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(57) ABSTRACT

An 1mage volume formed by plural anatomical images each
having plural image slices of diflerent 1maging modalities 1s
segmented by a 2D convolutional neural network (CNN).
An mdividual anatomical image 1s preprocessed to form a
mixed-context image by icorporating selected image slices
from two adjacent anatomical 1images without any estimated
image slice. The 2D CNN utilizes side information on
multi-modal context and 3D spatial context to enhance
segmentation accuracy while avoiding segmentation perfor-
mance degradation due to artifacts 1n the estimated image
slice. The 2D CNN 1s realized by a BASKET-NET model
having plural levels from a highest level to a lowest level.
The number of channels 1n most multi-channel feature maps
of a level decreases monotonically from the highest level to
the lowest level, allowing the highest level to be rich
low-level feature details for assisting finer segmentation of
the individual anatomical 1mage.
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MEDICAL IMAGE SEGMENTATION BASED
ON MIXED CONTEXT CNN MODEL

LIST OF ABBREVIATIONS

[0001] 2D Two-dimensional
[0002] 3D Three-dimensional
[0003] BN Batch normalization

[0004] CNN Convolutional neural network

[0005] CT Computed tomography

[0006] DSC Dice similarity coeflicient

[0007] ELU Exponential linear unit

[0008] FCN Fully convolutional neural network
[0009] FLAIR Fluid-attenuated inversion recovery
[0010] IR Inversion recovery

[0011] MRI Magnetic resonance 1maging

[0012] PET Positron emission tomography

FIELD OF THE INVENTION

[0013] The present invention generally relates to auto-
matic 1image segmentation by using a CNN. In particular, the
present invention relates to using a 2D CNN to segment an
image volume obtained by imaging a body part of a subject
under different 1imaging modalities 1n a medical application.

BACKGROUND

[0014] Consider MRI as an example for illustrating the
technical problem under consideration for general medical
imaging.

[0015] MRI 1s widely used i medical applications for
non-invasively imaging a body part of a subject. One
important medical application of MRI 1s to image a human
brain for medical diagnosis such as detecting possible
tumors 1n the brain and characterizing Alzheimer’s disease.
Segmentation of MRI 1mages into different classes or
regions, such as regions of gray matter and of white matter
in the brain, 1s most often required 1n analyzing the obtained
MRI 1mages. In imaging the brain, an 1mage volume, which
1s a plurality of anatomical images obtained at different
locations 1n the brain, 1s usually generated. Furthermore, a
brain material may respond differently to different MRI
sequences 1n exciting the brain 1n MRI such that contrast
among different brain materials 1s enhanced by exciting the
brain with different MRI sequences. The brain may be
imaged under different MRI modalities, 1.e. with different
MRI sequences, to more-accurately distinguish different
regions of the brain. A resultant MRI image 1s a multi-
channel 1mage having plural image slices (which can be
called MRI slices). A need to segment multi-channel MRI
images 1s usually encountered 1n practice.

[0016] Deep learning-based segmentation methods,
mostly based on using CNNs, have been shown to signifi-
cantly outperform traditional automatic segmentation meth-
ods, such as histogram-based methods, as well as to avoid a
need for large domain-knowledge databases as commonly
required 1n the traditional methods. Since an 1mage volume
1s segmented, a 3D CNN has been shown to achieve a higher

accuracy 1n segmentation than a 2D CNN. See, e¢.g., Q. DOU
et al., “Automatic Detection of Cerebral Microbleeds from
MR Images via 3D Convolutional Neural Networks,” IEEE
Transactions on Medical Imaging, vol. 35, pp. 1182-1195,
May 2016, the disclosure of which 1s mcorporated by
reference herein 1n its entirely.
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[0017] However, MRI image volume segmentation by the
3D CNN encounters a technical problem. The segmentation
performance of the 3D CNN degrades considerably 11 suc-
cessive body-part locations that are 1imaged are spaced too
far away, e.g., 6 mm. A distance between adjacent body-part
locations 1s called a slice gap. Using a longer slice gap for
brain 1maging 1s sometimes unavoidable in climical practice
due to, e.g., the need to 1image a large number of patients 1n
a short time, or the need to avoid image blurring by
shortening the time of immobilizing the 1maged patient.
[0018] For demonstration, FIG. 10 plots performance
curves 1n terms of DSC versus different slice gaps 1in
segmenting an 1mage volume of a brain into gray matter
(curve 1010), white matter (curve 1020) and cerebrospinal
fluid (curve 1030) by using a 3D CNN. The 3D CNN was
realized as VoxResNet, and was trained and tested on IBSR
dataset. The slice gap of images in IBSR dataset 1s 1.5mm.
The 3D CNN was subsequently used to segment image
volumes in the MRBrainS dataset with a slice gap of 3mm.
It 1s apparent that the segmentation performance drop 1is
significant, especially in identifying cerebrospinal fluid 1n
the brain. There 1s also segmentation performance drop in
identifving gray matter and white matter. A third-party
database having a slice gap of 6mm was also tested. A more
significant performance drop 1s observed. In particular, the
DSC drops to 0.3, indicating that the segmentation perfor-
mance 1s poor.

[0019] It 1s desirable to develop a CNN-based segmenta-
tion technique that addresses the aforementioned problem of
segmentation performance degradation. The developed tech-
nique 1s useful for segmenting brain 1mage volumes, and 1s
potentially useful for segmenting MRI 1image volumes that
image other body parts, such as hearts, livers, etc.

[0020] The aforementioned problem 1s also encountered 1n
imaging with general imaging modalities not limited to MRI
modalities. These 1imaging modalities include, e.g., CT scan-
ning, PET scanning and 3D ultrasound imaging. Perfor-
mance of segmenting a general 1mage volume, formed by a
plurality of anatomical images each being a multi-channel
image having image slices imaged under different imaging
modalities, by a 3D CNN degrades considerably i1 the slice
gap 1s large. The developed technique 1s also useful for
segmenting the general 1mage volume.

[0021] In addition, 1t 1s desirable 11 the techmique can also
improve segmentation performance over conventional tech-
niques in cases that the slice gap 1s small.

SUMMARY OF THE INVENTION

[0022] Herein, 1t 1s provided with a computer-imple-
mented method for segmenting an image volume formed by
a plurality of anatomical images 1imaged at a sequence of
successive locations of a body part. An individual anatomi-
cal image 1s a multi-channel 1mage comprising a plurality of
imaging slices imaged at a same location under a plurality of
preselected MRI modalities.

[0023] A first aspect of the present disclosure 1s to provide
a technique of preprocessing the plurality of anatomical
images 1n the disclosed image-volume segmenting method.
[0024] The method comprises generating a plurality of
mixed-context i1mages from the plurality of anatomical
images. An individual mixed-context image generated for a
considered location 1n the location sequence other than two
terminal locations thereof 1s a multi-channel 1mage com-
prising the plurality of imaging slices of a corresponding
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anatomical 1mage imaged at the considered location, a first
set of one or more 1imaging slices 1imaged at a {irst location,
and a second set of one or more 1maging slices 1maged at a
second location. The first and second locations are 1mme-
diately before and immediately after the considered location
in the location sequence, respectively, avoiding the indi-
vidual mixed-context image from including any imaging
slice estimated for an intermediate location between the first
and considered locations or between the second and con-
sidered locations. The method further comprises processing
the plurality of mixed-context images individually with a 2D
CNN after the 2D CNN 1s trained. The mndividual mixed-
context 1mage 1s processed by the 2D CNN to segment the
corresponding anatomical 1mage, enabling the 2D CNN to
utilize side miformation on multi-modal context and 3D
spatial context of the image volume for enhancing accuracy
in segmenting the corresponding anatomical 1mage while
avoiding a source of segmentation performance degradation
due to artifacts 1n the estimated 1mage slice. In the method,
all the different images in the plurality of mixed-context
images are segmented accordingly, whereby the 1image vol-
ume 1s segmented.

[0025] Preferably, each of the first and second image-slice
sets has the same number of 1mage slices and 1s 1maged
under the same set of 1imaging modalities selected from the
plurality of preselected imaging modalities. In one option,
said same number of 1mage slices 1s a total number of 1mage
slices 1n the corresponding anatomical image such that each
of the first and second image-slice sets 1s 1maged under the
plurality of preselected imaging modalities. That 1s, the first
image-slice set 1s the plurality of image slices in a {first
adjacent anatomical image 1maged at the first location, and
the second 1mage-slice set 1s the plurality of image slices in
a second adjacent anatomical image imaged at the second
location. In another option, said same number of i1mage
slices 1s less than a total number of 1mage slices i the
corresponding anatomical image. That 1s, the first 1mage-
slice set 1s a first proper subset of the plurality of 1image
slices 1n the first adjacent anatomical image, and the second
image-slice set 1s a second proper subset of the plurality of
image slices in the second adjacent anatomical 1image. In yet
another option, said same number of 1mage slices 1s one.

[0026] The body part may be a head of a subject. The
corresponding anatomical 1mage 1s segmented 1nto a plural-
ity ol classes. The plurality of classes may consist of
background, gray matter, white matter and cerebrospinal

fluad.

[0027] The plurality of preselected imaging modalities

may consist of MRI modalities including T1 MRI modality,
IR MRI modality and FLAIR MRI modality.

[0028] Note that the processing of the plurality of mixed-
context 1mages mdividually with the 2D CNN after the 2D
CNN 1s tramned includes processing the individual mixed-
context 1mage with the 2D CNN for segmenting the corre-
sponding anatomical image. The processing of the indi-
vidual mixed-context image with the 2D CNN may
comprise: gridding the individual mixed-context image to
form plural multi-channel patches; and processing each of
the multi-channel patches as the recerved input 1mage by the
2D CNN so as to obtain the segmented corresponding
anatomical 1mage.

[0029] A second aspect of the present disclosure 1s to
provide a novel CNN model usable to realize the 2D CNN
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that 1s used in the disclosed 1mage-volume segmenting
method. The provided CNN model 1s named as BASKET-

NET.

