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A transformed data set corresponding to a machine learning
classifier’s training data set 1s generated. Each transformed
record contains a modified version of a corresponding
training record, as well as the prediction made for the
training record by the classifier. A set of explanatory rules 1s
minded from the transformed data set, with each rule 1ndi-
cating a relationship between the prediction and one or more
teatures corresponding to the training records. From among
the rule set, a particular matching rule 1s selected to provide
an easy-to-understand explanation for a prediction made by
the classifier for an observation record which 1s not part of
the training set.
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Generate a classification model using a training set of observation records; the classification
algorithm may be indicated by a client in a model generation request, or selected by a
machine learning service 901

Obtain transformed versions of categorical and numeric attributes (if any) of training set-e.g.,

binarize categorical attributes, bin numeric attributes 904

Select rule miner (e.qg., using knowledge base entries) and identify intermediate records to be
provided as input to selected rule miner (e.q., classifier predictions, transformed input training
data, and (optionally) "model features” or internal representations /summaries of raw data
generated by the selected classifier) 907

Rank explanatory, easy-to-understand rules/assertions produced by rule miner, e.g., using

some combination of metrics such as coverage/support, confidence, etc., obtained for
example using test or evaluation dataset 910

Recelve a request for an explanation of a prediction Pred-] made by the trained classification
model with respect to observation record OR-new 913

Examine rules for matches, e.qg., in descending rank order 916
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EXPLAINERS FOR MACHINE LEARNING
CLASSIFIERS

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 15/045,030, filed on Feb. 16, 2016,

which 1s hereby incorporated by reference herein its entirety.

BACKGROUND

[0002] Machine learning combines techniques from sta-
tistics and artificial intelligence to create algorithms that can
learn from empirical data and generalize to solve problems
in various domains such as natural language processing,
financial fraud detection, terrorism threat level detection,
human health diagnosis and the like. In recent years, more
and more raw data that can potentially be utilized {for
machine learning models 1s being collected from a large
variety ol sources, such as sensors of various kinds, web
server logs, social media services, financial transaction
records, security cameras, and the like.

[0003] Classification, or the task of identitying to which of
a set of categories (sub-populations) a new observation
belongs, on the basis of a training set of data containing,
observations (or mstances) whose category membership 1s
known, 1s one of the most useful and often-used categories
of machine learning techniques. A number of algorithms for
classification of diflerent levels of sophistication have been
developed over the years, including, for example, linear
classifiers such as logistic regression algorithms, Bayesian
classifiers, support vector machines, decision-tree based
algorithms, neural network-based algorithms and the like.
The classification decision-making process of some of the
algorithms (e.g., straightforward decision-tree based algo-
rithms such as Classification and Regression Tree or CART)
may be easier to understand, at least for non-experts, than for
other algorithms (e.g., various techniques employing artifi-
cial neural networks).

[0004] For many use cases, the ability to explain (at least
to some reasonable extent) the decisions or predictions made
by a classification algorithms may be significant. For
example, 11 a loan applicant 1s denied a loan by a financial
organization, the loan applicant may wish to understand the
reasoning behind the decision. Unfortunately, empirical
results have shown that at least for some types of data sets,
the classification algorithms that tend to make the best
decisions are also among the more diflicult to explain. On
the other hand, technmiques that are easy to explain often do
not make the most accurate predictions. Thus, balancing the
need for high-quality classification decisions with the need
for easy-to-understand explanations may present a non-
trivial challenge.

BRIEF DESCRIPTION OF DRAWINGS

[0005] FIG. 1 illustrates an example system environment
in which easy-to-understand explanatory rules for complex
classifiers may be generated and ranked relative to one
another, according to at least some embodiments.

[0006] FIG. 2 illustrates example components of a
machine learming service at which classification models and
corresponding explanatory rule sets may be generated,
according to at least some embodiments.

[0007] FIG. 3 illustrates examples of transformations
which may be applied to raw 1mput data prior to generating,
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explanatory rules for the predictions made by a classifier
trained using that input data, according to at least some
embodiments.

[0008] FIG. 4 illustrates a simple example of the genera-
tion of explanatory rules for a classifier’s predictions,
according to at least some embodiments.

[0009] FIG. 3 illustrates examples of criteria which may
be used to evaluate or rank rules, according to at least some
embodiments.

[0010] FIG. 6 illustrates an example of a neural network-
based classifier, according to at least some embodiments.
[0011] FIG. 7 illustrates an example scenario in which
internal representation information generated by a classifier
may be used to express explanatory rules for the classifier,
according to at least some embodiments.

[0012] FIG. 8 illustrates examples of actions which may
be taken 1n response to a query for an explanation of a
classifier’s prediction, according to at least some embodi-
ments.

[0013] FIG. 9 illustrates aspects of operations that may be
performed to generate easy-to-understand explanations for
complex classifiers, according to at least some embodi-
ments.

[0014] FIG. 10 15 a block diagram 1llustrating an example
computing device that may be used 1n at least some embodi-
ments.

[0015] While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words
“include,” “including,” and “includes” mean including, but
not limited to. When used 1n the claims, the term “or” 1s used
as an inclusive or and not as an exclusive or. For example,
the phrase “at least one of X, y, or z” means any one of X, v,
and z, as well as any combination thereof.

DETAILED DESCRIPTION

[0016] Various embodiments of methods and apparatus for
providing easy-to-understand explanations for potentially
complicated classification models are described. The terms
“classifier”, “classification model”, and “classification algo-
rithm implementation” may be used interchangeably herein.
The term “explainer” may be used herein to refer to a
programmatic entity that determines a set of rules, implica-
tions or assertions which can help to explain the prediction
decisions made by a trained classifier. The techniques
described herein separate the tasks of (a) making the best-
possible classification predictions (which may utilize com-
plex machine learning techniques that are hard for a lay
person to understand) from (b) providing explanations for
the classification predictions, expressed 1deally 1n easy-to-
understand predicates on the values of the mput data attri-

butes or features. The explanations may be generated in
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some embodiments by applying selected transformations to
at least a subset of the data used to train the classifiers, and
then using rule-mining techniques on the combination of the
classifier’s predictions and the transformed training data, as
described below 1n further detail.

[0017] In some embodiments, the techniques for explain
classification decisions may be implemented as part of a
comprehensive machine learning service of a provider net-
work. In other embodiments, explainers may be generated
for at least some types of classifiers without utilizing the
resources ol a large-scale machine learning service—e.g., a
standalone tool for providing explanatory rules of a classifier
may be employed, which can be installed locally on any
desired type of computing devices or servers. Generally
speaking, networks set up by an entity such as a company or
a public sector organization to provide one or more services
(such as various types of multi-tenant and/or single-tenant
cloud-based computing or storage services) accessible via
the Internet and/or other networks to a distributed set of
clients may be termed provider networks 1n this document.
A provider network may also sometimes be referred to as a
“public cloud” environment. A given provider network may
include numerous data centers hosting various resource
pools, such as collections of physical and/or virtualized
computer servers, storage devices, networking equipment
and the like, needed to implement, configure and distribute
the infrastructure and services oflered by the provider.
Within large provider networks, some data centers may be
located 1n different cities, states or countries than others, and
in some embodiments the resources allocated to a given
application may be distributed among several such locations
to achieve desired levels of availability, fault-resilience and
performance. The machine learning service of a provider
network may be designed to respond to a variety of client
request categories in batch mode as well as 1n real-time. For
example, the machine learning service may train, test and
cvaluate a wide variety of models (e.g., for supervised
and/or unsupervised learning) 1n response to client requests
received via a set of programmatic interfaces of the service
(c.g., application programmatic interfaces or APls, web-
based consoles, command-line tools, or graphical user inter-
faces).

[0018] According to one embodiment, a client of a
machine learning service may submit a request to generate
a classification model for a specified data set or data source
(a source from which various observation records may be
collected by the service and used for training the requested
model). Each observation record may contain one or more
input variables and at least one output or “target” variable
(the variable for which the model 1s make predictions). The
target variable may typically comprise a *“class” variable,
which can take on one of a discrete set of values represen-
tative of respective sub-groups or classes of the observation
records. A classification algorithm or methodology may be
selected at the service in some embodiments, e.g., based on
the client’s preferences as indicated 1n the model generation
request, based on entries or heuristics 1n a knowledge base
of the machine learning service, or based on some combi-
nation ol such factors. At least a subset of the data set may
be designated as a training set, and a classification model
may be traimned using the traiming set. At least 1n some
embodiments, the classification algorithm may be selected
(e1ther by the client or by the service) based primarily on the
expected quality of the predictions—that 1s, an algorithm
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may be chosen based on how good 1ts predictions typically
have been for similar data sets, independently of whether the
algorithm 1s easy to explain or hard to explain.

