instance) to determine if there are any
messages for processing. Fach time the scan of monitored
queues 1s preformed the mstance of the service may access
the service registry to determine 11 there any instances of the
same type of service 1n standalone mode (e.g., 1f there are
any registry entries 1n the service registry for the same type
of service). If there are any instances of the same type of
service 1n standalone mode, the tenants associated with
those instances of standalone services of the same type may
be obtained from the service registry entries associated with
those standalone services. The instance of the service can
then scan the message queues for that service that are not
associated with those tenants and process any messages
obtained from those monitored queues.

[0103] Smmilarly, a standalone service operating in stand-
alone mode may be configured with the tenant associated
with that service (e.g., the tenant associated with the devel-
oper on whose device the standalone service 1s executing).
Thus, a standalone service operating in standalone mode
may be configured to scan message queues associated with
its type of service (e.g., the type of service of that standalone
service) associated with that tenant. In this manner, all
messages for that type of service associated with that tenant
may be obtained by the standalone service while messages
for that service for other tenants may be obtained and
processed by the mnstances of that type of service deployed
on the deployment platform or, in cases where other
instances of standalone services for that type of service are
running for other tenants, messages for that services and
those tenants may be obtained by the respective standalone
services for those tenants.

[0104] Such an embodiment i1s depicted in software ser-
vice platform of FIGS. SA and 5B. Again, the software
services platform 500 may include a service platform com-
prising a set of services 302 (e.g., 502a, 5025, 502#») that
may cooperate to implement particular functionality (e.g.,
solutions, applications, etc.) along with services infrastruc-
ture platform 510 that provides the communications and
other infrastructure that allows the services 502 to interop-
erate or otherwise coordinate with one another to implement
that functionality. Services 502 may be deployed on deploy-
ment platform, such as a cloud computing platform, and may
be deployed according to a microservices archutecture. Cer-
tain aspects of the software services platiorm 500 may be
similar to those described with respect to other embodiments
of software services platform described herein as will be
understood.

[0105] The set of services 502 for the services platiform
may be multitenant services such that each of the set of
services 502 may handle requests associated with different

US 2022/0078248 Al

tenants (e.g., entities, organizations, groups, or any collec-
tion or group of associated devices, soltware or users). To
tacilitate the handling of a large number of these requests
across multiple tenants, each service (e.g., 502a, 5025, 502,
etc.) may have multiple instances of that (e.g., type of)
service 502 executing on the deployment platform 504 (e.g.,
service 302a of a first type may have executing instance
502al1, 50242, etc.). Thus, a service (e.g., 502a) may be
thought of as single logical service implemented by multiple
executing instances (e.g., 502al, 502a2, etc.) of that service
(e.g., 502a). The multiple executing instances (e.g., 502al,
502a2, etc.) are thus adapted to service the requests intended
for the logical service (e.g., 502a). Services 502 of the
service platform thus cooperate to perform the functionality
of the software service platiorm 500.

[0106] Accordingly, requesters (e.g., clients such as other
services or systems associated with third parties or services
502 of the set of services 302) may access operations
provided by the services 502 through one or more requests
sent over a network 306 using an interface (e.g., a Repre-
sentational State Transfer (REST1ul) interface or the like)
provided by at least one of the services 502.

[0107] Services infrastructure platform 510 may provide
functionality to allow services 502 to be configured (e.g., for
particular tenants, according to network addresses, etc.) and
provide a communication infrastructure to allow service 502
to communicate with one another such as, for example, to
1ssue requests to another service 502, to receive a response
from another service 502 or to otherwise communicate
between the services 502. Services 502 may, for example, be
adapted to utilize the services infrastructure platform 510
through the inclusion of libraries associated with the inter-
faces of the services infrastructure platform 510. The ser-
vices infrastructure platform 510 may 1tself be implemented
as a set of services, applications or other functionality that
1s accessed through one or more interfaces that may include
REST1ul interfaces, Application Programming Interfaces
(APIs) or other types of intertfaces. Additionally, the services
infrastructure platform 3510 may also be deployed on a
deployment platform, which may be the same as, or difler-
ent, than a cloud computing platform 504 on which the set
of services 502 of the service platform are deployed.

[0108] In many cases, 1t may be desired to run a stand-
alone service (e.g., a service that 1t 1s desired to run outside
the deployed set of services of the software platform) in
association with the (e.g., deployed) services that comprise
a soltware platform. This situation often occurs in the
context of development of services of such a software
plattorm (e.g., when creating a new service or making
updates or fixes to an existing service). For example, a user
may be developing a service (e.g., on his own computing
device), but in order to test or run the service under
development as a standalone service the service may need to
interact with the other set of services of the software
platform. In certain instances, in fact, the standalone service
502a3 may have other instances of the same service 502al,
502a2, etc. deployed 1n the cloud computing platform 504.
A tenant may be assigned to the developer or other user such
that any standalone services associated with that developer
or other user may likewise be associated with same tenant.
Such a tenant may be distinct from other tenants whose
requests are serviced by the service platform 500.

[0109] In an embodiment, then, a standalone service
502a3 may be deployed on a device 325. This device 5235

Mar. 10, 2022

may, for example, be the computing device of a developer or
almost any other user who wishes to run such a standalone
service 502a3. A standalone service 30243 may be an
instance of a (e.g., type of0 service 5024 running 1n a
standalone mode. Running 1n standalone mode may refer to
the fact that the standalone service 50243 1s running
remotely from the deployment platform 504 on which the
other services 302 are running without any other indicators,
or may be a flag or other indicator or variable stored locally
(e.g., to the standalone service 502a3) or globally within the
services infrastructure 510 or platform 500 that indicates the
standalone service 502a3 1s operating as a standalone ser-
vice. Thus, the standalone service 50243 may be associated
with the tenant associated with the developer or other user
who 1s running (e.g., developing) that standalone service
502a3. The standalone service may operate 1n a standalone
mode 1n a virtual private network (VPN) or virtual private
cloud (VPC) with the services infrastructure 510 and the set
of deployed services 502 of the service platform. The
standalone service 50243 and the user device 525 thus have
access to the resources of the software services platiorm and
the services 502 and services inirastructure platform 510
may have access to the standalone service 50243 or device

525.

[0110] The standalone service 502q¢3 may also use a
service registry interface 527 provided by the services
infrastructure 510 to register with the service infrastructure
510 by, for example, sending a registration request with
registration information to the service registry interface 527.
The registration information for the standalone service
50243 may include an identifier for the tenant associated
with the standalone service 50243 and an identifier of the
service 302a3 (e.g., the type of the service 5024 or instance
of the service 502a3 or both, such as a name for the type of
service). The registration information may also include an IP
address or host name of device 525 where the standalone
service 50243 may be running or otherwise associated with
communicating with the standalone service 50243, or one or
more ports where communications (e.g., requests) to the
standalone service 50243 may be routed or addressed. Such
registration information may be stored 1n a registration entry
in a service registry 529 maintained by the service infra-
structure 510. The service registry 329 thus comprises
entries for all standalone services (and their associated
tenants) that are running 1n standalone mode at a particular
time. In some embodiments, service inirastructure platform
510 may include a configuration interface 512 for allowing
services 302 to obtain configuration data for purposes of
configuring themselves according to one or more configu-
ration variables. Configuration data 514 may be maintained
by the service intrastructure platform 510. This configura-
tion data may include configuration data for each type of
service 502 and, 1n some cases, include configuration data
514 defined on a per service, per tenant basis.

[0111] While executing then, an instance of a service 502
(including standalone service 502a3) may need to issue
requests or otherwise communicate or interact with other
services 302 of the software platform. Services 502 may also
need to obtain communications (or other interactions)
intended for that service 502 from one or more other services
502 of the software services platform 500. Service infra-
structure platform 510 may therefore provide one or more
communication pathways or associated interfaces and 1nfra-
structure to facilitate communication or coordination

US 2022/0078248 Al

between the services 502, to allow requests and responses to
be 1ssued and received by services 302 or to otherwise allow
the services to interoperate or communicate.

[0112] As discussed, one mode of communication
between services 5302 may be through messaging. To facili-
tate this messaging, services infrastructure 310 may include
a messaging platform 550 which may be based on a mes-
saging broker such as Reddis, RabbitMQ) or the like. Mes-
saging platform 550 may thus maintain sets 555 of message
queues 554. Each set of queues 555 may be associated with
a particular service 502 (e.g., type of service), while each
queue 554 within each set 355 of queues 554 may be
associated with a particular tenant (e.g., entity). Thus, each
service 502 may have one or more corresponding sets 555 of
queues 554 where each of those queues 554 of the set 555
may be associated with a different tenant that can request
various services or functionality from the software platform
500. In that manner, messages associated with servicing
requests for a tenant (or otherwise performing tasks associ-
ated with requests from those tenants) may be separated into
a message queue 354 specific to that tenant. Services 502
wanting to send a message to another service 502 for a
particular tenant may thus publish the message to the queue
554 associated with the desired service 502 and tenant.

