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(57) ABSTRACT

A system for enhanced power system model calibration 1s
provided. The system 1s programmed to store a model of a
device. The model includes a plurality of parameters. The
system 1s also programmed to receive a plurality of events
associated with the device, receive a first set of 1nput
calibration values for the plurality of parameters, sequen-

tially analyze the plurality of events 1n a first sequence to
determine a set of calibrated parameter values for the model,
validate the set of calibrated parameter values for the model
to determine fit, and perform Bayesian optimization on the
determined fit, the set of calibrated parameter values for the
model, and the plurality of events.
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SYSTEMS AND METHODS FOR ENHANCED
POWER SYSTEM MODEL CALIBRATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority to
U.S. Provisional Patent Application No. 62/833,492, filed
Apr. 12, 2019, entitled “SYSTEMS AND METHODS FOR
SEQUENTIAL POWER SYSTEM MODEL PARAMETER
STIMATION,” the entire contents and disclosure of which

are 1ncorporated by reference 1n 1ts entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH & DEVELOPMEN'T

[0002] This invention was made with government support
under U.S. Government Contract Number: DE-OE0000858
awarded by the Department of Energy. The government has
certain rights in the mmvention.

BACKGROUND

[0003] The field of the invention relates generally to
enhanced power system model calibration, and more par-
ticularly, to a system for modeling sequential power systems
based on multiple events with Bayesian Optimization.
[0004] During the 1996 Western System Coordinating
Council (WSCC) blackout, the planning studies conducted
using dynamic models had predicted stable system opera-
tion, whereas the real system became unstable 1n a few
minutes with severe swings. To ensure the models represent
the real system accurately, North American Electric Reli-
ability Coordinator (NERC) requires generators above 20
MVA to be tested every 5 years or 10 years (depending on
their interconnection) to check the accuracy of dynamic
models and update the power plant dynamic models as
necessary.

[0005] Some of the methods of performing calibration on
the model include performing staged tests and direct mea-
surement of disturbances. In a staged test, a generator 1s first
taken oflline from normal operation. While the generator 1s
oflline, the testing equipment 1s connected to the generator
and 1its controllers to perform a series of predesigned tests to
derive the desired model parameters. This method may cost
$15,000-$35,000 per generator per test in the United States
and 1ncludes both the cost of performing the test and the cost
of taking the generator ofi-line. Phasor Measurement Units
(PMUs) and Digital Fault Recorders (DFRs) have seen
dramatic increases in installation in recent years, which
allows for non-invasive model validation by using the
sub-second-resolution dynamic data. Varying types of dis-
turbances across locations 1n the power system along with
the large installed base of PMUs makes it possible to
validate the dynamic models of the generators frequently at
different operating conditions.

[0006] As more and more disturbances 1n power systems
are being recorded by PMUSs every day, the North American
Electric Reliability Corporation (INERC) has pointed out that
the analysis of multiple system events 1s beneficial for model
calibration. A generator or load model built from one or two
field tests may not be a good model, since 1t may overtit
some specific event and lack the ability to {it the new, fresh
measured load curves. Thus far, the primary questions in the
community have been associated with how to calibrate the
model parameters to make maximal use of the multiple
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events. Furthermore, depending on disturbance length, one
typical simulation may take up to 200-300 seconds. This
could be very time consuming when 1t comes to multiple
events. Furthermore, another challenge 1s determining the
exploration and exploitations, also known as breadth and
depth of parameters to be analyzed. In addition, the method
used may be sensitive to the initial values used. Accordingly,
there exists a need for additional speed and accuracy in
model calibration.

BRIEF DESCRIPTION

[0007] In one aspect, a system for enhanced power system
model calibration 1s provided. The system includes a com-
puting device including at least one processor in communi-
cation with at least one memory device. The at least one
processor 1s programmed to store a model of a device. The
model includes a plurality of parameters. The at least one
processor 1s also programmed to receive a plurality of events
associated with the device. The at least one processor is
turther programmed to recerve a first set of mput calibration
values for the plurality of parameters. In addition, the at least
one processor 1s programmed to sequentially analyze the
plurality of events 1n a first sequence to determine a set of
calibrated parameter values for the model. Moreover, the at
least one processor 1s programmed to validate the set of
calibrated parameter values for the model to determine {it.
Furthermore, the at least one processor 1s programmed to
perform Bayesian optimization on the determined {it, the set
of calibrated parameter values for the model, and the plu-
rality of events.

[0008] In another aspect, a system for enhanced power
system model calibration 1s provided. The system includes a
computing device including at least one processor in com-
munication with at least one memory device. The at least one
processor 1s programmed to store a model of a device. The
model includes a plurality of parameters. The at least one
processor 1s also programmed to receive a first event asso-
ciated with the device. The at least one processor 1s further
programmed to analyze the first event to identify a subset of
important parameters from the plurality of parameters. In
addition, the at least one processor 1s programmed to per-
form Bayesian optimization on the subset of important

parameters to determine a set of calibrated parameter values
for the model.

[0009] In a further aspect, a system for enhanced sequen-
t1al power system model calibration 1s provided. The system
includes a computing device including at least one processor
in communication with at least one memory device. The at
least one processor 1s programmed to store a model of a
device. The model includes a plurality of parameters. The at
least one processor 1s also programmed to receive a first
event associated with the device. The at least one processor
1s Turther programmed to analyze the first event to 1dentily
a subset of important parameters from the plurality of
parameters. In addition, the at least one processor 1s pro-
grammed to determine at least one hyperparameter based on
the analysis. Moreover, the at least one processor 1s pro-
grammed to perform Bayesian optimization on the hyper-
parameter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The Figures described below depict various aspects
of the systems and methods disclosed therein. It should be
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understood that each Figure depicts an embodiment of a
particular aspect of the disclosed systems and methods, and
that each of the Figures 1s intended to accord with a possible
embodiment thereof. Further, wherever possible, the follow-
ing description refers to the reference numerals included 1n
the following Figures, 1n which features depicted 1n multiple
Figures are designated with consistent reference numerals.
[0011] There are shown in the drawings arrangements
which are presently discussed, it being understood, however,
that the present embodiments are not limited to the precise
arrangements and are instrumentalities shown, wherein:
[0012] FIG. 1 1illustrates a block diagram of a power
distribution grid.

[0013] FIG. 2 illustrates a high-level block diagram of a
system for performing sequential calibration 1n accordance
with some embodiments.

[0014] FIG. 3 illustrates a block diagram of an exemplary
system architecture for model calibration, in accordance
with one embodiment of the disclosure.

[0015] FIG. 4 1llustrates a process for power system model
parameter conditioning in accordance with some embodi-
ments.

[0016] FIG. 5 illustrates a process for performing optimi-
zation using an objective function 1n at least part by using an
integrated acquisition function and a probabilistic model of
the objective function, 1n accordance with some embodi-
ments.

[0017] FIG. 6 1llustrates a process for sequential calibra-
tion using the system architecture shown in FIG. 3.

[0018] FIG. 7 1s a data flow diagram illustrating the
architecture system shown in FIG. 3 executing the sequen-
tial calibration process shown in FIG. 6.

[0019] FIG. 8 illustrates a process for using Bayesian
Optimization to optimize model parameters in accordance
with the process shown i FIG. 4.

[0020] FIG. 9 1illustrates a process for using Bayesian
Optimization to optimize parameter 1dentifiability analysis
in accordance with the process shown in FIG. 4.

[0021] FIG. 10 illustrates a process for using Bayesian
Optimization to optimize a hyperparameter 1 accordance
with the process shown i FIG. 4.

[0022] FIG. 11 illustrates a process for using Bayesian
Optimization to optimize event sequences for sequential
model calibration, such as shown 1n the process shown in
FIG. 6.

[0023] FIG. 12 1s a diagram 1llustrating candidate param-
cter estimation algorithms 1n accordance with some embodi-
ments.

[0024] FIG. 13 illustrates a two-stage approach of the
process for model calibration.

[0025] FIG. 14 1s a diagram illustrating an exemplary
apparatus or platform according to some embodiments.

DETAILED DESCRIPTION

[0026] In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough
understanding of embodiments. However, 1t will be under-
stood by those of ordinary skill 1in the art that the embodi-
ments may be practiced without these specific details. In
other instances, well-known methods, procedures, compo-
nents and circuits have not been described 1n detail so as not
to obscure the embodiments.

[0027] One or more specific embodiments are described
below. In an eflort to provide a concise description of these
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embodiments, all features of an actual implementation may
not be described 1n the specification. It should be appreciated
that 1n the development of any such actual implementation,
as 1 any engineering or design project, numerous 1mple-
mentation-specific decisions must be made to achieve the
developers” specific goals, such as compliance with system-
related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be com-
plex and time consuming, but would nevertheless be a
routine undertaking of design, fabrication, and manufacture
for those of ordinary skill having the benefit of this disclo-
SUre

[0028] As used herein, the term “Power System Simula-
tion” refers to power system modeling and network simu-
lation 1 order to analyze electrical power systems using
design/oflline or real-time data. Power system simulation
soltware 1s a class of computer simulation programs that
focus on the operation of electrical power systems. These
types of computer programs are used in a wide range of
planning and operational situations, for example: Electric
power generation—Nuclear, Conventional, Renewable,
Commercial facilities, Utility transmission, and Utility dis-
tribution. Applications of power system simulation include,
but are not limited to: long-term generation and transmission
expansion planning, short-term operational simulations, and
market analysis (e.g. price forecasting). A traditional simu-
lation engine relies on differential algebraic equations
(DAEs) therein to represent the relationship between volt-
age, frequency, active power, and reactive power. Those
mathematically relationships may be used to study diflerent
power systems applications including, but not limited to:
Load flow, Short circuit or fault analysis, Protective device
coordination, Discrimination or selectivity, Transient or
dynamic stability, Harmonic or power quality analysis, and
Optimal power tlow.