[0030] The 2D CNN realized by the BASKET-NET model
1s used for generating an output segmentation map from a
received input 1mage via generating plural feature maps in
between. Each of the received mput image, the output
segmentation map and the feature maps 1s a multi-channel
map having plural channels. The 2D CNN comprises a
plurality of levels sequentially arranged from a highest level
to a lowest level. The 2D CNN 1is configured such that the
following four conditions are satisfied. First, an individual
level generates an output map from an input map, where the
input map of the individual level i1s transformed into the
output map thereof through generating a series of feature
maps 1n between. Second, the input map of the highest level
1s the received iput image and the output map of the highest
level 1s the output segmentation map. Third, for a next lower
level immediately lower than the individual level, the input
map of the next lower level 1s obtained by downsampling a
first preselected feature map of the individual level. Fourth,
the output map of the next lower level 1s upsampled and then
concatenated with a second preselected feature map of the
individual level to generate a next feature map next to the
second preselected feature map in the individual level.
Advantageously, a first number of channels 1n the second
preselected feature map of the individual level 1s greater
than or equal to a second number of channels in the second
preselected feature map of the next lower level such that
more feature details are containable in the individual level
than 1n the next lower level, thereby allowing the second
preselected feature map of the highest level to be rich 1n
low-level feature details for assisting finer segmentation of
the received mput 1mage in generating the output segmen-
tation map.

[0031] Preferably, the 2D CNN 1s further configured such
that 1n the individual level, an individual feature map other
than the second preselected feature map 1s processed with
one or more hidden layers to generate a subsequent feature
map. The one or more hidden layers include a convolutional
layer. In certain embodiments, the one or more hidden layers
consist of the convolutional layer, an ELU layer, a dropout
layer and a BN layer.

[0032] It 1s also preferable that the 2D CNN 1s further
configured such that in the individual level, one or more
hidden layers are used to generate the second preselected
feature map from the first preselected feature map.

[0033] The 2D CNN 1s usable to the disclosed 1image-
volume segmenting method with or without using the above-
mentioned technique of preprocessing the plurality of ana-
tomical 1mages.

[0034] In case the above-mentioned preprocessing tech-
nique 1s used, the received mput image 1s a part of the
individual mixed-context image, and the output segmenta-
tion map 1s a part of the segmented corresponding anatomi-
cal image corresponding to the part of the mixed-context
image.

[0035] In case the above-mentioned preprocessing tech-
nique 1s not used, an individual anatomical 1mage 1s seg-
mented with the 2D CNN to form a segmented individual
anatomical 1image after the 2D CNN 1s trained. The seg-
menting of the individual anatomical image with the 2D
CNN 1s repeated for all different anatomical images 1n the
plurality of anatomical images, whereby the image volume
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1s segmented. For the 2D CNN, the received input image 1s
a part of the individual anatomical 1mage, and the output
segmentation map 1s a part of the segmented individual
anatomical 1mage corresponding to the part of the individual
anatomical 1mage.

[0036] In case the above-mentioned preprocessing tech-
nique 1s not used, the segmenting of the individual anatomi-
cal image with the 2D CNN may further comprise: gridding
the individual anatomical image to form plural multi-chan-
nel patches; and processing each of the multi-channel
patches as the recerved input image by the 2D CNN so as to
obtain the segmented individual anatomical image.

[0037] A third aspect of the present disclosure i1s to pro-
vide a technique of gridding the mndividual mixed-context
image or an individual anatomical image for further improv-
ing the performance of segmenting the image volume.

[0038] In case the above-mentioned preprocessing tech-
nique 1s used, the processing of the plurality of mixed-
context 1mages mdividually with the 2D CNN after the 2D
CNN 1s tramned includes processing the individual mixed-
context 1mage with the 2D CNN for segmenting the corre-
sponding anatomical 1mage. The processing of the indi-
vidual mixed-context image with the 2D CNN comprises:
selecting plural grids each used for gridding the individual
mixed-context image, wherein the grids are geometrically
oflset from each other; for a candidate grid selected from the
orids, gridding the individual mixed-context image accord-
ing to the candidate grid to form plural multi-channel
patches; processing each of the multi-channel patches as the
received input 1mage by the 2D CNN so as to obtain a
candidate segmented 1image for the corresponding anatomi-
cal image; repeating the gridding of the individual mixed-
context 1image and the processing of each of the multi-
channel patches for all the grids, whereby a plurality of
candidate segmented 1mages 1s obtained; and forming the
segmented corresponding anatomical 1mage from the plu-
rality of candidate segmented images according to pixel-
wise majority voting.

[0039] In case the above-mentioned preprocessing tech-
nique 1s not used, the segmenting of the individual anatomi-
cal image with the 2D CNN comprises: selecting plural grids
cach used for gridding the individual anatomical image,
wherein the grids are geometrically offset from each other;
for a candidate grid selected from the grids, gridding the
individual anatomical image according to the candidate grid
to form plural multi-channel patches; processing each of the
multi-channel patches as the received mput image by the 2D
CNN so as to obtain a candidate segmented 1mage for the
individual anatomical image; repeating the gridding of the
individual anatomical image and the processing of each of
the multi-channel patches for all the grids, whereby a
plurality of candidate segmented 1mages 1s obtained; and
forming the segmented individual anatomical image from
the plurality of candidate segmented 1mages according to
pixel-wise majority voting.

[0040] Herein, 1t 1s additionally provided with a computer-
implemented method for retramning a 2D CNN used 1n a
computer-executed inference process. The 2D CNN has a set
of CNN model weights. The inference process 1s used for
segmenting an image volume formed by a plurality of
anatomical 1mages 1maged at a sequence ol successive
locations of a body part. An individual anatomical image 1s
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a multi-channel 1image comprising a plurality of image slices
imaged at a same location under a plurality of preselected
imaging modalities.

[0041] In the method, the inference process 1s executed
one or more times for segmenting one or more respective
image volumes to create one or more first pluralities of
labeled anatomical images. (Equivalently, each labeled ana-
tomical 1mage may be formed as an original anatomical
image with labels for locating different classes 1dentified on
the original anatomical image.) The inference process 1s
arranged according to any of the embodiments of the dis-
closed 1mage-volume segmenting method. An individual
labeled anatomical image 1s created from the corresponding
anatomical 1image after segmentation for 1dentitying difler-
ent classes or regions in the corresponding anatomical
image.

[0042] Inan individual first plurality of labeled anatomical
images, one or more labeled anatomical images are replaced
with the same number of one or more relabeled anatomical
images having corrected segmentation over corresponding
one or more labeled anatomical 1mages, so that the indi-
vidual first plurality of labeled anatomical i1mages 1s
replaced by a second plurality of labeled anatomical images.
Thereby, one or more respective second pluralities of labeled
anatomical 1images are generated from the one or more {first
pluralities of labeled anatomical images.

[0043] The 2D CNN 1s further trammed with the one or
more respective second pluralities of labeled anatomical
images to update the set of CNN model weights from an
immediately previous set of CNN model weights.

[0044] The updated set of CNN model 1s validated by

repeating the inference process for segmenting a plurality of
test image volumes of a validation dataset under a condition
that the 2D CNN employs the updated set of CNN model
weights. A validation loss that 1s obtained by using the
updated set of CNN model weights in the 2D CNN 1s
computed. The validation loss indicates a degree of overall
segmentation loss 1 segmenting the plurality of test image
volumes of the validation dataset.

[0045] Responsive to finding that the validation loss
obtained by the updated set of CNN model 1s less than a
corresponding validation loss obtained by the immediately
previous set of CNN weights, the updated set of CNN model
weights 1s adopted to be used for the inference process.
Otherwise the 2D CNN 1s restored with the immediately
previous set oI CNN model weights.

[0046] Other aspects of the present disclosure are dis-
closed as 1llustrated by the embodiments hereinaiter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0047] FIG. 1A depicts an image volume obtained by
using MRI to image a human head.

[0048] FIG. 1B depicts an exemplary anatomical image
that 1s segmented into different regions or classes.

[0049] FIG. 2 depicts a flow diagram for illustrating
different phases of using a 2D CNN 1n segmenting MRI
image volumes 1n accordance with certain embodiments of
the present disclosure.

[0050] FIG. 3 depicts a flowchart showing exemplary
steps ol an 1image-volume segmenting method 1n accordance
with certain embodiments of the present disclosure.

[0051] FIG. 4 depicts one example of a mixed-context
image for a considered location by including MRI slices of
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an anatomical image 1maged at the considered location, and
MRI slices of two adjacent anatomical images.

[0052] FIG. 5 depicts further examples of the mixed-
context 1mage.
[0053] FIG. 6 depicts an exemplary BASKET-NET model

for realizing the 2D CNN.

[0054] FIG. 7 depicts a tlowchart for exemplarily 1llus-
trating a method for obtaining an output segmented 1mage
from an input 1image, where a plurality of grids 1s individu-
ally used to grid the input 1image.

[0055] FIG. 8 depicts an example of three grids each used
for gridding the mput 1image to form a plurality of patches.
[0056] FIG. 9 depicts a flowchart showing exemplary
steps used 1n retramning the 2D CNN 1n accordance with
certain embodiments of the present disclosure.

[0057] FIG. 10 plots segmentation performance curves 1n
terms ol DSC versus diflerent slice gaps 1n segmenting an
image volume of a brain 1nto gray matter, white matter and
cerebrospinal fluid by using a 3D CNN, indicating that a
significant performance drop 1s experienced when the slice
gap 1n increased.

DETAILED DESCRIPTION

[0058] The following definitions are used herein in the
specification and appended claims. “A subject” means an
amimal or a human being unless otherwise specified. “A
CNN” means a neural network having plural hidden layers
at least some of which are convolutional layers, where each
convolutional layer 1s used to perform a convolution or dot
product with an mmput provided to the layer. “A 2D CNN”
means a CNN whose individual convolutional layer 1s
adapted to perform a 2D convolution with a 2D mput. “A 3D
CNN” means a CNN whose individual convolutional layer
1s adapted to perform a 3D convolution with a 3D nput. “A
MRI modality” means a scheme of exciting a body part of
a subject 1n carryving out MRI to image the body part. The
scheme 1s realized by using a MRI sequence, which 1s a
particular setting of RF pulses and gradients for resulting in
an 1mage with a particular appearance, e.g., by enhancing

the contrast of the image. Details of MRI sequences may be
found, e.g., 1n G. WIDMANN, B. HENNINGER, C.