[0019] Adter the model has been trained, its output or
predictions for the various records of the training set may be
obtained in some embodiments. In addition, 1n at least some
embodiments, depending on the kind of mput varniables of
attributes which make up the training set’s observation
records, a transformed mtermediate data set may be created
by applying selected feature processing or transformation
functions to the raw traming data. Such transformations,
which may include for example binarization of some or all
categorical attribute values and/or binning of some or all
numeric attribute values, may be performed to simplify the
task of mining rules corresponding to the classifier’s pre-
dictions. The transformed data (which may comprise as
many records as the original training set 1n at least some
implementations), together with the predictions made by the
classifier on the underlying un-transformed training data
records, may be provided as iput to a selected rule minming
algorithm or rule miner. Any appropriate rule mining algo-
rithm which can generate explanatory rules (e.g., in termi-
nology that can be understood relatively easily by lay clients
as well as by expert clients) from the transformed training
data records and their corresponding predictions may be
used 1n various embodiments. It 1s noted that while several
techniques for generating explanatory rules may require
binarization, binning and/or other similar transformations,
other techniques (such as some decision-tree based algo-
rithms for rule generation) may not require such transior-
mations 1n at least some embodiments. In the latter scenario,
the mntermediate data set used as mput for rule mining may
simply include the untransformed training data and the
corresponding predictions of the classifier. In some embodi-
ments, the rule mining algorithm may be selected by the
service (e.g., based on knowledge base entries), while 1n at
least one embodiment the client may suggest or propose a
rule mining algorithm 11 desired. Some number of explana-
tory rules or assertions may be generated for the predictions
already made with respect to the training data set by the
classifier. A given explanatory rule or assertion may be
considered as a combination of one or more attribute predi-
cates (e.g., ranges or exact matches of input attribute values)
and 1mplied target class values. For example, one rule may
be expressed as the logical equivalent of “if (input attribute
Al 1s 1n range R1) and (anput attribute A2 has the value V1),
then the target class 1s predicted to be TC1”. In this rule, the
constraints on Al and A2 respectively represent two attri-
bute predicates, and the rule indicates an explanatory rela-
tionship between the predicates and the prediction regarding
the target class.

[0020] In scenarios in which multiple explanatory rules
are generated, they may then be ranked relative to one
another using any combination of a variety of metrics and
techniques in different embodiments. For example, rules
may be ranked based on their explanatory accuracy or
confidence level (e.g., how often their implication between
the attribute predicates and the target class holds true, within
the training data and/or a test data set comprising observa-
tions which were not used for training the classifier), their
support or coverage (e.g., what fraction of observations meet
the predicates indicates 1n a given rule), and so on. In various
embodiments, the ranking process may mvolve the use of
test or evaluation data sets—e.g., the predictions for a group
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of observation records which were not used for training may
be obtained from the classifier, and the explanatory rules
may be ranked based on how well they are able to explain
these post-training predictions (e.g., predictions on test
data). In some embodiments, the ranking procedure may
utilize at least some of the training data and the correspond-
ing classifier predictions.

[0021] The trained classifier may be used to make predic-
tions for new, as-yet-unexamined observation records. Upon
determining the prediction produced for a given observation
by the classifier, a client may 1n general have one of two
reactions. In some cases, the prediction may make mtuitive
sense to the client, or at least may not prompt the client to
seek further explanation. In other cases, the client may be
puzzled by the decision made by the classifier, or at least
may wish to obtain some indication of the reasoning justi-
tying the decision. In the latter scenario, the client may
submit a query or request for an explanation of the predic-
tion. In effect, such a request may comprise the logical
equivalent of the question “Can you explain why this
observation OR-new resulted 1n this prediction P-j for the
target class?” The explainer may respond to such a request
in one of two ways. If, based on an examination of the
ranked rules obtained via rule mining, one or more rules
which match the observation (e.g., if OR-new’s attribute
values are compatible with the attribute properties indicated
in a rule predicate), and match the prediction (e.g., it the
rule’s implication for the target class prediction matches the
actual prediction made by the classifier) are found, the
explainer may provide a representation of the highest-
ranking rule to the client. It 1s noted that such an explanatory
rule, while indicate observed relationships between obser-
vation attributes and the classifier’s predictions, may not
necessarily be representative of the actual logic used within
the classifier. That 1s, at least 1n some cases the classifier may
have made the prediction based on one or more factors
which are not indicated 1n the explanatory rule provided to
the client. Sitmilarly, 1n at least some cases, at least some of
the predicates indicated in the explanatory rule may not
actually have been taken into consideration by the classifier
when making its prediction.

[0022] If no matching rule can be found, a message
indicating that no explanation 1s currently available (or the
logical equivalent of such a statement) may be provided to
the client. In some embodiments, the explainer may store
metrics indicating how many unsatisfactory query responses
(e.g., responses for which no explanations could be provided
to the client) have been generated over time. If the number
of unsatisfied queries reaches a threshold, 1n some embodi-
ments a new round ol explainer generation (e.g., using a
larger training data set including at least some observations
for which no satistactory explanation was provided earlier)
and/or model training may be performed. Thus, over time,
the eflectiveness of the explainers (and/or the classifiers)
may be increased 1n a data-driven fashion. By separating out
the explainer generation from the classifier training in the
manner described above, 1t may become easier to achieve
two potentially contlicting goals—choosing the most accu-
rate classifiers available (regardless of their complexity) and
providing easy-to-understand explanations of classifier pre-
dictions.

[0023] In some embodiments, variations on the basic
scheme for generating explainers regardless of classification
model complexity may be implemented. Some classification
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techniques, such as those based on neural networks, may
generate nternal representations of the mput data or inter-
mediate data structures which are neither part of the input
data, nor part of the model output. The predictions made by
some such models may sometimes depend more directly on
these internal representations (which may sometimes be
referred to as “hidden” layers of the model) than on the raw
input data values themselves. That 1s, the relationship
between the model outputs, the internal representations, and
the raw 1nput data may be expressed as the logical equivalent
of the following: “internal representations {IR} depend on
raw input data” and “model output depends on {IR}”. In one
embodiment 1n which the classifier produces such internal
representation, the rule mining algorithms may be run on the
combination of (a) the internal representations, (b) the
(potentially transformed) 1mnput data and (c¢) the predictions
made by the classifier. That 1s, the kinds of information from
which rules can be mined may be extended beyond just the
transformed 1nput data and the predictions, potentially lead-
ing to a more comprehensive and accurate rule set. In such
an embodiment, when a client requests an explanation for a
particular prediction, a first level explanation may some-
times be provided in terms of the intermediate representa-
tions. The explanations may be extended backwards towards
the raw 1nput attribute values—e.g., 11 a client 1s not satisfied
with a first-level explanation based on the internal repre-
sentation, additional levels of rule miming may be per-
formed, and an explanation ultimately couched 1n terms of
the raw 1nput variable values may be provided.

[0024] In one embodiment, a client may choose the clas-
sification algorithm, train a model according to the classi-
fication algorithm, and then provide the predictions corre-
sponding to the training set (and the traiming set itsell) to a
machine learning service or to an explainer tool to generate
a set of explanatory rules for the predictions made by the
classifier. That 1s, the service or tool may not be involved 1n
the classification procedure, and may simply use the output
of the classifier (and at least a portion of the data set for
which the classifier output 1s produced) as input to a rule
miner 1n such an embodiment.

[0025] The types of classifiers for which explainers may
be generated using rule mining 1 various embodiments may
include, for example, neural network-based classifiers, ran-
dom forest models, boosted gradient tree models, etc. In
general, easy-to-understand explanatory rules may be gen-
crated for any desired model in different embodiments,
regardless of the complexity of the model, although clients
may be more likely to submit explanation queries for more
complex models. Any combination of one or more of a wide
variety of rule mining algorithms may be employed in
vartous embodiments. Such algorithms may include, for
example, an Aprior1 algorithm, an FP-Growth (Frequent
Pattern-Growth) algorithm, a CPAR (Classification based on
Predictive Association Rules) algorithm, a CN2 induction
algorithm, a CMAR (Classification based on Multiple Asso-
ciation Rules) algorithm, a SLIPPER (Simple Learner with
Iterative Pruning to Produce Error Reduction) algorithm, a
CART (Classification and Regression Tree) algorithm, an
ID3 (Iterative Dichotomizer 3) algorithm, a C4.5 algorithm
or a C5.0 algorithm.