[0029] As used herein, the term “Power System Devices™
refers to devices that the simulation engine or simulation
model represents, the devices may include: Transmission
Systems, Generating Units, and Loads. Transmission Sys-
tems 1nclude, but are not limited to, transmission lines,
power transformers, mechanically switched shunt capacitors
and reactors, phase-shifting transformers, static VAR com-
pensators (SVC), flexible AC transmission systems
(FACTS), and high-voltage dc (HVDC) transmission sys-
tems. The models may mclude equipment controls such as
voltage pick-up and drop-out levels for shunt reactive
devices. Generating Units include the entire spectrum of
supply resources—hydro-, steam-, gas-, and geothermal
generation along with rapidly emerging wind and solar
power plants. The Load represents the electrical load 1n the
system, which range from simple light-bulbs to large indus-
trial facilities.

[0030] As used herein, the term “Model Validation” 1s
defined within regulatory guidance as “the set of processes
and activities intended to verity that models are performing
as expected, 1n line with their design objectives, and busi-
ness uses.” It also idenfifies “potential limitations and
assumptions, and assesses their possible impact.” In the
power system context, the Model Validation assures that the
model accurately represents the operation of the real sys-
tem—including model structure, correct assumptions, and
that the output matches actual events. There 1s a reason
behind Model Validation for power system asset. The behav-
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10r of power plants and electric grids changes over time and
should be monitored and updated to ensure that they remain
accurate.

[0031] The purpose of model validation 1s to understand
the underlying power system phenomena so they can be
appropriately represented imm power system studies. The
eventual goal of the systems described herein 1s to generate
a total system model that can reasonably predict the outcome
of an event. However, to achieve this, the individual con-
stituents of the system model need to be valid. The process
of model validation and the eventual “validity” of the model
require sound “engineering judgment” rather than being
based on a simple pass/fail of the model determined by some
rigid criteria. This 1s because any modeling activity neces-
sitates certain assumptions and compromises, which can
only be determined by a thorough understanding of the
process being modeled and the purpose for which the model
1s to be used. Component level Model Validation can be
done either through staged tests or on-line disturbance based
model validation.

[0032] As used herein, the term “Model Calibration”

refers to adjustments of the model parameters to improve the
model so that the model’s response will match the real,
actual, or measured response, given the same model mnput.
Once the model 1s validated, a calibration process 1s used to
make minor adjustments to the model and 1its parameters so
that the model continues to provide accurate outputs. High-
speed, time synchronized data, collected using phasor mea-
surement units (PMUSs), are used for model validation of the
dynamic response to grid events.

[0033] As used herein, the term ‘“Phasor Measurement
Unit” (PMU) refers to a device used to estimate the mag-
nitude and phase angle of an electrical phasor quantity (such
as voltage or current) 1n the electricity grid using a common
time source for synchronization. Time synchronization i1s
usually provided by GPS and allows synchronized real-time
measurements of multiple remote points on the grid. PMUs
are capable of capturing samples from a waveform 1n quick
succession and reconstructing the phasor quantity, made up
of an angle measurement and a magnitude measurement.
The resulting measurement 1s known as a synchrophasor.
These time synchronized measurements are important
because 1f the grid’s supply and demand are not perfectly
matched, frequency imbalances can cause stress on the grid,
which 1s a potential cause for power outages.

[0034] PMUSs may also be used to measure the frequency
in the power grid. A typical commercial PMU may report
measurements with very high temporal resolution 1n the
order of 30-60 measurements per second. Engineers use this
in analyzing dynamic events in the grid which 1s not possible
with traditional SCADA measurements that generate one
measurement every 2 or 4 seconds. Therefore, PMUSs equip
utilities with enhanced monitoring and control capabilities
and are considered to be one of the most important measur-
ing devices 1n the future of power systems. A PMU can be
a dedicated device, or the PMU function can be incorporated
into a protective relay or other device.

[0035] As used heremn, the terms “Power Grid Distur-
bance” and “Power Grid Event” refer to outages, forced or
unintended disconnection, or failed re-connection of breaker
as a result of faults in the power grid. A grid disturbance
starts with a primary fault and may also consist of one or
more secondary faults or latent faults. A grid disturbance
may, for example, be: a tripping of breaker because of
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lightning striking a line; a failed line connection when
repairs or adjustments need to be carried out before the line
can be connected to the network; an emergency disconnec-
tion due to fire; an undesired power transformer disconnec-
tion because of faults due to relay testing; or tripping with
a successiul high-speed automatic reclosing of a circuit

breaker.

[0036] PMU recordings of almost any noticeable gnd
event may be used for model validation. During grid dis-
turbances, a device operates outside of 1ts normal steady-
state condition, providing an opportunity to observe the
dynamic behavior of the asset during transients. The PMU
data from these transient grid disturbances provides infor-
mation that cannot be captured with SCADA. These tran-
sient disturbances often pose the most risk for grid stability
and reliability. Some of the grnid events that may generate
valuable PMU data for model validation purposes include,
but are not limited to:

[0037] Frequency excursion events—In a frequency
excursion event, a substantial loss of load or generation
causes a significant shift 1n electrical frequency, typically
outside an 1nterconnection’s standard. PMU data on a gen-
erator’s response to a frequency excursion may be used to
examine the settings and performance of models of governor
and automatic generation control (used to adjust the power
output of a generator 1n response to changes 1n frequency).

[0038] Voltage excursion events—A fault on the system, a
significant change 1n load or generation (including intermit-
tent renewables), or the loss of a significant load or genera-
tion asset may cause voltage shifts. PMU data on a genera-
tor’s response to a voltage excursion may be used to validate
models of 1ts excitation system, reactive capabilities, and
automated voltage regulation settings (used to control the
input voltage for the exciter of a generator to stabilize
generator output voltage).

[0039] Device trips—Transmission devices and lines rou-
tinely trip out of service. They cause less severe impacts than
a frequency or voltage excursion, but can provide similar
data sets usetul for model validation.

[0040] Remedial Action Scheme (RAS) activations—Use-
ful data events for model validation can be caused by a
reaction to mitigate grid disturbances. Certain grid distur-
bances may cause a RAS activation, which will attempt to
regulate the grid back to a normal operating condition. In
some systems, the RAS may include switching on devices
such as shunt reactors, changing FACTS devices, or msert-
ing braking resistance. Activation of the RAS may create
additional discrete disturbance events on the system, pro-
viding frequency and voltage events that can also be used for
model validation.

[0041] Probing signals—In the WECC, the high-voltage
direct current (HVDC) station at Celilo, Oreg., has the
ability to modulate its output power to a known signal,
cllectively serving as a signal generator into the western
power system. These signals can be used to verity and
calibrate system-level and generator models” frequency
responses, particularly for small-signal-stability analysis.

[0042] A dynamic power system model calibration or
tuning using Bayesian optimization 1s disclosed herein. The
system 1) receives a dynamic model, measurement data as
dynamic model input and output, imitial parameter value for
the dynamic model. The system then 2) defines an objective
function which represents the deviation between the simu-
lated response using the parameter value and the measured
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response. The system also 3) conducts parameter screening,
to ensure the number of tunable parameter is less than ten.
The system further 4) dynamically tunes the parameter value
to an undated value by using a Bayesian optimization
method.

[0043] In some embodiments, the system may conduct a
local search based on the updated value to generate a further
undated parameter value. The system may also perform a
post evaluation to evaluate the reasonableness of the tuned
parameter value.

[0044] The Bayesian Optimization described herein main-
tains a probabilistic surrogate model and an acquisition
function. The objective function represents the goal of the
model and the acquisition function 1s an 1ntermediate func-
tion that allows the system to achieve the goal and to identify
the next point to analyze next. The Bayesian Optimization
performs the following steps. First the Bayesian Optimiza-
tion 1mtializes a probabilistic model of the objective func-
tion using 1mtial parameter points, the probabilistic model of
the objective function comprising a stationary probabilistic
model composed with a non-linear one-to-one mapping of
the values of the parameters from a first domain to a second
domain. In the exemplary embodiment, the first domain
includes the dynamic model parameters and/or the hyper-
parameters. The second domain includes the measurement
of the similarity between the simulation response generated
from the model parameter and/or hyperparameters and the
measured response. The Bayesian Optimization then repeats
the following steps until reaching a fixed number of 1teration
or time or a stopping criterion 1s reached. The Bayesian
Optimization generates a new set of parameter values cor-
responding to at least one parameter of the power system
model calibration system, by optimizing an acquisition
tfunction, which depends at least in part on the current set of
parameter values and the probabilistic model of the objec-
tive function. Then the Bayesian Optimization augments the
data set with the new set of parameter values and evaluated
the objective function value using the power system model
operated at the i1dentified set of parameter values. Further,
the Bayesian Optimization updates the probabilistic model
of the objective function to obtain an updated probabilistic
model of the objective function, based on the augmented
data set. Because Bayesian optimization 1s a global tech-
nique, unlike many other algorithms, to search for a global
solution the system does not have to start the algorithm from
various 1nitial points.

[0045] FIG. 1 1illustrates a power distribution grid 100. The
orid 100 includes a number of components, such as power
generators 110. In some cases, planning studies conducted
using dynamic models predict stable grid 100 operation, but
the actual grid 100 may become unstable 1n a few minutes
with severe swings (resulting in a massive blackout). To
ensure that the models represent the real system accurately,
the North American Electric Reliability Coordinator
(“NERC”) requires generators 110 above 10 MVA to be
tested every five years to check the accuracy of dynamic
models and let the power plant dynamic models be updated
as necessary. The systems described herein consider not only
active power (P) and reactive power (Q), but also voltage
(U) and frequency (F).