[0113] So, with reference to the depicted example, mes-
sage queues 354a may be associated with service 502a. Each
of these messages queues 354a for service 502q may be
associated with a different tenant. Thus, for example, mes-
sage queue 354al for service 502a may be associated with
“Tenant A”, message queue 354a2 for service 502aq may be
associated with “Tenant B”, message queue 3554a3 {for
service 502a associated with “Tenant N7, etc. Likewise,
message queue 554bH1 for service 3026 may be associated
with “Tenant A”, while message queue 55452 for service
5026 may be associated with “Tenant B”, message queue
55453 for service 5025 may be associated with ““Ienant N”,
etc. It will be noted here that while not depicted in FIGS. 5A
and 5B, there may be multiple sets 555 of message queues,
or message queues 554, associated with each service 502,
where each of these message queues 554 may be associated
with the same or a different set 355 of queues 554 or tenant.

[0114] Thus, when a service 502 wishes to send a message
to another service 502 (e.g., to make a request to another
service 502) the sending service 502 may send a message to
that service 502 using message interface 552. Specifically,
the service 502 sending the message may form the message
associated with a particular tenant and service 302 and send
a request to the messaging interface with the message and
identifying the service and associated tenant. The messaging
interface 5352 can then place the message on the message
queue 554 associated with the 1dentified service and tenant.
Again, 1 there are multiple sets 355 of queues 554 associ-
ated with a particular service 502, the set 535 of queues 554
on which to place the message for the service 502 may also
be 1dentified in the request to the messaging interface 552
from the sending service 552.

[0115] To continue with the above example, suppose a
service 502a (e.g., executing instance of that service 502q1)
wishes to send a message to service 5026 where that
message 1s associated with performing functionality for
Tenant A. The service 502a (e.g., executing instance of that
service 302aq1) may send the message to the message
interface 552 along with an identification of service 50256
and that tenant (Tenant A). The messaging interface 352 can

Mar. 10, 2022

then place the received message on message queue 33451 of
the set 5555 of message queues 554bH corresponding to
service 5026 and Tenant A.

[0116] Thus, services 502 are configured to monitor
queues 354 (e.g., associated with that service 502). Specifi-
cally, services 302 may be updated periodically with a
configuration of which queues 554 to monitor such that
when a message 1s available on one of the monitored queues
5354 the service 502 may scan the queues 1t 1s configured to
monitor using messaging interface 552 obtain the message
from the monitored queue 554. The service 502a can then
process any obtained messages (e.g., perform the service
requested by the message). Specifically, each instance of a
service 502 may scan queues 5354 associated with that
service 302 and all tenants to obtain the messages for that
service 502 on the queues 554 being scanned to obtain
messages assoclated with all tenants. So for example,
instances 502al, 502a2 of service 502a may each scan
queues 354al for Tenant A, 55442 for Tenant B, 554a4 for
Tenant C, 55443 for Tenant N, etc. using message interface
552 to obtain messages for that service 502a and process
those messages.

[0117] As may be understood from the discussion herein,
it 1s desirable that messages for service 502a associated with
the tenant of standalone service 50243 should be routed to
standalone service 502a3 while requests for service 502a
associated with other tenants should be routed accordingly
(e.g., to other mstances of the service 502aq deployed on
deployment platform 504 or to other standalone services
(not shown) associated with those tenants that may be
running).

[0118] In one embodiment, then, each instance of a service
502 deployed on deployment platiorm 504 may operate in a
standalone aware mode, whereby each instance of the ser-
vice 502 may configure the message queues 1t monitors
based on the service registry 529 having entries for stand-
alone services. Specifically, according to one embodiment,
at some 1nterval (e.g., a time interval) each mstance 50241,
502a2, 50251, 502562, 5021, 50272 of an executing service
502 operating 1n standalone aware mode (e.g., the 1nstances
of services deployed on the deployment platform of the
soltware services platform) may scan queues 554 associated
with its type of service 502 (e.g., the type of service 502 of
that service instance 502a1, 502a2, 502561, 50252, 502=1,
50272) to determine 1f there are any messages for process-
ing. Each time the scan of monitored queues 554 1s pre-
formed the instance of the service 502al1, 50242, 50251,
50252, 50271, 50272 may access the service registry 529 to
determine 1f there any instances 502al, 502q2, 50251,
50252, 50271, 50212 of the same type of service 502 1n
standalone mode (e.g., if there are any registry entries 1n the
service registry 529 for the same type of service). If there are
any 1stances of the same type of service 502 1n standalone
mode, the tenants associated with those instances of stand-
alone services of the same type may be obtained from the
service registry entries associated with those standalone
services. The instance of the service 502a1, 50242, 50251,
50252, 50271, 50272 can then scan the message queues 554
for that service that are not associated with those tenants and
process any messages obtained from those monitored queues

334.

[0119] Similarly, standalone service 502a3 operating 1n
standalone mode may be configured with the tenant associ-
ated with that service (e.g., the tenant associated with the

US 2022/0078248 Al

developer on whose device 525 the standalone service
502a3 1s executing). Thus, a standalone service 502a3
operating 1n standalone mode may be configured to scan
message queues 534 associated with its type of service (e.g.,
the type of service of that standalone service) associated
with that tenant. In this manner, all messages for that type of
service 502a associated with that tenant may be obtained by
the standalone service 502a3 while messages for that service
502a for other tenants may be obtained and processed by the
instances of that type of service 502al, 50242, deployed on
the deployment platform 3504 or, in cases where other
instances of standalone services for that type of service 502a
are running for other tenants, messages for that service 502a
and those tenants may be obtained by the respective stand-
alone services for those tenants.

[0120] With reference to an example, message queues
554a may be associated with the type of service 502a where
cach of these messages queues 554a for service 502a may be
associated with a different tenant. Thus, for example, mes-
sage queue 354al for service 502a may be associated with
“Tenant A”, message queue 554a2 for service 5024 may be
associated with “Tenant B”, message queue 5354ad4 for
service 502a may be associated with Tenant C, message
queue 55443 for service 502a associated with “Tenant N7,
etc.

[0121] Suppose now that standalone service 3502a3 on
device 525 1s associated with “Tenant N”. Thus, service
registry 529 may include an entry for the standalone service
502a3 including an 1dentifier for Tenant N associated with
the standalone service 502a3 and an identifier of the service
502a3 (e.g., the type of the service 502a or instance of the
service 302a3 or both, such as a name of service 502a).
Thus, each 1instance 502ql, 50202 of a service 502a
deployed on deployment platform 504 may operate 1 a
standalone aware mode, whereby each instance of the ser-
vice 502a may configure the message queues 554a 1t moni-
tors based on the service registry 529 having entries for
standalone service 502a3. Specifically, according to one
embodiment, at some interval (e.g., a time interval) each
istance 502al, 50242 of executing service 502a operating
in standalone aware mode may scan set 555a of queues 554qa
for service 502qa to determine 11 there are any messages for
processing.

[0122] FEach time the scan of monitored set 355q of queues
554a for service 502a 1s preformed the instance of the
service 502al, 50242 1n standalone aware mode may access
the service registry 529 to determine 11 there any instances
of the same type of service 502 1n standalone mode (e.g., 1f
there are any registry entries in the service registry 529 for
the same type of service). When the instances of the service
502al, 502a2 determine there 1s a registry entry for service
502a3 operating in standalone mode, the instances of the
service 502al, 50242 may can then scan the message queues
554al for Tenant A, queue 554q2 for Tenant B and queue
554a5 for Tenant C of set 3554 associated with service 502a
that are not associated with Tenant N and process any
messages obtained from those monitored queues 354al,

334a2, 35443.

[0123] Similarly, standalone service 502a3 operating 1n
standalone mode may be configured with Tenant N associ-
ated with that service 502a3. Thus, standalone service 502a3
operating in standalone mode 1s configured to scan message
queue 554a3 of set 555a associated with service 502q and
Tenant N. In this manner, all messages for that type of

Mar. 10, 2022

service 502a associated with Tenant N may be obtained by
the standalone service 502a3 while messages for that service
502a for other tenants may be obtained and processed by the
other instances of that type of service 502a4l1, 50242,
deployed on the deployment platform 504 (or another stand-
alone service).