Example System Environment

[0026] FIG. 1 illustrates an example system environment
in which easy-to-understand explanatory rules for complex
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classifiers may be generated and ranked relative to one
another, according to at least some embodiments. As shown,
system 100 includes classification algorithm library 120 and
explainer library 125. From the classification algorithm
library, classification algorithm selector 130 may choose a
particular algorithm to be used to train a model for a given
input data set comprising training data 110 1n the depicted
embodiment. In some embodiments, the algorithm may be
selected based on client input—e.g., a client 180 may submit
a request to train a classification model, and the request may
include a desired classification methodology. In other
embodiments, the algorithm may be selected based on other
factors such as some indication of the problem domain for
which observation records are to be classified, the schema of
the observation records, knowledge base entries indicating,
successiul classification algorithms 1dentified 1n earlier clas-
sification efforts, and the like. A trained classifier 132 may
be obtained using the training data 110 and the selected
algorithm.

[0027] A sophisticated classification algorithm may be
selected 1n at least some cases, whose prediction decisions
may be difficult to interpret 1n 1solation by non-experts. In
anticipation of potential client queries requesting explana-
tions of the trained classifier’s predictions, an efiort may be
undertaken 1n the depicted embodiment to generate a set of
casy-to-understand explanatory rules. The training data may
be transformed 1n any of several ways by feature processors
140—-c.g., as discussed below, categorical attribute values
may be converted to a set of binary values, numeric attribute
values may be binned, and so on. The transformed versions
of the training data records may be combined with the
classifier predictions 1335 (which may have been produced
for the untransformed or original training data records) to
form intermediate data records 145 used as input to generate
an explainer for the classifier’s predictions.

[0028] A number of different explainer algorithms (which
may also be referred to as rule mining algorithms) may be
available 1 library 125 1n the depicted embodiment, from
which a particular algorithm may be chosen by explainer
selector 160 to generate attribute-predicate based rules 1n the
depicted embodiment. Each rule of the explainer 162 may
indicate some set of conditions or predicates based on
attribute values 1n the transformed or untransformed ver-
sions of the training set observation records, and an indica-
tion of the target variable value predicted by the classifier 1f
the set of conditions 1s met. A number of rules with different
levels of specificity may be generated. The rules may be
ranked relative to one another, using various metrics such as
support (e.g., the fraction of the training data which meets
the attribute criteria of the rule), confidence or accuracy
(¢.g., the fraction of the rule’s predictions which match the
classifier’s predictions, etc.), precision, recall, etc. in difler-
ent embodiments and for different types of classification
problems. For example, different ranking metrics may be
used for binary classification than for multi-class classifica-
tion. In some embodiments, a test data set comprising
observation records which were not used to train the clas-
sifier may be used to rank the rules. For example, the rules
may 1nitially be generated using the training data, and then
evaluated relative to one another based on the differences
between (a) the actual predictions made on the test data set
by the trained classifier and (b) the predictions indicated in
the rules. The support or coverage of the rules with respect
to the test data set may also be used to rank the rules. Rules
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may be mined 1iteratively 1n at least some embodiments—
that 1s, 11 a first set of rules does not meet targeted support
or accuracy requirements levels, additional data records may
be added and a different set of rules may be generated and
evaluated.

[0029] Atthe end of the rule generation and ranking phase,
a ranked explanatory ruleset 165 may be available at
explainer 162. In some embodiments in which the rules are
originally expressed 1n terms of transtormed attributes rather
than the original attributes of the data, the explainer 162 may
also include one or more reverse feature transformer coms-
ponents 166. The reverse feature transformers 166 may
reformulate the rules 1 terms of the original mput data
attributes, which may make the rules easier to understand for
clients.

[0030] As indicated 1n FIG. 1, the procedure of training a
classifier may be separated from the procedure for explain-
ing the decisions of the trammed classifier. As such, any
classification algorithm of arbitrary complexity may be
selected, based for example purely on the reputation,
expected quality, or accuracy of the algorithm’s predictions,
without taking the ease of explaining the algorithm’s deci-
sions 1nto account. The explanatory rules may be mined
using the predictions made by the trained classifier, regard-
less of the sophistication of the classifier, and not using the
actual target attribute values of the training data set in the
depicted embodiment—that 1s, the explanations may be
focused on the classifier’s decisions rather than on the mput
observations used to generate the classifier 1tself.

[0031] Adter the classifier has been trained using training
data 110, it may be used to obtain predictions on new data
(e.g., post-tramning data 111). The post-traiming classifier
predictions 137 may be provided to clients 180. In some
cases, a client 180 may wish to understand why a particular
prediction was made by the classifier. In the depicted
embodiment, a query 170 requesting an explanation of the
prediction for a given post-training data record may be
submitted to explainer 162. In response, the explainer may
compare the attribute values of the post-training data record
with the attribute predicates 1n 1ts ranked rule set 165, and
the classifier’s prediction with the prediction indicated in the
rules. In some embodiments, for example, the rules may be
indexed by the attribute predicates, so that the search for a
matching or applicable rule 1s made more ethicient. In other
embodiments, a sequential search of the rule set (e.g., 1n
descending rank order) may be performed.

[0032] The highest ranking rule which appears to correctly
explain the classifier’s prediction may be provided to the
client as part of an easy-to-understand explanation 172 in the
depicted embodiment. In some embodiments, multiple rules
which can each explain the classifier’s prediction may be
included 1n the response provided to the client. In at least one
embodiment, a particular rule to be included 1n the expla-
nation 172 may be selected from a group of applicable rules
based on factors such as the complexity (e.g. the number of
attribute predicates) of the rule 1tself. In some 1implementa-
tions, the rule which appears to be the broadest and easiest
to understand may be selected. Of course, 1t may sometimes
be the case that no rule which matches or overlaps either the
attribute values of the observation record for which the
query was recerved can be found, or that the prediction
indicated 1n the rule does not match the prediction made by
the classifier 132. In such a situation, the explainer 162 may
provide an indication to the client 180 that no satisfactory
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explanatory rule was found. The explainer may keep track of
the number of cases 1n which an explanatory rule could not
be found 1n some embodiments. If the number or fraction of
such unsatisfactory responses exceeds a threshold, addi-
tional rules may be mined and/or the classifier may be
retrained with additional records in one such embodiment.

[0033] The algorithm employed for trained classifier 132
may have a layered architecture in some embodiments—e.
g, internal data structures representing various properties of
the 1input data may be generated in some neural network-
based models, and the internal representations may be used
to produce the classification predictions. In some such
embodiments, the internal representations may be added to
the iput data used by the explainer, and/or at least some of
the rules generated may be expressed 1n terms of the internal
representations. If a client 180 requests an explanation of a
classifier’s prediction, and 1s provided an explanation 1n
terms of internal representations, it may sometimes be the
case that the client may demand additional explanations. The
first-level explanation, expressed in terms of internal repre-
sentations, may itsellf be explainable 1 terms of input
attributes with which the client 1s familiar (e.g., as a result
ol additional rule mining iterations performed with respect
to the first-level explanation). Thus, multiple layers of
explanatory rules or assertions may be generated in some
embodiments, with some explanations based on internal data
structures or representations, and others based on 1nput data
attributes.

[0034] As mentioned earlier, the technique for generating
explanations for classifier predictions may be employed for
a wide variety ol sophisticated classification algorithms,
including neural-network based algorithms, random forest
algorithms, or boosted gradient tree algorithms and the like.
Rule miming or explainer algorithms may include, for
example, Aprion1 algorithms, FP-Growth (Frequent Pattern-
Growth) algorithms, CPAR (Classification based on Predic-
tive Association Rules) algorithms, CART (Classification
and Regression Tree) algorithms, among others. It 1s noted
that in some embodiments, some algorithms usable for
classification may also be usable for rule mining—that 1s,

there may sometimes be an overlap between the explainer
library 125 and the classification algorithm library 120.

Machine Learning Service

[0035] FIG. 2 illustrates example components of a
machine learming service at which classification models and
corresponding explanatory rule sets may be generated,
according to at least some embodiments. System 200
includes various components of a scalable machine learning
service, including an explanation query handler 281 which
may generate and provide easy-to-understand explanations
295 for classifier predictions, e.g., using rule-mining algo-
rithms from algorithm libraries 263. The classifiers them-
selves may be trained using the machine learning service’s
server pools 285 and algorithm libraries 263. The machine
learning service may be implemented at a provider network
in some embodiments as mentioned earlier, and the
resources used for the machine learning service may be
distributed among a number of different data centers. In at
least some embodiments as mentioned above, a client may
select a classification methodology and train a model, and
then provide the training data and corresponding model
predictions to be mined for explanatory rules—that 1s, the
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machine learning service may not necessarily be responsible
for the classification algorithm implementation.