KREMSER and W. JASCHKE, “MRI Sequences 1n Head &
Neck Radlology—State of the Art,” Fortschr Rontgenstr
(2017), vol. 189, pp. 413-422, and 1n A. PATEL, C. SIL-
VERBERG, D. BECKER-WEIDMAN, C. ROTH and S.
DESHMUKH, “Understanding, Body MRI Sequences and
Their Ability to Characterize Tissues,’
Medical Science, vol. 4, 1ssue 1, pp. 1-9, 2016, the disclo-
sures of both of which are incorporated by reference herein.
“An 1maging modality” means one form of imaging that
ecnables 3D scanming of a body part. For example, an
imaging modality may be CT scanning, PET scanning, 3D
ultrasound scanning, MRI scanning under one MRI modal-
ity, etc.

[0059] The present disclosure 1s concerned with embodi-
ments for segmenting 1mage volumes. Fach image volume
has anatomical multi-channel 1images obtained by 1imaging a
body part of a subject. Each multi-channel image includes
plural image slices imaged under diflerent imaging modali-
ties. For example, when MRI 1s used, the image slices of
cach multi-channel 1image are MRI slices imaged under
different MRI modalities. In another example, when CT and
PET are 31multaneously used to scan the body part as 1n
PET-CT scanning, each multi-channel 1mage includes one
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image slice obtained from CT scanning, and another image
slice obtained from PET scanning. Apart from PET-CT
scanning, PE'T-MRI 1s another hybrid imaging technology
that 1s 1n clinical use. In yet another example, 1mage slices
of each multi-channel 1mage include one i1mage slice
obtained from PET scanning, and plural MRI slices imaged
under different MRI modalities. Contrast CT 1s commonly
used 1n clinical practice. C'T images are taken both with and
without radiocontrast. In a further example, image slices of
cach multi-channel 1mage include a precontrast CT 1mage
slice and a postcontrast C'T 1mage slice. In targeted contrast-
enhanced ultrasound 1maging, microbubble contrast agents
injected to a selected organ in the body part are used to
enhance contrast in i1maging the selected organ. In an
additional example, 1mage slices of each multi-channel
image include 1mage slices obtained from ultrasound 1mag-
ing with and without microbubble contrast agents. Despite
many examples are given, these examples are non-limiting
and are not exhaustive.

[0060] Exemplarily, the embodiments for segmenting
image volumes are explained, described and illustrated
hereinafter by specifically considering MRI image volumes,
in which each anatomical multi-channel 1mage includes
MRI slices 1imaged under different MRI modalities. Those
skilled 1n the art will appreciate that the embodiments for
segmenting general 1image volumes can be derived 1n a
straightforward manner by generalizing the teaching dis-
closed hereinafter for segmenting MRI 1mage volumes.

[0061] The following four features are employed herein 1n
the development of the embodiments.

[0062] Usinga 2D CNN to segment an individual image
volume instead of using a 3D CNN {for reducing
computation requirements. Prior to being processed by
the 2D CNN, each anatomical multi-channel 1mage 1s
preprocessed with a preprocessing algorithm to incor-
porate side information provided by the multi-modal
context and the 3D spatial context inherent in the
individual 1mage volume, vielding a mixed-context
image. Although the 2D CNN 1is used to segment the
mixed-context 1image, the side immformation enhances
the segmentation performance without using the 3D
CNN. Furthermore, the mixed-context image does not
include any MRI slice that 1s estimated. Artifacts 1n the
estimated MRI slice are a source ol segmentation
performance degradation. The mixed-context image
includes MRI slices originally obtained from the indi-
vidual 1mage volume only.

[0063] A novel CNN model, named as BASKET-NET,
1s used to realize the 2D CNN. The CNN model 1is
advantageously configured to retain more low-level
features than high-level ones for assisting finer seg-
mentation of a received 1nput 1mage 1n generating an
output segmentation map.

[0064] Multiple grids are separately used to grid each
anatomical 1mage to yield different pluralities of 2D
patches. Each plurality of 2D patches 1s processed by
the 2D CNN to vield one segmented image. From
resultant plural segmented 1images, pixel-wise majority
voting 1s used to generate a final segmented 1image.

[0065] In case some segmented 1images 1in a segmented
image volume are found to be incorrectly segmented,
these segmented 1mages are manually corrected. The
corrected 1mages replace the onginal segmented
images (viz., labeled 1mages) in the segmented image
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volume to form a relabeled 1mage volume. The rela-
beled 1mage volume 1s used to retrain the 2D CNN by
updating the CNN model weights from existing ones.
This retraining method 1s a semi-automatic one. It
improves segmentation performance i1n segmenting
subsequent 1mage volumes while avoiding a traditional
approach of manually rebuilding a training dataset and
determining a completely new set of CNN model
weights based on the rebuilt training dataset.

[0066] Herein, the present disclosure 1s explained by con-
sidering an exemplary application in neuroimaging. Despite
this, the present disclosure 1s not limited only to applications
in 1maging brains; the present disclosure 1s usable for
segmenting anatomical images obtained from 1imaging other
body parts of a subject, such as hearts, livers, chests,
abdomens, muscles, etc.

[0067] FIG. 1A depicts an image volume 100 obtained by
imaging a human head 10. The image volume 100 1s formed
by a plurality of anatomical images imaged by the MRI
technique. Without ambiguity, the plurality of anatomical
images 1s also referenced by numeral 100. The plurality of
anatomical images 100 1s individually 1imaged at a sequence
107 of successive locations 108a-g of the human head 10.
That 1s, the head 10 1s imaged successively at the locations
108a-g to form the plurality of anatomical images 100.
Although seven locations 108a-g are depicted 1n FIG. 1A for
illustration purposes, 1t 1s not intended that any image
volume considered 1n the present disclosure 1s limited only
to this number of locations or this number of anatomical
images. The body-part locations 108a-g that are imaged are
distributed, most often evenly, along a reference direction,
viZ., a direction along the z-axis 13 (or the z-direction 13 in
short) as shown 1 FIG. 1A. A distance between two suc-
cessive body-part locations (e.g., the locations 108e¢ and
108/) 1s a slice gap 105.
[0068] An anatomical image 110 1s used hereinafter for
illustrating an exemplary anatomical image of the image
volume 100. The anatomical image 110 shows a cross
section of the human head 10 imaged at a considered
location 108c on the z-axis 13. The location sequence 107 1s
an ordered sequence and has successive locations sequen-
tially arranged along the z-direction 13, or along a direction
opposite thereto. Without loss of generality, consider the
location sequence 107 given by locations 108a, 1085, 108c,
, 108g. The locations 108a, 108g are two terminal
locations located at two ends of the location sequence 107.
A first location 1085 1s immediately before the considered
location 108¢ 1n the location sequence 107. Similarly, a
second location 1084 1s immediately after the considered
location 108¢ 1 the location sequence 107. The anatomical
image 110 has two adjacent anatomical images 131, 132
imaged at the first and second locations 1085, 1084, respec-
tively.
[0069] FIG. 1B depicts the anatomical image 110 being
segmented 1nto different classes or regions 121-124 as
shown 1n a segmented anatomical image 120. The anatomi-
cal image 110 1s a multi-channel 1mage including a plurality
of channels for storing a plurality of MRI slices 111-113
imaged at the same location (1.e. the considered location
108¢) under a plurality of preselected MRI modalities. In
one practical choice as shown 1n FIG. 1B, the plurality of
preselected MRI modalities consists of T1 MRI modality, IR
MRI modality and FLAIR MRI modality. The MRI slices
111, 112, 113 show MRI images obtained under the T1 MRI
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modality, the IR MRI modality and the FLAIR MRI modal-
ity, respectively. Using these MRI modalities 1n obtaining
the anatomical image 110 enhances contrast in segmenting
the brain into gray matter, white matter and cerebrospinal
fluid. The preselected MRI modalities are determined by the
MRI sequences used in 1imaging. In general, selection of
appropriate MRI sequences depends on a body part to be
imaged and types of body materials to be identified. Sum-
maries of MRI sequences and body materials particularly
responsive to respective MRI sequences are available in the

art, e.g., 1 the disclosures of G. WIDMANN et al. and of
PATEL et al. as mentioned above.

[0070] Before segmenting the anatomical image 110,
images of the skull in the MRI slices 111-113 are first
removed as the skull 1s uninformative 1in segmenting the
anatomical 1mage 110. Techmiques for skull stripping are
known 1n the art, e.g., in P. KALAVATHI and V. B. S.
PRASATH, “Methods on Skull Stripping of MRI Head Scan
Images—a Review”, Journal of Dlgltal Imaging (2016)
29:365-3779, the dlsclosure of which 1s incorporated by
reference herein. The MRI slices 111-113 after skull removal
are collectively used for segmenting the anatomical image
110, resulting 1n the segmented anatomical image 120. Three
regions 121-123 on the brain locate the gray matter, the
white matter and the cerebrospinal fluid. Outside the brain 1s

the background 124.

[0071] In the present disclosure, a 2D CNN 1s used for
image volume segmentation. The 2D CNN 1is characterized
by a network model structure and a set of CNN model
weights applied to the network model structure. FIG. 2
depicts a flow diagram of operating the 2D CNN for
segmenting MRI 1image volumes in accordance with certain
embodiments of the present disclosure. A training phase 210
1s first 1mtiated. In the tramning phase 210, the 2D CNN 1s
trained with a plurality of labeled image volumes that are
already segmented. The set of CNN model weights 1is
determined as a result of training. The determined set of
CNN model weights 1s used 1n the 2D CNN for carrying out
an inference phase 220. In the inference phase 220, difierent
image volumes are segmented by the trained 2D CNN. In
case some segmented 1mage volumes that are obtained 1n the
inference phase 220 are found incorrect 1n segmentation, a
retraining phase 230 1s imtiated and the 2D CNN 1s retrained
to obtain a new set of CNN model weights. The retraimned 2D
CNN 1s used thereafter for image volume segmentation.

[0072] Daisclosed herein 1s a computer-implemented
method for segmenting an 1mage volume formed by a
plurality of anatomical images. The plurality of anatomical
images 1s 1maged at a sequence ol successive locations of a
body part. An individual anatomical image 1s a multi-
channel 1image comprising a plurality of image slices imaged
at a same location under a plurality of preselected 1imaging
modalities. Also disclosed herein 1s a computer-imple-
mented method for retramning the 2D CNN.

