US 20220004621A1

a9y United States
12y Patent Application Publication o) Pub. No.: US 2022/0004621 Al

SANDERS et al. 43) Pub. Date: Jan. 6, 2022

(54) DATA RECOVERY THROUGH REVERSAL HO4L 9/06 (2006.01)

OF HASH VALUES USING PROBABILISTIC GO6F 16/22 (2006.01)

DATA STRUCTURES HO4L 9/08 (2006.01)

(52) U.S. CL
(71) Applicant: NOBLIS, INC., Reston, VA (US) CPC ... GO6F 21/46 (2013.01); GOG6F 16/3346
(2019.01); HO4L 9/0643 (2013.01); HO4L
(72) Inventors: Mark SAANDERS:I Ashl?urnj VA (US); 2209/56 (2013‘01); HO4L 9/0894 (2013_01);
Tyler W. BARRUS, Midlothian, VA GOG6F 2221/2131 (2013.01); GO6F 16/2255
(US) (2019.01)
(73) Assignee: NOBLIS, INC., Reston, VA (US) (57) ABSTRACT

Systems and methods for recovering passwords from a hash
value mput are provided. A password space may be seg-
mented into password sets, and a digest set may be generated
for each password set. Probabilistic data structures repre-
senting the digest sets may be generated. One of the proba-
bilistic data structures may be queried with the hash value
(63) Continuation of application No. 16/253,950, filed on input to determine whether the hash value input is likely
Jan. 22, 2019, now Pat. No. 11,055,399. included 1n the digest sets. In response to the hash value

(60) Provisional application No. 62/622,422, filed on Jan. input being determin.ed 1o be likely included in the digest et
26. 2018, the passwords constituting the password set corresponding

’ to the digest set may be regenerated, and the hash values
constituting the digest set may be regenerated. The gener-
ated hash values may be compared to the hash value mput

(21) Appl. No.: 17/366,502
(22) Filed: Jul 2, 2021

Related U.S. Application Data

Publication Classification

(51) Int. CL to determine a hash value from the digest set that matches
GO6F 21/46 (2006.01) the hash value input to recover the password associated with
GO6lF 16/33 (2006.01) the matched hash value.
100

Construct a password space having a plurality of
passwords, the password space being a contiguous space
having the plurality of passwords arranged in a sequential

order.

~_- 102

\/
Segment the password space into a plurality of password
sets, each password set of the plurality of password sets

being a contiguous portion of the password spaceand | 104
being non-overlapping with each other password set of the
plurality of password sets

A%

Generate a digest set for each password set of the plurality
of password sets using a hash function, each digest set
having encoded values of passwords in a corresponding

one of the password set

108 110
- v
For each digest set, For each digest set,
generate a probabilistic generate a multi-level
data structure. probabilistic data
structures.

Patent Application Publication Jan. 6,2022 Sheet 1 of 5 US 2022/0004621 Al

100

Construct a password space having a plurality of
passwords, the password space being a contiguous space
having the plurality of passwords arranged in a sequential

order.

I~ 102

A4

Segment the password space into a plurality of password
sets, each password set of the plurality of password sets
being a contiguous portion of the password space and
being non-overlapping with each other password set of the
plurality of password sets

~_- 104

Generate a digest set for each password set of the plurality
of password sets using a hash function, each digest set
having encoded values of passwords in a corresponding

one of the password set

~_- 106

108 110
v~
For each digest set, For each digest set,
generate a probabillistic generate a multi-level
data structure. probabilistic data
| structures.

Fig. 1

Patent Application Publication Jan. 6,2022 Sheet 2 of 5 US 2022/0004621 Al

10 19 30 39 50 &9 70 79 90 99

00 09 20 29 40 49 60 69 60 89

P9 PlO

Password Space P

Fig. 2
Segmented
Password Space Digest Sets
hash
Py functonH D,
hash
P10 ™ function H D1

Fig. 3

Patent Application Publication Jan. 6, 2022 Sheet 3 of 5 US 2022/0004621 Al

Segmented e Frobabilistic Data
Digest Sets Structures

| ___hash
| function H

L 2B B BN
RS0
a S &d

i i e e e e e ol alle alle ol i ol ol ol ol B

ol e ol ol e ol ol i ol o e e el e ol

hash i ; R
function H | 210 | 71 BF1o

L .
£ .
L .
L .
£ .
L 4=
L .
L i .
L . . .
L .
£ .
L .
L .
! .

PR U WU U DU DU UI UINF S WU VIR VI SR VI N

18t Level

2nd | evel

319 | evel

Patent Application Publication

604

Jan. 6, 2022 Sheet 4 of 5

US 2022/0004621 Al

Receive an input of hash value and a request for reversal of the

__________ input hash value to recover the password of the input hash value |~ 602
Send a first query {o the
v plurality of probabilistic data
Send a query to each of the structures on a first level of .
~_ 610

probabilistic data structures
determine whether the hash
value input s likely included in

the digest sets

the muiti-level probabilistic
the dgigest sets to determine
whether the hash value input
is likely included in the digest
sets

Y

Send a second query to the
e e plurality of probabilistic data
Regener-ate one or more structures on a second level of 512
password sels -c:orfespondmg the multi-level probabilistic |~
A to_one_ or rmore dlges’c §ets data structures representing
606 that are determined, in the digest sets that are

FeSPONSE to the query, 10 determined, in response to the

tkely have the hash value first query, to likely have the

.................... ' '.'?P‘f‘? - hash value input
. v
Regenerate one or more
password sets corresponding
{o one or more digest sets
that are determined, in 614
response to the second |~
query, to likely have the hash
value input
Vi Vi

Compare hash values of passwords of the regenerated one or more

a0 éw password sets to the hash value input to recover the password of

the hash vatue input

B e e e e e e e e e e e e e e e e e i e e e e e e e e i e e e

T e e ——

Patent Application Publication Jan. 6, 2022 Sheet 5 of 5 US 2022/0004621 Al

700

702
Processor 704

706
Input Device
708
710 Output Device
Storage

Communication
Device

Fig. 7

US 2022/0004621 Al

DATA RECOVERY THROUGH REVERSAL
OF HASH VALUES USING PROBABILISTIC
DATA STRUCTURES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of U.S. applica-
tion Ser. No. 16/253,950, filed Jan. 22, 2019, which claims

the benefit of U.S. Provisional Application No. 62/622,422,
filed Jan. 26, 2018, the entire contents of each of which are
incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to systems
and methods for recovering sensitive data, and more spe-
cifically to reversing hash values of sensitive data using
searching techniques leveraging probabilistic data struc-
tures.

BACKGROUND OF THE INVENTION

[0003] Sensitive data (e.g., passwords and/or financial
account information) in most secure systems are stored 1n
databases 1n the form of hash values instead of as plaintext
to make these databases less vulnerable to attacks. These
sensitive data may be used to authenticate a user’s access to
the secure system.

[0004] However, recovering these sensitive data may be
necessary 1n certain circumstances. For example, during
investigations by law enforcement agencies password-pro-
tected systems may need to be accessed, and a password
hash may need to be reversed to recover the password of the
password-protected system. Also, 1n some cases passwords
of encrypted files may be lost or forgotten, in which case a
password recovery would be necessary.

[0005] Some of the traditional methods used for recover-
ing passwords are brute-force and dictionary based attacks.
With brute-force, the attacker attempts to try all possible
password combinations, while i1n dictionary attack, the
attacker tries to determine password by trying thousands or
sometimes millions of likely possibilities, such as words 1n
a dictionary.

SUMMARY OF THE INVENTION

[0006] The traditional systems and methods for recovering
sensitive data such as, for example, passwords or financial
information from stored encoded values (e.g., hash values)
require considerable amount of processing time and/or com-
puting resources (€.g., large memory storage), particularly
for recovering large and complex data. Such traditional
systems and methods are time- and cost-ineflicient for
practical applications in environments (e.g., in law enforce-
ment agencies or 1n small businesses) that may be limited by
the amount of time and/or resources available for such data
recovery systems and methods. In addition, the large com-
puting resources required in these traditional systems and
methods make them impractical for applications 1n portable
devices.

[0007] Accordingly, there 1s need for systems and methods
for data recovery that helps to overcome the drawbacks 1n
the traditional data recovery systems and methods. The
present disclosure may address this need by providing
techniques and systems for faster, more eflicient, and more
computationally mexpensive methods for recovering pass-

Jan. 6, 2022

words from encoded values (e.g., hash values). In some
embodiments, these faster and more eflicient methods may
comprise using probabilistic data structures such as Bloom
filters to drastically speed up the process of searching
through the entirety of a password space, or through the
entirety of a digest space corresponding to the password
space. In some embodiments, the techniques disclosed
herein comprise segmenting a password space having all
possible passwords for a given set of password generation
rules (e.g., all possible passwords considering permissible
character sets and/or a maximum and/or minimum password
length) 1nto password sets, and generating and storing
probabilistic data structures corresponding to and represent-
ing the password sets. The probabilistic data structures may
then be queried with query values to search for a potential
match between the query value and an underlying value used
to build the probabilistic data structure, which may be
significantly faster and more eflicient than exhaustively
comparing the query value to every possible match. By
segmenting the password space into password sets and using,
probabilistic data structures to determine the password sets
that are likely to have the password of the input query hash
value, the techniques disclosed herein may reduce the tar-
geted search areas of the password space for password
recovery, and may thereby reduce the processing time and
computational resources required for password recovery. In
addition, the use of probabilistic data structures such as, for
example, Bloom filters, for representing digest sets corre-
sponding to password sets may enable implementation of the
password recovery techniques of the present disclosure on
consumer-grade computing devices and mobile devices,
rather than requiring expensive and scarce powerful com-
putational resources.