[0124] To {facilitate the use of service registry 529 while
not resulting i a delay or other processing bottleneck
caused by accessing the service registry 529 through the
service registry interface 527, in one embodiment each
instance of a service 502al, 502aq2, 502561, 50252, 502n1,
50272 running in standalone aware mode (or all instances of
a service 502) may keep a local copy (e.g., a cached copy)
of the service registry 529. Such a copy of the service
registry 529 may be accessed through, for example, service
registry interface 527. To keep the cache of the service
registry 529 up to date, 1n one embodiment a cache invali-
dation strategy based on system messages may be utilized.

[0125] Thus, when a standalone service 502a3 registers
with the service infrastructure 510 by, for example, sending
a registration request with registration information to the
service registry interface 527, the standalone service 50243
may also 1ssue a broadcast or system wide startup message
to all other (executing instances of) services 502 in the
soltware services platform 500. When a service 502 receives
such a standalone service startup message, the service 502
may 1nvalidate 1ts local cached copy of the service registry
529 and access service registry interface 527 to obtain the
most recent copy of the service registry 529 to cache.
Similarly, when a standalone service 50243 exits and sends
a send a deregistration request to service registry interface
527 to remove the entry corresponding to the standalone
service 3502aq3 from the service registry, the standalone
service 50243 may also i1ssue a broadcast or system wide
shut down message to all other (executing instances of)
services 302 1n the software services platform 500. When a
service 302 receives such a standalone service shutdown
message, the service 502 may invalidate 1ts local cached
copy of the service registry 529 and access service registry
interface 527 to obtain the most recent copy of the service
registry 529 to cache.

[0126] Looking now at FIGS. 6 A and 6B, embodiments of
methods for utilizing a service registry of a services inira-
structure to facilitate communications between services
using a messaging platform are depicted. Specifically, FIG.
6A depicts one embodiment of a method for a standalone
aware service to obtain messages for that service. As dis-
cussed, services may be configured to monitor queues asso-
ciated with that (type of) service. At some time interval the
message queues associated with the type of service may be
scanned. In one embodiment, services may be updated
periodically with a configuration of which queues to monitor
such that when a message 1s available on one of the
monitored queues the service may scan the queues it 1s
configured to obtain message ifrom the monitored queue.
Thus, a standalone aware service may obtain, or be config-
ured with, a list of message queues to monitor (STEP 602).
The standalone aware service then determine if there any
instances ol the same type of service running 1n standalone
mode (STEP 604). This determination can be made, for
example, by accessing a service registry including entries for
such standalone service and determining if there are any
registry entries in the service registry for the same type of
service.

US 2022/0078248 Al

[0127] If there are any instances ol the same type of
service 1n standalone mode for a tenant (Y brand of STEP
606), the tenants associated with those instances of stand-
alone services of the same type may be obtained from the
service registry entries associated with those standalone
services. The instance of the standalone service can then
scan the message queues for that service that are not
associated with those tenants (STEP 608) and process any
messages obtained from those monitored queues (STEP
610). For example, 1f there are any instances of the same
type of service in standalone mode, the tenants associated
with those mstances of standalone services of the same type
may be obtained from the service registry entries associated
with those standalone services. The instance of the service
can then scan the message queues for that service that are not
associated with those tenants and process any messages
obtained from those monitored queues. If there are no
instances of the of the same type of service in standalone
mode for a tenant (N branch of STEP 606), the service may
scan all the message queues configured for that service
(STEP 612) to obtain messages and process any messages
obtained from those monitored queues (STEP 610). At the
end of the time 1nterval the message queues may be scanned

again (STEP 614).

[0128] FIG. 6B depicts one embodiment of a method for
a standalone service to obtain messages for that service.
Here, a standalone service operating in standalone mode
may be configured with the tenant associated with that
service. Thus, a standalone service operating in standalone
mode may be configured to obtain the queues to momitor for
that type of service and 1ts associated tenant (STEP 616) and
scan those message queues to obtain messages from these
monitored queues (STEP 618). The standalone service can
then process any messages obtained from those monitored
queues (STEP 620). In this manner, all messages for that
type of service associated with that tenant may be obtained
by the standalone service while messages for that service for
other tenants may be obtained and processed by other
instances of that type of service.

[0129] While direct communication and messaging may
be used by services in the soitware services platform, there
may be still other modes by which services of a services
platform communicate through the services infrastructure. It
1s desirable that the service infrastructure of a services
platform adapt these other modes of communication such
that these other modes of communication may still be
utilized by the services of the platform while still ensuring
that the standalone service can run in association with the
other standalone aware services deployed on the deployment
platform, including where the deployed services include
other instances of the same service that 1s under develop-
ment.

[0130] Again 1t 1s desirable that the service infrastructure
and standalone aware services may cooperate to ensure that
that communications (e.g., requests or response) associated
with the standalone service in standalone mode and the
tenant associated with the standalone service are routed to
that standalone service, while communications for the other
services deployed in the services platform may continue
communicating to receive and servicing requests for those
services (and instances of deployed services that are of the
same service as the standalone service continue receiving
communications for that service for other tenants).

Mar. 10, 2022

[0131] As previously referred to, another method of com-
munication between services of a software services platform
may 1nclude events. In some embodiments, then, in addition
to a messaging platform and direct requests, a service
infrastructure may also provide an event platform as yet
another mode by which services of the service platform may
communicate with one another. Such an event platform may
be based on Apache’s Katka stream processing platform or
the like. Here, events may be grouped by topic, where the
events of each topic may be subdivided into partitions.
Events for different tenants that utilize service platform may
thus be co-located across the different partitions of a topic.

[0132] Accordingly, services may operate as publishers
(producers) and consumers of events. When publishing an
event for another service, a service may determine the tenant
with which the event 1s associated and publish the event to
a particular topic. Conversely, services may subscribe to
particular topics. Events on the partitions of topics can then
be delivered to those services (e.g., services instances)
subscribed to that topic. When a service receives an event for
a tenant the service can then process the event.

[0133] Inone embodiment, then, it 1s desired to ensure that
events for a standalone service for a tenant are routed to that
standalone service, while allowing events for the same
service for other tenants, or events for other services, are still
routed to the appropriate service (e.g., a standalone service
for that combination of service and tenant if 1t 1s running or
an 1nstance of the service on the deployment platiform of the
services platform). This configuration may be accomplished
by reserving partitions of each topic for the tenant associated
with a standalone service.

[0134] Specifically, according to one embodiment, when a
standalone service 1s started, in addition to registering with
the service registry as described, the standalone service may
reserve one or more partitions of each topic to which it wall
subscribe (or to which 1t 1s subscribed) for the tenant
associated with the standalone service. Reserved partitions
for topics are stored 1n a partition registry storing partition
reservation entries mapping a topic to an identifier for a
tenant and 1dentifiers for the one or more reserved partitions.

[0135] Thus, when a service 1s going to publish an event
for a tenant 1n a topic the service may access the partition
registry to determine 1f any partitions for that topic are
reserved for that tenant or 11 any other partitions are reserved
for any other tenants for the topic. If there 1s a partition (e.g.,
one or more) partitions reserved for that tenant for the topic,
the service can publish the event to the reserved partition for
that tenant for the topic. If however, no partitions for that
topic are reserved for that tenant, the service may publish the
event to any partition for the topic that 1s not reserved for
another tenant.

[0136] A standalone service may thus be configured to
receive events from the subscribed topic, and 1n particular
may be configured to consume events from the reserved
partitions of the topic for its associated tenant. The stand-
alone service can then determine the tenant associated with
the received event. If the received event 1s associated with
the tenant associated with the standalone service, the stand-
alone service may handle the event. Otherwise, the stand-
alone service can access the partition registry to determine
il any partitions for that topic are reserved for the determined
tenant for the event or 11 any other partitions are reserved for
any other tenants for the topic. If there 1s a partition (e.g., one
or more) partitions reserved for the determined tenant for the

US 2022/0078248 Al

event, the service can publish the event to the reserved
partition for that determined tenant for the topic. If however,
no partitions for that topic are reserved for the determined
tenant, the service may publish the event to any partition for
the topic that 1s not reserved for another tenant. In this
manner, by checking the tenant of the event, despite that the
event was consumed from a reserved partition, events that
were placed on reserved partitions before those partitions
were reserved by the standalone service may be accounted
for.

[0137] Similarly, a service operating in standalone aware
mode may consume events from the other partitions of the
topic (e.g., the partitions other than the partitions reserved by
specific tenants). The standalone aware service may then
determine the tenant associated with the received event. The
standalone aware service can access the partition registry to
determine 11 any partitions for the topic are reserved for the
determined tenant for the event and the identity of the
reserved partitions for that tenant if any are reserved. If no
partitions are reserved for the determined tenant the stand-
alone aware service may handle the event. If there are
partitions reserved for the determined tenant for the event
(e.g., and the event was not received on one of those
reserved partitions), the standalone aware service may re-
publish the received event on one of the identified reserved
partitions for the tenant. Again, by checking the tenant of the
cvent, events that were placed on unreserved partitions
before certain partitions were reserved by the standalone
service may be accounted for.