[0073] The specific case of segmenting MRI 1image vol-
umes 1s used to exemplarily illustrate the two disclosed
methods. As such, the plurality of image slices becomes a
plurality of MRI slices, and the plurality of preselected
imaging modalities becomes a plurality of preselected MRI
modalities. Those skilled in the art will be able to denive
details of the two disclosed methods for processing general
image volumes by directly extending the details addressed
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for MRI slices imaged under different MRI modalities to
applying for general image slices imaged under different
imaging modalities.

[0074] A first aspect of the present disclosure 1s to provide
a technique of preprocessing the plurality of anatomical
images 1n the disclosed 1image-volume segmenting method.

[0075] FIG. 3 depicts a flowchart showing exemplary
steps of the 1image-volume segmenting method that employs
the disclosed preprocessing technique in accordance with
certain embodiments of the present disclosure. Particularly,
the flowchart of FIG. 3 depicts one realization of the
inference phase 220. Those skilled in the art will appreciate
that details of the training phase 210 can be derived accord-
ing to the teaching disclosed herein on the inference phase
220 and the body of knowledge 1n the art related to esti-
mating a set of CNN model weights from training data (e.g.,
using a backpropagation training algorithm for such estima-
tion).

[0076] In a step 310, the plurality of anatomical 1images 1s
processed by a preprocessing algorithm to generate a plu-
rality of mixed-context images for incorporating side infor-
mation on multi-modal context and 3D spatial context of the
image volume.

[0077] Belore details of the step 310 are described, 1t 1s
instructive to mention that the segmentation performance
degradation of using a 3D CNN to segment an 1mage volume
having a large slice gap 1s potentially caused by artifacts
generated 1n estimating MRI slices for locations not 1n the
location sequence 107. In segmenting an image volume
having a large slice gap, a MRI slice estimated for an
intermediate location between two adjacent body-part loca-
tions 1s usually used as an 1nput to the 3D CNN because the
slice gap of the image volume does not match a correspond-
ing slice gap of a traiming 1mage volume used 1n training the
3D CNN. The estimated MRI slice 1s a computed one
obtained by interpolating original MRI slices imaged at
body-part locations 1n the location sequence 107. Artifacts
are usually incorporated into the estimated MRI slice, form-
ing a source of segmentation performance degradation. It 1s
therefore desirable and advantageous not to include the
estimated MRI slice 1n the generation of the plurality of the
mixed-context 1images.

[0078] In the preprocessing algorithm for generating the
plurality of mixed-context images from the plurality of
anatomical 1mages, an individual mixed-context image gen-
erated for a considered location in the location sequence
other than two terminal locations thereof 1s a multi-channel
image comprising the plurality of MRI slices of a corre-
sponding anatomical image imaged at the considered loca-
tion, a first set of one or more MRI slices imaged at a first
location, and a second set of one or more MRI slices imaged
at a second location. The first location 1s immediately before
the considered location 1n the location sequence. The second
location 1s immediately after the considered location 1n the
location sequence. Theretfore, the individual mixed-context
image contains the corresponding anatomical 1mage to be
segmented. Multi-modal context 1s embedded 1n the indi-
vidual mixed-context image through the inclusion of the
corresponding anatomical image 1n 1ts entirety. Furthermore,
one or more of the MRI slices in each of the two adjacent
anatomical 1mages are selected and introduced into the
individual mixed-context image. The two adjacent anatomi-
cal 1images actually reflect variations of real structures
among different objects in the corresponding anatomical
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image. It follows that the 3D spatial context of the image
volume 1s 1ncluded 1n the individual mixed-context image.
The side information on multi-modal context and 3D spatial
context 1s advantageously utilizable by the 2D CNN {for
enhancing accuracy in segmenting the corresponding ana-
tomical 1mage without a need to use a more computation-
intensive 3D CNN. Since original MRI slices 1n the adjacent
anatomical i1mages are used for forming the individual
mixed-context image, advantageously 1t avoids the indi-
vidual mixed-context image from including any MRI slice
estimated for an intermediate location between the first
location and the considered location, or between the second
location and the considered location.

[0079] To illustrate the generation of individual mixed-
context image, FIG. 4 depicts an example of generating a
mixed-context image 410 for the considered location 108¢ 1n
the location sequence 107. The considered location 108¢ 1s
not one ol the two terminal locations 108a, 108g. The
mixed-context image contains the anatomical 1mage 110,
which 1s imaged at the considered location 108c¢. The

anatomical 1mage 110 includes the first, second and third
MRI slices 111, 112, 113 imaged under the T1 MRI modal-

ity, IR MRI modahty and FLAIR MRI modality, respec-
tively. In the example of FIG. 4, a first adjacent anatomical
image 131, imaged at the first location 10856 (namely, the
location immediately before the considered location 180¢ 1n
the location sequence 107), and a second adjacent anatomi-
cal image 132, imaged at the second location 1084 (namely,
the location immediately after the considered location 180c¢
in the location sequence 107), are incorporated into the
mixed-context image 410. (If the anatomical image 110 1s
treated as the kth anatomical image 1in the 1mage volume
100, then the first and second adjacent anatomical 1mages
131, 132 are the (k-1)th and (k+1) anatomical images,
respectively.) Equivalently, all the MRI slices 421-423 of the
first adjacent anatomical image 131 and all the MRI slices
431-433 of the second adjacent anatomical image 132 are
incorporated. That 1s, the first MRI-slice set consists of the
MRI slices 421-423 1n the first adjacent anatomical 1image
131, and the second MRI-slice set consists of the MRI slices
431-433 1n the second adjacent anatomical image 132. The
number of MRI slices 1n each of the first and second
MRI-slice sets 1s a total number of MRI slices i1n the
anatomical image 110 such that each of the first and second
MRI-slice sets 1s imaged under the plurality of preselected

MRI modalities.

[0080] Including all the MRI slices 421-423, 431-433
from the two adjacent anatomical images 131, 132 into the
mixed-context 1mage 410 potentially maximizes the seg-
mentation performance. Despite this, the amount of com-
putation involved 1n running the 2D CNN may be reduced
by including only a portion of the MRI slices 421-423,
431-433 with only an insignificant loss 1n segmentation
performance. Preferably, the first and second MRI-slice sets
consist of only a first proper subset of the MRI slices
421-423 and a second proper subset of the MRI slices
431-433, respectively, such that the first and second MRI-
slice sets are part of the first adjacent anatomical image 131
and part of the second adjacent anatomical image 132,
respectively. More preferably, each of the first and second
MRI-slice sets has a same number of MRI slices and 1s
imaged under a same set of MRI modalities selected from
the plurality of preselected MRI modalities. In this configu-
ration, the presence of three MRI slices obtained under the
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same MRI modality and imaged at three successive loca-
tions 10856, 108¢, 1084 1n the location sequence 107 enables
more accurate segmentation of the anatomical image 110
since the anatomical image 110 1s located in the middle of
the three successive locations. In one i1mplementation
option, each of the first and second MRI-slice sets has only
one MRI slice imaged under the same MRI modality.

[0081] In practice, a mixed-context image that includes
MRI slices 1imaged at the three successive locations 1085,
108¢c, 1084 under the T1 MRI modality is preferable because
the T1 MRI modality provides high soft tissue discrimina-
tion. Incorporating MRI slices imaged under the T1 MRI
modality at the first and second locations 1085, 108d
enhances the 3D spatial context of the mixed-context image.
FIG. § depicts some examples of such preferable mixed-
context 1mages having different choices of the first and
second MRI-slices sets. In addition to the anatomical image
110, a first mixed-context image 510a further includes two
MRI slices 1maged at the first and second locations 1085,
1084 under the T1 MRI modality. A second mixed-context
image 5105 consists of the three MRI slices 111-113 of the
anatomical 1image 110, a first pair of MRI slices of the first
adjacent anatomical image 131 under the T1 and IR MRI
modalities, and a second pair of MRI slices of the second
adjacent anatomical image 132 also under the T1 and IR
MRI modalities. A third mixed-context image 510c¢ consists
of the three MRI slices 111-113 of the anatomical image 110,
a first pair of MRI slices of the first adjacent anatomlcal

image 131 under the T1 and FLAIR MRI modalities, and a
second pair of MRI slices of the second adjacent anatomical

image 132 also under the T1 and FLAIR MRI modalities.

[0082] For each of anatomical images 133, 134 respec-
tively imaged at the two terminal locations 108a, 108¢g of the
image volume 100, one adjacent anatomical 1image 1s miss-
ing 1 forming a corresponding mixed-context image. With-
out loss of generality, consider generating the corresponding
mixed-context image for the anatomical mmage 133. The
absence of one adjacent anatomical 1image may be remedied
by assuming a blank image to be this missing adjacent
anatomical 1mage in generating the corresponding mixed-
context i1mage. This remedy 1s practically acceptable
because at the location 108a, usually no soft tissue 1s present
and the anatomical image 133 1s clinically not of 1mpor-
tance. It 1s also possible that the anatomical image 133 may
be assumed to be the missing adjacent anatomical image.
This remedy is also practically acceptable since the 2D CNN
1s usually robust against image noises caused by mismatch.

[0083] As a remark, US2018/02402335A1 discloses using
a multi-slice FCN to process a target 2D slice and one or
more nearest neighbor 2D slices for segmenting the target
2D slice. However, the target 2D slice and the one or more
nearest neighbor 2D slices are not multi-channel 1mages.
Differently, the preprocessing algorithm disclosed herein for
the step 310 creates the individual mixed-context image
from the plurality of anatomical images 100 by re-arranging
or re-organizing MRI slices 1n the anatomical image 101 and
the two adjacent anatomical images 131, 132.

[0084] Refer to FIG. 3. After the plurality of mixed-
context images 1s generated 1n the step 310, the plurality of
mixed-context images 1s individually processed with the 2D
CNN, which has been trained, to generate a segmented
image volume 1n a step 3235. In the step 325, the individual
mixed-context 1mage 1s processed by the 2D CNN to seg-
ment the corresponding anatomical image, enabling the 2D
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CNN to utilize the side information to enhance segmentation
accuracy. Furthermore, since the individual mixed-context
image 1s iree from any estimated MRI slice, it avoids a
source of segmentation performance degradation due to
artifacts 1n the estimated MRC slice. The segmentation of
the individual mixed-context image with the 2D CNN 1s
repeated for all different mixed-context images 1n the plu-
rality of mixed-context images until all the mixed-context
images are segmented (step 345).