[0008] In some embodiments, a method for recovering a
password from a hash value mput 1s provided, the method
comprising: segmenting a password space nto a plurality of
password sets, wherein each of the password sets comprise
a plurality of passwords in the password space; generating
and storing a digest set for each password set of the plurality
of password sets, wherein each of the digest sets comprises
a respective hash value of each of the respective passwords
in the corresponding password set; generating and storing a
plurality of probabilistic data structures, wherein each of the
plurality of probabilistic data structures represents one of the
plurality of the digest sets; querying one of the probabilistic
data structures with the hash value mput to determine
whether the hash value mput 1s likely included in the digest
sets represented by the probabilistic data structures; recerv-
ing, 1n response to the querying of the probabilistic data
structure, result data from the probabilistic data structure
indicating that the hash value 1nput 1s likely included 1n the
digest set represented by the probabilistic data structure; 1n
response to receiving the result data indicating that the hash
value 1nput 1s likely included in the digest set represented by
the probabilistic data structure, generating and storing the
passwords constituting the password set corresponding to
the digest set, and generating and storing the hash values
constituting the digest set; comparing the generated hash
values constituting the digest set to the hash value 1nput to
determine a hash value from among the digest set that
matches the hash value input; and generating and outputting
an mndication of the generated password associated with the
hash value from among the digest set that matches the hash
value 1nput.

US 2022/0004621 Al

[0009] In some embodiments of the method, segmenting
the password space comprises generating and storing data
representing the plurality of password sets 1n the password
space.

[0010] In some embodiments of the method, the password
space 15 comprises all possible passwords 1n accordance
with a plurality of rules governing password eligibility.
[0011] In some embodiments of the method, passwords 1n
the password space are arranged 1n an order in accordance
with one or more predefined ordering critena.

[0012] In some embodiments of the method, each pass-
word set of the plurality of password sets comprises a
contiguous portion of the password space as defined by the
predefined ordering criteria, and 1s non-overlapping with
cach other password sets of the plurality of password sets.
[0013] In some embodiments of the method, each pass-
word set of the plurality of password sets comprises an equal
number of passwords.

[0014] In some embodiments of the method, generating a
digest set for each password set comprises calculating a
respective hash value for each password of the password set.
[0015] In some embodiments of the method, generating a
probabilistic data structure comprises selecting a predefined
talse-positive probability for queries of the probabilistic data
structure.

[0016] In some embodiments of the method, selecting the
predefined false-positive probability 1s based on a size of
storage resources on which the probabailistic data structure 1s
to be stored.

[0017] In some embodiments of the method, the probabi-
listic data structure 1s configured to generate result data
indicating either: that the query mput value 1s likely included
in the digest set represented by the probabilistic data struc-
ture, or that the query mput value 1s definitely not included

in the digest set represented by the probabilistic data struc-
ture.

[0018] In some embodiments of the method, the probabi-
listic data structure 1s a Bloom filter.

[0019] In some embodiments, a system for recovering a
password from a hash value input 1s provided, the system
comprising: one or more processors; a memory storing one
or more programs, the one or more programs configured to
be executed by the one or more processors and including
instructions to: segment a password space into a plurality of
password sets, wherein each of the password sets comprise
a plurality of passwords 1n the password space; generate and
store a digest set for each password set of the plurality of
password sets, wherein each of the digest sets comprises a
respective hash value of each of the respective passwords in
the corresponding password set; generate and store a plu-
rality of probabilistic data structures, wherein each of the
plurality of probabilistic data structures represents one of the
plurality of the digest sets; query one of the probabilistic
data structures with the hash value input to determine
whether the hash value mput 1s likely included in the digest
sets represented by the probabilistic data structures; receive,
in response to the querying of the probabilistic data struc-
ture, result data from the probabilistic data structure indi-
cating that the hash value mput is likely included in the
digest set represented by the probabilistic data structure; 1n
response to receiving the result data indicating that the hash
value mput 1s likely included in the digest set represented by
the probabilistic data structure, generate and store the pass-
words constituting the password set corresponding to the

Jan. 6, 2022

digest set, and generate and store the hash values constitut-
ing the digest set; compare the generated hash values
constituting the digest set to the hash value mput to deter-
mine a hash value from among the digest set that matches
the hash value mput; and generate and output an 1ndication
of the generated password associated with the hash value
from among the digest set that matches the hash value input.

[0020] In some embodiments, a non-transitory computer-
readable storage medium storing one or more programs for
recovering a password from a hash value 1nput 1s provided,
the one or more programs configured to be executed by one
or more processors and including instructions to: segment a
password space mto a plurality of password sets, wherein
cach of the password sets comprise a plurality of passwords
in the password space; generate and store a digest set for
cach password set of the plurality of password sets, wherein
cach of the digest sets comprises a respective hash value of
cach of the respective passwords in the corresponding
password set; generate and store a plurality of probabilistic
data structures, wherein each of the plurality of probabilistic
data structures represents one of the plurality of the digest
sets; query one of the probabilistic data structures with the
hash value 1input to determine whether the hash value input
1s likely included 1n the digest sets represented by the
probabilistic data structures; receive, 1 response to the
querying of the probabilistic data structure, result data from
the probabilistic data structure indicating that the hash value
input 1s likely included 1n the digest set represented by the
probabilistic data structure; 1n response to recewmg the
result data indicating that the hash value input i1s likely
included in the digest set represented by the probabilistic
data structure, generate and store the passwords constituting
the password set corresponding to the digest set, and gen-
crate and store the hash values constituting the digest set;
compare the generated hash values constituting the digest set
to the hash value mput to determine a hash value from
among the digest set that matches the hash value 1nput; and
generate and output an indication of the generated password
associated with the hash value from among the digest set that
matches the hash value nput.

[0021] In some embodiments, a method for recovering a
password from a hash value mput 1s provided, the method
comprising: segmenting a password space nto a plurality of
password sets, wherein each of the password sets comprise
a plurality of passwords 1n the password space; generating
and storing a digest set for each password set of the plurality
of password sets, wherein each of the digest sets comprises
a respective hash value of each of the respective passwords
in the corresponding password set; generating and storing a
multi-level probabilistic data structure, wherein the gener-
ating and storing comprising: generating and storing a {first
plurality of probabilistic data structures 1n a first level of the
multi-level probabilistic data structure; and generating and
storing a second plurality of probabilistic data structures 1n
a second level of the multi-level probabilistic data structure,
wherein each of the probabilistic data structures of the
multi-level probabilistic data structure respectively repre-
sent one or more of the plurality of the digest sets; querying
a plurality of probabilistic data structures of the multi-level
probabilistic data structure with the hash value input to
determine whether the hash value 1nput 1s likely 1included 1n
any one or more of the digest sets respectively represented
by the plurality of probabilistic data structures; recerving, in
response to the querying of the plurality of probabilistic data

US 2022/0004621 Al

structures of the multi-level probabilistic data structure,
result data from an identified one of the plurality of data
structures indicating that the hash value input 1s likely
included in the digest set represented by the identified
probabilistic data structure; in response to receiving the
result data indicating that the hash value mput 1s likely
included i the digest set represented by the identified
probabilistic data structure, generating and storing the pass-
words constituting the password set corresponding to the
digest set, and generating and storing the hash wvalues
constituting the digest set; comparing the generated hash
values constituting the digest set to the hash value input to
determine a hash value from among the digest set that
matches the hash value input; and generating and outputting,
an indication of the generated password associate with the
hash value from among the digest set that matches the hash
value 1nput.

[0022] In some embodiments of the method, the multi-
level probabilistic data structure comprises a tree-structure
of probabilistic data structures in which a given probabilistic
data structure in the first level 1s associated with multiple
probabilistic data structures 1n the second level.

[0023] In some embodiments of the method, each of the
multiple probabilistic data structures in the second level are
represent single respective digest sets; and the given proba-
bilistic data stricture 1n the first level represents all of the
respective digest sets represented by each of the multiple
probabilistic data structures 1n the second level.

[0024] In some embodiments of the method, querying a
plurality of probabilistic data structures of the multi-level
probabilistic data structure comprises: querying the given
probabilistic data structure of the first level of the multi-level
probabilistic data structure; receiving, i response to the
querying ol the given probabilistic data structure, result data
indicating that the hash value input 1s likely imncluded 1n one
of the multiple digest sets represented by the given proba-
bilistic data structure; 1n accordance with receiving the result
data indicating that the hash value 1nput 1s likely included 1n
one of the multiple digest sets represented by the given
probabilistic data structure, querying the multiple probabi-
listic data structures of the second level of the multi-level
probabilistic data structure; receiving, in response to the
querying the multiple probabilistic data structures of the
second level, the result data indicating that the hash value
input 1s likely included 1n the digest set represented by the
identified probabilistic data structure, wherein the 1dentified
probabilistic data structure 1s one of the multiple probabi-
listic data structures.

[0025] In some embodiments of the method, the first
plurality of probabilistic data structures are configured to
have a first false-positive rate; and the second plurality of
probabilistic data structures are configured to have a second
talse-positive rate different from the first false-positive rate.