[0036] In the depicted embodiment, input data for various
types of analysis may be obtained from input data sources
230. Some of the data sources may comprise previously-
collected or batched data records, while others may com-
prise ongoing or streaming data records. In addition to the
explanation query handler 281, the machine learning service
(MLS) may comprise a request handler 280, a knowledge
base 222, and an artifacts repository 220 in the depicted
embodiment. The knowledge base 222 may represent a
growing collection of entries representing insights gained
during earlier instances of the use of classifiers and explain-
ers for a variety of data sets, and may be used to guide some
of the decisions made by the explanation query handler 281,
such as the selection of rule mining and/or classification
algorithms. In some cases, a number of parameter values
may have to be selected for a given rule mining algorithm,
such as the number of decision tree nodes to be generated,
the maximum number of attributes to be permitted 1n a rule,
and so on. The artifacts repository 220 may be used to store
interim and/or final results of classifiers and explainers,
values of the parameters selected, and so on.

[0037] A set of one or more programmatic interfaces 261
may be implemented at the machine learning service for
interactions with clients 264 1n the depicted embodiment.
The interfaces may include, for example, one or more
web-based consoles or web pages, application programming
interfaces (APIs), command-line tools, graphical user inter-
taces (GUIs) or the like. Using interfaces 261, clients 264
may, for example, submit a request to train a classification
model using records from an input data source 230, or a
request to explain a prediction of a classification model. The
data source 230 may be identified, for example, by providing
access information such as a network address, a database
address, and/or a storage device address. In some 1mple-
mentations an SQL-based programmatic interface may be
included 1n programmatic interfaces 261, enabling clients to
submit explanation requests using familiar and easy-to-use
interfaces.

[0038] In various embodiments, the raw data records of a
data source may be pre-processed (e.g., at input record
handlers 260 and/or at feature processors 262) at various
stages of the classifier generation and explainer generation
procedures—e.g., before the classification algorithm 1s
applied, or after the classifier 1s created but before the rule
mining phase for the explainer 1s begun. Such pre-process-
ing may include binarization of categorical attributes, bin-
ning of numeric attributes, and the like. Other types of
pre-processing may also be implemented 1n various embodi-
ments, such as cleansing data by removing incomplete or
corrupt data records, normalizing attribute values, and so on.

[0039] In their programmatic interactions with the MLS
via interfaces 261, clients 264 may indicate a number of
preferences or requirements which may be taken into
account when training classifiers and/or explaining classifier
predictions in various embodiments. For example, clients
may indicate a classification algorithm, a rule mining algo-
rithm, sizes of training sets and/or test sets, relative weights
that are to be assigned to various attributes with respect to
classification, and so on. Some clients 264 may simply
indicate a source of the observation records and leave the
modeling and explanation-related decisions to the MLS;
other clients, who are more conversant with the statistics
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involved or who are experts in the subject matter or domain
for which the stream records are collected, may provide
more detailed guidance or preferences with regard to the
classification or explanation stages.

[0040] The administrative or control plane portion of the
MLS may include a request handler 280, which accepts
client requests 211 and takes different actions depending on
the nature of the analysis requested. Some requests (such as
requests for explanations of a classifier prediction) may be
handled 1n real time or 1n near-real time, while other requests
(such as requests to train a classifier using a large data set)
may be handled 1n the form of longer-lasting batch jobs. For
batch-mode operations, the request handler may insert cor-
responding job objects into batch job queue 242, as indicated
by arrow 212. In general, the control plane of the MLS may
comprise a plurality of components (including the request
handler, the explanation query handler, workload distribu-
tion strategy selectors, one or more job schedulers, metrics
collectors, and modules that act as interfaces with other
services) which may also be referred to collectively as the
MLS manager. The data plane of the MLS may include, for
example, at least a subset of the servers of pool(s) 285,
storage devices that are used to store input data, intermediate
results or final results (some of which may be part of the
MLS artifact repository), and the network pathways used for
transierring client mput data and results.

[0041] A given batch job object may indicate one or more
operations that are to be performed as a result of the
invocation of a programmatic interface 261, and the sched-
uling of a given job may 1n some cases depend upon the
successiul completion of at least a subset of the operations
of an earlier-generated job. For example, one job may be
created to train a classifier, while a subsequent job may be
created to generate a rule set for explaining the classifier’s
predictions. In at least some implementations, job queue 242
may be managed as a first-in-first-out (FIFO) queue, with the
turther constraint that the dependency requirements of a
given job must have been met (e.g., that the classifier
training has completed before the explanatory rules are
mined) 1n order for that job to be removed from the queue.
In some embodiments, jobs created on behall of several
different clients may be placed 1n a single queue, while 1n
other embodiments multiple queues may be maintained
(e.g., one queue 1n each data center of the provider network
being used, or one queue per MLS customer). Asynchro-
nously with respect to the submission of the requests 211,
the next job whose dependency requirements have been met
may be removed from job queue 242 1n the depicted
embodiment, as indicated by arrow 213, and a processing
plan comprising a workload distribution strategy may be
identified for 1t. The workload distribution strategy layer
275, which may also be a component of the MLS control
plane as mentioned earlier, may determine the manner in
which the lower level operations of the job are to be
distributed among one or more compute servers (€.g., serv-
ers selected from pool 285), and/or the manner 1n which the
data analyzed or manipulated for the job 1s to be distributed
among one or more storage devices or servers. As idicated
by arrow 235, the workload distribution strategy layer 275
may also be utilized by explanation query handler 281 in
some embodiments, e.g., to help 1dentity the number or set
of servers to be used for rule mining. After the processing
plan has been generated and the appropriate set of resources
to be utilized for the batch job or the real-time analysis has
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been 1dentified, operations may be scheduled on the i1denti-
fied resources. Results of some batch jobs or real-time
analyses may be stored as MLS artifacts within repository
220 in some embodiments, as indicated by arrow 247.
[0042] In the embodiment shown in FIG. 2, clients 264
may be able to view at least a subset of the artifacts stored
in repository 220, e.g., by 1ssuing read requests 218. Expla-
nations 295 produced 1n response to client queries may be
made available from the query handler 281 via interfaces
261 1n some embodiments. Entries may be added to the
knowledge base based on mput recerved from clients 1in the
depicted embodiment, and knowledge base entries may also
be viewed by the clients 1n at least some embodiments, as
indicate by arrow 217. In some embodiments, a relatively
straightforward language for feature processing specifica-
tion may be supported, allowing MLS clients to create
“recipes” indicating various feature processing steps that
they wish to have applied on data sets. Such recipes may be
specified 1n text format, and then compiled into executable
formats that can be re-used with different data sets on
different resource sets as needed, e.g., at feature processors
262. Algorithm libraries 263 may include a wide variety of
machine learning, statistics and data analysis algorithms,
such as various types of regression and classification algo-
rithms, rule mining algorithms, and the like. In at least one
embodiment, the MLS may be designed to be extensible—
¢.g., clients may provide or register their own modules
(which may be defined as user-defined functions) for input
record handling, feature processing, or for implementing
additional machine learning algorithms than are supported
natively by the MLS.

[0043] In at least some embodiments, the training of a
classifier and/or the generation of explanatory rules for a
classifier’s predictions may be performed in parallel, e.g.,
using multiple servers of server pools 285. The number of
servers to be employed and/or the particular group of servers
to be used for a given classification and explanation problem
may be selected based on various factors by the MLS control
plane, such as the particular classification algorithm or rule
mining algorithm being used, the size of the training data,
the number or fraction of free servers available in the pool,
and so on.

Feature Transformation Examples

[0044] FIG. 3 illustrates examples of transformations
which may be applied to raw mnput data prior to generating
explanatory rules for the predictions made by a classifier
trained using that mput data, according to at least some
embodiments. In the depicted scenario, an observation
record 302 of a data set comprises three input attributes and
a target or output attribute Tattrl whose value 1s to be
predicted by a classifier. Among the three mput attributes,
categorical attribute Cattrl may take any of the three cat-
cgory value set members A, B or C as 1its value, while
numerical attribute Nattr]l can take any numerical value in
the value range 0 to 100. Binary input attribute Battrl can
take on values O or 1. Tattr]l may take on any of several class
values.