[0085] Advantageously and preferably, the 2D CNN 1s
BASKET-NET as disclosed herein. Nonetheless, other types
of 2D CNNs may also be adapted to process the individual
mixed-context image, e.g., U-NET and 1ts variants as dis-
closed 1 CNI09087318A, CNI108537793A and
WO02017091833A1, and in O. RONNEBERGER, P. FIS-
CHER and T. BROX, (2013) “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in: Navab N.,
Hornegger 1., Wells W., Frangi A. (eds) Medical Image
Computing and Computer-Assisted Intervention—MICCAI
2015, Lecture Notes in Computer Science, vol. 9331,
Springer, the disclosure of which 1s incorporated by refer-
ence herein.

[0086] In performing the step 325, due to CNN 1mple-
mentation consideration, usually the individual mixed-con-
text 1image 1s first gridded to form plural multi-channel
patches (step 320) and the multi-channel patches are one-
by-one processed by the 2D CNN (step 330) until all the
patches are processed (step 340). In one embodiment, an
individual patch has a size of 80x80 pixels. Although
transforming the individual mixed-context image into the
patches by gridding 1s usually used before CNN processing,
the present disclosure 1s not restricted that gridding 1s
required to be used. It 1s possible that the 2D CNN 1s
implemented to directly process the individual mixed-con-
text image without a need for gridding.

[0087] Adfter the segmented 1mage volume 1s obtained 1n
the step 325, optionally the segmented image volume 1s
post-processed 1 a step 350. Post-processing includes
labeled image volume reconstruction, boundary cutting, etc.
After processing the plurality of multi-channel patches with
the 2D CNN, all the processed patches are assembled to
form a segmented image, which may be larger than the
original anatomical image. Boundary cutting i1s used to
reduce the size of the segmented 1image to that of the original
anatomical 1mage. In labeled image volume reconstruction,
cach pixel 1in the segmented image 1s labeled with a number,
e.g., 0, 1, 2, to imndicate the pixel’s class or region that the
pixel 1s classified to.

[0088] One important feature of the step 310 1s that all the
MRI slices in the individual mixed-context image are
obtained directly from the 1 Image volume 100 without a need
to do any interpolation as 1s usually required when a 3D
CNN 1s used. Computed MRI slices introduce artifacts,
which could cause large errors. For demonstrating the
robustness of the disclosed method using the step 310
against an existing approach of using the 3D CNN 1n the
presence of large slice gap, experimental results were
obtained for segmenting a MRI 1mage volume into gray
matter, white matter and cerebrospinal fluid with the slice
gap increased from 3 mm to 6mm. The 3D CNN that was
used was realized as VoxResNet. For the disclosed method,
BASKET-NET was used as the 2D CNN. The segmentation
performance was measured by DCS. Computation of DSC 1s
given by L. R. DICE, “Measures of the amount of ecologic
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association between species,” Ecology, 1945,26:297-302,
the disclosure of which 1s incorporated by reference herein.
The following table lists the performance loss, in terms of
percentage drop 1 DCS, when the slice gap was increased

from 3 mm to 6 mm. The disclosed method using the step
310 and the approach of using the 3D CNN are considered.

Percentage drop in DCS

Gray White Cerebrospinal
matter matter fluid
Disclosed method 2% 1% 2%
Using 3D CNN 13% 16% 41%

[0089] The data in the table show that while there 1s a
significant performance drop by using the 31D CNN when the
slice gap 1s 1increased from 3 mm to 6 mm, the corresponding
performance drop for the disclosed method 1s small. The
result demonstrates the robustness of the disclosed method
against an increase 1n slice gap.

[0090] Also note that the plurality of mixed-context
images 1s idependent of the slice gap 105. The disclosed
image-volume segmenting method 1s useful even 1 succes-
sive body-part locations that are 1imaged are spaced too far
away, or 1f there 1s vanation of slice gaps among different
MRI 1image volumes to be segmented. Since the preprocess-
ing algorithm as detailed 1n the step 310 1s also used 1n the
training phase 210, a corresponding slice gap used in each
labeled image volume 1n the training dataset 1s also not taken
into consideration by the preprocessing algorithm.

[0091] A second aspect of the present disclosure 1s to
provide BASKET-NET, a novel CNN model for realizing
the 2D CNN.

[0092] The BASKET-NET model has a network model

structure exemplarily illustrated as follows through an
example realization shown i FIG. 6. FIG. 6 depicts a
realization of the 2D CNN according to a BASKET-NET
model 600 adapted to process each of the multi-channel
patches obtained from the first mixed-context image 510a
shown 1n FIG. 5. The first mixed-context image 510q 1s a
five-channel image since 1t has 5 MRI slices.

[0093] The 2D CNN realized by the BASKET-NET model
600 1s used for generating an output segmentation map 612
from a received input mmage 611 via generating plural
feature maps 1 between (e.g., a sequence ol feature maps
618). Each of the received mput image 611, the output
segmentation map 612 and the feature maps 1s a multi-
channel map having plural channels.

[0094] Similar to the U-NET model disclosed by O. RON-
NEBERGER, P. FISCHER and T. BROX, the BASKET-
NET model 600 1s a multi-level model comprising a plural-
ity of levels sequentially arranged from a highest level 610

to a lowest level 650. As an example shown 1 FIG. 6, the
BASKET-NET model 600 has five levels, namely, the

highest level 610, three intermediate levels 620, 630, 640
and the lowest level 650. In general, a BASKET-NET model
may have any number of levels greater than two, e.g., four
and si1x.

[0095] The BASKET-NET model 600, or the plurality of
levels 610, 620, 630, 640, 650, 1s configured to include the
tollowing four characteristics.

[0096] First, an individual level generates an output map
from an input map. The mput map of the individual level 1s
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transformed into the output map thereof through generating
a series of feature maps 1n between. As shown 1n FIG. 6, the
levels 610, 620, 630, 640, 650, respectively, have the mput
maps 611, 621, 631, 641, 651 and the output maps 612, 622,
632, 642, 652. Consider the level 620 for illustration. The
input map 621 1s transformed 1nto the output map 622 with
generation of a series of feature maps 1n between. The series
ol feature maps 1ncludes feature maps 623, 624, 628.

[0097] Second, the mput map and the output map of the
highest level 610 are also the received mput 1mage 611 and
the output segmentation map 612, respectively.

[0098] Third, for a next lower level immediately lower
than the individual level, the mput map of the next lower
level 1s obtained by downsampling a first preselected feature
map of the individual level. For example, the next lower
level immediately lower than the level 620 1s the level 630.
By downsampling, the 2D image size of each channel 1n the
first preselected feature map 1s reduced. The number of
channels remains unchanged 1n the downsampling so that
the first preselected feature map of the individual level and
the input map of the next lower level have the same number
of channels. The levels 610, 620, 630, 640, respectively,
have the first preselected feature maps 613, 623, 633, 643.
Note that the lowest level 650 does not have a {first prese-
lected feature map. The first preselected feature maps 613,
623, 633, 643 of respective levels 610, 620, 630, 640 arc
downsampled to form the mput maps 621, 631, 641, 651 of
respective next lower levels 620, 630, 640, 650. In certain
embodiments, the downsampling 1s achieved by using a
convolutional layer or a pooling layer with a stride of 2. A
stride” 1s the number of pixels that the filter jumps from one
position to an immediately next position.

[0099] Fourth, the output map of the next lower level 1s
upsampled and then concatenated with a second preselected
teature map of the individual level to generate a next feature
map next to the second preselected feature map i1n the
individual level. By upsampling, the 2D image size of each
channel 1n the output map of the next lower level 1is
increased to form an upsampled output map. The number of
channels remains unchanged 1n the upsampling, so that the
output map and the upsampled output map have the same
number of channels. The second preselected feature map 1s
concatenated with the upsampled output map by appending
the second preselected feature map with the channels of the
upsampled output map to form the next feature map. The
levels 610, 620, 630, 640, respectively, have the second
preselected feature maps 614, 624, 634, 644 and the next
feature maps 615, 625, 635, 645. Note that the lowest level
650 does not have a second preselected feature map. The
output maps 6352, 642, 632, 622, respectively, of respective
levels 650, 640, 630, 620 are upsampled and then concat-
enated with the second preselected feature maps 644, 634,
624, 614 of respective levels 640, 630, 620, 610, thereby

respectively forming the next feature maps 645, 635, 625,
615 of the respective levels 640, 630, 620, 610.

[0100] The Inventors make the following observation that
leads to a distinctive feature of the BASKET-NET model
600. The 2D CNN 1s used to segment an anatomical image,
or a mixed-context 1mage, by feature classification. In the
highest level 610, the feature maps, e.g., the sequence of
successive lfeature maps 618, are mntended to extract or
identily low-level features. Low-level features are fine
details of an 1mage that can be extracted by a convolutional
filter, such as lines, edges or dots. High-level features are
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built on top of low-level features to detect objects and larger
shapes 1n the 1mage. Hence, the feature maps 1n the lowest
level 650 are intended to extract or identity high-level
teatures. It follows that low-level features are gradually
transformed into high-level features from the highest level
610 to the lowest level 650. In segmenting the anatomical
image or the mixed context image, a goal 1s to 1dentily fine
details 1n the 1mage since fine details are more valuable to
medical diagnosis performed by a medical practitioner than
large details. It a first feature map has more channels than a
second feature map, the first feature map has more storage
capacity for containing features than the second feature map.
As such, 1t 1s advantageous 1f a higher level has more
channels 1 most feature maps (more preferably in each
feature map) than a lower level does. The Inventors observe
that differently, the U-NET has more channels in feature
maps ol a lower level than 1n feature maps of a higher level.

[0101] Advantageously, the BASKET-NET model 600 1s
turther configured as follows. A first number of channels 1n
the second preselected feature map of the individual level 1s
greater than or equal to a second number of channels 1n the
second preselected feature map of the next lower level. As
a result, more feature details are containable 1n the indi-
vidual level than in the next lower level, thereby allowing
the second preselected feature map of the highest level to be
rich i low-level feature details for assisting finer segmen-
tation of the recerved input image 611 1n generating the
output segmentation map 612.