[0046] Inatypical staged test, a generator 110 1s first taken
offline from normal operation. While the generator 110 1s
offline, testing equipment 1s connected to the generator 110
and 1its controllers to perform a series of pre-designed tests
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to derive the desired model parameters. Recently, PMUs 120
and Digital Fault Recorders (“DFRs”) 130 have seen dra-
matic increase in 1nstallation in recent years, which may
allow for non-invasive model validation by using the sub-
second-resolution dynamic data. Varying types ol distur-
bances across locations 1n the grid 100 along with the large
installed base of PMUSs 120 may, according to some embodi-
ments, make 1t possible to validate the dynamic models of
the generators 110 frequently at different operating condi-
tions. There 1s a need for a production-grade software tool
generic enough to be applicable to wide vanety of models
(traditional generating plant, wind, solar, dynamic load, eftc.
with minimal changes to existing simulation engines. Note
that model calibration 1s a process that seeks multiple
(dozens or hundreds) of model parameters, which could

1

sufler from local mimmum and multiple solutions. There 1s
need for an algorithm to enhance the quality of a solution
within a reasonable amount time and computation burdens.

[0047] Online performance monitoring of power plants
using synchrophasor data or other high-resolution distur-
bance monitoring data acts as a recurring test to ensure that
the modeled response to system events matches actual
response ol the power plant or generating umt. From the
Generator Owner (GO)’s perspective, online verification
using high resolution measurement data can provide evi-
dence of compliance by demonstrating the validity of the
model by online measurement. Therefore, it 1s a cost-
cllective approach for GO as they may not have to take the
unit offline for testing of model parameters. Online perfor-
mance monitoring requires that disturbance monitoring
equipment such as a PMU be located at the terminals of an
individual generator or Point of Interconnection (POI) of a
power plant.

[0048] The disturbance recorded by PMU normally con-
sists of four variables: voltage, frequency, active power, and
reactive power. To use the PMU data for model validation,
the playback simulation has been developed and i1s now
available 1n many major grid simulators. The simulated
output 1ncluding active power and reactive power will be
generated and can be further compared with the measured
active power and reactive power.

[0049] To achieve such results, FIG. 2 1s a high-level block
diagram of a system 200 1n accordance with some embodi-
ments. The system 200 includes one or more measurement
unmits 210 (e.g., PMUSs, DFRs, or other devices to measure
frequency, voltage, current, or power phasors) that store
information mnto a measurement data store 220. As used
herein, the term “PMU” might refer to, for example, a device
used to estimate the magnitude and phase angle of an
clectrical phasor quantity like voltage or current in an
clectricity grid using a common time source for synchroni-
zation. The term “DFR” might refer to, for example, an
Intelligent Electronic Device (“TED”) that can be installed
in a remote location, and acts as a termination point for field
contacts. According to some embodiments, the measurement
data might be associated with disturbance event data and/or
data from deliberately performed unit tests. According to
some embodiments, a model parameter tuning engine 250
may access this data and use 1t to tune parameters for a
dynamic system model 260. The process might be per-
formed automatically or be initiated via a calibration com-
mand from a remote operator interface device 290. As used
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herein, the term “automatically” may refer to, for example,
actions that can be performed with little or no human
intervention.

[0050] Note that power systems may be designed and
operated using mathematical models (power system models)
that characterize the expected behavior of power plants, grid
clements, and the grid as a whole. These models support
decisions about what types of equipment to invest in, where
to put 1t, and how to use 1t 1n second-to-second, minute-to-
minute, hourly, daily, and long-term operations. When a
generator, load, or other element of the system does not act
in the way that its model predicts, the mismatch between
reality and model-based expectations can degrade reliability
and efliciency. Inaccurate models have contributed to a
number of major North American power outages.

[0051] The behavior of power plants and electric grids
may change over time and should be checked and updated
to assure that they remain accurate. Engineers use the
processes ol validation and calibration to make sure that a
model can accurately predict the behavior of the modeled
object. Validation assures that the model accurately repre-
sents the operation of the real system—including model
structure, correct assumptions, and that the output matches
actual events. Once the model i1s validated, a calibration
process may be used to make minor adjustments to the
model and its parameters so that the model continues to
provide accurate outputs. High-speed, time-synchronized
data, collected using PMUs may facilitate model validation
of the dynamic response to grid events. Grid operators may
use, for example, PMU data recorded during normal plant
operations and grid events to validate grid and power plant
models quickly and at lower cost.

[0052] The transmission operators or Regional reliability
coordinators, or Independent System Operators, like MISO,
ISO-New England, PG&E, can use this calibrated generator
or power system model for power system stability study
based on N-k contingencies, 1n every 5 to 10 minutes. IT
there 1s a stability 1ssue (transient stability) for some specific
contingency, the power flow will be redirected to relieve the
stress-limiting factors. For example, the output of some
power generators will be adjusted to redirect the power tlow.
Alternatively, adding more capacity (more power lines) to
the existing system can be used to increase the transmission
capacity.

[0053] With a model that accurately retlects oscillations
and their causes, the grid operator can also diagnose the
causes of operating events, such as wind-driven oscillations,
and identily approprniate corrective measures before those
oscillations spread to harm other assets or cause a loss of

load.

[0054] As used herein, devices, including those associated
with the system 200 and any other device described herein,
may exchange information via any communication network
which may be one or more of a Local Area Network
(“LAN™), a Metropolitan Area Network (“MAN”), a Wide
Area Network (“WAN™), a proprietary network, a Public
Switched Telephone Network (“PSTN™), a Wireless Appli-
cation Protocol (“WAP”) network, a Bluetooth network, a
wireless LAN network, and/or an Internet Protocol (“IP”)
network such as the Internet, an intranet, or an extranet. Note
that any devices described herein may communicate via one
or more such communication networks.

[0055] The model parameter tuning engine 250 may store
information into and/or retrieve information trom wvarious
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data stores, which may be locally stored or reside remote
from the model parameter tuning engine 250. Although a
single model parameter tuning engine 250 1s shown 1n FIG.
2, any number of such devices may be included. Moreover,
various devices described herein might be combined accord-
ing to embodiments of the present invention. For example,
in some embodiments, the measurement data store 220 and
the model parameter tuning engine 250 might comprise a
single apparatus. The system 200 functions may be per-
formed by a constellation of networked apparatuses, such as
in a distributed processing or cloud-based architecture.

[0056] A user may access the system 200 via the device
290 (e.g., a Personal Computer (*PC”), tablet, or smart-
phone) to view information about and/or manage operational
information in accordance with any of the embodiments
described herein. In some cases, an interactive graphical
user interface display may let an operator or administrator
define and/or adjust certain parameters (e.g., when a new
clectrical power grid component 1s calibrated) and/or pro-
vide or recerve automatically generated recommendations or
results from the system 200.

[0057] The example embodiments provide a predictive
model which can be used to replace the dynamic simulation
engine when performing the parameter identification and the
parameter calibration. This 1s described 1n U.S. patent appli-
cation Ser. No. 15/7947769, filed 26 Oct. 2017, the contents
of which are incorporated by reference 1n their entirety. The
model can be trained based on historical behavior of a
dynamic simulation engine thereby learning patterns
between iputs and outputs of the dynamic simulation
engine. The model can emulate the functionality performed
by the dynamic simulation engine without having to perform
numerous rounds of simulation. Instead, the model can
predict (e.g., via a neural network, or the like) a subset of
parameters for model calibration and also predict/estimate
optimal parameter values for the subset of parameters 1n
association with a power system model that 1s being cali-
brated. According to the examples herein, the model may be
used to capture both input-output function and first deriva-
tive of a dynamic simulation engine used for model cali-
bration. The model may be updated based on 1ts confidence
level and prediction deviation against the original simulation
engine.

[0058] Here, the model may be a surrogate for a dynamic
simulation engine and may be used to perform model
calibration without using DAE equations. The system
described herein may be a model parameter tuning engine,
which 1s configured to receive the power system data and
model calibration command, and search for the optimal
model parameters using the surrogate model until the close-
ness between simulated response and the real response from
the power system data meet a predefined threshold. In the
embodiments described herein, the model operates on dis-
turbance event data that includes one or more of device
terminal real power, reactive power, voltage magnitude, and
phase angle data. The model calibration may be triggered by
user or by automatic model validation step. In some aspects,
the model may be trained oflline when there 1s no grid event
calibration task. The model may represent a set of different
models used for diflerent kinds of events. In some embodi-
ments, the model’s input may include at least one of voltage,
frequency and other model tunable parameters. The model
may be a neural network model, fuzzy logic, a polynomial
function, and the like. Other model tunable parameters may
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include a parameter aflecting dynamic behavior of machine,
exciter, stabilizer and governor. Also, the surrogate model’s
output may include active power, reactive power or both. In
some cases, the optimizer may be gradient based method
including Newton-like methods. For example, the optimizer
may be gradient free method including pattern search,
genetic algorithm, simulated annealing, particle swarm opti-
mizer, differential evolution, and the like.

[0059] FIG. 3 illustrates a block diagram of exemplary
system architecture 300 for power system model calibration,
in accordance with one embodiment of the disclosure. In the
exemplary embodiment, the system architecture 300
receives network models 302, sub-system definitions 304,
dynamic models 306, and event data 308.

[0060] Steady state network models 302 (sometimes
referred to as power-flow data) can be either EMS or system
planning models. In some embodiments, they may be in
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e-terra NETMOM or CIM13 format. Dynamic models 306
can be 1n either PSS/E or PSLF or TSAT format. The system

300 can also accept more than one dynamic data file when
data 1s distributed among multiple files. In the exemplary
embodiment, the network models 302 and the dynamic
models 306 use the same naming convention for the network

clements.
[0061] Inthe exemplary embodiment, the sub-system defi-

nitions 304 are based on the network model 302 and one or
more maps ol the power plant. A sub-system identification
module combines the network model 302 and the one or
more maps to generate the sub-system definition 304. In
some embodiments, the sub-system definition 304 is pro-
vided via an XML {ile that defines the POI(s) and generators
that makes up a power plant. Power plants are defined by
generators 1 the plant with 1ts corresponding POI(s). A few
examples of power plant sub-system definitions are listed

below 1n TABLE 1.
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[0062] In the exemplary embodiment, the system 300
provides a user interface to facilitate defining the power
plant starting from a potential POI. Potential POIs are
identified as terminals/buses in the system having all
required measurements (V, 1, P, Q) to perform model vali-
dation and calibration. A measurement mapping module
identifies terminals with V, 1, P, Q measurements and lets the
user search for radially connected generators starting from
potential POIs. Sub-system definitions 304 may also be

saved for future use. In some embodiments, a sub-system
definition 304 is defined for each event 308.