[0138] Embodiments of a software service platform that
utilize an event platform are depicted 1n FIGS. 7A and 7B.
Again, the software services platform 700 may include a
service platform comprising a set of services 702 (e.g., 702a,
702b, 702n) that may cooperate to implement particular
functionality (e.g., solutions, applications, etc.) along with
services inirastructure platform 710 that provides the com-
munications and other infrastructure that allows the services
702 to mteroperate or otherwise coordinate with one another
to mmplement that functionality. Services 702 may be
deployed on deployment platform 704, such as a cloud
computing platform, and may be deployed according to a
microservices architecture. Certain aspects of the software
services platform 700 may be similar to those described with
respect to other embodiments of software services platform
described herein as will be understood.

[0139] The set of services 702 for the services platiform
may be multitenant services such that each of the set of
services 702 may handle requests associated with different
tenants (e.g., entities, organizations, groups, or any collec-
tion or group of associated devices, software or users). To
tacilitate the handling of a large number of these requests
across multiple tenants, each service (e.g., 702a, 7025, 702n,
etc.) may have multiple instances of that (e.g., type of)
service 202 executing on the deployment platform 704 (e.g.,
service 702a of a first type may have executing instance
702al1, 70242, etc.). Thus, a service (e.g., 702a) may be
thought of as single logical service implemented by multiple
executing nstances (e.g., 702al, 702a2, etc.) of that service
(e.g., 702a). The multiple executing instances (e.g., 702al,
702a2, etc.) are thus adapted to service the requests intended
for the logical service (e.g., 702a). Services 702 of the
service platform thus cooperate to perform the functionality
of the software service platiorm 700.

Mar. 10, 2022

[0140] Accordingly, requesters (e.g., clients such as other
services or systems associated with third parties or services
702 of the set of services 702) may access operations
provided by the services 702 through one or more requests
sent over a network 706 using an interface (e.g., a Repre-
sentational State Transfer (RESTIul) interface or the like)
provided by at least one of the services 702.

[0141] Services infrastructure platform 710 may provide
functionality to allow services 702 to be configured (e.g., for
particular tenants, according to network addresses, etc.) and
provide a communication inirastructure to allow service 702
to communicate with one another such as, for example, to
1ssue requests to another service 702, to receive a response
from another service 702 or to otherwise communicate
between the services 702. Services 702 may, for example, be
adapted to utilize the services infrastructure platform 710
through the inclusion of libraries associated with the inter-
faces of the services infrastructure platform 710. The ser-
vices infrastructure platform 710 may 1tself be implemented
as a set of services, applications or other functionality that
1s accessed through one or more interfaces that may include
RESTIul interfaces, Application Programming Interfaces
(APIs) or other types of intertfaces. Additionally, the services
infrastructure platform 710 may also be deployed on a
deployment platform, which may be the same as, or difler-
ent, than a cloud computing platform 704 on which the set
of services 702 of the service platform are deployed.

[0142] In many cases, 1t may be desired to run a stand-
alone service (e.g., a service that 1t 1s desired to run outside
the deployed set of services of the software platform) in
association with the (e.g., deployed) services that comprise
a solftware platform. This situation often occurs in the
context of development of services of such a software
plattorm (e.g., when creating a new service or making
updates or fixes to an existing service). For example, a user
may be developing a service (e.g., on his own computing
device), but 1 order to test or run the service under
development as a standalone service the service may need to
interact with the other set of services of the software
platform. In certain istances, in fact, the standalone service
702a3 may have other 1nstances of the same service 702al,
70242, etc. deployed 1n the cloud computing platform 704.
A tenant may be assigned to the developer or other user such
that any standalone services associated with that developer
or other user may likewise be associated with same tenant.
Such a tenant may be distinct from other tenants whose
requests are serviced by the service platiorm 700.

[0143] In an embodiment, then, a standalone service
702a3 may be deployed on a device 725. This device 725
may, for example, be the computing device of a developer or
almost any other user who wishes to run such a standalone
service 702a3. A standalone service 70243 may be an
instance of a (e.g., type ol0 service 702a running in a
standalone mode. Running 1n standalone mode may refer to
the fact that the standalone service 70243 1s running
remotely from the deployment platform 704 on which the
other services 702 are running without any other indicators,
or may be a tlag or other indicator or variable stored locally
(e.g., to the standalone service 702a3) or globally within the
services 1nfrastructure 710 or platform 700 that indicates the
standalone service 702a3 1s operating as a standalone ser-
vice. Thus, the standalone service 70243 may be associated
with the tenant associated with the developer or other user
who 1s running (e.g., developing) that standalone service

US 2022/0078248 Al

702a3. The standalone service may operate 1n a standalone
mode 1n a virtual private network (VPN) or virtual private
cloud (VPC) with the services infrastructure 710 and the set
of deployed services 702 of the service platform. The
standalone service 702a3 and the user device 725 thus have
access to the resources of the software services platform and
the services 702 and services infrastructure platform 710

may have access to the standalone service 702a3 or device
725.

[0144] The standalone service 70243 may also use a
service registry 1interface 727 provided by the services
infrastructure 710 to register with the service infrastructure
710 by, for example, sending a registration request with
registration information to the service registry interface 727.
The registration information for the standalone service
702a3 may include an i1dentifier for the tenant associated
with the standalone service 702a3 and an identifier of the
service 702a3 (e.g., the type of the service 702a or instance
of the service 702a3 or both, such as a name for the type of
service). The registration information may also include an IP
address or host name of device 725 where the standalone
service 702a3 may be running or otherwise associated with
communicating with the standalone service 70243, or one or
more ports where communications (e.g., requests) to the
standalone service 702a3 may be routed or addressed. Such
registration information may be stored in a registration entry
in a service registry 729 maintained by the service inira-
structure 710. The service registry 729 thus comprises
entries for all standalone services (and their associated
tenants) that are running 1n standalone mode at a particular
time. Additionally, 1n some embodiments, service inirastruc-
ture platform 710 may include a configuration interface 712
for allowing services 702 to obtain configuration data for
purposes ol configuring themselves according to one or
more configuration variables. Configuration data 714 may
be maintained by the service inirastructure platform 710.
This configuration data may include configuration data for
cach type of service 702 and, in some cases, include con-
figuration data 714 defined on a per service, per tenant basis.

[0145] While executing then, an instance of a service 702
(including standalone service 702a3) may need to issue
requests or otherwise communicate or interact with other
services 702 of the software platform. Services 702 may also
need to obtain communications (or other interactions)
intended for that service 702 from one or more other services
702 of the software services platform 700. Service inira-
structure platform 710 may therefore provide one or more
communication pathways or associated interfaces and infra-
structure to facilitate communication or coordination
between the services 702, to allow requests and responses to
be 1ssued and received by services 702 or to otherwise allow
the services to interoperate or communicate.

[0146] One mode of communication between services 702
may be an event platform 760 that services 702 of the
service platform 700 may utilize to communicate with one
another. Here, events may be grouped by topic 764, where
the events of each topic 764 may be subdivided into parti-
tions 765. The number of partitions 763 for a given topic 764
may be configurable. For example, in one embodiment the
number of partitions 765 for a topic 764 may include sixteen
partitions 765, eight partitions 765, four partitions 765, etc.
Each of the partitions 765 may be associated with an
identifier that 1dentifies that partition 765. Events for difler-
ent tenants that utilize service platform 700 may thus be

Mar. 10, 2022

co-located across the different partitions of a topic. In
particular, 1n some cases each topic 765 may be associated
with a pod comprising a group of tenants of the software
services platform 700. Events for tenants of that pod may
thus be co-located and intermingled across the partitions of
that topic 765 for the pod.

[0147] Accordingly, services 702 may operate as publish-
ers (producers) and consumers of events. When publishing
an event for another service 702, a service 702 may deter-
mine the tenant with which the event 1s associated and
publish the event to the topic 765 using the event interface
762 of the event platform 760. The event can then be placed
on a partition 764 of that topic 765 by the event interface
762. Conversely, services 702 may subscribe to particular
topics 765 using the event interface 762 of the event
plattorm 760. The event platform 760 can then deliver
events on the partitions 764 of topics 7635 to those services
702 (e.g., services 1nstances) subscribed to that topic. When
a service 702 receives an event from the event platiorm 760
the service 702 can then process the event accordingly.

[0148] As may be understood from the discussion herein,
it 1s desirable that events for service 702a associated with the
tenant of standalone service 70243 should be routed to
standalone service 702a3 for processing while events for
service 702a associated with other tenants should be routed
accordingly (e.g., to other instances of the service 702qa
deployed on deployment platiorm 704 or to other standalone
services (not shown) associated with those tenants that may
be running).