[0045] Belfore rule mining 1s begun with respect to the
predictions made for Tattr]l by the classifier selected for the
data set to which observation records 302 belong, the
categorical and/or numeric attribute values of the training
data set may be transformed. Two example feature trans-
formers 330 are shown: one which performs binarization
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351 on the categorical variable Cattrl, and another which
performs binming 352 on the numeric attribute Nattrl. In
binarization, a set of binary values comprising N members,
where N 1s the cardinality of the category value set of Cattrl,
1s generated for each observation record, and a value of 0 or
1 1s assigned to the binary values depending on which one
of the values 1s taken by Cattrl 1n that observation record.
Since Cattrl can take on three values (A, B or C), a binary
value set of size three 1s used in the depicted example. The
first binary digit 1s set to 1 1f the record’s Cattrl value 1s A,
with other two binary digits being set to zero. Similarly, 1T
the Cattrl value 1s B, the second binary digit 1s set to 1, and
the first and third are set to zero. Thus, A 1s mapped to the
binary digit sequence 100, B to 010, and C to 001 in the
depicted example. For categorical attributes such as Cattrl,

it may typically be the case that assigning an order to the
different values 1n the raw 1put 1s not possible, as there may
not be a comparison operator which can be used to decide
whether a given category value 1s greater or smaller than
another.

[0046] With respect to numeric attributes such as Nattrl,
for which relative ordering of values 1s possible, a binning
transformation (which preserves some ordering information,
although at a coarser granularity than the raw data values)
may be used. In the depicted example scenario, 1n which
Nattrl can take on values in the range 0 to 100, four bins or
buckets are created. Values less than 25 are assigned to bin
0 (e.g., mapped to the transtormed value 0), values 1n the
range 25-50 are assigned to bin 1, values 1n the range 50-75
are assigned to bin 2, and the remaining values greater than
75 are assigned to bin 3. Although the bin ranges or widths
are equal 1n the depicted example, 1n general not all the bins
need to have the same range or width. The values of the
binary attribute Battrl and the target attribute Tattrl may be
left unchanged in the transformed data record 372 in the
depicted embodiment. Transformations of the kinds shown
in FIG. 3 may be helpful for rule miners in various embodi-
ments, as it may be easier to generate predicate-based rules
in terms of small attribute value ranges (e.g., zeroes or ones
for categorical attributes, and bin identifiers for numeric
attributes). Other types of transformations may be used 1n
various embodiments to help simplily the task of rule
mimng; the example transtormations shown in FIG. 3 are
not intended to limit the kinds of transformation functions
which may be used.

Trivial Data Set Example

[0047] FIG. 4 illustrates a simple example of the genera-
tion of explanatory rules for a classifier’s predictions,
according to at least some embodiments. In the depicted
embodiment, the classification problem to be solved 1s to
predict the favorite sport of an 1individual, for example from
a small set of sports such as the set comprising soccer,
baseball, cricket and tennis. Fach observation record (such
as Rec0, Recl, Rec2, or Rec3) of traiming data set 401
comprises values for three mput variables 405 1n addition to
the target or class variable 407 labeled “favorite sport”: the
country 1n which the corresponding individual resides, the
year ol birth of the individual, and an annual income of the
individual. A very small number of observation records is
shown 1n FIG. 4 to keep the example simple and to avoid
clutter; in practice, a training data set may comprise far more
records (e.g., millions of records may be used in some

cases).
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[0048] A classifier may be trained using the observation
records of training set 401, and may produce a predicted
favorite sport for each training set record. Any desired
classification algorithm may be selected 1n various embodi-
ments; for the purposes of illustrating the techniques for
explaining classifier predictions at a high level, the specific
classification algorithm used does not matter. The predic-
tions made for RecO-Rec3 by the trained classifier are shown
in table 411. The predictions are correct with respect to
Rec0, Recl and Rec2, but the prediction for Rec3 (for which
the clasmﬁer predlcts soccer as the favorite sport, whereas
the observation record indicated that tennis was the actual
favorite sport) happens to be incorrect.

[0049] A transformed version of the training data com-
bined with the predictions made for the respective records
forms the mput 241 provided to a selected rule mining
algorithm in the depicted embodiment. In the transformed
data, the values of the country attribute have been mapped
to a sequence of binary values of length three (assuming that
the only country values 1n the traiming data are US, UK and
Japan). If the country 1s USA, the binary values are set to
1-0-0; 11 the country 1s UK, the values are set to 0-1-0 and
if the country 1s Japan, the values are set to 0-0-1. The

income has been mapped to four bins labeled O ({or incomes
less than $75000), 1 (for incomes between $75000 and

$90000), 2 (for incomes between $90000 and $100000) and
3 (for incomes greater than $100000) respectively.

[0050] Two examples 425 of the kinds of easy-to-under-
stand rules or assertions which may be generated from the
input 241 by a selected rule miner are shown. Fach rule
indicates predicates for one or more of the mput attributes,
and an 1mplication corresponding to those predicates. The
first explanatory rule RO has two attribute predicates: 11 the
country 1s UK and the mcome 1s greater than 90000, this
implies that the classifier will predict that the favorite sport
of the individual 1s cricket. The second rule R1 also has two
attribute predicates: 1f the country 1s USA and the year of
birth 1s earlier than 1980, this implies that the classifier waill
predict that the favorite sport of the mndividual 1s baseball.
By providing such rules to explain the predictions of the
classifier, the explainer may be able to summarize the work
done by the classifier in a manner that 1s satisfactory to the
clients (even 11 the actual logic used by the classifier to arrive
at 1ts predictions differs from the attribute predicate based
logic indicated in the rule).

Rule Ranking Criteria

[0051] As mentioned earlier, 1n at least some embodiments
the rules obtained by the selected rule mining algorithm may
be ranked relative to one another. FIG. 5 1llustrates examples
of criteria which may be used to evaluate or rank rules,
according to at least some embodiments. Table 521 contains
the information (shown in an untransformed version to
simplity the discussion) regarding ten data records RecO-
Rec9 which may be available as input for rule mining. Each
record contains values for three input variables—a country
of residence, a year or birth and an annual income—as well
as the favorite sport predicted by a classifier. The ten records
may be part of a test data set in some embodiments—that 1s,
these observation records may not have been used for
training the classifier. In other embodiments, at least some
records of the training set may be used to rank the rules.

[0052] Using the contents of table 321, a selected rule
mining algorithm has obtained a rule set 525 comprising
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three rules RO, R1 and R2. Each rule indicates some set of
predicates on the mput attributes, and an 1mplication about
what the classifier would predict regarding the favorite sport
if the attribute predicate conditions are met by a given
observation record. Two example criteria for ranking the
rules are shown: support or coverage (indicative of the
fraction of the mput data which meets the attribute predicate
conditions of the different rules) and confidence or accuracy
(indicative of the correctness of the implication).

[0053] In the case of rule RO, a data record fulfills the
predicate condition 1f the country 1s UK. Since eight of the
ten records (all except Rec3 and Rec5) shown have UK as
the country value, the support metric value for RO 1s 80%.
Among those eight records with UK as the country, soccer
1s predicted as the favorite sport for five records (all except
Recl, Rec/ and Rec9), so the confidence metric for the rule
RO (which includes the implication that soccer 1s the favorite

sport of all individuals living in the UK) 1s calculated as 34
or 62.5%.

[0054] Similarly, with respect to rule R1, four out of the
ten records Rec0-Rec9 meet the predicate conditions (that
the country be UK and the year of birth be earlier than 1985),
so the support metric 1s computed as 410 or 40%. Among the
four records which satisty the predicates of rule R1, three
match the implication of rule R1, so the confidence 1s set to
¥4 or 75%. Similarly, a support metric value of %10 or 30%
1s calculated for rule R2, and a confidence level of 100% 1s
computed for R2. The support and confidence levels may be
combined to derive an overall ranking metric for the rules 1n
some embodiments—e.g., a formula 1 which the support
level 1s simply added to the confidence level to obtain the
overall ranking metric, or in which a weighted sum of the
two metrics 1s used as the overall ranking metric, may be
used 1n different embodiments. Metrics other than support
and/or confidence may be used 1n at least some embodi-
ments. For example, 1n some embodiments and depending,
on the type of classification being performed, metrics such
as precision, recall or accuracy may be used.