[0063] Events 308 are situations where the voltage and/or
the frequency of the power system changes. For example, an
cvent 308 may be a generator turning on. In some embodi-
ments, the event 308 has the same or similar attributes to a
previous event 308, such as that same generator turning on;
the event 308 1s skipped to reduce redundant processing. In
the exemplary embodiment, the event data or Phasor data
308 will be imported from a variety of sources, such as, but
not limited to, e-terraphasorpoint, openPDC, CSV (files,
COMTRADE files and PI historian. In the exemplary
embodiment, the POIs will have at least voltage, frequency,
real power and reactive power measurements. In some
embodiments, voltage angle 1s substituted for frequency.

[0064] The network models 302, sub-system definitions
304, dynamic models 306, and event data 308 are analyzed
by the system 300 as described herein. In the exemplary
embodiment disclosed herein, the model utilizes multiple
disturbance events to validate and calibrate power system
models for compliance with NERC mandated grid reliability
requirements. The interactive model calibration system
described herein may include three steps. The first step 1s an
interactive user console to allow a user to select a local
region for emphasis or de-emphasis. The next step 1s a
parameter 1dentifiability module configured to analyze the
mutual information between the measurement value and the
Jacobian matrix. The third step in an integrated approach
where the parameter identifiability module and the nonlinear
least square optimization for parameter estimation automati-
cally assign the weights based on the user’s selection on the
user console.

[0065] More specifically, the network models 302, sub-
system definitions 304, dynamic models 306, and event data
308 are analyzed and validated by the model validation
component 310. If the models are validated, then the cor-
responding data 1s sent to a parameter 1dentifiability com-
ponent 312. This component 312 analyzes the event and
models to determine which parameters are significant for
this event 308. Then, the tunable parameters are transmitted
to a tunable parameter estimation component 314, which
turther analyzes the significant parameters to calibrate the
parameters in the model being executed by the simulation
engine 316. In the exemplary embodiment, the model vali-
dation component 310, the parameter 1dentifiability compo-
nent 312, and the tunable parameter estimation component
314 arc all in communication with a dynamic behavior
characterization component 318, which extracts features
from the events 308, generates weights for those features,
and provides the user the ability to fine tune the model
calibration and add subject matter expert knowledge to the
model calibration process. The end result 1s a fully calibrated
model 320. The steps 1n this process are further described
below.
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[0066] In the exemplary embodiment, the model valida-
tion component 310 validates the models 302 and 306 and
definitions 304 that are being input mto the system 300. In
at least one embodiment, a typical synchronous generator
model has four parts: machine model, turbine-governor
model, excitation model, and power system stabilizer (PSS)
model. The model validation component 310 validates the
provided models based on a collection of published NERC
List of Acceptable Models, user preferences, and historical
data. In some embodiments, there may also be prohibited
model lists that are evaluated. Furthermore, units with a
power system stabilizer (PSS) should have an excitation
system model.

[0067] In the exemplary embodiment, the user will be
notified 11 any prohibited model or missing excitation model
has been 1dentified. Based on this information, the user can
further correct the dynamic model 306 1f there 1s human
error, or to use the model conversion module to convert any
prohibited model to the valid models before evaluating the
curve fitting performance. Of course, the user can also
ignore the warning and continue the model validation and
calibration process.

[0068] The second step 1s parameter identifiability. The
goal of this step 1s to perform a comprehensive identifiability
study across the models 302 and 306, the definitions 304,
and the events 308 and provide an 1dentifiable parameter set
for the simultaneous calibration which tunes the most 1den-
tifiable parameters. The parameter 1dentifiability component
312 analyzes the parameters to 1dentity potential parameters
for use based on the dot product (or scalar product) of the
columns of J and r as defined below. In the exemplary
embodiment, r 1s referred to as residual which i1s the differ-
ence between the measured response data series and the
simulated response data series where:

rp)=y =y (x) FQ. 1

where y,” 1s the measured response of active and reactive
power provided 1n the event data 308, v (x)is the simulated
response ol active and reactive power based on dynamic
simulation engine, including but not limited to, GE’s PSLF,
Siemens PTT’s PSS/E, etc. x represents the model param-
eters.

[0069] The parameter 1dentifiability component 312 uses
the sum of squares (SOS) objective: |[r(x)||,>. Then the
parameter 1dentifiability component 312 uses the Quadratic
Model (QM) of the objective at (x,+d) to approximate the
next step like r(x, ).

OM(J,, 71, d)=|\r(x)+chﬂ\22 FQ. 2

where J, 1s the Jacobian vector, which 1s equal to

J_dr
T dx

3
xk

and r,=r(x,) which 1s the sensitivity result. This leads to:
(X er 1) =H X )+ T3+ ) EQ. 3

[0070] The ultimate goal 1s to get r(x,,,)=0. This leads to
r(x,)=—J,(x,+d).

[0071] In the exemplary embodiment, the vector r(x,) 1s
compared to the Jacobian vector I, to determine the 0 (angle)
between them. In some embodiments, each vector J, may
have up to 1000 values each, where the number of values in
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the Jacobian vector depends on the number of sampling
points 1n the event. The 0 1s calculated by generating the dot
product of the vector r(X;) to the Jacobian vector I,.

() * S =) ||Vl [cos © FEQ. 4

[0072] The resulting 0 1s compared to a threshold. Param-
cters with a corresponding 0 below the threshold are sent to
the pool of parameters that are selected. The 1deal 0 1s zero,
but that 1s generally unachievable. In some embodiments,
any parameter with a 0 of less than 3° 1s selected by the
parameter 1dentifiability component 312. This threshold 1s
configurable by the user, such as through an 1nteractive user
interface. The key 1dea 1s that the more orthogonal the angles
are between the vectors of J and r, the less likely changes to
that parameter moves the response in the desired way. This
approach can be extended to a weighted version, by scaling
both the measured response and simulated response with a
weight vector w,. The weight factor w, has the same length
of the data samples in the event of interest. In this way, given
a defined weight factor, 1t can aflfect the above calculated
angles are between the vectors of J and r. Wherer and J, may
be calculated as:

rixg) = EQ. 5

T bt _ 2 it _ 2
Z wp({)$(yp(r) yp(c, r)] . (I)$[yq (r)ybij(x, r)]
q

base
t=1 Y 2,

(g + Ax) — rixg)
Ax

EQ. 6

Ji

where t represents each point of time 1n the event, where T
is the event time length, and where w (1) 1s a weight vector
assigned along the time axis to the active power p, w_(t) 1s
a weight vector assigned along the time axis to the reactive
power q,y," () represents the measured active power at time
stamp t, y, (X, t) represents the simulation result at time
stamp t with parameter x, ypbam represents the base value of
the active power p.

[0073] In the exemplary embodiment, the parameter 1den-
tifiability component 312 receives a plurality of raw param-
cters X. The parameter 1dentifiability component 312 ana-
lyzes each of the parameters using the above equations to
determine the 0 between the J, and the r(x,) for each of the
parameters. If the 0 meets or 1s below a predetermined
threshold, the parameter identifiability component 312
stores that parameter in a pool of parameters. In the exem-
plary embodiment, the parameter identifiability component
312 presents the parameters in the pool to the user for
approval or adjustment via an interactive user interface.

[0074] Once selected or confirmed by the user, the tunable
parameters are provided to the tunable parameter estimation
component 314. The tunable parameter estimation compo-
nent 314 adjusts the models based on the tunable parameters
selected or confirmed by the user. The parameter estimation
component 314 also performs weighted non-linear least
squares optimizations for estimating the parameters. The
goal 1s to identily the right parameter to minmimize the

difference between the y(x) and y,” so that the estimation
matches the measured response.
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EQ. 7

, d y};(f) — VplX, 1) :
min wp, (1) * — +
X{EX=Xy =1 yp
VD) = Y (X, 1) ]2

w,, (I) %
q ( ygase

where t represents each point of time 1n the event, where T
1s the event time length, and where w (t) 1s a weight vector
assigned along the time axis to the active power p, w_(1) 1s
a weight vector assigned along the time axis to the reactive
power q,y," (1) represents the measured active power at time
stamp t, y,(X, t) represents the simulation result at time
stamp t with parameter x, ypmse represents the base value of
the active power p, which could be 100 MVA for example.
X, X represent the low bound and high bound for parameter
X.

[0075] In reality, there are around 60~120 parameters for
one typical generator simulation model. Tuning all of them
given one event 1s not realistic and not desirable. The
industry expects as few as possible of the parameters being
tuned given one event or multiple events. One approach 1s
to use the above mentioned sensitivity analysis (or param-
cter 1dentification) to down select only those parameter
subset which lead to high sensitive response change. An
alternative approach 1s to use the sparse optimization by
adding a L1 norm as a regularization term 1n the objective
function, and the optimization solver will determine the

parameter value while minimizing the number of parameters
tuned. This can be stated as:

. z :T YD) = yp(x, DY EQ. 8
HHHIEEIEIH Wp(r) # ba +
{ yp 5€

=

Wg (1)

; (y?(r)_yq(xﬂ I)

2
- ] +a-|lx = xoll
¥

where o 1s how important the tunable parameter 1s, X, 1s the
initial parameter, x is the parameter, and |[[x-X,|| 1s a penalty
term. This 1s considered weighted sparse nonlinear least
square optimization.