[0102] In the above discussion, the number of channels 1n
the second preselected feature map of a level under consid-
cration 1s selected to represent the number of channels
employed 1n most of feature maps 1n the level. Alternatively,
the number of channels 1n most of feature maps 1n the level
may be represented by a mimmum number of channels
among leature maps between the first and second prese-
lected feature maps inclusively. IT the latter representation 1s
used, the BASKET-NET model 600 1s configured such that
a first minimum number of channels in feature maps
between the first and second preselected feature maps,
inclusively, of the individual level 1s greater than or equal to
a second minimum number of channels among feature maps
between the first and second preselected feature maps,
inclusively, of the next lower level.

[0103] In FIG. 6, the number of channels of each map 1s
shown on top of the map. It 1s shown that the number of
channels 1n most feature maps of the highest level 610 is
128. In particular, 1t 1s shown that there are 128 channels for
feature maps between the first and second preselected fea-
ture maps 613, 614, inclusively. In the levels 620, 630, 640,
650, the corresponding numbers of channels 1n most feature
maps are 128, 64, 32 and 32, respectively. It 1s apparent that
the number of channels 1n most feature maps decreases
monotonically from the highest level 610 to the lowest level
650. It 1s also apparent that for the levels 610, 620, 630, 640,
respectively, the numbers of channels in the second prese-
lected feature maps 614, 624, 634, 644 are 128, 128, 64 and
32.

[0104] Also note that as shown 1n FIG. 6, the received
input image 611 has 5 channels and the output segmentation

map 612 has 4 channels. It 1s because the BASKET-NET
model 600 shown in FIG. 6 1s adapted to process the first
mixed-context 1mage 510a having 5 MRI slices as the
received input image 611. The first mixed-context image
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510a 15 segmented 1nto 4 classes, namely, background, gray
matter, white matter and cerebrospinal fluid.

[0105] In the individual level, preferably an individual
feature map other than the second preselected feature map 1s
processed with one or more hidden layers to generate a
subsequent feature map, where the one or more hidden
layers include a convolutional layer. In certain embodi-
ments, the one or more hidden layers consist of the convo-
lutional layer, an ELU layer, a dropout layer and a BN layer.
For example, 1n the highest level 610, a subsequent feature
map 613a 1s generated from the first preselected feature map
613 by processing with a sequence of hidden layers 619a
consisting of a convolutional layer, an ELU layer, a dropout

layer and a BN layer. ELU 1s an activation function. Details
of ELU can be found in C. NWANKPA, W. I[JOMAH, A.

GACHAGAN and S. MARSHALL, “Activation Functions:
Comparison of trends in Practice and Research for Deep
Learning,” arXiv:1811.03378, the disclosure of which 1is
incorporated by reference herein. Details of the dropout
layer can be found 1mn N. SRIVASTAVA, G. HINTON, A.
KRIZHEVSKY, I. SUTSKEVER and R. SALAKHUTDI-
NOV, “Dropout: A Stmple Way to Prevent Neural Networks
from Overfitting,” 15(June):1929-1958, 2014 the disclosure
of which 1s mcorporated by reference herein. Details of the
BN layer can be found mn S. IOFFE and C. SZEGEDY,

“Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covanate Shaft,” arXi1v:1502.03167,

the disclosure of which 1s incorporated by reference herein.

[0106] In the individual level, preferably one or more
hidden layers are used to generate the second preselected
feature map from the first preselected feature map. For
example, 1 the highest level 610, the second preselected
feature map 614 1s generated from the first preselected

feature map 613 through plural sequences of hidden layers
619a-f.

[0107] In implementing the BASKET-NET model 600 as
the 2D CNN for the image-volume segmenting method, the
received input 1image 611 1s a part of the individual mixed-
context image and the output segmentation map 612 1s a part
of the segmented corresponding anatomical 1mage corre-
sponding to the part of the mixed-context image. If the 2D
CNN 1s implemented to directly process the individual
mixed-context 1image without gridding, the receirved input
image 611 1s the individual mixed-context image and the
output segmentation map 612 1s the segmented correspond-
ing anatomical image.

[0108] The achieved segmentation performance of the
disclosed method that utilizes mixed-context images and the
BASKET-NET model 600 1s compared with the perfor-
mance of segmenting 1mage volumes based on using ordi-

nary anatomical images and the U-NET model. Multi-modal
MRI data provided by MRBrainS18 (Grand Challenge on

MR Brain Segmentation at MICCAI 2018) were used for
image volume segmentation in the test. The multi-modal
MRI data were obtained under T1-weighted, T1-weighted
inversion recovery and T2-FLAIR MRI modalities (respec-
tively corresponding to T1, IR and FLAIR MRI modalities
used herein). In testing the disclosed method, the format of
cach mixed-context image followed that of the first mixed-
context 1mage 310aq as shown 1n FIG. 5. Mean values of
DSC, which are used as indicators of segmentation perfor-
mance, were obtained. The obtained mean DSC values are
shown 1n the table below.
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Method, based on Mean DSC value

Mixed-context images 0.8657
and BASKET-NET
Ordinary anatomical 0.8507

images and U-NET

[0109] The results indicate that the disclosed method of
using mixed-context images and the BASKET-NET model
achieves a better segmentation performance than an earlier
method of using ordinary anatomical images and the U-NET

model.

[0110] Although 1t 1s preferable that the 2D CNN realized
by the BASKET-NET model 600 1s used for processing the
plurality of mixed-context images, it 1s still advantageous to
use a BASKET-NET model as a 2D CNN to directly process
the plurality of anatomical images 100 by utilizing the
advantage of assisting finer segmentation of the received
input 1mage 1n generating the output segmentation map.
Then the received mput image 611 1s a part of the individual
anatomical 1image (e.g., the anatomical 1image 110) and the
output segmentation map 612 1s a corresponding part of the
segmented anatomical image. If the 2D CNN 1s 1mmple-
mented to directly process the individual anatomical image
without gridding, the recerved mput image 611 1s the indi-
vidual anatomical image and the output segmentation map
612 1s the segmented anatomical image.

[0111] A third aspect of the present disclosure 1s to provide
a technique of gridding the individual mixed-context image
or an 1individual anatomical 1image for further improving the
performance of segmenting the image volume 100. The
technique 1s applicable to the disclosed image-volume seg-
menting method with or without the preprocessing step 310.
The technique 1s based on selecting multiple grids, using
cach grid as a candidate grid to grid the mput 1image to form
a respective plurality of patches, segmenting the respective
plurality of patches by the 2D CNN to generate a candidate
segmented 1mage, and forming the output segmented 1mage
from the generated plurality of candidate segmented 1mages
by pixel-wise majority voting.

[0112] 'The technique 1s described 1n more detail with the
aid of FIG. 7. FIG. 7 depicts a flowchart for exemplarily
illustrating a method for obtaiming an output segmented
image from an input image, where the aforementioned
oridding technique 1s used. The input image may be the
individual mixed-context image or the individual anatomical
image. The individual mixed-context image used as the
input 1image gives the segmented corresponding anatomical
image as the output segmented image. If the individual
anatomical 1image 1s the mput 1mage, the output segmented
image 1s simply the individual anatomical image after seg-
mentation by an appropriate 2D CNN.

[0113] In a step 710, plural grids each used for gridding
the input image are selected, wherein the grids are geometri-
cally offset from each other. Selection of the grids 1is
exemplarily 1llustrated with the aid of FIG. 8.

[0114] FIG. 8 depicts an example of three grids (first grid
821, second grid 822 and third grid 823) used as candidate
orids for gridding the input image 810. The first grid 821 1s
a conventional grid for patch generation, covering the entire
input image 810. Gridding the mput image 810 with the first
orid 821 results 1n a first plurality of patches. The second
orid 822 1s formed by shifting the first grid 821 along a

direction opposite to the x-axis 11 by dx and along a

10
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direction opposite to the y-axis 12 by dy, where dx and dy
are distances measured in number of pixels. The third gnid
823 1s formed 1n a similar way but (dx, dy), an ordered pair
of values of dx and dy, used 1n ':'omling the third grid 823 1s
not identical to (dx, dy) used 1n forming the second grid 822.
It follows that the second and third grids 822, 823 are
geometrically offset from the first grid 821. Slmllarly, the
second and third grids 822, 823 are mutually oflset from
cach other. Note that 1n the special case of the conventional

orid, 1.¢. the first grid 821, (dx, dy)=(0, 0) 1s used.

[0115] Inone example, consider that a resultant patch after
oridding has a size of 80x80 pixels. The second grid 822 and
the third grid 823 are generated from the first grid 821 with
dy)=(16, 16) and (dx, dy)=(48, 48), respectively. In this
example, dx and dy for the second grid 822 are each selected
to be 20% of 80, a length of the patch. For the third grid 823,

the corresponding percentage 1s 60%.

[0116] Adfter the grids are selected 1n the step 710, a
candidate gnid 1s selected from the grids. In a step 720, the
input 1image 1s gridded according to the candidate grid to
form plural patches. Since the input image 1s a multi-channel
image, an individual patch obtained in the step 720 i1s a
multi-channel patch. Refer to FIG. 8. It 1s observed that the
second and third grids 822, 823 are larger than the input
image 810. In a general case, 1f a candidate grid 1s larger than
an mmput 1mage, areas of patches not covering the nput
image during generation of the patches are zero- padded
After the patches are obtained, each of the patches 1s
processed by the 2D CNN 1n a step 730 so as to obtain a
candidate segmented 1mage. The steps 720, 730 are repeated
for all the gnids (step 740). It follows that a plurality of
candidate segmented 1mages 1s obtained.