[0026] In some embodiments, a system for recovering a
password from a hash value input 1s provided, the system
comprising: one or more processors; a memory storing one
or more programs, the one or more programs configured to
be executed by the one or more processors and including
instructions to: segment a password space into a plurality of
password sets, wherein each of the password sets comprise
a plurality of passwords 1n the password space; generate and
store a digest set for each password set of the plurality of
password sets, wherein each of the digest sets comprises a
respective hash value of each of the respective passwords in

Jan. 6, 2022

the corresponding password set; generate and store a first
plurality of probabilistic data structures 1n a first level of a
multi-level probabilistic data structure; and generate and
store a second plurality of probabilistic data structures 1n a
second level of the multi-level probabilistic data structure,
wherein each of the probabilistic data structures of the
multi-level probabilistic data structure respectively repre-
sent one or more of the plurality of the digest sets; query a
plurality of probabilistic data structures of the multi-level
probabilistic data structure with the hash value input to
determine whether the hash value 1nput 1s likely included 1n
any one or more of the digest sets respectively represented
by the plurality of probabilistic data structures; receive, in
response to the querying of the plurality of probabilistic data
structures of the multi-level probabilistic data structure,
result data from an identified one of the plurality of data
structures indicating that the hash value mput 1s likely
included in the digest set represented by the identified
probabilistic data structure; 1n response to recerving the
result data indicating that the hash value input 1s likely
included in the digest set represented by the identified
probabilistic data structure, generate and store the passwords
constituting the password set corresponding to the digest set,
and generate and store the hash values constituting the digest
set; compare the generated hash values constituting the
digest set to the hash value input to determine a hash value
from among the digest set that matches the hash value mput;
and generate and output an indication of the generated
password associate with the hash value from among the
digest set that matches the hash value 1nput.

[0027] In some embodiments, a non-transitory computer-
readable storage medium storing one or more programs for
recovering a password from a hash value input 1s provided,
the one or more programs configured to be executed by one
or more processors and including nstructions to: segment a
password space mto a plurality of password sets, wherein
cach of the password sets comprise a plurality of passwords
in the password space; generate and store a digest set for
cach password set of the plurality of password sets, wherein
cach of the digest sets comprises a respective hash value of
cach of the respective passwords in the corresponding
password set; generate and store a first plurality of proba-
bilistic data structures 1n a first level of a multi-level
probabilistic data structure; and generate and store a second
plurality of probabilistic data structures 1n a second level of
the multi-level probabilistic data structure, wherein each of
the probabilistic data structures of the multi-level probabi-
listic data structure respectively represent one or more of the
plurality of the digest sets; query a plurality of probabilistic
data structures of the multi-level probabilistic data structure
with the hash value mput to determine whether the hash
value input 1s likely included in any one or more of the digest
sets respectively represented by the plurality of probabilistic
data structures; receive, 1n response to the querying of the
plurality of probabilistic data structures of the multi-level
probabilistic data structure, result data from an i1dentified
one of the plurality of data structures indicating that the hash
value mput 1s likely included in the digest set represented by
the 1dentified probabilistic data structure; 1n response to
receiving the result data indicating that the hash value input
1s likely included in the digest set represented by the
identified probabilistic data structure, generate and store the
passwords constituting the password set corresponding to
the digest set, and generate and store the hash wvalues

US 2022/0004621 Al

constituting the digest set; compare the generated hash
values constituting the digest set to the hash value 1nput to
determine a hash value from among the digest set that
matches the hash value mput; and generate and output an
indication of the generated password associate with the hash
value from among the digest set that matches the hash value
input.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1 shows a tflow diagram depicting a method
for encoding and storing data using probabilistic data struc-
tures 1n accordance with some embodiments.

[0029] FIG. 2 illustrates segmenting of data 1n accordance
with some embodiments.

[0030] FIG. 3 illustrates encoding of segmented data in
accordance with some embodiments.

[0031] FIGS. 4-5 1llustrate storing of encoded data using
probabilistic data structures 1n accordance with some
embodiments.

[0032] FIG. 6 show flow diagram depicting methods for
recovering data through reversal of hash values using proba-
bilistic data structures in accordance with some embodi-
ments.

[0033] FIG. 7 shows a data recovery system 1n accordance
with some embodiments.

[0034] Illustrative embodiments will now be described
with reference to the accompanying drawings. In the draw-
ings, like reference numerals generally indicate identical,
functionally similar, and/or structurally similar elements.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

[0035] The following description sets forth exemplary
methods, parameters, and the like. It should be recognized,
however, that such description 1s not intended as a limitation
on the scope of the present disclosure but 1s 1instead provided
as a description of exemplary embodiments.

[0036] FIGS. 1-7 provide a description of exemplary
systems and methods for recovering passwords from hash
values using probabilistic data structures. However, it will
be understood by a person of ordinary skill in the art that
these exemplary systems and methods of FIG. 1-7 may be
used for recovering any data from their encoded values
using probabilistic data structures. For example, these exem-
plary systems and methods may be used to recover credit
card numbers from a database that may have only hashed
values of the credit card numbers.

[0037] As discussed above, traditional systems and meth-
ods for recovering sensitive data such as, for example,
passwords or financial information from stored encoded
values (e.g., hash values) require considerable amounts of
processing time and/or computing resources (e.g., large
amounts ol memory and/or substantial processing power),
particularly for recovering large and complex data. Such
traditional systems and methods are time- and cost-inetfli-
cient for practical applications 1n environments (e.g., 1n law
enforcement agencies or in small businesses) that may be
limited by the amount of time and/or resources available for
such data recovery systems and methods. In addition, the
computing resources required in these traditional systems
and methods make them impractical for applications 1n
portable devices.

Jan. 6, 2022

[0038] Accordingly, there 1s need for systems and methods
for data recovery that helps to overcome the drawbacks 1n
the traditional data recovery systems and methods. The
present disclosure may address this need by providing
techniques and systems for faster, more eflicient, and more
computationally immexpensive methods for recovering pass-
words from encoded values (e.g., hash values). In some
embodiments, these faster and more eflicient methods may
comprise using probabilistic data structures such as Bloom
filters to drastically speed up the process of searching
through the enftirety of a password space, or through the
entirety of a digest space corresponding to the password
space. In some embodiments, the techniques disclosed
herein comprise segmenting a password space having all
possible passwords for a given set of password generation
rules (e.g., all possible passwords considering permissible
character sets and/or a maximum and/or minimum password
length) 1nto password sets, and generating and storing
probabilistic data structures corresponding to and represent-
ing the password sets. The probabilistic data structures may
then be queried with query values to search for a potential
match between the query value and an underlying value used
to build the probabilistic data structure, which may be
significantly faster and more eflicient than exhaustively
comparing the query value to every possible match. By
segmenting the password space into password sets and using
probabilistic data structures to determine the password sets
that are likely to have the password of the input query hash
value, the techniques disclosed herein may reduce the tar-
geted search areas of the password space for password
recovery, and may thereby reduce the processing time and
computational resources required for password recovery. In
addition, the use of probabilistic data structures such as, for
example, Bloom filters, for representing digest sets corre-
sponding to password sets may enable implementation of the
password recovery techniques of the present disclosure on
consumer-grade computing devices and mobile devices,
rather than requiring expensive and scarce powerful com-
putational resources.

[0039] Below, FIGS. 1-5 describe a construction phase of
a password recovery method and FIG. 6 describes a reversal
phase of the password recovery method 1n accordance with
some embodiments. As will be described below, the methods
described in FIGS. 1-6 may enable fast, eflicient, and
accurate recovery ol passwords from their hash values
without the need for extensive computational, storage, or
communication resources or capabilities. The methods
described herein may thus enable the rapid recovery of
passwords by probabilistically identifying and searching
regions of a password space that likely has the desired
password of a hash value that 1s being reversed, and may
enable performing this probabilistic 1dentification and
searching on consumer-grade computing devices (e.g., lap-
tops, smart phones, or single-board computers) within a
matter of minutes or seconds.

[0040] FIG. 1 1s a flow diagram of a construction phase of
a password recovery method 100, according to some
embodiments. In some embodiments, a password recovery
method may comprise a construction phase in which one or
more data structures to be used 1n the recovery technique are
generated and stored, as well as a search phase (e.g., a query
phase) 1n which specific queries may be executed in order to
recover the desired password. In some embodiments, a
construction phase may be performed 1n advance of a query

US 2022/0004621 Al

phase. In some embodiments, the construction phase steps of
the password recovery method 100 may not be performed
more than once for any particular password space, such that
a construction phase may be used to generate and store data
structures that may be used for multiple search phases
utilizing the same data structures. The method 100 may be
performed by a system such as system 700 described below
with reference to FIG. 7.

[0041] At step 102, in some embodiments, a password
space having a plurality of passwords may be constructed.
The password space construction may be performed by a
processor such as processor 702 of system 700 described
below with reference to FIG. 7.

[0042] In some embodiments, the password space may be
represented by any data representing a logical space con-
taining a plurality of potential/possible passwords 1n accor-
dance with a set of parameters or rules for the passwords,
such as all possible passwords 1n accordance with a set of
password rules. In some embodiments, a password space
may comprise a plurality of passwords arranged in a pre-
defined order in accordance with one or more ordering
conventions, such as numerical order, alphabetical order, or
any suitable predefined order. In some embodiments, pass-
words 1n a password space may be stored 1n accordance with
metadata or some other indication indicating a position or
space ol each particular password in the password space,
such as by indicating 1ts position with respect to the other
passwords 1n the space as defined by the predefined ordering
convention.