[0076] In the exemplary embodiment, the system defines
regions or segments (which are portions or time slices of the
event) and their corresponding weights (as shown 1n FIG. 4).
The system also allows the user to adjust the regions and
weights through the user interface. The user may then assign
different weights to each region. For example, a user may
assign a lirst weight for times 0 to 0.3 seconds in the event
and a second weight for times 0.3 to 1 second 1nto the event.
In addition, the user may define two different weights for the
active power curve and the reactive power curve. In some
embodiments, the system defines a default weight that 1s
used for sections or regions that do not have user defined
weilghts.

[0077] In the exemplary embodiment, the parameter esti-
mation component 314 performs multiple iterations of the
calculations until the residual error between the measure
values and the estimated values 1s reduced to below a

threshold.

[0078] In some embodiments, the user accesses a user
interface to set the total number of events 308 that will be
analyzed, set the stored file locations, and set the sequence
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that the events 308 will be analyzed 1n. The user interface
may also be used for other adjustments as described herein.

[0079] The feature of an event may include peak value,
bottom wvalue, overshoot percentage, rising time, settling
time, delay time, peak time, steady state error, phase shiit,
damping ratio, energy function, cumulative deviation 1in
energy, Fourier transformation spectrum information, fre-
quency response, principal component, minimum volume
cllipsoid, and/or steady state gain (P, Q, u, 1) of the event.
The feature 1s extracted from the time series of active power,
reactive power, voltage, and frequency.

[0080] Altematively, the system 300 may use Bayesian
Optimization to tune the parameters. Bayesian Optimization
1s a general framework for the global optimization of noisy,
expensive, blackbox functions. The strategy 1s based on the
notion that one can use a relatively cheap probabilistic
model to query as a surrogate for the financially, computa-
tionally or physically expensive function that 1s subject to
the optimization. Bayes™ rule 1s used to derive the posterior
estimate of the true function given observations, and the
surrogate 1s then used to determine the next most promising
point to query. Bayesian Optimization methods maintain a
surrogate that models the objective function, which the
methods then use to choose where to evaluate. Bayesian
Optimization distinguishes itself from other surrogate meth-
ods by using surrogates developed using Bayesian statistics,
and m deciding where to evaluate the objective using a
Bayesian interpretation of these surrogates. Bayesian Opti-
mization consists of two main components: a Bayesian
statistical model for modeling the objective function, and an
acquisition function for deciding where to sample next.
After evaluating the objective according to an 1nitial space-
filling experimental design, oiten consisting of points cho-
sen uniformly at random, the model and acquisition function
are used 1teratively to allocate the remainder of a budget of
N function evaluations.

[0081] A sample Bayesian Optimization algorithm 1s as
follows: a) place a Gaussian process prior on J; b) observe
f at n, points according to an initial space-filling experi-
mental design; c¢) set n=n,; d) while n<N, 1) update the
posterior probability distribution on J using all available
data, 2) let x, be a maximizer of the acquisition function over
X, where the acquisition function i1s computed using the
current posterior distribution, 3) observe y,=f(x,), and 4)
increment n; and ¢) return a solution. The solution is either
the point evaluated with the largest f(x), or the point with the
largest posterior mean.

[0082] A common approach 1s to use a GP to define a
distribution over objective functions from the input space to
a loss that one wishes to minimize. That 1s, given observa-
tion pairs of the form {x , y } N n=1, where x &X and
y. €R, and assuming that the function f(x) is drawn from a
Gaussian process prior where y_~N(F(x, )v), where v is the
function observation noise variance.

[0083] In some embodiments, there 1s a tradeoil, with the
largest expected improvement occurring where the posterior
standard deviation 1s high (far away from previously evalu-
ated points), and where the posterior mean 1s also high. The
smallest expected improvement 1s 0, at points that were
previously evaluated. The posterior standard deviation 1s O at
this point, and the posterior mean 1s necessarily no larger
than the best previously evaluated point. The expected
improvement algorithm would evaluate next at the point
indicated with an x where the function 1s maximized.
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[0084] Because grid disturbances occur intermittently, the
user ol the calibration tool may be required to re-calibrate
model parameters in a sequential manner as new distur-
bances come 1n. In this scenario, the user has a model that
was calibrated to some observed grid disturbances to start
with, and observes a larger that acceptable mismatch with a
newly encountered disturbance. The task 1s to tweak the
model parameters so that the model explains the new
disturbance without detrimentally affecting the match with
carlier disturbances. One potential solution 1s to run cali-
bration simultaneously on all events of interest strung
together; however, this comes at the cost of significant
computational expense and engineering 1nvolved 1n
enabling running a batch of events simultaneously. One
more ellicient method may be to carry some essential
information from the earlier calibrations runs and guide the
subsequent calibration run that helps explain the new dis-
turbance without losing earlier calibration matches.

[0085] In the exemplary embodiment, the framework of
Bayesian estimation may be used to develop a sequential
estimation capability into the existing calibration frame-
work. The true posterior distribution of parameters (assum-
ing Gaussian priors) after the calibration process may be
quite complicated due to the nonlinearity of the models. One
approach 1n sequential estimation 1s to consider a Gaussian
approximation of this posterior as 1s done in Kalman filter-
ing approaches to sequential nonlinear estimation. In a
nonlinear least squares approach, this simplifies down to a
quadratic penalty term for deviations from the previous
estimates, and the weights for this quadratic penalty come
from a Bayesian argument.

EQ. 9

Z :T L — v (x Zk -1
min Wi *(yr yr( )] +(-x_-xmﬁm)r*( ) *(x_-xmfan)
1 Vbase b

=

[0086] The measured values of P and Q may be repre-
sented by a simulated value plus an error term.
v, =v(x;|b)+e; EQ. 10
> k=3 el iy EQ. 11

[0087] In some embodiments, the errors may be subject to
Normal distribution, either independently or else with errors
correlated 1n some known way, such as, but not limited to,
multivariate Normal distribution.

e~N(0, ;)

e~N(0, )

[0088] The above may be used to find the parameters of a
model b from the data.

P(b|{y;}) & P{y;} | b)P(b) EQ. 12

L . 2
o ]—I exp[—%(yi J;E_xr l b)] }P(b)
1 = y(xi | b)Y
Dcexp[_iz.(y .};Ex | )] }P(b)

1

o E:xp[— zxz(b)]P(b)




US 2020/0327264 Al

[0089] Alternatively, the parameter value b, that mini-
mizes X may be calculated using a Taylor series approxi-
mation.

SRR PSS PR § i P EQ. 13
B N P T R
1 -1 EQ. 14
PB| i) o exp| =5 (b= bo)T Y, (b= bo)| PO
1 @ZXZ'—I EQ. 15
Zb ~ 20080

where 2, 1s the covariance of “standard error” matrix of the
fitted parameters.

[0090] FIG. 4 1s a process 400 for power system model
parameter conditioning according to some embodiments. At
Step 405, disturbance data may be obtained (e.g., from a
PMU or DFR) to obtaimn, for example, V, 1, P, and Q
measurement data at a Point Of Interest (“POI”). At Step
410, a playback simulation may run load model benchmark-
ing using default model parameters (e.g., associated with a
Positive Sequence Load Flow (“PSLF”) or Transient Secu-
rity Assessment Tool (“IT'SAT™)). At Step 415, model vali-
dation may compare measurements to default model
response. If the response matches the measurements, the
framework may end (e.g., the existing model 1s sufliciently
correct and does not need to be updated). At Step 420, an
event analysis algorithm may determine if event 1s qualita-
tively different from previous events. At Step 425, a param-
cter 1dentifiability analysis algorithm may determine most
identifiable set of parameters across all events of interest.
For example, a first event may have 90 to 100 parameters.
For that event, Step 425 uses the parameter 1dentifiability
algorithm to select 1 to 20 of those parameters.

[0091] Finally, at Step 430 an Unscented Kalman Filter
(“UKF”)optimization-based parameter estimation algo-
rithm/process may be performed. As a result, the estimated
parameter values, confidence metrics, and error 1n model
response (as compared to measurements) may be reported.
In some embodiments, Steps 405-415 are considered model
validation 435 and Steps 420-430 are considered model
calibration 440. As described elsewhere herein, the systems
may use one or both of model validation 435 and model
calibration 440. In some embodiments, Steps 405-430 are

considered a model validation and calibration (MVC) pro-
cess 400.

[0092] Disturbance data may be monitored by one or more
PMUSs coupled to an electrical power distribution grid may
be received. The disturbance data can include voltage (*“V™),
frequency (“1”), and/or active and nonactive reactive (“P”,
and “Q”) power measurements from one or more points of
interest (POI) on the electrical power grid. A power system
model may include model parameters. These model param-
cters may be the current parameters incorporated in the
power system model. The current parameters may be stored
in a model parameter record. Model calibration involves
identifying a subset of parameters that can be “tuned” and
moditying/adjusting the parameters such that the power
system model behaves i1dentically or almost 1dentically to
the actual power component being represented by the power
system model.

11
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[0093] In accordance with some embodiments, the model
calibration can mmplement model calibration with three
functionalities. The first functionality 1s an event screening
tool to select characteristics of a disturbance event from a
library of recorded event data. This functionality can simu-
late the power system responses when the power system 1s
subjected to different disturbances. The second functionality
1s a parameter 1dentifiability study. When implementing this
functionality, the can simulate the response(s) of a power
system model. The third functionality 1s simultaneous tuning
of models using event data to adjust the identified model
parameters. According to various embodiments, the second
functionality (parameter 1dentifiability) and the third func-
tionality (tunming of model parameters) may be done using a

surrogate model 1n place of a dynamic simulation engine
316.