[0117] In a step 750, the output segmented i1mage 1is
formed from the plurality of candidate segmented images
according to pixel-wise majority voting, as elaborated as
follows. Each candidate segmented image, formed based on
a respective grid for patch generation, 1s first geometrically
shifted with an amount of shift same as that introduced 1n
forming the respective grid from the conventional grid.
Consider the second grid 822 shown 1n FIG. 8 for illustra-
tion. The upper leftmost corner of the mput image 810 1s
oflset from the upper leftmost corner of the second grid 822
by dx along the x-axis 11 and dy along the y-axis 12, where
(dx, dy)=(16, 16). After segmentation, the candidate seg-
mented 1image obtained due to the second grid 822 1s also
geometrically oflset from the second grid 822 by dx and dy
along the x-axis 11 and the y-axis 12, respectively. To bring
the upper leftmost corner of the candidate segmented 1mage
to the upper leftmost corner of the second grid 822, the
candidate segmented 1mage 1s shifted by -dx and -dy along
the x-axis 11 and the y-axis 12, respectively. After all the
candidate segmented 1mages are shitted, it forms a plurality
of geometrically-aligned candidate segmented images. An
individual pixel in each of such images has a value that
indicates the class or region that the individual pixel is
classified to. The class of pixel on certain (X, y) coordinate
in the output segmented image 1s determined by majority
voting of the classes of pixels on the same (X, y) coordinate
in the plurality of geometrically-aligned candidate seg-
mented 1images. For the three-grid case as shown 1n FIG. 8,
if the classes of three pixels at a certain (X, y) coordinate
among all three geometrically-aligned candidate segmented
images are white matter, white matter and gray matter,
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respectively, the corresponding pixel at this (X, y) coordinate
in the output segmented map 1s allocated to the class of
white matter.

[0118] The above-mentioned technique of using multiple
orids and then forming the output segmented image via
pixel-wise majority voting 1s applied to the inference phase
220 only 1n order to gain improvement 1n the segmentation
performance. This technique 1s not applied to the training
phase 210 and the retraining phase 230.

[0119] A test was done for confirming the performance
improvement made by the aforementioned techmique of
using multiple grids. The disclosed method of using mixed-

context images and the BASKET-NET model was employed
in the test. Multi-modal MRI data provided by MRBrainS18

(Grand Challenge on MR Brain Segmentation at MICCAI
2018) were used for image volume segmentation 1n the test.
Values of DSC for segmenting image volumes into white
matter, gray matter and cerebrospinal fluid are listed 1n the
following table under two test conditions of using a single
orid for gridding and using multiple grids.

DSC for DSC for DSC for
cerebrospinal oray white
fiuid matter matter
Single grid 0.847 0.848 0.889
Multiple grids 0.852 0.850 0.890

[0120] The results demonstrate that the disclosed tech-
nique of using multiple grids achieves a better segmentation
performance than the conventional technique of using a
single grid in generating a plurality of patches for CNN
processing.

[0121] A {fourth aspect of the present disclosure 1s to
provide a method for retraining the 2D CNN. The 2D CNN
1s used 1n a computer-executed inference process, where the
inference process 1s used for segmenting the image volume
and 1s arranged according to any of the embodiments of the
image-volume segmenting method as disclosed herein. As
mentioned above, the 2D CNN 1s characterized by a network
model structure and a set of CNN model weights applied to
the network model structure. Retraining the 2D CNN 1s to
search for a better set of CNN model weights for improving
the segmentation performance.

[0122] FIG. 9 depicts a flowchart showing exemplary
steps of the 2D CNN retraining method.

[0123] Ina step 910, the inference process 1s executed one
or more times for segmenting one or more respective image
volumes to create one or more first pluralities of labeled
anatomical 1images. Each image volume 1s segmented and
results 1n one plurality of labeled anatomical 1mages. An
individual labeled anatomical image 1s created from a cor-
responding anatomical image after segmentation. Diflerent
classes are labeled or indicated on the individual labeled
anatomical 1mage. Equivalently, each labeled anatomical
image may also be formed as an original anatomical 1mage
with labels 1n separate documents for locating different
classes 1dentified on the original anatomical image.

[0124] Adter the one or more first pluralities of labeled
anatomical 1mages are obtained 1n the step 910, one or more
second pluralities of labeled anatomical images are gener-
ated from the one or more {first pluralities of labeled ana-
tomical 1mages 1n a step 920. In particular, each second
plurality of labeled anatomical images 1s generated from a
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corresponding first plurality of labeled anatomical images.
In an 1individual first plurality of labeled anatomical images,
one or more labeled anatomical 1mages are replaced with a
same number of one or more relabeled anatomical 1mages
having corrected segmentation over corresponding one or
more labeled anatomical images, so that as a whole, the
individual first plurality of labeled anatomical images 1is
replaced by a second plurality of labeled anatomical images.
As a result, one or more respective second pluralities of
labeled anatomical 1mages are generated from the one or
more {irst pluralities of labeled anatomical 1images.

[0125] In preparing the one or more relabeled anatomical
images, all labeled anatomical 1images in the individual first
plurality of labeled anatomical images are first scored. The
score of a labeled anatomical 1mage indicates the degree of
confidence that the labeled anatomical image 1s correctly
segmented. Since segmentation results include segmentation
labels and scores for individual pixels, the mean score
computed over the pixels may be used as the score of the
labeled anatomical 1mage. The one or more low-score
labeled anatomical images are manually corrected by, e.g., a
medical professional, to form the one or more relabeled
anatomical 1mages.

[0126] Also note that the individual first plurality of
labeled anatomical images has at least one image incorrectly
segmented. In practice, a large number of 1mage volumes are
segmented. Each of the segmented image volumes 1s scored.
After all the segmented image volumes are scored and
checked, the one or more first pluralities of labeled anatomi-
cal images requiring segmentation correction are identified,
or else all the segmented 1mage volumes are found to be
correctly segmented.

[0127] Note that 1n performing the step 910, the 2D CNN
has already been trained. The main advantage of the dis-
closed retraining method 1s that the CNN model weights are
updated from a previous set of CNN model weights already
used in the inference phase 220. Retraining the 2D CNN
potentially reduces the amount of computation effort/time
required 1n comparison to a traditional approach of redoing
the training (of the training phase 210) to determine a
completely new set of CNN model weights. Furthermore,
manually rebuilding the training dataset as required by the
traditional approach 1s not necessary in the disclosed retrain-
ing method.

[0128] Adter the step 920 i1s performed, the 2D CNN 1s
further trained with the one or more respective second
pluralities of labeled anatomical images to update the set of
CNN model weights from an immediately previous set of
CNN model weights (step 930). Thereby, an updated set of
CNN model weights 1s obtained.

[0129] In a step 940, the updated set of CNN model
weights 1s validated by repeating the inference process for
segmenting a plurality of test image volumes of a validation
dataset under a condition that the 2D CNN employs the
updated set of CNN model weights. Based on segmenting
the plurality of test image volumes and evaluating segmen-
tation accuracy in each segmentation, a validation loss that
1s obtained by using the updated set of CNN model weights
in the 2D CNN 1s computed. The validation loss indicates a
degree of overall segmentation loss 1n segmenting the plu-
rality of test image volumes of the validation dataset. For
example, the validation loss may be computed as 1 minus
the mean DSC computed for the segmentation of the plu-
rality of test image volumes.
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[0130] In a step 950, the validation loss obtained by the
updated set of CNN model (hereinafter referred to as first
loss) 1s compared with a corresponding validation loss
obtained by the immediately previous set of CNN weights
(heremaftter referred to as second loss). If 1t 1s found that the
first loss 1s less than the second loss, then the updated set of
CNN model weights 1s adopted by the 2D CNN to be used
in subsequent execution of the inference process (step 960).
I1, on the other hand, the first loss 1s not less than the second
loss, then the 2D CNN 1s restored with the immediately
previous set oI CNN model weights (step 970).

[0131] Note that the step 910 1s in the inference phase 220
while the steps 920, 930, 940, 950, 960 and 970 are 1n the
retraining phase 230.

[0132] The embodiments disclosed herein may be imple-
mented using computing devices, such as computers, com-
puting servers, general purpose processors, specialized com-
puting processors, digital signal processors, processors
specialized 1n computing convolution products or correla-
tions for images, programmable logic devices and field
programmable gate arrays, where the computing devices are
configured or programmed according to the teachings of the
present disclosure. Computer instructions or software codes
running in the computing devices can readily be prepared by
practitioners skilled 1n the software or electronic art based
on the teachings of the present disclosure.

[0133] The present invention may be embodied 1n other
specific forms without departing from the spirit or essential
characteristics thereof. The present embodiment is therefore
to be considered in all respects as illustrative and not
restrictive. The scope of the mvention 1s indicated by the
appended claims rather than by the foregoing description,
and all changes that come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What 1s claimed 1s:

1. A computer-implemented method for segmenting an
image volume formed by a plurality of anatomical images
imaged at a sequence of successive locations of a body part,
an 1individual anatomical image being a multi-channel image
comprising a plurality of image slices imaged at a same
location under a plurality of preselected imaging modalities,
the method comprising:

generating a plurality of mixed-context images from the
plurality of anatomical 1images, wherein an individual
mixed-context 1image generated for a considered loca-
tion 1n the location sequence other than two terminal
locations thereof 1s a multi-channel 1mage comprising
the plurality of 1image slices of a corresponding ana-
tomical image imaged at the considered location, a first
set of one or more immage slices 1maged at a first
location, and a second set of one or more 1image slices
imaged at a second location, and wherein the first and
second locations are immediately before and immedi-
ately after the considered location in the location
sequence, respectively, avoiding the imdividual mixed-
context 1mage from including any imaging slice esti-
mated for an intermediate location between the first and
considered locations or between the second and con-
sidered locations; and

processing the plurality of mixed-context images indi-

vidually with a two-dimensional (2D) convolutional
neural network (CNN) after the 2D CNN 1s trained,
wherein the individual mixed-context image 1s pro-
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cessed by the 2D CNN to segment the corresponding
anatomical 1mage, enabling the 2D CNN to utilize side
information on multi-modal context and three-dimen-
stonal (3D) spatial context of the image volume for
enhancing accuracy in segmenting the corresponding
anatomical 1image while avoiding a source of segmen-
tation performance degradation due to artifacts in the
estimated 1mage slice.

2. The method of claim 1, wherein the first image-slice set
1s the plurality of 1image slices 1n a first adjacent anatomical
image 1maged at the first location, and the second 1mage-
slice set 1s the plurality of image slices 1n a second adjacent
anatomical 1mage 1maged at the second location.

3. The method of claim 1, wherein the first image-slice set
1s a first proper subset of the plurality of 1mage slices 1n a
first adjacent anatomical 1mage 1imaged at the first location,
and the second 1image-slice set 1s a second proper subset of
the plurality of 1mage slices 1n a second adjacent anatomical
image 1maged at the second location.

4. The method of claim 3, wherein each of the first and
second 1mage-slice sets has a same number of 1image slices
and 1s 1mmaged under a same set of 1maging modalities
selected from the plurality of preselected imaging modali-
ties.