[0149] In one embodiment then, services infrastructure
710 may include a partition registry 779 and an associated
partition registry interface 772. Partition registry 779 stores
reserved partitions for topics by storing partition reservation
entries mapping a topic to an identifier for a tenant and
identifiers for the one or more reserved partitions. Partition
registry interface 772 may provide an interface by which
partitions for topics can be reserved (and thus a partition
registry entry created in partition registry 779), or through
which partition registry 779 accessed to determine, for
instance, 1f a topic or tenant has any associated partition
reservation entries (e.g., what, 1f any, partitions are reserved
for a tenant for a topic, etc.).

[0150] Accordingly, 1n one embodiment, when the parti-
tion registry interface 772 receives a request for a reserved
partition for a tenant from a standalone service 702a3 the
partition registry interface 772 may access the partition
reservation entries of partition registry 779 to determine it
there are any unreserved partitions 765 for that topic 764. I
there are no unreserved partitions for that topic a failure
response may be returned to the standalone service 7024a3.
Otherwise, the partition registry interface 772 may deter-
mine one or more partitions 765 of the topic 764 to reserve
for the standalone service 70243 and return identifiers for
these partitions 765 to the standalone service 702a3. Addi-
tionally, the partition registry interface 772 may create a
partition reservation entry in partition registry 779 1dentify-
ing those partitions 765 for that topic 764 as reserved for that
tenant.

[0151] When a standalone service 702a3 exits, the stand-
alone service 70243 may also i1ssue a broadcast or system
wide shut down message to the software services platform
700 including the partition registry interface 772. When the
partition registry interface 772 receirves such a standalone
service shutdown message, the partition registry interface

US 2022/0078248 Al

772 may remove any reserved partitions 765 for the tenant
associated with the standalone service 70243 from any

partition reservation entries of the partition registry interface
772,

[0152] In one embodiment then, when event platform 760
creates a topic 764 and corresponding partitions 765 for that
topic 764, the event platform 760 may determine a number
of partitions 765 for the topic and send a request to partitions
registry interface 772 specilying the name of the topic 764
and the number of partitions 765 of the topic 764. An entry
in the partition registry 779 defining for the topic 764 and
indicating the number of partitions of the topic 764 can then
be created in the partition registry 779. Moreover, to ensure
that all partitions 765 do not become reserved, the event
platform 760 may reserve one or more partitions 765 of the
created topic 764 as general topics for use with all tenants.
Thus, for example, event platform 760 may access partition
registry interface 772 and request one or more partitions 765
(e.g., the first two partitions 765 or the like) be reserved as
general partitions 765 for the topic 764. The partition
registry interface 772 may create a partition reservation
entry for that topic 764 1n the partition registry 779 1dent-
tying those partitions 765 for that topic 764 as reserved as
general partitions. In this manner, no matter the number of
standalone services 702a3 runming there 1s always at least
one partition 7635 available one which to publish (and
consume) events for tenants (e.g., tenants other than those
associated with the running standalone services 702a3).

[0153] Thus, when a standalone service 702a3 1s started 1n
standalone mode, 1n addition to registering with the service
registry 729 as described, the standalone service 702a3 may
access partition registry interface 772 to reserve one or more
partitions 765 of a topic 764 to which that standalone service
702a3 will subscribe (or to which it 1s subscribed) for the
tenant associated with the standalone service. If the stand-
alone service 702a3 receives a failure notice from the
partition registry interface 772 the standalone service 702a3
may shut down. IT however, the standalone service 702a3
receives 1dentifiers of partitions 765 for the topic 764 from
the partition registry interface 772 the standalone service
702a3 may be configured to monitor those partitions 765 of
the topic 764. The partitions 765 reserved for that topic 764
for the tenant associated with standalone service 702a3 are
stored 1n partition registry 779 by storing partition reserva-
tion entry mapping the topic 764 to the identifier for that
tenant and 1dentifiers for the one or more reserved partitions.

[0154] To illustrate, one example of entries 1n a partition
registry 1s below:

[0155]

[0156] {“topicld”:“branding_echo”,“numPartitions”:8,
“config”:{“domingo-test-org™:[1,2] }}

Beacon Config: V1:branding_echo:ets:

e

[0157] Beacon Config: VI1:branding echo:hermes-
narayan:
[0158] {“topicld”:“branding_echo”,“numPartitions”:8,

“config”:{“diego-test”:[1,2],“nauto2:[3.4]} }
[0159]

[0160] {“topicld”:“cc_echo”, “numPartitions”:8,*“con-
ﬁg”:{“diego-test”:[l,,2],,“11&111‘[02”.[3,,4 11 Beacon Con-
fig: V1:.entitlement_padre:rats:

[0161] {“topicld”:“entitlement_padre”,“ numParti-
tions™:8,“config”:{“role-perf’:[1,2]} } Beacon Config:
V1:notification_echo:hermes-narayan:

Beacon Config: V1:cc_echo:hermes-narayan:

A Y

- Y

Mar. 10, 2022

2T Lk

[0162] {“topicld”:“notification_echo”, “numParti-
tions™:16,“config”:{“diego-test™:[1,2],*nauto2”:[3,4]
9

[0163] Beacon Config: V1:otification_megapod-use-
astl:hermes:

[0164] {“topicld”:“notification_megapod-useastl”,
“numPartitions”:16,“config”:{“echo-test”:[1,2]} }

[0165] Beacon Config: V1:org_lifecycle_buoy:cms:

[0166] {“topicld”:“org_lifecycle_buoy”, “numParti-
tions™:16,“config”:{“navcorp™:[1,2]}}

[0167] Beacon Config: V1:org lifecycle echo:hermes-
narayan:
[0168] {“topicld”:“org_lifecycle_echo”,“numParti-

tions™:16,“config”: {“diego-test™:[1,2],"“nauto2”:[3,4]

9

[0169] Beacon Config: V1:org_lifecycle_echo:spies:
[0170] {“topicld”:“org_lifecycle_echo”,“numParti-
tions:16,“config”:{“vasiltest”:[1,2] } }
[0171] Beacon Config: V1:org_lifecycle megapod-use-
astl:hermes:
[0172] {“topicld”:*“org_lifecycle_megapod-useastl”,
“numPartitions”:16,“config”:{“echo-test”:[1,2]} }
[0173] Beacon Config: V1:service_started:ets:
[0174] {“topicld”:“service_started”, “numPartitions:4,
“config”:{“sangjintest’:[1,2]} }
[0175] Thus, for example, in the partition registry entry:
Beacon Config: V1:branding_echo:ets :{“topicld”:“brand-
ing_echo”,“numPartitions”:8,“config”:{ “domingo-test-
org”:[1,2]}} indicates that the topic named “branding_echo
has eight partitions with partitions numbered “1” and *“2”
reserved for the tenant “domingo-test-org”.
[0176] Accordingly, when a service 702 1s going to pub-
lish an event for a tenant in a topic 764 the service 702 may
access the partition registry 779 through partition registry
interface 772 to determine 11 any partitions 765 for that topic
764 are reserved for that tenant, or 1f any other partitions 765
are reserved for any other tenants for the topic 764. If there
1s a partition 765 (e.g., one or more) reserved for that tenant
for the topic 764, the service 702 can publish the event to the
reserved partition for that tenant for the topic 764. If
however, no partitions 765 for that topic 764 are reserved for
that tenant, the service 702 may publish the event to any
partition 765 for the topic 764 that 1s not reserved for another
tenant.
[0177] A standalone service 702a3 may be configured to
receive events from a subscribed topic 764, and 1n particular
may be configured to consume events from the reserved
partitions 765 of the topic 764 for its associated tenant. The
standalone service 702a3 can then determine the tenant
associated with the received event. If the recerved event 1s
associated with the tenant associated with the standalone
service 702a3, the standalone service 702a3 may handle the
event. Otherwise, the standalone service 70243 can access
the partition registry 779 through partition registry interface
772 to determine if any partitions 7635 for that topic are
reserved for the determined tenant for the event, or it any
other partitions 765 are reserved for any other tenants for the
topic 764.
[0178] If there 1s a partition 765 (e.g., one or more
partitions) reserved for the determined tenant for the event,
the standalone service 702a3 can publish the event to the
reserved partition 765 for that determined tenant for the
topic 764. If however, no partitions 763 for that topic 764 are
reserved for the determined tenant, the service 702a3 may

2

US 2022/0078248 Al

publish the event to any partition 765 for the topic 764 that
1s not reserved for another tenant. In this manner, by
checking the tenant of the event, despite that the event was
consumed from a reserved partition 765, events that were
placed on reserved partitions 763 belfore those partitions 765
were reserved by the standalone service 70243 may be
accounted for.