[0094] Here, the model calibration algorithm attempts to
find a parameter value (0*) for a parameter (or parameters)
of the power system model that creates a matching output
between the simulated active power (P) and the simulated
reactive power (Q) predicted by the model with respect to
the actual active power (P) and actual reactive power (Q) of
the component on the electrical grid.

[0095] As grid disturbances occur intermittently, the user
of the calibration tool described herein may be required to
re-calibrate model parameters 1n a sequential manner as new
disturbances come 1n. In this scenario, the user has a model
that was calibrated to some observed grid disturbances to
start with, and observes a larger that acceptable mismatch
with a newly encountered disturbance. The task now 1s to
tweak the model parameters so that the model explains the
new disturbance without detrimentally affecting the match
with earlier disturbances. One solution would be to run
calibration simultaneously on all events of interest strung
together, but this comes at the cost of significant computa-
tional expense and engineering involved 1n enabling running
a batch of events simultaneously. Instead, it may be desirable
to carry some essential mnformation from the earlier calibra-
tions runs and guide the subsequent calibration run that
helps explain the new disturbance without losing earlier
calibration matches.

[0096] Event screening can be implemented during the
simulation to provide computational efliciency. If hundreds
of events are stitched together and fed into the calibration
algorithm unselectively, the algorithm may not be able to
converge. To maintain the number of events manageable and
still keep an acceptable representation of all the events, a
screening procedure may be performed to select the most
characteristic events among all. Depending on the type of
events, the measurement data could have diflerent charac-
teristics. For example, 1 an event 1s a local oscillation, the
oscillation frequency i1n the measurement data would be
much faster as compared to an inter-area oscillation event. In
some 1mplementations, a K-medoids clustering algorithm
can be utilized to group events with similar characteristic

together, thus reducing the number of events to be cali-
brated.

[0097] Instead of using the time consuming simulation
engine, the surrogate model or models (such as Neural
Networks) with equivalent function of dynamic simulation
engine, may be used for both 1dentifiability and calibration.
The surrogate model may be built offline while there 1s no
request for model calibration. Once built, the surrogate
model comprising a set of weights and bias 1 learned
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structure of network will be used to predict the active power
(P) and reactive ((QQ) given different set ol parameters
together with time stamped voltage (V) and frequency (1).

[0098] The parameter identifiability analysis addresses
two aspects: (a) magnitude of sensitivity of output to param-
cter change; and (b) dependencies among different param-
eter sensitivities. For example, i the sensitivity magnitude
ol a particular parameter 1s low, the parameter would appear
in a row being close to zero 1n the parameter estimation
problem’s Jacobian matrix. Also, 1f some of the parameter
sensitivities have dependencies, 1t reflects that there 1s a
linear dependence among the corresponding rows of the
Jacobian. Both these scenarios lead to singularity of the
Jacobian matrix, making the estimation problem infeasible.
Therefore, 1t may be important to select a subset of param-
cters which are highly sensitive as well as result in no
dependencies among parameter sensitivities. Once the sub-
set ol parameters 1s 1dentified, values 1n the active power
system model for the parameters may be updated, and the
system may generate a report and/or display of the estimated
parameter values(s), confidence metrics, and the model error
response as compared to measured data.

[0099] FIG. § illustrates a process 500 for performing
optimization using an objective function at least 1n part by
using an integrated acquisition function and a probabilistic
model of the objective function, 1n accordance with some
embodiments. Process 500 may be used to identily the best
or optimal generator model parameters, as well as a hyper-
parameter 1 either the parameter identifiability algorithm
425 or the parameter estimation algorithm 430 (shown 1n
FIG. 4), which contributes to achieving a global minimum of
the objective function. For the purposes of this disclosure, a
hyperparameter 1s a parameter whose value 1s used to
control the learning process. The hyperparameter for the
parameter 1dentifiability algorithm 425 may be the threshold
for the single value decomposition (SVD) approach and a
dot product angle (DPA). The hyperparameter for the param-
cter estimation algorithm 430 may be the maximum number
of 1terations, algorithm types (Levenberg-Marquardt algo-
rithm, Gauss-Newton algorithm, Trust Region algorithm,
Kalman filter algorithm, particle swarm optimization algo-
rithm, differential evolution algorithm and Bayesian Opti-
mization), residual tolerance, etc. The objective function
maps the parameter or hyperparameter to performance or
accuracy of the model prediction compared to the real
measurement.

[0100] Process 400 begins at Step 502, where a probabi-
listic model of the objective function 1s 1nitialized. In some
embodiments, the probabilistic model of the objective func-
tion may comprise a Gaussian process, a neural network,
and an adaptive basis function regression model (linear or
non-linear).

[0101] Next, process 400 proceeds to Step 504, where a
parameter or hyperparameter at which to evaluate the objec-
tive function 1s i1dentified. The identification may be per-
formed, at least in part, by using an acquisition ufility
function and a probabilistic model of the objective function.
In some embodiments, an acquisition utility function that
depends on parameters of the probabilistic model may be
used at Step 504 such as, for example, a probability of
improvement acquisition utility function, an expected
improvement acquisition utility function, a regret minimi-
zation acquisition utility function, and an entropy-based
acquisition utility function.
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[0102] In some embodiments, the point at which to evalu-
ate the objective function may be identified as the point (or
as approximation to the point) at which the acquisition
utility function attains 1ts maximum value. In some embodi-
ments, Markov chain Monte Carlo methods may be used to
identily or approximate the point at which the integrated
acquisition utility function attains 1ts maximum value.

[0103] Adter the point at which to evaluate the objective
function 1s 1dentified 1n Step 504, process S00 proceeds to
Step 506, where the objective function 1s evaluated at the
identified point. Then process 500 proceeds to Step 508,
where the probabilistic model of the objective function 1s
updated based on results of the evaluation. The probabilistic
model of the objective function may be updated 1 any of
numerous ways based on results of the new evaluation
obtained 1n Step 506. As one non-limiting example, updating
the probabilistic model of the objective function may com-
prise updating (e.g., re-estimating) one or more parameters
of the probabilistic model based on results of the evaluation
performed 1n Step 506. As another non-limiting example,
updating the probabilistic model of the objective function
may comprise updating the covariance kernel of the proba-
bilistic model (e.g., when the probabilistic model comprises
a (Gaussian process, the covariance kernel of the Gaussian
process may be updated based on results of the new evalu-
ation).

[0104] Process 500 proceeds to decision block 510, where

it 1s determined whether the objective function 1s to be
cvaluated at another point, also known as the terminating
criteria. This includes a threshold number of evaluations of
the objective function or stagnation where the values of the
objective function have not increased by more than a thresh-
old value of iterations, such as 4+[D/2], where D 1s the
number of parameters to be estimated.

[0105] When 1t 1s determined, at decision block 510, that
the objective function is to be evaluated again, process 500
returns, via the YES branch, to Step 504, so that Steps
504-508 are repeated. On the other hand, when 1t 1s deter-
mined at decision block 510 that the objective function 1s not
to be evaluated again, process 500 proceeds to Step 512,
where an extremal value of the objective function may be
identified based on the one or more values of the objective
function obtained during process 500.

[0106] The Bayesian Optimization constructs a prior dis-
tribution about f(x) based on input and output values of the
function, and updates the distribution iteratively with new
values derived by the Bayesian Optimization. For example,
new input values to black-box function are derived from the
prior distribution of 1nput and output values, 1n an acquisi-
tion function optimization. The new iput values are then
used to evaluate the black-box function to generate a new
output to be included in the prior distribution of values for
a next iteration of the optimization. The process 1s repeated
until a termination criteria 1s met (e.g., the input values to the
black-box function are optimized within a desired threshold,
or a maximum number of iterations, specified by the user,
have been reached).

[0107] FIG. 6 illustrates a process 600 for sequential
calibration using the system architecture 300 (shown 1n FIG.
3). In the exemplary embodiment, the system 300 receives
a plurality of events 308 (shown 1n FIG. 3) and events 602,
610, and 614. In some embodiments, process 600 1s per-
formed by one or more of the system architecture 300, the
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processor 1410, and the power system disturbance based
model calibration engine 1414 (both shown in FIG. 14).

[0108] In the exemplary embodiment, process 600
receives 1nitial parameters 604 and choses a first event 602.
In some embodiments, the first event 602 1s one of the
received plurality of events. In other embodiments, the first
event 602 1s a historical event or an event designated for
testing purposes. The first event 602 and the 1nitial param-
cters 604 are used as mputs for a model validation and
calibration (MVC) process 606, also known as MVC engine
606. In the exemplary embodiment, the MVC process 606 1s
similar to the MVC 400. In the exemplary embodiment, the
first event 602 includes at least the actual voltage, frequency,
active power, reactive power for the event. The MVC
process 606 generates a first updated set of parameters 608
based on how the initial parameters 604 matched up with the
first event 602. In some embodiments, the MVC process 606
uses the 1mitial parameters 604 and the voltage and fre-
quency to predict the active and reactive power for the first
event 602. Then the MVC process 606 compares the pre-
dicted active and reactive power to the actual active and
reactive power for the first event 602. The MVC process 606
adjusts the mitial parameters 604 based on that comparison
to generate an updated parameter set 608.

[0109] In process 600, the first updated set of parameters
608 are then used with a second event 610 as imputs into the
MVC process 606 to generate a second updated set of
parameters 612. The second updated set of parameters 612
and then used with a third event 614 to be another set of
inputs for the MVC process 606 to generate a third updated
set of parameters 616.

[0110] In the exemplary embodiment, the process 600
continues to serially analyze events to generate updated
parameter sets. For example, 11 the process 600 receives 25
events, then each event will be analyzed in order to deter-
mine updated parameters based on that event and MVC
process 606, with the goal being that the parameters allow
the MVC process 606 to generate adjusted parameters to
accurately predict the outcome of the plurality of events.