[0043] In some embodiments, data representing the pass-
word space may be generated and stored based on a set of
password space generation instructions configured to sys-
tematically generate a plurality of passwords in the pass-
word space, such as all possible passwords 1n the password
space 1n accordance with predefined rules governing pos-
sible passwords in the space. In some embodiments, the
rules defining a password space may include rules about
permissible characters that may be included in the pass-
words (e.g., numeric characters, alphabetical characters of
one or more alphabets, symbolic characters, non-alphanu-
meric characters, or any combinations thereot), rules about
required characters and/or required types of characters, rules
about capitalization, rules about maximum password length,
and/or rules about minimum password length. The password
space may be constructed by generating a list of passwords
in a sequential manner using all possible combinations of
numeric characters, alphabetical characters, non-alphanu-
meric characters, or any combinations thereof for all posi-
tions of the generated list of passwords. The list of pass-
words may be sequentially generated by cycling through all
cligible characters for each character position 1n a given
password, 1n a predetermined order for all eligible charac-
ters, until all possible combinations of passwords 1n the
space are generated. In some embodiments, each of the
passwords 1n the passwords space may be different from
cach other.

[0044] In some embodiments, the list of passwords in the
password space may be generated in accordance with rules
such that the passwords 1n the password space may be 1n
non-alphabetical and/or non-alphanumeric order. For
example, rules for generating the password space may
generate passwords 1n the password space based on words 1n
a dictionary, commonly-used character strings in passwords,
known common passwords, and/or known or predicted

Jan. 6, 2022

character patterns and/or character type patterns based on
known or common password security requirements (e.g., the
requirement to include a capital letter, a number, and/or a
symbol). In some embodiments, the order of passwords 1n
the space may be generated based on, for example, a
dictionary algorithm. In some embodiments, the order of
passwords 1n the space may be generated based on, for
example, the usage frequency of the dictionary words as
passwords. That 1s, the passwords arranged in the space be
ordered from the most frequently used passwords and/or
patterns to the least frequently used passwords and/or pat-
terns. In some embodiments, the list of passwords in the
password space may be generated from dictionary words
modified with numeric characters, alphabetical characters of
one or more alphabets, symbolic characters, and/or non-
alphanumeric characters.

[0045] In some embodiments, aiter generating passwords
using dictionary words and/or known common passwords
and/or known common character patterns, the exhaustive
remainder of all possible passwords 1n the space using all
possible characters may then be generated, but these remain-
ing passwords may be listed in the password space after the
dictionary and known- or assumed-common passwords.
Thus, the list of passwords 1n the password space may be
exhaustive (including all possible passwords for the space),
but may include more likely (e.g., more common) passwords
nearer to the beginning of the list and may include less likely
(e.g., less common, more linguistically random) passwords
nearer to the end of the list. In this way, when the password
space 1s systematically reviewed 1n accordance with query-
ing one or more probabilistic data structures representing
subsets of the space, as explained herein, it may be more
likely that the system discovers the correct password earlier
in the ordered space. Ordering the password space in this
way may accordingly further reduce processing times.

[0046] In some embodiments, the data representing the
password space may be stored 1n any suitable manner, such
as 1 a database, on any suitable computer storage or
memory device.

[0047] Step 102 may be followed by step 104. At step 104,
in some embodiments, the password space may be seg-
mented mto a plurality of password sets. The segmenting of
the password space may be performed by a processor such
as processor 702 of system 700 described below with
reference to FIG. 7. In some embodiments, segmenting the
password space may comprise generating and storing data
indicating which of the passwords in the password space
correspond to which sets. In some embodiments, the gen-
erated data may comprise metadata associated with the
passwords 1n the password space, may comprise pointers,
and/or may comprise data stored in one or more indexes
defining the password sets.

[0048] In some embodiments, the password space may be
segmented 1n a manner such that each of the password sets
1s a contiguous portion of the password space (as defined by
the predetermined sequential order 1n which the passwords
in the password space may be arranged) and 1s non-over-
lapping with each other password set. FI1G. 2 illustrates such
a segmented password space with an example password
space P. Password space P 1n FIG. 2 may have all possible
two digit passwords generated from numeric characters O
through 9 (resulting in 100 total possible passwords, 00
through 99). The two digit passwords may be arranged 1n a
sequential order from 00 to 99 in password space P. Pass-

US 2022/0004621 Al

word P may be segmented into ten equal sized password sets
P1 through P10 as shown in FIG. 2. Also shown 1n FIG. 2,

cach of the password sets P1 through P10 are a contiguous
portion of password space P and are non-overlapping with
cach other password set of password space P. The passwords
in each password set are non-overlapping with the pass-
words 1n other password sets. It should be understood that
password space P and password sets P1 through P10 are
merely examples shown for illustrative purposes and are not
intended to be limiting on the embodiments of the present
disclosure.

[0049] In some embodiments, the password space may be
segmented 1n a manner such that each password set of the
plurality of password sets may have a size equal to or
different from each other password set of the plurality of
password sets. The size of a password set may be based on
the number of passwords in the password set and/or based on
the data size of one or more passwords 1n the password set.
In some embodiments, the size of each password set of the
plurality of password sets may be selected based on a desired
performance characteristic (e.g., computational time or
accuracy) of the password recovery method 100 that may be
depend on the computational time for hashing the password
sets at step 106 discussed below. Depending on the com-
plexity of hash functions used at step 106, the size of the
password sets may be selected to achieve the desired com-
putational time of the password recovery method 100. For
example, the size of the password sets selected for using
complex hash functions such as for example Bcerypt at step
106 may be smaller than the size of the password sets
selected for using simple hash functions such as for example
MD3 at step 106. In some embodiments, the size of each
password set of the plurality of password sets may be
selected based on the storage space of a password recovery
system such as system 700 that may be configured to
perform the steps of password recovery method 100.

[0050] Step 104 may be followed by step 106. At step 106,
in some embodiments, a digest set for each password set of
the plurality of password sets may be generated using a hash
tfunction. The generation of the digest sets may be performed
by a processor such as processor 702 of system 700
described below with reference to FIG. 7.

[0051] In some embodiments, the generation of a digest
for each password set may include hashing each of the
passwords of each password set using a hash function, such
as, Tor example, SHA-1, SHA-312, MDS5, Bcrypt and/or
other suitable cryptographic hash functions. Each digest set
may include respective hash values of each of the passwords
of the corresponding password set. For example, FIG. 3
illustrates generation of digest sets for a segmented pass-
word space having password sets P1 through P10. The
password sets P1 through P10 may be similar to the pass-
words sets P1 through P10 discussed above with reference
to FIG. 2. As shown 1n FIG. 3, digest sets D1 through D10
may be generated by hashing each of the passwords con-
tained 1n each of respective password sets P1 through P10
using a hash function H. Fach of digest sets D1 through D10
may comprise a plurality of hash values of the respective
passwords of respective password sets P1 through P10. For
example, digest set D1 may have ten hash values for the ten
passwords 00 through 09 1n password set P1. It should be
understood that password sets P1 through P10 and digest
sets D1 through D10 are merely examples shown for 1llus-

Jan. 6, 2022

trative purposes and are not intended to be limiting on the
embodiments of the present disclosure.

[0052] In some embodiments, hash values of the digest
sets may 1iclude number characters, alphabetical characters,
non-alphanumeric characters, or any combinations thereof.
In some embodiments, the hash values of each digest set
may be non-overlapping with the hash values of other digest
Sets.

[0053] In some embodiments, step 106 may be followed
by step 108 or step 110.

[0054] At step 108, for each of the digest sets, a probabi-
listic data structure may be generated and stored, wherein
cach of the probabilistic data structures represents each of
the hashed passwords in each of the digest sets, wherein
cach hashed password 1s represented as a member of a set
that defines the probabilistic data structure. For example,
FIG. 4 illustrates generation of probabilistic data structures
BF1 through BF10 for respective digest sets D1 through
D10. As discussed further herein, each of digest sets D1
through D10 may be represented by a respective probabi-
listic data structure BF1 through BF10, 1n that each of the
probabilistic data structures may be constructed to represent
cach of the hashed passwords contained in the correspond-
ing digest set as a member of a set defining the probabilistic
data structure. The password sets P1 through P10 and digest
sets D1 through D10 may be similar to the passwords sets P1
through P10 and digest sets D1 through D10 discussed
above with reference to FIG. 3. It should be understood that
probabilistic data structures BF1 through BF10 and digest
sets D1 through D10 are merely examples shown for 1llus-
trative purposes and are not intended to be limiting on the
embodiments of the present disclosure.

[0055] In some embodiments, the probabilistic data struc-
tures may be generated by any suitable processor acting on
hash values constituting the digest sets, and the probabilistic
data structures may be built and stored on any suitable
computer storage, computer memory, and/or database, or
may be transmitted thereto for storage. In some embodi-
ments, system 700 of FIG. 7 discussed below may generate
the probabilistic data structures by performing one or more
calculations and operations against the hash values consti-
tuting the digest sets generated at step 106 and may store the
probabilistic data structures 1n storage 710 of system 700
discussed below with reference to FIG. 7.

[0056] In some embodiments, the probabilistic data struc-
ture generated at step 108 may be configured such that the
data elements used to create the probabilistic data structure
(e.g., the data upon which the probabilistic data structures
was based or the mput data used in the creation of the
probabilistic data structures, such as the hash values consti-
tuting a given digest set as discussed above) may be unre-
coverable from the probabilistic data structures. For
example, the probabilistic data structures may comprise a
one-way encoding algorithm (e.g., a hash function) that
prevents the original elements from being recovered based
on the probabilistic data structures. In some embodiments,
the data elements may be unrecoverable due to an extremely
intensive and/or computationally infeasible calculation or
calculations that would be required to reverse the encoding
and recover the elements. In some embodiments, the data
clements may be unrecoverable in that reversal of the
encoding may generate additional data elements that were
not used in the creation or building of the probabilistic data
structure, wherein those additional data elements may be

US 2022/0004621 Al

indistinguishable from the data elements on which the
probabilistic data structure was actually based; in this way,
a party that reverses the encoding/compression process used
in the creation of the probabailistic data structure to produce
various data elements from the probabilistic data structure
may not know which produced data elements were actually
used to create the probabilistic data structure and which
produced data elements are random, modified, and/or spootf
data elements.