[0179] Similarly, a service 702 operating 1n standalone
aware mode may consume events from the other partitions
765 of the topic 764 (e.g., the partitions 7635 other than the
partitions reserved by specific tenants). The standalone
aware service 702 may then determine a tenant associated
with the received event. The standalone aware service 702
can access the partition registry 779 through partition reg-
1stry interface 772 to determine 1f any partitions 765 for the
topic 764 are reserved for the determined tenant for the
event, and the 1dentity of the reserved partitions 765 for that
tenant if any partitions 765 are reserved. 11 no partitions 765
are reserved for the determined tenant the standalone aware
service 702 may handle the event. If there are partitions 765
reserved for the determined tenant for the event (e.g., and the
event was not received on one of those reserved partitions
765), the standalone aware service 702 may re-publish the
received event on one of the identified reserved partitions
765 for the tenant. Again, by checking the tenant of the
event, events that were placed on unreserved partitions 763
before certain partitions 765 were reserved for a tenant by
the standalone service 702a3 may be accounted for.

[0180] As the partition registry 779 may be utilized by
many or all instances of the services 702 of the services
platform 700, to facilitate the use of partition registry 779
while not resulting 1n a delay or other processing bottleneck
caused by accessing the partition registry 779 through the
partition registry interface 772, in one embodiment each
instance of a service 702al, 702a2, 702a3, 702561, 70252,
70271, 70272 may keep a local copy (e.g., a cached copy)
of the partition registry 779. Such a copy of the partition
registry 779 may be cached or updated by, for example,
using a push notification provided by the event platform 760
such as by using a KStream or KTable 1n Apache’s Katka.

[0181] Looking now at FIGS. 8A, 8B and 8C, embodi-
ments of methods for utilizing a service registry of a services
infrastructure to facilitate communications between services
using an event platform are depicted. Specifically, FIG. 8A
depicts one embodiment of a method of a services inira-
structure for reserving partitions of a topic for a tenant. In
one embodiment, the service infrastructure can create a topic
and corresponding partitions for that topic (STEP 802).
Specifically, the service infrastructure may determine a
number of partitions for the topic and a name of the topic.
An entry 1n the partition registry defining the topic and
indicating the number of partitions of the topic can then be
created 1n the partition registry (STEP 804).

[0182] In one embodiment, to ensure that all partitions do
not become reserved, the service infrastructure may reserve
one or more partitions of the created topic as general topics
tor use with all tenants (STEP 806). A partition reservation
entry for that topic in the partition registry identifying those
partitions for that topic as reserved as general partitions can
be created or updated (STEP 808).

[0183] Accordingly, 1n one embodiment, when the service
inirastructure receives a request for a reserved partition for
a tenant from a standalone service the service infrastructure

may access the partition reservation entries ol partition

Mar. 10, 2022

registry to determine 1f there are any unreserved partitions
for that topic (STEP 810). If there are no unreserved
partitions for that topic (N branch of STEP 810) a failure
response may be returned to the standalone service (STEP
812). Otherwise (Y branch of STEP 810), the service inira-
structure may determine one or more partitions of the topic
to reserve for the standalone service and return 1dentifiers for
these partitions to the standalone service (STEP 814). Addi-
tionally, the service infrastructure may create (or update) a
partition reservation entry in partition registry indicating that
those partitions for that topic are reserved for that tenant
(STEP 816).

[0184] FIG. 8B depicts one embodiment of a method for
the operation for a standalone service using a service inira-
structure to communicate using events so that events for the
tenant associated with the standalone service are processed
by the standalone service. When a standalone service i1s
started in standalone mode the standalone service may
access service mfrastructure to reserve one or more parti-
tions of a topic to which that standalone service will sub-
scribe (or to which it 1s subscribed) for the tenant associated
with the standalone service (STEP 820). If the standalone
service recerves a failure notice from the service infrastruc-
ture (Y branch of STEP 822) the standalone service may shut
down (STEP 824). If however, the standalone service
receives 1dentifiers ol partitions for the topic from the
service inirastructure (Y branch of STEP 822) the stand-
alone service may be configured to monitor those partitions
of the topic. At this point, the standalone service may receive
events for 1ts associated tenant on the reserved partitions for

the topic (BLOCK 826) or may be publish events (BLOCK
828).

[0185] Specifically, when receiving events, standalone
service may be configured to receive events from the sub-
scribed topic, and 1n particular may be configured to con-
sume events from the reserved partitions of the topic for its
associated tenant (STEP 830). The standalone service can
then determine the tenant associated with the received event.
If the received event 1s associated with the tenant associated
with the standalone service (Y branch of STEP 832), the
standalone service may handle the event (STEP 834). Oth-
erwise, the standalone service can access the partition reg-
1stry through the service infrastructure to determine 1f any
partitions for that topic are reserved for the determined
tenant for the event, or if any other partitions are reserved for
any other tenants for the topic (STEP 835).

[0186] If there 1s a partition (e.g., one or more partitions)
reserved for the determined tenant for the event (Y branch of
STEP 836), the standalone service can publish the event to
the reserved partition for that determined tenant for the topic
(STEP 838). If however, no partitions for that topic are
reserved for the determined tenant (N branch of STEP 836),
the service may publish the event to any partition for the
topic that 1s not reserved for another tenant (STEP 840).

[0187] When a standalone service 1s going to publish an
event for a tenant in a topic the standalone service may
generate an event (STEP 842) and access the service inira-
structure to determine 1f any partitions for that topic are
reserved for that tenant, or i1f any other partitions are
reserved for any other tenants for the topic (STEP 844). IT
there 1s a partition (e.g., one or more) reserved for that tenant
for the topic (Y branch of STEP 846), the standalone service
can publish the event to the reserved partition for that tenant
tor the topic (STEP 830). If however, no partitions for that

US 2022/0078248 Al

topic are reserved for that tenant (N branch of STEP 846),
the standalone service may publish the event to any partition
for the topic that i1s not reserved for another tenant (STEP
848).

[0188] FIG. 8C depicts one embodiment of a method for
the operation for a standalone aware service using a service
infrastructure to communicate using events so that events for
the tenant associated with the standalone service are pro-
cessed by the standalone service while allowing the stand-
alone aware service to process to process events for other
tenants.

[0189] When a standalone aware service 1s going to pub-
lish an event for a tenant in a topic (BLOCK 860) the
standalone aware service may generate an event for that
tenant and topic (STEP 862) and access the service inira-
structure to determine 1f any partitions for that topic are
reserved for that tenant, or i1if any other partitions are
reserved for any other tenants for the topic (STEP 864). IT
there 1s a partition (e.g., one or more) reserved for that tenant
tor the topic (Y branch of STEP 866), the standalone aware
service can publish the event to the reserved partition for that
tenant for the topic (STEP 868). If however, no partitions for
that topic are reserved for that tenant (N branch of STEP
866), the standalone aware service may publish the event to

any partition for the topic that 1s not reserved for another
tenant (STEP 870).

[0190] Similarly, a standalone aware service may consume
events (BLOCK 880) from partitions of a topic (e.g., the
partitions other than the partitions reserved by specific
tenants) (STEP 882). The standalone aware service may then
determine a tenant associated with the received event (STEP
884). The standalone aware service can utilize the service
infrastructure to determine 1f any partitions for the topic are
reserved for the determined tenant for the event, and the
identity of the reserved partitions for that tenant 1f any
partitions are reserved (STEP 886). If no partitions are
reserved for the determined tenant (N branch of STEP 888)
the standalone aware service may handle the event (STEP
890). If there are partitions reserved for the determined
tenant for the event (Y branch of STEP 888), the standalone
aware service may re-publish the received event on one of
the 1dentified reserved partitions for the tenant (STEP 892).

[0191] Those skilled in the relevant art will appreciate that
the invention can be implemented or practiced with other
computer system configurations including, without limita-
tion, multi-processor systems, network devices, mini-com-
puters, mainframe computers, data processors, and the like.
Embodiments can be employed in distributed computing
environments, where tasks or modules are performed by
remote processing devices, which are linked through a
communications network such as a LAN, WAN, and/or the
Internet. In a distributed computing environment, program
modules or subroutines may be located 1n both local and
remote memory storage devices. These program modules or
subroutines may, for example, be stored or distributed on
computer-readable media, including magnetic and optically
readable and removable computer discs, stored as firmware
in chips, as well as distributed electronically over the
Internet or over other networks (including wireless net-
works). Example chips may include Electrically Erasable
Programmable Read-Only Memory (EEPROM) chips.
Embodiments discussed herein can be implemented in suit-
able 1nstructions that may reside on a non-transitory com-
puter readable medium, hardware circuitry or the like, or any

Mar. 10, 2022

combination and that may be translatable by one or more
server machines. Examples of a non-transitory computer
readable medium are provided below 1n this disclosure.