[0111] By analyzing each event individually and serially
rather than as a group or in parallel, process 600 allows for
the parameters that aflect each event to be analyzed, rather
than have events that cancel out the eflect of different
parameters. For example, considering three diflerent events,
event-1, event-2, event-3, the sequential approach shown 1n
process 600 Will generated three down-selected parameters
subsets, say P-1, P-2 and P-3, corresponding to the three
events. Each parameter subset 1s determined to be the best
subset which can describe the corresponding event based on
the parameter 1dentifiability algorithm 425. Then the param-
cter subset P-1, P-2, P-3 may be further used for the
parameter estimation process 430 based on the correspond-
ing event. However, the parameter identifiability 1n a group
calibration approach may not reach such an optimality.
Furthermore, as the important parameters are 1dentified for
cach event, and the parameters for each of these events are
analyzed overall for the entire set of events. In this way, the
parameters for each event contribute to the final parameters
and allow the system to find the i1deal parameters for the
entire set while still taking into account each individual
event.

[0112] FIG. 7 1s a data flow diagram illustrating a sub-
section 700 of the system architecture 300 (shown 1n FIG. 3)
executing the sequential calibration process 600 (shown 1n
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FIG. 6). In the exemplary embodiment, the system archi-
tecture 700 receives network models 302, sub-system defi-
nitions 304, dynamic models 306, and event data 308 at an
input handling component 710. In some embodiments, 1nput
handling component 710 includes an event screening com-
ponent.

[0113] The network models 302, sub-system definitions
304, dynamic models 306, and event data 308 are analyzed
by the system 700 as described herein. In the exemplary
embodiment disclosed herein, the model utilizes multiple
disturbance events to validate and calibrate power system
models for compliance with NERC mandated grid reliability
requirements.

[0114] In some embodiments, the user accesses the user
interface 738 to set the total number of events 308 that will
be used 1n process 600, set the stored file locations, and set
the sequence that the events 308 will be analyzed 1n.

[0115] Inthe exemplary embodiment, system 700 includes
a set of 1mitial parameters 712. In some embodiments, the set
of 1nitial parameters 712 are based on the dynamic model
706. The mitial parameters 712 and a first event 714 are set
as inputs and a model validation and calibration (MVC) 716
1s performed using those parameters 712 and that first event
714. In some embodiments, the MVC 716 1s performed by
the simulation engine 316 (shown in FIG. 3). In some
embodiments, the MVC 716 1s associated with the MVC
process 606 (shown 1n FIG. 6) and/or the MVC process 400
(shown 1n FIG. 4). The MVC 716 generates a response 718,
which includes statistics about how the 1mitial parameters
712 performed 1n matching up to the first event 714 based on
the MVC process 606. The MVC 716 also generates a first
set of updated parameters 720 based on the event’s perior-
mance 1n the MVC process 606.

[0116] In some embodiments, the MVC 716 uses the

initial parameters 712 and the voltage and frequency of the
first event 714 to predict the active and reactive power for
the first event 714. Then, the MVC 716 compares the
predicted active and reactive power to the actual active and
reactive power for the first event 714. The MVC 716 adjusts
the parameters 712 into the first set of updated parameters
720 based on that comparison and also uses the comparison
to generate the first response 718.

[0117] In the exemplary embodiment, the system 700 uses
the first set of updated parameters 720 with the second event
722 1nto the MVC process 606 to generate a second updated
set of parameters 728 and a second response 726. The
second updated set of parameters 728 1s then used with a
third event 730 to be another set of inputs for the MVC
process 606 to generate a third updated set of parameters 736
and a third response 734.

[0118] In the exemplary embodiment, the system 700
continues to serially analyze events 308 to generate updated
parameter sets. For example, 1f the system 700 receives 25
events 308, then each event 308 will be analyzed 1n order to
determine updated parameters based on that event 308 and
the MVC process 606, with the goal being that the param-
cters allow the MVC process 606 to generate adjusted
parameters to accurately predict the outcome of the plurality
ol events.

[0119] In some embodiments, the user may use the user
interface 738 to review the responses and the updated
parameters. Furthermore, the user interface 738 may allow
the user to determine the order that the events 308 are

analyzed. In other embodiments, the system 700 may seri-
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ally analyze the events 308 1n a plurality of orders to
determine the 1deal set of updated parameters.

[0120] FIG. 8 1llustrates a process 800 for using Bayesian
Optimization to optimize model parameters 1n accordance
with the process 400 (shown 1n FIG. 4). Process 800 may be

executed by system 300 (shown in FIG. 3) and platiorm
1400 (shown i FIG. 14).

[0121] At Step 405, disturbance data may be obtained
(e.g., from a PMU or DFR) to obtain, for example, V, {1, P,
and Q measurement data at a Point Of Interest (“POI”). At
Step 410, a playback simulation may run load model bench-
marking using default model parameters (e.g., associated
with a Positive Sequence Load Flow (“PSLFE”) or Transient
Security Assessment Tool (“TSAT™)). At Step 415, model
validation may compare measurements to default model
response. I the response matches the measurements, the
framework may end (e.g., the existing model 1s sufliciently
correct and does not need to be updated). At Step 420, an
event analysis algorithm may determine 1f event 1s qualita-
tively different from previous events. At Step 425, a param-
cter 1dentifiability analysis algorithm may determine most
identifiable set of parameters across all events of interest.
For example, a first event may have 90 to 100 parameters.
For that event, Step 425 uses the parameter 1dentifiability
algorithm to select 1 to 10 of those parameters.

[0122] Finally, Step 430 (shown in FIG. 4) 1s replaced
with Bayesian optimization 805. The Bayesian optimization
805 performs well 1n problems for functions with a small
number of dimensions (e.g., less than 10 unknown wvari-
ables), but may not scale well to higher dimensions. In the
exemplary embodiment, the parameter selected for Bayesian
optimization should be less than 10, and preferably 1~5. The
parameter 1dentifiability analysis may be single value
decomposition approach, Dot Product Angle (DPA), user
selection, etc.

[0123] Note the Bayesian optimization 805 in this
approach 1s configured to estimate parameters ol dynamic
models (e.g., gains, transier functions, integrators, deriva-
tive, time constants, limiters, saturation constants, dead
zones, delay).

[0124] Events are situations where the voltage and/or the
frequency of the power system changes. For each event, the
event screening component determines whether the event 1s
novel enough. For example, an event may be a generator
turning on. If the event has the same or similar attributes to
a previous event, such as that same generator turning on,
then the event screening component skips this event. In the
exemplary embodiment, the event screening component
compares the event to those events stored 1n a database. If
the event 1s novel enough, then the event 1s stored in the
database. Then the event i1s sent to the parameter identifi-
ability component. This component analyzes the event 1n
combination with past events and the parameters 1dentified
as significant with those events to determine which param-
cters are significant for this event. Then the tunable param-
cters are transmitted to the Bayesian Optimization compo-
nent, which further analyzes the significant parameters to
calibrate the parameters 1n the model being executed by the
simulation engine.

[0125] Disturbance data may be monitored by one or more
PMUs coupled to an electrical power distribution grid may
be recerved. The disturbance data can include voltage (“V™),
frequency (*1), and/or active and nonactive reactive (“P”
and “Q”) power measurements from one or more points of
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interest (POI) on the electrical power grid. A power system
model may include model parameters. These model param-
cters can be the current parameters incorporated in the
power system model. The current parameters can be stored
in a model parameter record. Model calibration involves
identifving a subset of parameters that can be “tuned” and
modityig/adjusting the parameters such that the power
system model behaves i1dentically or almost 1dentically to
the actual power component being represented by the power
system model.

[0126] In accordance with some embodiments, the model
calibration can mmplement model calibration with three
functionalities. The first functionality 1s an event screening
tool to select characteristics of a disturbance event from a
library of recorded event data. This functionality may simu-
late the power system responses when the power system 1s
subjected to different disturbances. The second functionality
1s a parameter 1dentifiability study. This functionality may
simulate the response(s) of a power system model. The third
functionality 1s simultaneous tuning of models using event
data to adjust the i1dentified model parameters. According to
vartous embodiments, the second functionality (parameter
identifiability) and the third functionality (tuning of model
parameters) may be implemented using a surrogate model 1n
place of a dynamic simulation engine.

[0127] Instead of using the time consuming simulation
engine, the surrogate model or models (such as Neural
Networks) with equivalent function of dynamic simulation
engine, may be used for both 1dentifiability and calibration.
The surrogate model may be built ofifline when there 1s no
request for model calibration. Once built, the surrogate
model includes a set of weights and bias in a learned
structure of the network will be used to predict the active
power (P) and reactive (QQ) given diflerent set of parameters
together with time stamped voltage (V) and frequency (1).

[0128] The parameter identifiability analysis addresses
two aspects: (a) magnitude of sensitivity of output to param-
cter change; and (b) dependencies among diflerent param-
eter sensitivities. For example, 1 the sensitivity magnitude
of a particular parameter 1s low, the parameter would appear
in a row being close to zero 1n the parameter estimation
problem’s Jacobian matrix. Also, 11 some of the parameter
sensitivities have dependencies, 1t reflects that there 1s a
linear dependence among the corresponding rows of the
Jacobian. Both these scenarios lead to singularity of the
Jacobian matrix, making the estimation problem infeasible.
Therefore, 1t may be important to select a subset of param-
cters which are highly sensitive as well as result in no
dependencies among parameter sensitivities. Once the sub-
set of parameters 1s 1dentified, values 1n the active power
system model for the parameters may be updated, and the
system may generate a report and/or display of the estimated
parameter values(s), confidence metrics, and the model error
response as compared to measured data.

[0129] In FIG. 8, parameter identifiability analysis algo-
rithm 425 may be performed to generate a trajectory sensi-
tivities matrix for an electrical power system using a
dynamic model of the electrical power system that includes
a plurality of system parameters. Two embodiments for
parameter 1dentifiability are singular-value decomposition

(SVD) based approach and Dot Product Angle (DPA) based
approach.