Classifiers with Internal Representations of Input Data

[0055] Some classification algorithms may be layered, 1n
that they may involve the generation of internal intermediary
representations of various properties of the mput data, with
the classification decisions being made at least partly on the
basis of the internal representations rather than on the basis
of the mput data alone. Neural network based classifiers
form one example of such algorithms. FIG. 6 illustrates an
example of a neural network-based classifier, according to at
least some embodiments. Neural network models 1n general
may 1nclude several interconnected layers of nodes (roughly
modeled on the connections between brain cells or neurons
in the central nervous systems of various biological species).
In classifier 644, nodes 601 (e.g., 601 A-601F) form an 1nput
layer, nodes 604 (e.g., 604A and 604B) form the output
layer, and nodes 602 (602A-602D) and 603 (603A-603C)
for internal representation layers or hidden layers. Input data
regarding the attribute values of the training data records
may be provided to the input layer nodes, and the predictions
regarding the target class may be made at the output layer.
Each node may transmit weighted mformation based on the
inputs 1t recerves to some set of nodes at the next layer. The
welghts may be adjusted over time as additional information
becomes available, and an activation function may be
applied to the inputs at a given node to convert the weighted
inputs to the outputs. Each internal or hidden node may
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represent or summarize some combination of properties of
one or more input layer nodes.

[0056] Mathematically, each node of a neural network
may represent a respective function, with the output layer
producing the results of the composition of the functions at
the input and internal layers. The internal representation
layers may thus play a sigmificant role 1in the predictions
made at the output layer of neural network classifiers. As
such, 1t may be useful in various embodiments to mine for
explanatory rules formulated 1n terms of the internal repre-
sentations (e.g., in addition to, or instead of rules formulated
in terms of the mput data). The internal representations may
be considered examples of model features or model attri-
butes, 1n contrast to the input data features or attributes
which form part of the observation records themselves.
Sophisticated neural network models (e.g., the so-called
“deep neural networks™) may comprise many more internal
representation layers than shown in FIG. 6, with many more
nodes at leach layer. Similar internal representations or
structures may also be generated i other classification
algorithms which do not necessary employ neural networks.

[0057] FIG. 7 illustrates an example scenario in which
internal representation information generated by a classifier
may be used to express explanatory rules for the classifier,
according to at least some embodiments. In the depicted
embodiment, a classifier which generates internal represen-
tations of the raw input data 705 during training 1s used. The
intermediate data records 708 used as input for rule mining
may include three subcomponents: optionally-transformed
iput data 710 (which may be referred to as iput data
features), some set of internal representations 712 (which
may be referred to as model features), and the predictions
714 made by the classifier for each mput data record. In at
least some embodiments, at least a subset of the mput
attribute values may not be transtformed before inclusion 1n
the intermediate data records.

[0058] In an mmitial stage 720A of a potentially 1iterative or
hierarchical rule-mining technique, an explamer with a rule
set 722 formulated 1n terms of predicates on the properties
of the internal representations may be generated. In some
cases, the 1mitial rule set may 1nclude predicates on the raw
input data as well as predicates on the internal representa-
tions; that 1s, the mnitial rule set may not be restricted to
predicates on the properties of the internal representations
alone. The 1nitial set of rules may be ranked relative to one
another, e.g., using similar types of metrics to those dis-
cussed earlier. In response to client requests for explana-
tions, the first-level explainer may provide explanatory rules
which indicate relationships between predicates on proper-
ties of the internal representations and the classifier’s pre-
dictions. In the case of neural network classifiers, for
example, the predicates of the first-level explanatory rules
may be expressed in terms of the weights assigned to
connections to or from one or more hidden-layer nodes, the
number of mput links leading mnto a given hidden-layer
node, the number of output links emanating from a given
hidden-layer node, eftc.

[0059] In some cases, clients may wish to obtain expla-
nations in terms ol 1mput data attributes alone. Such clients
may submit additional queries, requesting further elabora-
tion of the rules. A second stage of rule-mining 720B may
be performed in response to such requests, in which the
relationships between mnput attribute values and the inter-
mediate representations may be identified. A second rule set
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724, expressed entirely 1n terms of input attribute predicates,
may be produced, and explanations from this second rule set
may be provided to the clients which request elaboration of
the first rule set’s rules. It 1s noted that depending, for
example, on the number of layers of internal representations,
multiple stages of hierarchical rule mining may be per-
formed 1n some embodiments, and multiple rule sets corre-
sponding to the different layers of internal representations
may be generated. In some embodiments, the machine
learning system or service responsible for providing expla-
nations for classifier predictions may be configured to only
provide explanations in terms of input attribute predicates—
that 1s, while rule mining with respect to internal represen-
tations may be performed, the results of such internal-
representation-oriented rule mining may not necessarily be
provided to clients. In at least one embodiment, clients may
be able to indicate preferences regarding the types of expla-
nations they wish to obtain—e.g., some clients may indicate,
as a query parameter, that the explanations are to be
expressed 1n terms of mput variables alone.

Responses to Explanation Queries

[0060] FIG. 8 illustrates examples of actions which may
be taken in response to a query for an explanation of a
classifier’s prediction, according to at least some embodi-
ments. A ranked set of rules 804 (e.g., RO, R1, ... ) has been
generated using a training data set 1n the depicted embodi-
ment. Each rule indicates some set of attribute predicates
802 and corresponding implications 803 regarding the clas-
sifier’s predictions. After the classifier training 1s complete,
a new observation record 1s received and a prediction 808 1s
provided for it. This post-training observation record 806
has a set of attribute values 807.

[0061] In response to a client query to explain prediction
808 for the post-tramning observation record 806, the
explainer may examine the rule set 804, e.g., 1n order of
decreasing rank, to determine whether any of the rules 1n 1ts
rule set 1s applicable or not.

[0062] The operations to determine whether a given rule 1s
applicable to a given query regarding a prediction may be
referred to as matching operations herein. Three possibilities
may exist with respect to i1dentifying applicable rules, as
shown 1n action table 850. If the attribute values 807 match
(or overlap) with the attribute predicates 802 of at least one
rule, and the prediction 808 matches the implication 1n that
rule, such a rule may be provided to the client as an
explanation for the prediction. If several rules are found, one
may be selected based on its rank and/or on 1ts generality or
case ol understandability. It 1s noted that to identity an
applicable explanatory rule in the matching operations, an
exact match may not be required—ifor example, a rule may
be expressed using a range predicate on an attribute, and the
rule may be considered applicable as long as the attribute’s
value falls within the range, and as long as the prediction
made by the classifier 1s the same as the prediction indicated
in the rule’s implication component.

[0063] If the values of the attributes 1n the post-training
observation record are compatible with the predicates indi-
cated 1n at least one rule, but none of the matching rules
contain an implication which matches the classifier’s actual
prediction, 1n at least some embodiments a message 1ndi-
cating that no explanation was available may be provided to
the client. Metrics regarding the number or fraction of
queries for which no explanatory rule was found may be
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updated, and used to trigger additional rule mining (e.g.,
with at least some observations for which no explanations
were found being included in the mput used for the addi-
tional rule mining). Similarly, 1f the attributes values 807 of
the post-training observation record do not match any of the
predicates for which rules have been generated, this may
also result n a “no explanation 1s currently available”
message and the updating of metrics or statistics regarding,
the effectiveness of the explainer.

Methods of Generating Explainers for Complex Classifiers

[0064] FIG. 9 illustrates aspects of operations that may be
performed to generate easy-to-understand explanations for
complex classifiers, according to at least some embodi-
ments. As shown 1n element 901, a classification model may
be generated or trained using a training set ol observation
records. The particular classification algorithm used for the
model may be 1ndicated 1n a client request for the model, or
may be selected by a component of a machine learning
service (e.g., based on contents of a knowledge base of the
service). In various embodiments the classification algo-
rithm may be chosen based on expected accuracy rather than
on how easy it 1s for non-experts to understand the internal
working of the algorithm. Transformed versions of some or
all of the attribute values of the training data set may be
obtained in the depicted embodiment—e.g., by binning
numeric attributes and/or using the binarization technique
discussed above for categorical attributes (element 904).
The transformations or feature processing functions may be
applied to the raw mput data to make 1t more suitable for rule
mining 1 some embodiments. It 1s noted that such trans-
formations may not be required for all rule mining tech-
niques—that 1s, the transformed versions of the raw input
may not be required 1n some embodiments.