[0192] Although the invention has been described with
respect to specific embodiments thereot, these embodiments
are merely illustrative, and not restrictive of the invention.
Rather, the description 1s intended to describe illustrative
embodiments, features and functions in order to provide a
person of ordinary skill 1n the art context to understand the
invention without limiting the 1invention to any particularly
described embodiment, feature or function, including any
such embodiment feature or function described. While spe-
cific embodiments of, and examples for, the mvention are
described herein for illustrative purposes only, various
equivalent modifications are possible within the spirnit and
scope of the mvention, as those skilled 1n the relevant art will
recognize and appreciate.

[0193] As indicated, these modifications may be made to
the mvention 1n light of the foregoing description of illus-
trated embodiments of the invention and are to be included
within the spirit and scope of the invention. Thus, while the
invention has been described herein with reference to par-
ticular embodiments thereof, a latitude of modification,
various changes and substitutions are intended 1n the fore-
going disclosures, and 1t will be appreciated that in some
instances some features of embodiments of the mmvention
will be employed without a corresponding use of other
features without departing from the scope and spirit of the
invention as set forth. Therefore, many modifications may
be made to adapt a particular situation or material to the
essential scope and spirit of the invention.

[0194] Reference throughout this specification to “‘one
embodiment”, “an embodiment”, or *“a specific embodi-
ment” or similar terminology means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s included 1n at least one embodiment and may
not necessarily be present 1n all embodiments. Thus, respec-
tive appearances of the phrases “in one embodiment™, “in an
embodiment”, or “in a specific embodiment” or similar
terminology 1n various places throughout this specification
are not necessarily referring to the same embodiment. Fur-
thermore, the particular features, structures, or characteris-
tics ol any particular embodiment may be combined 1n any
suitable manner with one or more other embodiments. It 1s
to be understood that other variations and modifications of
the embodiments described and 1llustrated herein are pos-
sible 1n light of the teachings herein and are to be considered

as part of the spirit and scope of the invention.

[0195] In the description herein, numerous specific details
are provided, such as examples of components and/or meth-
ods, to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however, that an embodiment may be able to be practiced
without one or more of the specific details, or with other
apparatus, systems, assemblies, methods, components,
materials, parts, and/or the like. In other instances, well-
known structures, components, systems, materials, or opera-
tions are not specifically shown or described 1n detail to
avoild obscuring aspects of embodiments of the invention.
While the invention may be illustrated by using a particular
embodiment, this 1s not and does not limit the invention to
any particular embodiment and a person of ordinary skill 1n
the art will recognize that additional embodiments are
readily understandable and are a part of this mnvention.

US 2022/0078248 Al

[0196] FEmbodiments discussed herein can be imple-
mented 1n a set of distributed computers commumnicatively
coupled to a network (for example, the Internet). Any
suitable programming language can be used to implement
the routines, methods or programs of embodiments of the
invention described herein, including R, Python, C, C++,
Java, JavaScript, HIML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. Communications between computers
implementing embodiments can be accomplished using any
clectronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

[0197] Although the steps, operations, or computations
may be presented in a specific order, this order may be
changed 1n different embodiments. In some embodiments, to
the extent multiple steps are shown as sequential 1n this
specification, some combination of such steps in alternative
embodiments may be performed at the same time. The
sequence ol operations described herein can be interrupted,
suspended, or otherwise controlled by another process, such
as an operating system, kernel, etc. The routines can operate
in an operating system environment or as stand-alone rou-
tines. Functions, routines, methods, steps and operations
described herein can be performed i1n hardware, software,
firmware or any combination thereof.

[0198] Embodiments described herein can be imple-
mented 1n the form of control logic 1n software or hardware
or a combination of both. The control logic may be stored 1n
an information storage medium, such as a computer-read-
able medium, as a plurality of instructions adapted to direct
an information processing device to perform a set of steps
disclosed 1n the various embodiments. Based on the disclo-
sure and teachings provided herein, a person of ordinary
skill 1n the art will appreciate other ways and/or methods to
implement the invention.

[0199] A “‘computer-readable medium” may be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or 1n connection with the
istruction execution system, apparatus, system or device.
The computer readable medium can be, by way of example
only but not by limitation, an electronic, magnetic, optical,
clectromagnetic, mfrared, or semiconductor system, appa-
ratus, system, device, propagation medium, or computer
memory. Such computer-readable medium shall generally
be machine readable and include software programming or
code that can be human readable (e.g., source code) or
machine readable (e.g., object code). Examples of non-
transitory computer-readable media can include random
access memories, read-only memories, hard drives, data
cartridges, magnetic tapes, tloppy diskettes, tlash memory
drives, optical data storage devices, compact-disc read-only
memories, and other appropriate computer memories and
data storage devices.

[0200] As used herein, the terms “comprises,” “compris-
ing,” “includes,” “including,” “has,” “having,” or any other
variation thereof, are intended to cover a non-exclusive
inclusion. For example, a process, product, article, or appa-
ratus that comprises a list of elements 1s not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process, product,

article, or apparatus.

[0201] Furthermore, the term “or” as used herein 1s gen-
erally intended to mean “and/or”” unless otherwise indicated.

e B 4

Mar. 10, 2022

For example, a condition A or B 1s satisfied by any one of
the following: A 1s true (or present) and B 1s false (or not
present), A 1s false (or not present) and B 1s true (or present),
and both A and B are true (or present). As used herein, a term

L,

preceded by “a” or “an” (and *“‘the” when antecedent basis 1s
“a” or “an”) includes both singular and plural of such term,
unless clearly indicated within the claim otherwise (1.e., that
the reference “a” or “an” clearly indicates only the singular
or only the plural). Also, as used in the description herein
and throughout the meaning of “in” includes “in” and “on”

unless the context clearly dictates otherwise.

1. A software services platform system, comprising:

a services platform providing a set of multitenant services
by executing a set of instances of each service, the set

of multitenant services comprising a pool of instances
of the multitenant services adapted to service requests
assocliated with multiple tenants, such that each
instance of the pool of instances of the multitenant
services 1s adapted to service requests associated with
any of the multiple tenants during execution;

a services infrastructure for communicating between the
set of 1nstances of each of the set of services, the
services inirastructure comprising:

d Processor,

a service registry storing a registration entry for a stand-
alone service 1nstance of a first service for a first tenant
executing on a platform distinct from the services
platiorm, the registration entry including first location
information associated with the distinct platform on
which the standalone service mnstance 1s executing and
an assoclated time to live, wherein the standalone
service mstance of the first service 1s implemented to
only processes requests for the first service for the first
tenant and the first location information includes an IP
address and a port associated with the standalone
service;

service location data comprising second location infor-
mation for the first service, the second location infor-
mation associated with the services platiorm;

a service location interface adapted to:

receive a lirst request for a first location from an
instance of a second service executing on the service
platiorm, the first request 1dentifying the first service
and the first tenant;

access the service registry to determine that the regis-
tration entry for the standalone service instance of
the first service for the first tenant exists in the
service registry;

determine the first location associated with the stand-
alone service mstance of the first service for the first
tenant based on the first location information in the
registration entry for the standalone service instance
of the first service for the first tenant 1n the service
registry;

return the first location of the standalone service
instance of the first service on the platform distinct

from the service platform in response to the first
request;

receive a second request for a second location from the
instance of the second service executing on the
services platform, the second request 1dentitying the
first service and a second tenant;

US 2022/0078248 Al

access the service registry to determine that no regis-
tration entry corresponding to the first service for the
second tenant exists 1n the service registry;
determine the second location associated with second
service for the second tenant based on the second
location mnformation 1n the service location data asso-
ciated with the first service; and
return the second location for the first service 1n response
to the second request, wherein the second location for
the first service 1s associated with the services platiorm.

2. The system of claim 1, wherein the services platform 1s
deployed on a cloud based computing platform

3. The system of claim 1, wherein the first location
information includes an IP address or port associated with
the distinct platform of the standalone service instance.

4. The system of claim 1, wherein the standalone service
instance 1s adapted to register with the services infrastruc-
ture when the standalone service instance 1s started and the
registration entry 1s created in the service registry by the
services infrastructure 1n response to the registration by the
standalone service instance.

5. The system of claim 1, wherein the services inirastruc-
ture has a messaging platform, the messaging platform
including a set of message queues for the first service, the set
of message queues for the first service including a first
message queue associated with the first tenant that 1s asso-
ciated with the standalone service instance, and wherein
cach 1nstance of the first service on the services platiorm 1s
adapted to:

determine that the standalone service instance of the first

service 1s associated with the first tenant based on the
service registry, and
obtain a first message for the first service associated with
the second tenant from at least one of the set of message
queues for the first service not including the first
message queue associated with the first tenant; and

wherein the standalone service 1nstance 1s adapted to only
monitor the first message queue to obtain a second
message for the first service associated with the first
tenant from the first message queue.