[0057] In some embodiments, the probabilistic data struc-
tures generated at step 108 may be configured to return no
false negative results when each of the probabilistic data
structures 1s queried to determine whether an element 1s a
member of the probabilistic data structures. In some
embodiments, the probabilistic data structures are config-
ured to return false-positive results in accordance with a
predefined probability when each of the probabilistic data
structures 1s queried to determine whether an element 1s a
member of the probabilistic data structures.

[0058] In some embodiments, probabilistic data structures
that return no false negative results and a predefined and/or
user-definable percentage of false positive results may have
usetul applications in password recovery as it may allow for
a rapid lookup to determine, with a known error rate,
whether a hash value query mput 1s probably included or
definitely not included in the digest sets. Determining the
digest sets that defimitely do not include the hash value query
input may help to determine the password sets correspond-
ing to these determined digest sets that definitely do not have
the password of the hash value input. Thus, using probabi-
listic data structures may reduce the number of password
sets that must be exhaustively searched for the password of
the hash value mnput; as a result, using probabilistic data
structures may therefore help to recover passwords substan-
tially more quickly than if an exhaustive and error-free
password search was made. In one example, for a given
password space, a password recovery method using proba-
bilistic data structures may take considerably less time, e.g.,
about six seconds, than the traditional methods that may be
error-free but may take more than about 90 seconds.

[0059] Furthermore, in some embodiments, using proba-
bilistic data structures for password recovery that returns no
false negative results and a predefined and/or user-definable
percentage of false positive results may conserve storage
space, as the probabilistic data structures may be substan-
tially smaller in size than an exhaustive list or other error-
free data structure representing all of the digest sets. In some
embodiments, an estimated size of a probabilistic data
structure may be calculated based on the number of elements
and the false positive rate selected, while the size of the input
itself may not matter to the calculation of that size.

[0060] In some embodiments, the false positive probabil-
ity of the probabilistic data structures may be selectable by
a user or a system, such that a false positive probability may
be selected and set and used in the generation of the
probabilistic data structure. For example, a user may choose
to create a probabilistic data structure configured to return
false positive results at any suitable rate, such as 0.1%,
0.5%, 1%, 2%, 5%, 10%, 20%, 25%, 30%, 40%, or 45%. In
some embodiments, a probabilistic data structure may be
configured to return false positive results at a rate of 50% or
more.

[0061] In some embodiments, the false positive probabil-
ity may be selected based at least 1n part on storage and/or

Jan. 6, 2022

computing resources. For example, the lower the {false
positive probability, the more storage space may be required
to store the probabilistic data structure and the more com-
putational resources may be required to create/build the
probabilistic data structure.

[0062] In some embodiments, the false positive probabil-
ity may be selected based at least 1n part on requirements or
considerations for accuracy and precision of comparisons to
be made against the probabilistic data structure. For
example, 1n some applications, such as those in which data
sets for comparison are smaller, then higher false positive
rates may degrade results substantially and unacceptably.
However, 1n some applications, such as those in which data
sets for comparison are larger (e.g., hundreds, thousands, or
millions of elements to compare), then higher false positive
rates may be acceptable as they may not impede the ability
to draw meaningiul conclusions from analysis of the proba-
bilistic data structures.

[0063] In some embodiments, each of the probabilistic
data structures generated at step 108 may be a Bloom filter,
wherein each digest set generated at step 104 may be
represented by a Bloom filter wherein each of the hash
values constituting the respective digest sets are represented
as an element of the set used to construct the corresponding
Bloom filter.

[0064] A Bloom filter 1s a probabilistic data structure that
may be used to determine whether an element 1s a member
of a set. Unlike a set or traditional database, the data 1n a
Bloom filter 1s 1rretrievable. When a Bloom filter 1s queried
as to whether an element 1s a member of a set, the Bloom
filter will provide zero false negative results, but may
provide false positive results. Thus, a Bloom filter may be
used to determine whether an element 1s “probably present”™
or “definitely not present” in a set. The rate at which false
positive results are returned may be selected by a user at the
time of the creation of a Bloom filter, such that a Bloom filter
may be configured to have a predetermined probability of
returning false positive results. The false positive rate of a
Bloom filter 1s pre-defined with a correlation to the number
of elements to be added to the filter. For example, a Bloom

filter may be configured to return false positive results 40%,
30%, 20%, 10%, 5%, 2%, 1%, or less than 1% of the time.

[0065] Bloom filters are space-eflicient, in that they
require less disk space for storage and memory for com-
parison processes than error-free (e.g., 0% false positive)
hashing techmiques or other data structures for representing,
and searching sets (e.g., search trees, hash tables, arrays, or
linked lists). In some embodiments, a Bloom filter having a
1% false positive probability may require less than 10 bits
per element represented by the Bloom filter. The lower a
false positive probability set of a Bloom filter, the larger the
Bloom filter data structure will be; the higher the false
positive probability, the smaller the Bloom filter data struc-
ture will be.

[0066] A Bloom filter has a zero false negative rate by
virtue of how data 1s mserted and looked up. Upon insertion,
cach data point 1s hashed and converted 1nto two or more bit
positions. These bits are then set to true (1) within the bit
array. It 1s possible that multiple data points overlap on one
or more bits. When looking up a data point to see if 1t has
been 1included, the data to be looked up 1s hashed 1n the same
manner used to hash the original data. All bits are checked
to verily that they are all set. If any bit 1s not set to true, one
can be confident that the data point was never inserted.

US 2022/0004621 Al

[0067] In some embodiments, generating the probabilistic
data structures at step 108 may comprise building a Bloom
filter for each digest set generated at step 104. In some
embodiments, a Bloom {filter may be created for each of the
digest sets by using the hash values constituting each of the
digest sets as elements defining the mathematical set used
for the creation of a Bloom filter at step 108. In some
embodiments, a system may be configured to allow {for
parallel building, exporting and importing from disk, and
importing and exporting in several file formats including hex
strings of Bloom filters, binary, and reading directly from
disk mstead of loading into memory. In some embodiments,
a system may enable storing statistics about a Bloom filter
including the number of eclements stored, desired {false
positive rate, and/or the maximum number of elements to
stay below that false positive rate; in some embodiments,
this information may be stored as metadata associated with
one or more respective Bloom filters in any suitable storage
arrangement, such as 1n a database of Bloom filters.

[0068] In some embodiments, each of the probabilistic
data structures generated at step 108 may be stored sepa-
rately and/or together on any suitable computer storage,
such as storage 710 of system 700. In some embodiments,
the probabilistic data structures may be transierred from a
remote computing system to a local computing system such
as system 700 of FIG. 7 via any electronic communication
link, such as any suitable network communication link. In
some embodiments, probabilistic data structures may be
transferred one at a time or 1n one or more batches each
including two or more probabilistic data structures. In some
embodiments, an entire library of hundreds or thousands or
more probabilistic data structures may be transferred at
once. In some embodiments, such as when the plurality of
probabilistic data structures constitute a large file size, the
plurality of probabilistic data structures may be transferred
by physical media, such as being transierred on one or more
discs, thumb drives, hard drives, solid-state drives, or the
like. For example, 11 the plurality of probabilistic data
structures amount to several gigabytes in total size for
several thousand probabilistic data structures, then the
probabilistic data structures may be loaded onto portable
storage media (or alternately transmitted by network com-
munication) and then transierred to the local computing
system.

[0069] At step 110, which may be performed alternatively
or 1n addition to step 108, a multi-level probabilistic data
structure may be generated and stored. As used herein, a
multi-level probabilistic data structure may refer to a data
structure comprising a plurality of probabilistic data struc-
tures arranged 1n a multi-level relationship, such as 1n a tree
hierarchy. For example, in an example 1n which the proba-
bilistic data structure referred to 1n step 106 1s a Bloom filter,
the multi-level probabilistic data structure here may com-
prise a plurality of Bloom filters arranged in a multi-level
relationship. In particular, probabilistic data structures on
different levels of the multi-level probabailistic data structure
may represent different-sized portions of a password space,
such that those structures 1n a higher level of the multi-level
structure may represent a greater percentage of the entire
password space, such as up to half of the entire password
space. On the other hand, those structures 1n a lower level of
the multi-level structure may represent a smaller percentage
of the entire password space, such as 10%, 3%, 1%, or a
smaller percentage of the entire password space. In some

Jan. 6, 2022

embodiments, structures in each of the levels of the multi-
level structure may be arranged 1n a hierarchically linked
relationship, such that those structures in different levels that
correspond to the same overlapping portion of the underly-
ing password space may be known to be vertically associ-
ated with one another, while those structures i1n diflerent
levels that do not correspond to the same overlapping
portion of the underlying password space may be known to
not be vertically associated with one another.

[0070] With reference to the password space, password
sets, and digest sets discussed above, each level of a multi-
level probabilistic data structure may comprise a plurality of
probabilistic data structures and each probabilistic data
structure may represent one or more of the digest sets. In
some embodiments, the plurality of probabilistic data struc-
tures on each level may be created to have the same false
positive rate. In some embodiments, the plurality of proba-
bilistic data structures on each level may be created to have
a false positive rate that 1s equal to or different from a false
positive rate of the plurality of probabilistic data structures
on other levels of the multi-level probabilistic data structure.
In some embodiments, the multi-level probabilistic data
structure may be arranged 1n a tree configuration, where
cach probabilistic data structure on each level may branch
into two probabilistic data structures 1n the next level of the
multi-level probabilistic data structure.