[0065] A rule miming algorithm may be selected for gen-
erating the explanatory rules (element 907), and the input
data for the rule miner may be prepared. The rule miner
input may be referred to as an intermediate data set. The
records of the intermediate data set may include the trans-
formed versions of the training set attribute values and the
predictions regarding the classes to which the corresponding
(untransiormed) versions of the training data records were
assigned by the classifier in some embodiments. Depending
on the nature of the classification algorithm, it may be the
case that one or more layers of internal representations
summarizing various properties of the mput data according,
to the logic of the algorithm may have been prepared during
training (such as hidden layer nodes in the case of neural
network based algorithms, for example). In some embodi-
ments, these internal representations, which may also be
referred to as model features (as distinguished from the
features of the input data itself) may be included in the
intermediate data set which 1s used as mput by the rule
miner.

[0066] A set of explanatory rules or assertions may be
generated by the selected rule miner from the intermediate
data set. The rules may be expressed in an easy-to-under-
stand format i which the conditions for a given rule are
formulated in terms of predicates on attribute ranges or
values, and the implication part of the given rule indicates
the class or output variable value produced by the classifier
for an observation record whose attributes match or satisty
the predicates. The rules may be ranked relative to one
another (element 910) based on some combination of factors
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such as coverage or support levels (e.g., indicative of the
fraction of records of a test data set or evaluation data set
which satisty the rule predicates), confidence or accuracy
(e.g., indicative of the fraction of records whose actual
predictions match the implication portion of the rules). In
some 1mplementations, at least a preliminary level of rank-
ing may be performed using the training data itsellf.

[0067] The tramned classifier may generate predictions
(such as a particular prediction referred to as “Pred-1” in
FIG. 9) for numerous observation records which were not
used for training or testing the classifier (including an
observation record referred to as “OR-new” 1n FIG. 9 1n the
case ol Pred-j). A request to provide an explanation for
Pred-1 may be received (element 913), e.g., at an explainer
which has access to the ranked rules. The explainer may
examine the rules for matches with respect to OR-new and
Pred-1, e.g., 1n descending rank order or using indexes set up
on the rule set (element 916). In at least some embodiments,
the rule set may be stored or cached 1n main memory at one
or more computing devices to make the matching operations
more ethicient. If one or more rules which match OR-new’s
attribute values and also correctly indicate that the classifier
would have predicted Pred-j are found (element 919), one of
the found rules (e.g., the one with the highest rank) may be
provided as the explanation for the prediction of Pred-
(clement 922). It 1s noted that 1n some embodiments, the rule
provided to the explanation requester may be selected based
at least partly on other factors than the rule’s rank alone—
¢.g., the generality of the predicate may be used as a
selection factor, or the number of attributes indicated in the
predicate may be used as a selection factor.

[0068] If no matching rules are found (as also detected 1n
operations corresponding to element 919), a message indi-
cating that an explanation 1s currently unavailable may be
provided 1n response to the request regarding Pred-1 (ele-
ment 925). In at least some embodiments, metrics regarding,
the kind of responses (e.g., a satisfactory explanation versus
a “no explanation 1s available” message) provided to expla-
nation requests may be updated. If the metrics regarding
unsatisfactory responses reach a threshold, i such embodi-
ments this may trigger the re-generation of additional rules
(e.g., using a larger mput set for the rule miner, including at
least some observations for which no explanations were
available) and/or re-training of the classifier.

[0069] It 1s noted that 1n various embodiments, some of the
operations shown i FIG. 9 may be mmplemented in a
different order than that shown in the figure, or may be
performed 1n parallel rather than sequentially. Additionally,
some of the operations shown 1n FIG. 9 may not be required
in one or more implementations.

Use Cases

[0070] The techniques described above, of providing
explanations (formulated 1n terms easy for non-experts to
understand) for the results produced by complicated classi-
fication models such as neural network-based classifiers may
be usetul 1n a variety of environments. As machine learning
techniques are employed at increasing numbers of organi-
zations with more deployable computing capacity, e.g.,
using cloud-based machine learming services, the results
produced by sophisticated algorithms may generally become
more accurate. However, for many applications such as
loan-granting, blocking users from online marketplaces or
web-sites, and the like, simply relying on the decisions made
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by algorithms may be unsatistactory unless an accompany-
ing rationale 1s provided when a decision 1s disputed or
unclear. The approach of splitting the classification process
from the explanation process may allow machine learning
services to achieve the best of both worlds—that 1s, the most
technically advanced classification techniques may be
selected, resulting in the highest quality predictions, while at
the same time relatively straightforward-seeming explana-
tory rules may be provided in response to requests to justily
the predictions.

[lustrative Computer System

[0071] In at least some embodiments, a server that imple-
ments one or more of the techniques described above for
explain classification predictions (including for example
explanation query handlers, execution platforms and other
components of a machine learning service, standalone clas-
sifiers or explainers, and the like) may include a general-
purpose computer system that includes or 1s configured to
access one or more computer-accessible media. FIG. 10
illustrates such a general-purpose computing device 9000. In
the illustrated embodiment, computing device 9000 includes
one or more processors 9010 coupled to a system memory
9020 (which may comprise both non-volatile and volatile
memory modules) via an mput/output (I/0) mtertace 9030.
Computing device 9000 further includes a network interface
9040 coupled to 1I/O iterface 9030.

[0072] In various embodiments, computing device 9000
may be a uniprocessor system including one processor 9010,
or a multiprocessor system including several processors
9010 (e.g., two, four, eight, or another suitable number).
Processors 9010 may be any suitable processors capable of
executing 1instructions. For example, 1 various embodi-
ments, processors 9010 may be general-purpose or embed-
ded processors implementing any of a variety of instruction
set architectures (ISAs), such as the x86, PowerPC, SPARC,
or MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 9010 may commonly, but not
necessarily, implement the same ISA. In some implemen-
tations, graphics processing umts (GPUs) may be used
instead of, or 1n addition to, conventional processors.
[0073] System memory 9020 may be configured to store
istructions and data accessible by processor(s) 9010. In at
least some embodiments, the system memory 9020 may
comprise both volatile and non-volatile portions; in other
embodiments, only volatile memory may be used. In various
embodiments, the volatile portion of system memory 9020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM or any other type of memory. For the
non-volatile portion of system memory (which may com-
prise one or more NVDIMMs, for example), in some
embodiments flash-based memory devices, including
NAND-flash devices, may be used. In at least some embodi-
ments, the non-volatile portion of the system memory may
include a power source, such as a supercapacitor or other
power storage device (e.g., a battery). In various embodi-
ments, memristor based resistive random access memory
(ReRAM), three-dimensional NAND technologies, Ferro-
clectric RAM, magnetoresistive RAM (MRAM), or any of
various types of phase change memory (PCM) may be used
at least for the non-volatile portion of system memory. In the
illustrated embodiment, program instructions and data
implementing one or more desired functions, such as those
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methods, techniques, and data described above, are shown
stored within system memory 9020 as code 9025 and data

9026.

[0074] In one embodiment, I/O iterface 9030 may be
configured to coordinate I/O traflic between processor 9010,
system memory 9020, network interface 9040 or other
peripheral interfaces such as various types of persistent
and/or volatile storage devices. In some embodiments, 1/0O
interface 9030 may perform any necessary protocol, timing
or other data transformations to convert data signals from
one component (e.g., system memory 9020) into a format
suitable for use by another component (e.g., processor
9010). In some embodiments, I/O interface 9030 may
include support for devices attached through various types
of peripheral buses, such as a Low Pin Count (LPC) bus, a
variant of the Peripheral Component Interconnect (PCI) bus
standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O inter-
tace 9030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of I/O mtertace 9030, such as an interface to system memory
9020, may be mcorporated directly into processor 9010.

[0075] Network interface 9040 may be configured to allow
data to be exchanged between computing device 9000 and
other devices 9060 attached to a network or networks 9050,
such as other computer systems or devices as 1llustrated 1n
FIG. 1 through FIG. 9, for example. In various embodi-
ments, network interface 9040 may support communication
via any suitable wired or wireless general data networks,
such as types of Ethernet network, for example. Addition-
ally, network interface 9040 may support communication
via telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks,
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol.

[0076] In some embodiments, system memory 9020 may
be one embodiment of a computer-accessible medium con-
figured to store program instructions and data as described
above for FIG. 1 through FIG. 9 for implementing embodi-
ments of the corresponding methods and apparatus. How-
ever, in other embodiments, program instructions and/or
data may be received, sent or stored upon different types of
computer-accessible media. Generally speaking, a com-
puter-accessible medium may include non-transitory storage
media or memory media such as magnetic or optical media,
e.g., disk or DVD/CD coupled to computing device 9000 via
I/O interface 9030. A non-transitory computer-accessible
storage medium may also include any volatile or non-
volatile media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc., that may be included 1n
some embodiments of computing device 9000 as system
memory 9020 or another type of memory. Further, a com-
puter-accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 9040. Portions or all of multiple comput-
ing devices such as that illustrated in FIG. 10 may be used
to implement the described functionality 1n various embodi-
ments; for example, software components running on a
variety ol different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
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age devices, network devices, or special-purpose computer
systems, 1n addition to or instead of being implemented
using general-purpose computer systems. The term “com-
puting device”, as used herein, refers to at least all these
types of devices, and 1s not limited to these types of devices.