6. The system of claim 1, wherein the services inifrastruc-
ture comprises an event platform including a topic associ-
ated with the first service, wherein the topic 1s divided into
a set of partitions, each partition including events for the
topic for the first service, wherein the standalone service
instance obtains events only from a first partition of the topic
reserved by the standalone service instance, and

wherein each of the set of instances of each service 1s

adapted to determine that the first partition of the topic
1s reserved for the first tenant and to publish events for
the topic and the first tenant to the first partition.

7. The system of claim 6, wherein the services inirastruc-
ture 1includes a partition registry storing a partition reserva-
tion entry for the topic, the partition reservation entry for the
topic comprising an identifier for the first partition associ-
ated with the first tenant.

8. A method, comprising:

providing a services platform providing a set of multi-

tenant services by executing a set of mstances of each
service and a services inirastructure for communicating
between the set of instances of each of the set of
services, wherein the set of multitenant services com-
prises a pool of instances of the multitenant services
adapted to service requests associated with multiple

Mar. 10, 2022

tenants such that each mstance of the pool of mstances
of the multitenant services 1s adapted to service
requests associated with any of the multiple tenants
during execution, and the services inifrastructure com-
prises a service registry storing a registration entry for
a standalone service instance of a first service for a first
tenant executing on a platform distinct from the ser-
vices platform, the registration entry including first
location information associated with the distinct plat-
form on which the standalone service instance 1is
executing and an associated time to live, wherein the
standalone service mstance of the first service 1s imple-
mented to only processes requests for the first service
for the first tenant and the first location information
includes an IP address and a port associated with the
standalone service;
storing service location data comprising second location
information for the first service, the second location
information associated with the services platform;
at a service location interface:
receiving a first request for a first location from an
instance of a second service executing on the service
platform, the first request identifying the first service
and the first tenant;
accessing the service registry to determine that the
registration entry for the standalone service nstance
of the first service for the first tenant exists 1n the
service registry;
determining the first location associated with the stand-
alone service instance of the first service for the first
tenant based on the first location information 1n the
registration entry for the standalone service nstance
of the first service for the first tenant in the service
registry;
returning the first location of the standalone service
instance of the first service on the platform distinct
from the service platform in response to the first
request;
receiving a second request for a second location from
the mstance of the second service executing on the
services platform, the second request 1dentitying the
first service and a second tenant;
accessing the service registry to determine that no
registration entry corresponding to the first service
for the second tenant exists in the service registry;
determiming the second location associated with second
service for the second tenant based on the second
location imnformation in the service location data asso-
ciated with the first service; and
returning the second location for the first service 1n
response to the second request, wherein the second
location for the first service 1s associated with the
services platiorm.
9. The method of claim 8, wherein the services platform
1s deployed on a cloud based computing platform
10. The method of claam 8, wherein the first location
information includes an IP address or port associated with
the distinct platform of the standalone service instance.
11. The method of claim 8, wherein the standalone service
instance 1s adapted to register with the services infrastruc-
ture when the standalone service instance 1s started and the
registration entry 1s created in the service registry by the
services infrastructure in response to the registration by the
standalone service instance.

US 2022/0078248 Al

12. The method of claim 8, wherein the services infra-
structure has a messaging platform, the messaging platiorm
including a set ol message queues for the first service, the set
of message queues for the first service including a first
message queue associated with the first tenant that 1s asso-
ciated with the standalone service instance, and wherein
cach instance of the first service on the services platform 1s
adapted to:

determine that the standalone service instance of the first
service 1s associated with the first tenant based on the
service registry, and

obtain a first message for the first service associated with
the second tenant from at least one of the set of message
queues for the first service not including the first
message queue associated with the first tenant; and

wherein the standalone service 1stance 1s adapted to only
monitor the first message queue to obtain a second
message for the first service associated with the first
tenant from the first message queue.

13. The method of claim 8, wherein the services inira-
structure comprises an event platform including a topic
associated with the first service, wherein the topic 1s divided
into a set of partitions, each partition including events for the
topic for the first service, wherein the standalone service
instance obtains events only from a first partition of the topic
reserved by the standalone service instance, and

wherein each of the set of instances of each service 1s
adapted to determine that the first partition of the topic
1s reserved for the first tenant and to publish events for
the topic and the first tenant to the first partition.

14. The method of claim 13, wherein the services inira-
structure includes a partition registry storing a partition
reservation entry for the topic, the partition reservation entry
for the topic comprising an identifier for the first partition
associated with the first tenant.

15. A non-transitory computer readable medium, com-
prising instructions for:

providing a services platform providing a set of multi-
tenant services by executing a set of mstances of each
service and a services inirastructure for communicating
between the set of imstances of each of the set of
services, wherein the set of multitenant services com-
prises a pool of instances of the multitenant services
adapted to service requests associated with multiple
tenants such that each instance of the pool of instances
of the multitenant services 1s adapted to service
requests associated with any of the multiple tenants
during execution, and the services infrastructure com-
prises a service registry storing a registration entry for
a standalone service mstance of a first service for a first
tenant executing on a platform distinct from the ser-
vices platform, the registration entry including first
location information associated with the distinct plat-
form on which the standalone service instance 1s
executing and an associated time to live, wherein the
standalone service mstance of the first service 1s imple-
mented to only processes requests for the first service
for the first tenant and the first location information
includes an IP address and a port associated with the
standalone service;

storing service location data comprising second location
information for the first service, the second location
information associated with the services platiorm;

Mar. 10, 2022

at a service location interface:

receiving a first request for a first location from an
instance of a second service executing on the service
platform, the first request identifying the first service
and the first tenant;

accessing the service registry to determine that the
registration entry for the standalone service instance
of the first service for the first tenant exists 1n the
service registry;

determining the first location associated with the stand-
alone service instance of the first service for the first
tenant based on the first location information 1n the
registration entry for the standalone service instance
of the first service for the first tenant 1n the service
registry;

returning the first location of the standalone service
instance of the first service on the platform distinct
from the service platform in response to the first
request;

receiving a second request for a second location from
the mstance of the second service executing on the
services platform, the second request 1dentitying the
first service and a second tenant;

accessing the service registry to determine that no
registration entry corresponding to the first service
for the second tenant exists in the service registry;

determiming the second location associated with second

service for the second tenant based on the second

location information 1n the service location data asso-

clated with the first service; and

returning the second location for the first service 1n

response to the second request, wherein the second
location for the first service 1s associated with the
services platform.

16. The non-transitory computer readable medium of
claim 15, wherein the services platiorm 1s deployed on a
cloud based computing platform

17. The non-transitory computer readable medium of
claim 15, wherein the first location information includes an
IP address or port associated with the distinct platform of the
standalone service instance.

18. The non-transitory computer readable medium of
claim 15, wherein the standalone service instance 1s adapted
to register with the services infrastructure when the stand-
alone service instance 1s started and the registration entry 1s
created 1n the service registry by the services infrastructure
in response to the registration by the standalone service
instance.

19. The non-transitory computer readable medium of
claim 15, wherein the services inirastructure has a messag-
ing platform, the messaging platform including a set of
message queues for the first service, the set of message
queues for the first service including a first message queue
associated with the first tenant that 1s associated with the
standalone service instance, and wherein each instance of
the first service on the services platform 1s adapted to:

determine that the standalone service instance of the first

service 1s associated with the first tenant based on the
service registry, and

obtain a first message for the first service associated with

the second tenant from at least one of the set of message
queues for the first service not including the first
message queue associated with the first tenant; and
wherein the standalone service instance 1s adapted to only
monitor the first message queue to obtain a second

US 2022/0078248 Al Mar. 10, 2022
25

message for the first service associated with the first
tenant from the first message queue.

20. The non-transitory computer readable medium of
claim 15, wherein the services infrastructure comprises an
event platform including a topic associated with the first
service, wherein the topic 1s divided 1nto a set of partitions,
cach partition including events for the topic for the first
service, wherein the standalone service instance obtains
events only from a first partition of the topic reserved by the
standalone service instance, and

wherein each of the set of instances of each service 1s

adapted to determine that the first partition of the topic
1s reserved for the first tenant and to publish events for
the topic and the first tenant to the first partition.

21. The non-transitory computer readable medium of
claim 20, wherein the services infrastructure includes a
partition registry storing a partition reservation entry for the
topic, the partition reservation entry for the topic comprising,
an 1dentifier for the first partition associated with the first
tenant.

	Front Page
	Drawings
	Specification
	Claims