[0071] In some embodiments, a multi-level probabilistic
data structure may have a tree structure as discussed above.
For example, each of the digest sets may be represented by
a respective probabilistic data structure on a first level of the
multi-level probabilistic data structure, while, at a higher
level of the multi-level structure, two digest sets may be
represented by a single probabilistic data structure. At a
higher-yet level of the multi-level probabilistic data struc-
ture, four digest sets may be represented by a single proba-
bilistic data structure. Thus, 1n some embodiments, each
probabilistic data structure on each level may represent half
(or double) the number of digest sets as compared to the
probabilistic data structures i1n adjacent levels. For those
probabilistic data structures in adjacent levels representing
all or part of the same portion of the password space as
represented by a given probabilistic data structure, the
probabilistic data structures in adjacent levels may be con-
sidered to be vertically associated with the given probabi-
listic data structure, and may be said to branch to/from the
given probabilistic data structure.

[0072] For example, FIG. 5 1llustrates a configuration of a
multi-level probabilistic data structure 500 that may be
generated at step 110. As shown 1n FIG. §, first level of the
multi-level probabilistic data structure 500 may include two
probabilistic data structures BF11 and BF12. Each of the two
probabilistic data structures BF11 and BF12 may represent
four digest sets. The two probabilistic data structures BF11
and BF12 may branch into two probabilistic data structures
BF21 and BF22 and BF22 and BF24, respectively, on
second level. Each of the probabilistic data structures on the
second level may represent half the number of digest sets
than the probabilistic data structures 1t branched out from the
first level. For example, BF21 may represent digest sets D1
and D2, whereas BF11 represent digest sets D1 through D4.

[0073] The third level of the multi-level probabilistic data

structure 500 having probabilistic data structures BF31
through BF38 may comprise probabilistic data structures
that branch out of each of the probabilistic data structures on

US 2022/0004621 Al

the second level. In a similar manner as the probabilistic data
structures on the second level each represent half the number
of digest sets as each of the probabilistic data structures on
the first level, each of the probabailistic data structures on the
third level may represent half the number of digest sets as
cach of the probabilistic data structures on the second level.
The digest sets D1 through D8 may be similar to digest sets
D1 through D8 discussed above with reference to FIG. 3. It
should be understood that multi-level probabilistic data
structures 500 and digest sets D1 through D8 are merely
examples shown for illustrative purposes and are not
intended to be limiting on the embodiments of the present
disclosure.

[0074] In some embodiments, the representation of digest
sets by the multi-level probabilistic data structure may help
to further increase the processing speed of password recov-
ery compared, for example, to processing speeds ol pass-
word recovery systems relying on digest sets represented by
a linear or single-level plurality of parallel probabilistic data
structures, such as discussed above with reference to FIG. 4
and step 108 of FIG. 1. In one example, for a given password
space and a hash value input, password recovery may be
executed 1n about 0.02 seconds using the multi-level proba-
bilistic structure of step 110 and 1n about 6 seconds using the
linear probabailistic data structure of step 108.

[0075] In some embodiments, the probabilistic data struc-
tures of the multi-level probabilistic data structure generated
at step 110 may be similar 1n structure and functionality to
the probabilistic data structures described above with refer-
ence to step 108. In some embodiments, each of the proba-
bilistic data structures of the multi-level probabilistic data
structure generated at step 110 may be a Bloom f{ilter.

[0076] FIG. 6 1s a tlow diagram of the example password
recovery method 100 during 1ts reversal phase, according to
some embodiments. In some embodiments, the reversal
phase steps of the password recovery method 100 may be
performed after the construction phase steps discussed
above with reference to FIGS. 1-5. The method steps of FIG.
6 may be performed by a system such as system 700
described below with reference to FIG. 7.

[0077] At step 602, 1n some embodiments, a hash value
input and a request for reversing the hash value mput to
recover the password associated with the hash value input
may be received. That i1s, the system may receive a hash
value for which a password 1s desired to be recovered. Thus,
for a completely solved hashing algorithm for which the
system has access to exhaustive knowledge of what under-
lying passwords correspond to what hash values, the system
may need only find the matching hash value 1n a stored data
structure 1n order to look up the corresponding plain text
password. However, brute-force linear exhaustive searching,
of all possible passwords and/or all possible hash values
may be computationally infeasible or impractical, as dis-
cussed above. Accordingly, a searching/reversal procedure
utilizing probabilistic data structures as discussed herein
may be executed 1n order to drastically shorten search times
and 1improve computational efliciency. The mput and request
may be received by an mput device such iput device 706 of
system 700 described below with reference to FIG. 7.

[0078] In some embodiments, step 602 may be followed
by step 604 or by step 610. As explained in further detail
below, steps 604 and 606 may constitute a single-level
searching technique for searching linearly through a single
level of probabilistic data structures. On the other hand,

Jan. 6, 2022

steps 610-614 may constitute a multi-level searching tech-
nique for searching through a multi-level probabilistic data
structure.

[0079] At step 604, a query may be sent to each of the
probabilistic data structures generated at step 108 of FIG. 1.
The queries may be configured to cause the queried proba-
bilistic data structure to generate output data indicating
whether the hash value query input received at step 602 1s
likely included 1n any of the digest sets represented by the
probabilistic data structures of step 108.

[0080] At step 606, which may be followed from step 604
in some embodiments, one or more password sets corre-
sponding to one or more digest sets that are determined to
likely include the hash value mput may be regenerated 1n
response to the query of step 604.

[0081] As discussed above, at step 604 the outputs gen-
crated by one or more of the queried probabilistic data
structures may indicate that one or more of the digest sets
likely include the hash value query input. In response to
these outputs 1dentifying the one or more digest set that are
likely to have the hash value query input, the one or more
password sets from which these one or more digest sets were
generated at step 104 (FIG. 1) of the construction phase of
the password recovery method 100 may be identified. The
identification may be performed through metadata or some
other information associated with the password sets and/or
digest sets that may have been stored during step 104 (FIG.
1) to indicate the mapping of each password set to its
corresponding generated digest set. For example, referring
to FIG. 3, during the generation of digest sets D1 through
D10 from respective password sets P1 through P10 at step
104 of FIG. 1, some mapping information may have been
stored to associate passwords sets P1 through P10 with
respective digest sets D1 through 1D10. Based on this map-
ping information, 1t the output of step 604 indicates, for
example, that digest set D1 likely includes the hash value
query mput, then password set P1 1s identified as the
password set that corresponds to digest set D1 based on the
mapping information stored at step 104 of FIG. 1. A
illustrated 1n FIG. 3, the mapping may not be between each
password to 1ts corresponding hash value 1n the digest set,
rather, the mapping may be between each password set and
its corresponding digest set.

[0082] This identification of the one or more password sets
may be followed by regeneration of the passwords that
belong 1n the identified one or more password sets. This
regeneration process may be performed because, 1n some
embodiments, an exhaustive list of all passwords 1n each
password set may not be durably or permanently stored by
the system during the construction phase. That 1s, during or
after the construction phase, exhaustive lists of all possible
plain text passwords may be purged or otherwise discarded
(e.g., to conserve memory space), so the system may not
have immediate access to a list of all passwords contained 1n
cach password set. Rather, the system may have access to
instructions for algorithmically systematically regenerating
all passwords of a password set, which may be undertaken
on a limited and computationally feasible basis once the
probabilistic-data-structure-based search techniques dis-
closed herein have been used to drastically narrow the
region in the password space where the targeted password 1s
suspected to be located. The passwords may be regenerated
based on the password generation rules mitially used to
generate all the passwords of the password space during step

US 2022/0004621 Al

102 (FIG. 1). However, at this step 606, the password
generation rules may be used to selectively regenerate the
passwords belonging to the one or more password sets
identified based on the output of step 604 as discussed
above. For example, referring to the password space and
password sets of FIG. 2, if based on the output of step 604,
password set P1 1s 1dentified as corresponding to a digest set
D1 that likely includes the hash value query input, then
passwords of password set P1 may be selectively regener-
ated without the regeneration of the passwords of other
password sets P2 through P10 of the password space. That
1s, passwords 00 through 09 of password set P1 may be
regenerated based on the password generation rules that may
have been used to generate these passwords of password set

P1 during step 104 of FIG. 1.

[0083] At step 608, hash values of passwords of the
regenerated one or more password sets may be compared to
the hash value mput received at step 602 to recover the
password of the hash value mput. For example, a hash value
of each regenerated password may be calculated and may be
stored and/or analyzed 1n association with the plain text
password from which it was generated. The hash value,
which may be calculated 1n a similar or 1dentical manner to
the calculation 1f digest values explained above, may be
compared to the hash value input to check for a match. If the
hash value mput matches the newly generated hash value,
then the system may determine that the hash value mnput 1s
associated with the password from which the newly gener-
ated hash value was just calculated, and may determine that
the hash value mput 1s a hash of that same plain text
password. Thus, the system may determine the password
itself, and may generate, store, and/or transmit one or more
indications of the retrieved password.

[0084] Altematively or additionally to steps 606 and 608,
the method may proceed from step 604 to step 610. At step
610, a first query may be sent to each of the plurality of
probabilistic data structures on a first level of the multi-level
probabilistic data structure generated at step 110 of FIG. 1.
The first query may be sent to determine whether the hash
value mput received at step 602 1s likely included 1n any of
the digest sets represented by the probabilistic data struc-
tures on the first level of the multi-level probabilistic data
structure. For example, 1n some embodiments, the first level
may comprise two Bloom filters each representing half of
the entire digest space, and querying each of the Bloom
filters may generate a single positive output indicating which
half of the digest space likely contains a match.