CONCLUSION

[0077] Various embodiments may further include receiv-
ing, sending or storing nstructions and/or data implemented
in accordance with the foregoing description upon a com-
puter-accessible medium. Generally speaking, a computer-
accessible medium may include storage media or memory
media such as magnetic or optical media, e.g., disk or

DVD/CD-ROM, volatile or non-volatile media such as
RAM (e.g. SDRAM, DDR, RDRAM, SRAM, etc.), ROM,
etc., as well as transmission media or signals such as
clectrical, electromagnetic, or digital signals, conveyed via
a communication medium such as network and/or a wireless
link.

[0078] The various methods as illustrated in the Figures
and described herein represent exemplary embodiments of
methods. The methods may be implemented 1n software,
hardware, or a combination thereof. The order of method
may be changed, and various eclements may be added,
reordered, combined, omitted, modified, etc.

[0079] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benellt of this disclosure. It 1s intended to embrace all such
modifications and changes and, accordingly, the above
description to be regarded 1n an illustrative rather than a
restrictive sense.

1.-20. (canceled)

21. A computer-implemented method, comprising:

performing, at a cloud based machine learning service:

obtaining an indication of at least a portion of a training,
data set of a machine learning model;

identifying, using at least the portion of the training
data set, one or more rules of an explainer for at least
some predictions produced by the machine learning
model; and

providing, using the explainer, an explanation for a first
prediction produced by the machine learning model
with respect to at least a first input record.

22. The computer-implemented method as recited 1n
claim 21, wherein the one or more rules comprise a plurality
of rules, the computer-implemented method further com-
prising performing, at the cloud based machine learning
Service:

ranking the plurality of rules based on one or more

criteria; and

selecting, for the explanation, the first rule from the

plurality of rules based at least in part on a result of the
ranking.

23. The computer-implemented method as recited 1n
claim 22, wherein a criterion of the one or more criteria 1s
based at least in part on one or more of: (a) a support metric
indicative, with respect to the first rule, of a number of
observation records whose attribute values match a predicate
defined 1n the first rule, or (b) a confidence metric indicative,
with respect to the first rule, of an accuracy of the first
explanatory rule.

24. The computer-implemented method as recited 1n
claim 21, wherein a first rule of the one or more rules 1s
expressed 1n terms of a first transformation of a first attribute
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of mput records of the machine learning model, the com-
puter-implemented method further comprising performing,
at the cloud based machine learning service:

applying a reverse transformation, with respect to the first

transformation, on an internal representation of the first
attribute of the first input record, wherein the explana-
tion comprises a result of the reverse transformation.

25. The computer-implemented method as recited in
claim 21, wherein the one or more rules comprise a plurality
of rules, the computer-implemented method further com-
prising performing, at the cloud based machine learming
Service:

selecting, for the explanation, the first rule from the

plurality of rules based at least 1n part on a number of
predicates included in the first rule.

26. The computer-implemented method as recited in
claim 21, further comprising performing, at the cloud based
machine learning service:

receiving a set of predictions generated by the machine

learning model for the portion of the training data set,
wherein 1dentifying the one or more rules comprises
utilizing the set of predictions.

27. The computer-implemented method as recited in
claim 21, wherein the machine learning model utilizes one
or more of: (a) a neural network algorithm, (b) a random
forest algorithm, or (¢) a boosted gradient tree algorithm.

28. A system, comprising:

one or more computing devices;

wherein the one or more computing devices include

instructions that upon execution on or across the one or

more computing devices cause the one or more com-

puting devices to:

obtain an indication of at least a portion of a training
data set of a machine learning model;

identify, using at least the portion of the training data
set, one or more rules of an explainer for at least
some predictions produced by the machine learning
model; and

provide, using the explainer, an explanation for a first
prediction produced by the machine learning model
with respect to at least a first input record.

29. The system as recited in claim 28, wherein the one or
more rules comprise a plurality of rules, and wherein the one
or more computing devices include further instructions that
upon execution on or across the one or more computing
devices further cause the one or more computing devices to:

rank the plurality of rules based on one or more criteria;

and

select, for the explanation, a first rule from the plurality of

rules based at least 1n part on a result of the ranking.

30. The system as recited 1n claim 29, wherein a criterion
of the one or more criteria 1s based at least 1n part on one or
more of: (a) a support metric indicative, with respect to the
first rule, of a number of observation records whose attribute
values match a predicate defined in the first rule, or (b) a
confidence metric indicative, with respect to the first rule, of
an accuracy of the first explanatory rule.

31. The system as recited 1n claim 28, wherein a first rule
of the one or more rules 1s expressed using a first transior-
mation of a first attribute of mput records of the machine
learning model, and wherein the one or more computing
devices include further mstructions that upon execution on
or across the one or more computing devices further cause
the one or more computing devices to:
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apply a reverse transformation, with respect to the first
transiformation, on an internal representation of the first
attribute of the first imnput record, wherein the explana-
tion comprises a result of the reverse transformation.

32. The system as recited 1n claim 28, wherein the one or
more rules comprise a plurality of rules, and wherein the one
or more computing devices include further instructions that
upon execution on or across the one or more computing
devices further cause the one or more computing devices to:

select, for the explanation, the first rule from the plurality
of rules based at least in part on a number of attribute
predicates included 1n the first rule.

33. The system as recited 1n claim 28, wherein the one or
more computing devices include further instructions that
upon execution on or across the one or more computing
devices further cause the one or more computing devices to:

recerve a set of predictions generated by the machine
learning model for the portion of the training data set,
wherein the one or more rules are identified based at
least 1 part on the set of predictions.

34. The system as recited in claim 28, wherein the
machine learning model comprises a classification model.

35. One or more non-transitory computer-accessible stor-
age media storing program instructions that when executed
On Or across one or more processors cause the one or more
Processors to:

obtain an 1ndication of at least a portion of a training data
set of a machine learning model;

generate, using at least the portion of the training data set,
at least a portion of an explainer of at least some
predictions produced by the machine learning model;
and

provide, using the explainer, an explanation for a first
prediction produced by the machine learning model
with respect to at least a first mput record.

36. The one or more non-transitory computer-accessible
storage media as recited 1n claim 35, wherein the explainer
comprises a plurality of rules, the one or more non-transitory
computer-accessible storage media storing further program
instructions that when executed on or across one or more
processors cause the one or more processors to:

rank the plurality of rules based on one or more criteria;
and

select, for the explanation, a first rule from the plurality of
rules based at least 1n part on a result of the ranking.

37. The one or more non-transitory computer-accessible
storage media as recited 1 claim 36, wherein a criterion of
the one or more criteria 1s based at least 1n part on one or
more oi: (a) a support metric indicative, with respect to the
first rule, of a number of observation records whose attribute
values match a predicate defined in the first rule, or (b) a
confidence metric indicative, with respect to the first rule, of
an accuracy of the first explanatory rule.

38. The one or more non-transitory computer-accessible
storage media as recited 1n claim 35, wherein a rule of the
explainer 1s expressed 1n terms of a first transformation of a
first attribute of input records of the machine learning model,
the one or more non-transitory computer-accessible storage
media storing further program instructions that when
executed on or across one or more processors cause the one
Or more processors to:

apply a reverse transformation, with respect to the first
transformation, on an internal representation of the first
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attribute of the first input record, wherein the explana-
tion comprises a result of the reverse transformation.

39. The one or more non-transitory computer-accessible
storage media as recited 1n claim 35, wherein the explainer
comprises a plurality of rules, the one or more non-transitory
computer-accessible storage media storing further program
instructions that when executed on or across one or more
processors cause the one or more processors to:

select, for the explanation, the first rule from the plurality

of rules based at least 1n part on a number of attribute
predicates included in the first rule.

40. The one or more non-transitory computer-accessible
storage media as recited 1n claim 35, storing further program
instructions that when executed on or across one or more
processors cause the one or more processors to:

obtain a set of predictions generated by the machine

learning model for the portion of the training data set,
wherein the portion of the explainer 1s generated based
at least in part on the set of predictions.
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