5. The method of claim 4, wherein said same number of
image slices 1s one.

6. The method of claim 1, wherein:
the body part 1s a head of a subject; and

the corresponding anatomical image 1s segmented 1nto a
plurality of classes, the plurality of classes consisting of

background, gray matter, white matter and cerebrospi-
nal fluid.

7. The method of claim 1, wherein the plurality of
preselected 1imaging modalities consists of magnetic reso-
nance 1maging (MRI) modalities including T1 MRI modal-
ity, inversion recovery (IR) MRI modality and fluid-attenu-
ated mversion recovery (FLAIR) MRI modality.

8. The method of claim 1, wherein:

the 2D CNN 1s used for generating an output segmenta-
tion map from a received mmput 1mage via generating
plural feature maps 1n between, wherein each of the
received mput 1image, the output segmentation map and
the feature maps 1s a multi-channel map having plural
channels:

the received input image 1s a part of the individual
mixed-context 1image, whereby the output segmenta-
tion map 1s a part ol the segmented corresponding
anatomical 1mage corresponding to the part of the
mixed-context 1image;

the 2D CNN comprises a plurality of levels sequentially
arranged from a highest level to a lowest level, the 2D
CNN being configured such that:

an individual level generates an output map from an input
map, the mput map of the individual level being
transiformed 1nto the output map thereof through gen-
crating a series of feature maps 1n between;

the 1input map of the highest level 1s the received 1nput
image and the output map of the highest level is the
output segmentation map;

for a next lower level immediately lower than the indi-
vidual level, the mput map of the next lower level 1s
obtained by downsampling a first preselected feature
map of the individual level; and
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the output map of the next lower level 1s upsampled and
then concatenated with a second preselected feature
map of the individual level to generate a next feature
map next to the second preselected feature map in the
individual level;

and

a first number of channels 1 the second preselected
feature map of the individual level 1s greater than or
equal to a second number of channels 1n the second
preselected feature map of the next lower level such
that more feature details are containable in the indi-
vidual level than in the next lower level, thereby
allowing the second preselected feature map of the
highest level to be rich 1n low-level feature details for
assisting finer segmentation of the received input image
in generating the output segmentation map.

9. The method of claim 8, wherein the 2D CNN 1s further
configured such that in the individual level, an 1ndividual
feature map other than the second preselected feature map 1s
processed with one or more hidden layers to generate a
subsequent feature map, the one or more hidden layers
including a convolutional layer.

10. The method of claim 9, wherein the one or more
hidden layers consist of the convolutional layer, an expo-
nential linear unit (ELU) layer, a dropout layer and a batch
normalization (BN) layer.

11. The method of claim 8, wherein the 2D CNN 1s further

configured such that in the individual level, one or more
hidden layers are used to generate the second preselected
feature map from the first preselected feature map.

12. The method of claim 8, wherein:

the processing of the plurality of mixed-context images
individually with the 2D CNN after the 2D CNN 1s
trained includes processing the mdividual mixed-con-
text 1mage with the 2D CNN for segmenting the
corresponding anatomical 1image; and

the processing of the individual mixed-context image with
the 2D CNN comprises:

gridding the individual mixed-context image to form
plural multi-channel patches; and

processing each of the multi-channel patches as the
recerved mput image by the 2D CNN so as to obtain
the segmented corresponding anatomical 1mage.

13. The method of claim 8, wherein:

the processing of the plurality of mixed-context images
individually with the 2D CNN after the 2D CNN 1s
trained includes processing the individual mixed-con-
text 1mage with the 2D CNN for segmenting the
corresponding anatomical 1image; and

the processing of the individual mixed-context image with
the 2D CNN comprises:

selecting plural grids each used for gridding the indi-
vidual mixed-context 1image, wherein the grids are
geometrically offset from each other;

for a candidate grid selected from the grids, gridding
the individual mixed-context image according to the
candidate grid to form plural multi-channel patches;

processing each of the multi-channel patches as the
recerved mput 1image by the 2D CNN so as to obtain
a candidate segmented 1image for the corresponding
anatomical 1mage;

repeating the gridding of the individual mixed-context
image and the processing of each of the multi-
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channel patches for all the grids, whereby a plurality
of candidate segmented 1images 1s obtained; and

forming the segmented corresponding anatomical
image from the plurality of candidate segmented
images according to pixel-wise majority voting.

14. A computer-implemented method for retraining a
two-dimensional (2D) convolutional neural network (CNN)
used 1 a computer-executed inference process, the 2D CNN
having a set of CNN model weights, the inference process
being used for segmenting an 1mage volume formed by a
plurality of anatomical images imaged at a sequence of
successive locations of a body part, an individual anatomical
image being a multi-channel 1mage comprising a plurality of
image slices 1maged at a same location under a plurality of
preselected 1maging modalities, the method comprising:

executing the inference process one or more times for
segmenting one or more respective image volumes to
create one or more {irst pluralities of labeled anatomaical
images, wherein the inference process 1s arranged as set
forth in the method of claim 1, and wherein an 1ndi-
vidual labeled anatomical image 1s created from the
corresponding anatomical 1mage after segmentation for
identifying different classes in the corresponding ana-
tomical 1mage;

in an individual first plurality of labeled anatomical
images, replacing one or more labeled anatomical
images with a same number of one or more relabeled
anatomical images having corrected segmentation over
corresponding one or more labeled anatomical 1mages,
so that the mmdividual first plurality of labeled anatomi-
cal images 1s replaced by a second plurality of labeled
anatomical 1mages, whereby one or more respective
second pluralities of labeled anatomical images are
generated from the one or more first pluralities of
labeled anatomical images;

further training the 2D CNN with the one or more
respective second pluralities of labeled anatomical
images to update the set of CNN model weights from
an 1immediately previous set of CNN model weights;

validating the updated set of CNN model weights by
repeating the inference process for segmenting a plu-
rality of test image volumes of a validation dataset
under a condition that the 2D CNN employs the
updated set of CNN model weights, whereby a valida-
tion loss that 1s obtained by using the updated set of
CNN model weights in the 2D CNN 1s computed, the
validation loss indicating a degree of overall segmen-
tation loss 1 segmenting the plurality of test image
volumes of the validation dataset; and

responsive to finding that the validation loss obtained by
the updated set of CNN model 1s less than a corre-
sponding validation loss obtained by the immediately
previous set of CNN weights, adopting the updated set
of CNN model weights to be used for the inference
process, otherwise restoring the 2D CNN with the
immediately previous set of CNN model weights.

15. A computer-implemented method for segmenting an
image volume formed by a plurality of anatomical images
imaged at a sequence of successive locations of a body part,
an 1ndividual anatomical image being a multi-channel image
comprising a plurality of image slices 1maged at a same
location under a plurality of preselected imaging modalities,
the method comprising:
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segmenting an 1ndividual anatomical image with a two-
dimensional (2D) convolutional neural network (CNN)
to form a segmented individual anatomical image after
the 2D CNN 1s trained; and
repeating the segmenting of the individual anatomical
image with the 2D CNN for all different anatomical
images in the plurality of anatomical images, whereby
the 1mage volume 1s segmented;
wherein:
the 2D CNN 1s used for generating an output segmenta-
tion map from a received mput image via generating
plural feature maps 1n between, wherein each of the
received input image, the output segmentation map and
the feature maps 1s a multi-channel map having plural
channels;
the recetved mput image i1s a part of the individual
anatomical 1mage, whereby the output segmentation
map 1s a part of the segmented individual anatomical
image corresponding to the part of the individual
anatomical 1mage;
the 2D CNN comprises a plurality of levels sequentially
arranged from a highest level to a lowest level, the 2D
CNN being configured such that:
an ndividual level generates an output map from an
input map, the mput map of the individual level
being transformed nto the output map thereof
through generating a series of feature maps 1n
between;
the imnput map of the highest level is the received input
image and the output map of the highest level is the
output segmentation map;
for a next lower level immediately lower than the
individual level, the mput map of the next lower
level 1s obtained by downsampling a first preselected
feature map of the individual level; and
the output map of the next lower level 1s upsampled and
then concatenated with a second preselected feature
map of the individual level to generate a next feature
map next to the second preselected feature map 1n
the individual level;

and

a lirst number of channels 1 the second preselected
feature map of the mdividual level 1s greater than or
equal to a second number of channels 1n the second
preselected feature map of the next lower level such
that more feature details are containable in the indi-
vidual level than in the next lower level, thereby
allowing the second preselected feature map of the

14
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highest level to be rich 1n low-level feature details for
assisting finer segmentation of the received input image

in generating the output segmentation map.

16. The method of claim 15, wherein the 2D CNN 1s
further configured such that in the individual level, an
individual feature map other than the second preselected
teature map 1s processed with one or more hidden layers to
generate a subsequent feature map, the one or more hidden
layers including a convolutional layer.

17. The method of claim 16, wherein the one or more
hidden layers consist of the convolutional layer, an expo-
nential linear unit (ELU) layer, a dropout layer and a batch
normalization (BN) layer.

18. The method of claim 15, wherein the 2D CNN 1s
further configured such that in the individual level, one or
more hidden layers are used to generate the second prese-
lected feature map from the first preselected feature map.

19. The method of claim 15, wherein the segmenting of
the individual anatomical image with the 2D CNN com-
Prises:

oridding the individual anatomical image to form plural

multi-channel patches; and

processing each of the multi-channel patches as the

received input image by the 2D CNN so as to obtain the
segmented individual anatomical 1mage.

20. The method of claim 15, wherein the segmenting of
the individual anatomical image with the 2D CNN com-
Prises:

selecting plural grids each used for gridding the individual

anatomical 1mage,

wherein the grids are geometrically oflset from each
other;

for a candidate grid selected from the grids, gridding
the individual anatomical image according to the
candidate grid to form plural multi-channel patches;

processing each of the multi-channel patches as the
received mput image by the 2D CNN so as to obtain
a candidate segmented image for the individual
anatomical 1image;

repeating the gridding of the individual anatomical
image and the processing of each of the multi-
channel patches for all the grids, whereby a plurality
of candidate segmented 1images 1s obtained; and

forming the segmented individual anatomical i1mage
from the plurality of candidate segmented images
according to pixel-wise majority voting.
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