[0085] At step 612, a second query may be sent to the
plurality of probabilistic data structures on a second level of
the multi-level probabilistic data structure that represent the
digest sets that are determined, 1n response to the first query,
to likely have the hash value mput. That 1s, only probabilistic
data structures 1n the second level corresponding to the same
digest sets for which a positive result was obtained at step
610 may be queried 1n step 612, while those probabilistic
data structures in the second level that do not correspond to
the same digest sets for which a positive result was obtained
at 610 may not be queried at step 612. Put another way, the
system may start at a probabilistic data structure 1n the first
level for which a positive result 1s returned, and may proceed
to only those probabilistic data structures 1n the second level
that branch from the probabailistic data structure in the first
level. In this way, the system may iteratively narrow the
number of candidate digest sets at each level of the multi-

Jan. 6, 2022

level probabilistic data structure by using each level to
narrow the potential digest space to which the positive result
1s attributable. The second query may be sent to determine
where these digest sets likely include the hash value nput.

[0086] For example, in some embodiments, the second
level may comprise four Bloom filters each representing one
quarter of the digest space, and the system may query the
two (of four total) second-level Bloom filters that corre-
spond to the half of the digest space associated with a
positive result from the first-level query. By querying each
of those two Bloom filters, the system may generate a single
positive output indicating which quarter of the digest space
likely contains a match.

[0087] At step 614, which may be followed from step 612
in some embodiments, one or more password sets corre-
sponding to one or more digest sets that are determined to
likely include the hash value mput may be regenerated 1n
response to the second query of step 612. In some embodi-
ments, step 614 may share any one or more characteristics
in common with step 606.

[0088] Following step 614, the method may proceed to
step 608 as described above.

[0089] FIG. 7 depicts a password recovery system 700, 1n
accordance with some embodiments, that 1s configured to
perform one or more software processes that, when
executed, provide one or more aspects ol the disclosed
embodiments. In some embodiments, system 700 may be
configured to perform password recovery method steps
discussed above with reference to FIGS. 1 and 6. FIG. 7 1s
not mtended to be limiting to the disclosed embodiment as
the components used to implement the processes and fea-
tures disclosed herein may vary.

[0090] In some embodiments, system 700 may comprise
one or more of processors 702, communication device 704,
iput device 706, output device 708, storage 710, and/or
software 712 stored on storage 710 and executable by
processor 702. The components of the computer can be
connected 1n any suitable manner, such as via one or more
physical buses or wirelessly.

[0091] In some embodiments, system 700 may include
server-side computing components as well as client-side
computing components. The specific elements shown 1n
FIG. 7 may, 1n some embodiments, be included 1n a server-
side computer and/or may, in some embodiments, be
included 1n a client-side computer. In some embodiments,
system 700 may include server-side components and client-
side components that are in communication with one another
via one or more 1stances of communication device 704,
which may, for example, enable communication of server-
side components and client-side components over a network
connection.

[0092] In some embodiments, some or all components of
system 700 may be part of a distributed computing system
(e.g., a cloud computing system). In some embodiments of
the techniques disclosed herein, for example, storage 710
may be storage provisioned by a cloud computing system,
such that a user may send 1nstructions to the cloud comput-
ing system over one or more network connections, and the
cloud computing system may execute the instructions in
order to leverage the cloud computing components 1n accor-
dance with the instructions. In some embodiments, cloud
computing systems may be configured to be capable of
executing the same or similar program code in the same

US 2022/0004621 Al

programming languages as other systems (e.g., servers,
personal computers, laptops, etc.) as discussed herein.

[0093] Processor 702 may be any suitable type of com-
puter processor capable of communicating with the other
components of system 700 in order to execute computer-
readable instructions and to cause system 700 to carry out
actions 1n accordance with the instructions. For example,
processor 700 may access a computer program (e.g., soit-
ware 712) that may be stored on storage 710 and execute the
program to cause the system to perform various actions in
accordance with the program. In some embodiments, a
computer program or other mstructions executed by proces-
sor 702 may be stored on any transitory or non-transitory
computer-readable storage medium readable by processor

702

[0094] In some embodiments, processor 702 may include
one or more known processing devices, such as a micro-
processor from the Penttum™ family manufactured by
Inte]l™ or the Turion™ family manufactured by AMD™,
Processor 702 may include a single core or multiple core
processor system that provides the ability to perform parallel
processes simultaneously. For example, processing umit
711a may include a single core processor that 1s configured
with virtual processing technologies known to those skilled
in the art. In certain embodiments, processor 702 may use
logical processors to simultaneously execute and control
multiple processes. The one or more processors 1 processor
702 may implement virtual machine technologies, or other
similar known technologies, to provide the ability to
execute, control, run, manipulate, store, etc., multiple sofit-
ware processes, applications, programs, etc. In another
embodiment, processor 702 may include a multiple-core
processor arrangement (e.g., dual or quad core) that 1s
configured to provide parallel processing functionalities to
allow system 700 to execute multiple processes simultane-
ously. Other types of processor arrangements, such as those
used 1 Cray supercomputers, could be mmplemented to
provide for the capabilities disclosed herein.

[0095] Communication device 704 may include any suit-
able device capable of transmitting and receiving signals
over a network, such as a network interface chip or card.
System 700 may be connected to a network, which can be
any suitable type of iterconnected communication system.
The network can implement any suitable communications
protocol and can be secured by any suitable security proto-
col. The network can comprise network links of any suitable
arrangement that can implement the transmission and recep-
tion of network signals, such as wireless network connec-
tions, T1 or T3 lines, cable networks, DSL, or telephone
lines.

[0096] Input device 706 may be any suitable device that
provides input, such as a touchscreen or monitor, keyboard,
mouse, button or key or other actuatable input mechanism,
microphone, and/or voice-recognition device, gyroscope,
camera, or IR sensor. Output device 708 may be any suitable
device that provides output, such as a touchscreen, monitor,
printer, disk drive, light, speaker, or haptic output device.
Input device 706 and/or output device 708 may include
components configured to send and/or receive mmformation
between components of system 700.

[0097] Storage 710 can be any suitable device the provides

storage, such as an electrical, magnetic or optical memory
including a RAM, cache, hard drive, CD-ROM drive, tape
drive, or removable storage disk. In some embodiments,

Jan. 6, 2022

storage 710 may include instructions that, when executed by
one or more processors ol processor 702, perform one or
more processes consistent with the functionalities disclosed
herein. Storage 710 may also include any combination of
one or more databases controlled by memory controller
devices (e.g., server(s), etc.) or software, such as document
management systems, Microsoft SQL databases, SharePoint
databases, Oracle™ databases, Sybase™ databases, or other
relational databases. In some embodiments, storage 710 may
contain or be communicatively coupled to any one or more
of the databases discussed herein.

[0098] In some embodiments, instructions, application
programs, etc., may be stored 1n an external storage or
available from a memory over a public or private network to
which system 700 1s communicatively coupled. The one or
more processors in processor 702 may execute one or more
programs located remotely from system 700. For example,
system 700 may access one or more remote programs, that,
when executed, perform functions related to disclosed
embodiments. Storage 710 may include one or more
memory devices that store data and instructions used to
perform one or more features of the disclosed embodiments.

[0099] Software 712, which may be stored in storage 710
and executed by processor 702, may include, for example,
the programming that embodies the functionality of the
methods, techniques, and other aspects of the present dis-
closure (e.g., as embodied in the computers, servers, and
devices as described above). In some embodiments, soit-
ware 712 may include a combination of servers, such as
application servers and database servers.

[0100] Methods, systems, and articles of manufacture con-
sistent with disclosed embodiments are not limited to sepa-
rate programs or computers configured to perform dedicated
tasks. For example, system 700 may include storage that
may include one or more programs to perform one or more
functions for recovering password using method as
described above with reference to FIGS. 1 and 6.

[0101] Software 712 can also be stored and/or transported
within any computer-readable storage medium for use by or
in connection with an instruction execution system, appa-
ratus, or device, such as those described above, that can
fetch 1instructions associated with the software from the
istruction execution system, apparatus, or device and
execute the instructions. In the context of this disclosure, a
computer-readable storage medium can be any medium,
such as storage 710, that can contain or store programming,
for use by or in connection with an instruction execution
system, apparatus, or device.

[0102] Software 712 can also be propagated within any
transport medium for use by or in connection with an
instruction execution system, apparatus, or device, such as
those described above, that can fetch instructions associated
with the software from the instruction execution system,
apparatus, or device and execute the instructions. In the
context of this disclosure, a transport medium can be any
medium that can communicate, propagate, or transport pro-
gramming for use by or in connection with an instruction
execution system, apparatus, or device. The transport read-
able medium can include, but 1s not limited to, an electronic,
magnetic, optical, electromagnetic, or infrared wired or
wireless propagation medium.

[0103] System 700 can implement any one or more oper-
ating systems suitable for operating on the network. Soft-
ware 712 can be written 1n any one or more suitable

US 2022/0004621 Al

programming languages, such as C, C++, Java, or Python. In
various embodiments, application soitware embodying the
functionality of the present disclosure can be deployed 1n
different configurations, such as 1n a client/server arrange-
ment or through a Web browser as a Web-based application
or Web service, for example.

[0104] Although the description herein uses terms {irst,
second, etc. to describe various elements, these elements
should not be limited by the terms. These terms are only
used to distinguish one element from another.

[0105] The terminology used in the description of the
various described embodiments herein 1s for the purpose of
describing particular embodiments only and 1s not intended
to be limiting. As used 1n the description of the various
described embodiments and the appended claims, the sin-
gular forms “a,” “an,” and “the” are intended to include the
plural forms as well, unless the context clearly indicates
otherwise. It will also be understood that the term “and/or”
as used heremn refers to and encompasses any and all
possible combinations of one or more of the associated listed
items. It will be further understood that the terms “includes.”
“including,” “comprises,” and/or “comprising,” when used
in this specification, specily the presence of stated features,
integers, steps, operations, elements, and/or components but
do not preclude the presence or addition of one or more other
features, 1ntegers, steps, operations, elements, components,
and/or groups thereof.

[0106] The term “iI”” may be construed to mean “when” or
“upon” or “in response to determining” or “in response to
detecting,” depending on the context. Similarly, the phrase
“if 1t 1s determined” or “if [a stated condition or event] 1s
detected” may be construed to mean “upon determining” or
“in response to determining” or “upon detecting [the stated
condition or event]” or “in response to detecting [the stated
condition or event],” depending on the context.

1. A method for recovering a password from a hash value
input, the method comprising:

querying a probabilistic data structure with the hash value
input wherein the probabilistic data structure represents
a digest set, comprising hash values of respective
passwords 1n a password set;

receiving, in response to the querying of the probabilistic
data structure, result data from the probabilistic data
structure 1ndicating that the hash value input 1s likely
included 1n the digest set represented by the probabi-
listic data structure;

in response to receiving the result data indicating that the
hash value input 1s likely included in the digest set
represented by the probabilistic data structure, gener-
ating and storing the passwords of the password set,
and generating and storing the hash values of the digest
set;

comparing one or more of the generated hash values
constituting the digest set to the hash value mput to
determine a hash value from among the generated hash
values that matches the hash value 1nput;

determining a generated password, from among the gen-
crated passwords, associated with the determined hash
value that matches the has value mnput; and

generating and outputting an indication of the generated
password associated with the generated hash value that
matches the hash value mput.

2. The method of claim 1, wherein the password set
comprises a contiguous portion of a password space as

Jan. 6, 2022

defined by a plurality of rules governing password eligibility
and by a predefined ordering criteria.

3. The method of claim 2, wherein the password space
comprises all possible passwords in accordance with the
plurality of rules governing password eligibility.

4. The method of claam 2, wherein passwords in the
password space are arranged 1n an order 1n accordance with
the one or more predefined ordering critena.

5. The method of claim 1, wherein the digest set 1s
generated at least 1n part by calculating a respective hash
value for each password of the password set.

6. The method of claim 1, wherein the probabilistic data
structure 1s generated at least 1n part by selecting a pre-
defined false-positive probability for queries of the proba-
bilistic data structure.

7. The method of claim 6, wherein selecting the pre-
defined false-positive probability 1s based on a size of
storage resources on which the probabilistic data structure 1s
to be stored.

8. The method of claim 1, comprising:

segmenting a password space 1nto a plurality of password
sets 1ncluding the password set, wherein each of the
password sets comprises a respective plurality of pass-
words 1n the password space;

generating and storing a plurality of respective digest sets,

including the digest set for each password set of the
plurality of password sets, wherein each of the plurality
of digest sets comprises a respective set of hash values
of each of the respective passwords 1n the correspond-
ing associated password set; and

generating and storing a plurality of probabilistic data
structures, including the probabilistic data structure,
wherein each of the plurality of probabilistic data
structures represents a respective one of the plurality of
the digest sets.

9. The method of claim 1, wherein the probabilistic data

structure 1s configured to generate result data indicating
either:

that the query 1nput value 1s likely included 1n the digest
set represented by the probabilistic data structure, or

that the query mnput value 1s definitely not included 1n the

digest set represented by the probabilistic data struc-
ture.

10. The method of claim 1, wherein the probabilistic data
structure 1s a Bloom filter.

11. The method of claim 1, wherein querying the proba-
bilistic data structure 1s performed as part of querying a
plurality of probabilistic data structures of a multi-level
probabilistic data structure, wherein the multi-level proba-
bilistic data structure comprises a tree-structure of probabi-
listic data structures 1n which probabilistic data structures 1n
a first level are each associated with multiple probabilistic
data structures in a second level.

12. The method of claim 11, wherein:

cach of the probabilistic data structures 1n the second level
represents a single respective digest set; and

cach of the probabilistic data structures in the first level
represents all of the digest sets represented by a set of
multiple probabilistic data structures in the second
level.

13. The method of claim 11, wherein querying the plu-
rality of probabilistic data structures of the multi-level
probabilistic data structure comprises:

US 2022/0004621 Al

querying, with the hash value input, a first-level proba-
bilistic data structure of the first level of the multi-level
probabilistic data structure;

receiving, in response to the querying of the first-level
probabilistic data structure, result data indicating that
the hash value input 1s likely included in one of a set of
multiple digest sets represented by the first-level proba-
bilistic data structure;

in accordance with receiving the result data indicating that
the hash value input 1s likely included in one of a set of
multiple digest sets represented by the first-level proba-
bilistic data structure, querying a set of multiple sec-
ond-level probabilistic data structures, including the
probabilistic data structure, of the second level of the
multi-level probabilistic data structure.

14. The method of claim 11, wherein:

probabilistic data structures in the first level are config-
ured to have a first false-positive rate; and

probabilistic data structures 1n the second level are con-
figured to have a second false-positive rate different
from the first false-positive rate

15. A system for recovering a password from a hash value

input, the system comprising:
ONne Or More processors;
a memory storing one or more programs, the one or more
programs configured to be executed by the one or more
processors and including nstructions to:
query a probabilistic data structure with the hash value
input, wherein the probabilistic data structure repre-
sents a digest set comprising hash values of respec-
tive passwords 1n a password set;

receive, 1n response to the querying of the probabilistic
data structure, result data from the probabilistic data
structure 1indicating that the hash value mput 1s likely
included 1n the digest set represented by the proba-
bilistic data structure;

in response to receiving the result data indicating that
the hash value input 1s likely included 1n the digest
set represented by the probabilistic data structure,
generate and store the passwords of the password set,
and generating and storing the hash values of the
digest set;

compare one or more of the generated hash values to
the hash value input to determine a hash value from
among the generated hash values that matches the
hash value mnput;

determine a generated password, from among the gen-
crated passwords, associated with the determined
hash value that matches the has value iput; and

generating and outputting an indication of the gener-
ated password associated with the generated hash
value that matches the hash value input.

16. The system of claim 135, wherein the one or more

programs include instructions to:

segment a password space mnto a plurality of password
sets 1ncluding the password set, wherein each of the
password sets comprises a respective plurality of pass-
words 1n the password space;

generate and store a plurality of respective digest sets,
including the digest set for each password set of the
plurality of password sets, wherein each of the plurality
of digest sets comprises a respective set of hash values
of each of the respective passwords 1n the correspond-
ing associated password set; and

Jan. 6, 2022

generate and store a plurality of probabilistic data struc-
tures, 1including the probabilistic data structure,
wherein each of the plurality of probabilistic data
structures represents a respective one of the plurality of
the digest sets.

17. The system of claim 15, wherein querying the proba-
bilistic data structure 1s performed as part of querying a
plurality of probabilistic data structures of a multi-level
probabilistic data structure, wherein the multi-level proba-
bilistic data structure comprises a tree-structure of probabi-
listic data structures 1n which probabilistic data structures 1n
a first level are each associated with multiple probabilistic
data structures in a second level.

18. A non-transitory computer-readable storage medium
storing one or more programs for recovering a password
from a hash value mput, the one or more programs config-
ured to be executed by one or more processors and including
instructions to:

query a probabilistic data structure with the hash value

input, wherein the probabilistic data structure repre-
sents a digest set comprising hash values of respective
passwords 1n a password set;
receive, 1n response to the querying of the probabilistic
data structure, result data from the probabilistic data
structure indicating that the hash value input 1s likely
included 1n the digest set represented by the probabi-
listic data structure;:
in response to recerving the result data indicating that the
hash value mput 1s likely included in the digest set
represented by the probabilistic data structure, generate
and store the passwords of the password set, and
generating and storing the hash values of the digest set;

compare one or more of the generated hash values to the
hash value 1nput to determine a hash value from among
the generated hash values that matches the hash value
nput;
determine a generated password, from among the gener-
ated passwords, associated with the determined hash
value that matches the has value mnput; and

generating and outputting an indication of the generated
password associated with the generated hash value that
matches the hash value mput.

19. The non-transitory computer-readable storage
medium of claim 18, wherein the one or more programs
configured to be executed by one or more processors and
including instructions to:

segment a password space into a plurality of password

sets 1ncluding the password set, wherein each of the
password sets comprises a respective plurality of pass-
words 1n the password space;

generate and store a plurality of respective digest sets,

including the digest set for each password set of the
plurality of password sets, wherein each of the plurality
of digest sets comprises a respective set of hash values
of each of the respective passwords 1n the correspond-
ing associated password set; and

generate and store a plurality of probabilistic data struc-

tures, 1including the probabilistic data structure,
wherein each of the plurality of probabilistic data
structures represents a respective one of the plurality of
the digest sets.

20. The non-transitory computer-readable storage
medium of claim 18, wherein querying the probabilistic data
structure 1s performed as part of querying a plurality of

US 2022/0004621 Al Jan. 6, 2022
14

probabilistic data structures of a multi-level probabilistic
data structure, wherein the multi-level probabilistic data
structure comprises a tree-structure ol probabilistic data
structures 1 which probabilistic data structures 1n a first

level are each associated with multiple probabilistic data
structures 1n a second level.

¥ ¥ # ¥ o

	Front Page
	Drawings
	Specification
	Claims