[0130] “SVD,” as used herein, refers to a matrix decom-
position method for reducing a matrix to its constituent
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parts. For example, by reducing a matrix to its constituent
parts, certain subsequent matrix calculations may be sim-
plified. For example, SVD includes a factorization of a real
or complex matrix. SVD 1ncludes a generalization of an
eigen-decomposition of a positive semidefinite normal
matrix (e.g., a symmetric matrix with positive eigenvalues)
to any mxn matrix via an extension of polar decomposition.
SVD has many useful applications 1n signal processing and
statistics, for example.

[0131] “DPA,” as used herein, refers to an algebraic opera-
tion that takes two equal-length sequences of numbers, such
as, €.g., coordinate vectors, and returns a single number. In
Euclidean geometry, a dot product of Cartesian coordinates
of two vectors commonly used and 1s often referred to as
“the” mner product (or rarely projection product) of Euclid-
can space even though 1t 1s not the only 1mner product that
can be defined on Euclidean space. Algebraically, a dot
product 1s the sum of the products of the corresponding
entries of the two sequences of numbers. Geometrically, 1t 1s
the product of the Euclidean magnitudes of the two vectors
and the cosine of the angle between them. These definitions
are equivalent when using Cartesian coordinates. In modern
geometry, Huclidean spaces are often defined by using
vector spaces. In this case, the dot product 1s used for
defining lengths (e.g., the length of a vector 1s the square root
of the dot product of the vector by 1itsell) and angles (e.g., the
cosine of the angle of two vectors 1s the quotient of their dot
product by the product of their lengths).

[0132] In one particular embodiment, an 1ssue of param-
cter i1dentifiability may be considered or addressed. For
example, a relatively simple linear 2-parameter estimation
problem may include:

& EQ. 16
y = C[Q }, with C = [2¢] - vy =&(6; + 65)
2

[0133] In Equation 16, if (0,*+0,*) 1s a true solution
(C(0,*+0,*)=y™), then any 0,*-0, 0,*+0) equally explain
the measurements, for example. A failure to 1dentily param-
cters uniquely may be due to a rank deficiency of output
matrix C. An analogous quantity n a nonlinear case may
comprise a Jacobian matrix as shown below 1n Equation 17:

4P dP(n) dP(1]) EQ. 17
d@l d@g dgk
dP(;)  dP(n) dP(1,)
40, 46, 40,
dP(ty)  dP(iy) dP(ty)
o | d Tdo d6;
| Q) Q) dQ(1)
40, 40, 40,
dQ(n)  dQ(1p) dQ(1,)
d@l d@z dgk
dQ(ty) dQliy) dQ(iy)
40, 40, 40,
[0134] A rank deficiency of Jacobian matrix S may result

from (a) a relatively small number of entries 1n columns of
S; and/or (b) columns of Jacobian matrix S being nearly
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linearly dependent. Such factors may show the following,
qualitatively: (a) low parameter sensitivity—a successiul
estimation of that parameter 1s unlikely because its eflect
cannot be observed; and/or (b) a nearly linear depen-
dency—a successtul estimation of these parameters may
therefore be unlikely because of the individual parameter
cellects. Moreover, a presence of parameters with weak
and/or nearly linearly dependent eflects may be retlected as
non-unique solutions. Accordingly, 1t 1s 1mportant to deter-

mine the right set of parameters to be tuned.

[0135] In accordance with one particular example of
parameter identifiability for multiple events, an average
identifiability ranking across disturbances may be calcu-
lated. Because sensitivity studies are conducted at the
parameters’ default values, for example, a parameter con-
ditioning tool may also perform a global sensitivity consis-
tency study when the parameters’ values deviate far away
from their default values. Such a study may portray a
geometry of the parameter sensitivity 1n the entire parameter
space, for example.

[0136] Diflerent events may have diflerent characteristics,
such that conventional 1dentifiability analysis corresponding
to each single event may not be applicable to other events.
For example, a set of most-identifiable parameters for event
A may not be i1dentifiable for event B. Accordingly, for a
single event calibration, the value of this set of parameters
may only be tuned by a conventional approach to make the
output match event A’s measurement data. However, 1f the
tuned parameter values are used to simulate event B, there
may still be discrepancy between simulation output from the
power system model and measurement data from PMUSs.

[0137] In accordance with embodiments, because there 1s
availability of measurement data from multiple events, a
comprehensive 1dentifiability analysis or study across mul-
tiple events may be performed. Such a comprehensive study
may provide a most-identifiable parameter set for simulta-
neous calibration of multiple disturbances. In accordance
with embodiments, this parameter set may be used to tune a
power system model to better match (as compared to con-
ventionally-tuned power system models) measurement data
of multiple events simultaneously.

[0138] If a quantity of N events 1s considered, applying
singular-value decomposition (SVD) analysis to the sensi-
tivity trajectory matrices may result in a quantity of null
spaces equal to the value of N. The null space for one event
also may be mterpreted as a system of homogeneous alge-
braic equations with parameter sensitivities being the
unknowns. Because the null space from one event has a rank
lower than the number of parameters, the number of equa-
tions 1s less than the number of unknowns.

[0139] Considering more events 1s equivalent to adding
more equations to the system. After the event number N
exceeds a certain value, the system would have more equa-
tions than unknowns. Characteristics of events should be
diverse 1n accordance with an embodiment in order to tune
parameters of the system. In an implementation, a numerical
rank should be greater than the number of unknowns. A
solution which minimizes the difference between the left and
right hands of the equation system may represent a com-
prehensive sensitivity magnitude of all parameters across all
the considered events. For sensitivity dependency, account-
ing for the null spaces of all considered events, a compre-
hensive dependency mdex may also be calculated.
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[0140] In accordance with one or more embodiments, 11
the number of events 1s not large enough to construct a null
space with higher rank than the number of parameters, the
identifiability for each single event may be analyzed, and
then the average i1dentifiability may be used as the i1dentifi-
ability across all events.

[0141] In accordance with one or more embodiments, a
model calibration algorithm may implement the sample
Bayesian Optimization algorithm described above to per-
form a sensitivity dependency calculation using a null space
of the trajectory sensitivity matrix to calculate sensitivity
dependency. The dependency index may be defined by
counting the large elements 1n the right singular vectors 1n
null space.

[0142] Another parameter 1dentifiability approach 1s Dot
Product Angle (DPA) based approach. The performance of
a parameter 1identifiability analysis may analyze parameters
to 1dentily potential parameters for use based on the dot
product (or scalar product) of the columns of J and r as
defined below. In the exemplary embodiment, r comprises a
residual which comprises the difference between the mea-
sured response data series and the simulated response data
series where:

r(0)=y/"-y,08) EQ. 18

where y,” 1s the measured response of active and reactive
power provided in event data, y (X) 1s the simulated response
of active and reactive power based on dynamic simulation
engine, mcluding but not limited to, General Electric®’s
PSLFE, Siemens® PTI’s PSS/E, etc. In Equation 18, ©
represents the model parameters.

[0143] An equivalent expression for the above residual 1s
the sum of squares (SOS) objective: |[r(x)||,”. The parameter
identifiability analysis may use the Quadratic Model (QM)
of the objective at (0,+d) to approximate the residual at the
next step (0, ,).

OM{J,, 7, d)=|r(0)+],4] ‘22

where I, 1s the Jacobian vector, which 1s equal to

EQ. 19

J_dr
T A0 e

and r,=r(0,) 1s the sensitivity result. This leads to:

(014177 (0,)+ (0, +d)

[0144] The ultimate goal 1s to get r(0,,,) equal to zero.
This leads to:

7(0,)=—J,(0; d)

[0145] In the exemplary embodiment, the vector r(0,) 1s
compared to the Jacobian vector I, to determine the ©
between them. In some embodiments, each vector J, may
have up to 1000 values, where the number of values 1n the
Jacobian vector depends on the number of sampling points
in the event. The 0 1s calculated by generating the dot
product of the vector r(0,)to the Jacobian vector I,.

EQ. 20

EQ. 21

7(0.)* =70 /illcos a

[0146] The resulting dot product angle . 1s compared to a
threshold. Parameters with a corresponding o below the
threshold are sent to the pool of parameters that are selected.
The 1deal o 1s zero, but that 1s generally unachievable. In
some embodiments, any parameter with an angle o of less

EQ. 22
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than 5° 1s selected by of parameter 1dentifiability analysis.
This threshold may be configurable by the user, such as
through an interactive user interface. The threshold may be
treated as a hyperparameter to be tuned by the Bayesian
optimization. A key i1dea 1s that the more orthogonal the
angles are between the vectors of J and r, the less likely
changes to that parameter moves the response in the desired
way. This approach may be extended to a weighted version,
by scaling both the measured response and simulated
response with a weight vector w,. The weight factor w, has
the same length of the data samples 1n the event of interest.
In this way, given a defined weight factor, 1t can aflect the
above calculated dot product angles are between the vectors
of J and r, and hence the parameter screening result.

[0147] Given the down selected parameter subset gener-
ated from Step 4235, the Bayesian optimization may be
utilized to tune the value of down selected parameter subset
to improve the residual defined 1n the optimization objective
function. For example, a first event may have 90 to 100
parameters. For that event, Step 425 uses the parameter
identifiability algorithm 425 to select 1 to 10 of those
parameters. Bayesian optimization performs well in prob-
lems for functions with a small number of dimensions (e.g.,
less than 10 unknown variables), but does not scale well to
higher dimensions. The parameter selected for Bayesian
optimization should be less than 10, and preferably 1~5.
Note Bayesian optimization 805 1in FIG. 8 1s configured to
estimate dynamic model parameters (e.g., gains, transfer
functions, integrators, derivative, time constants, limiters,
saturation constants, dead zones, delay).

[0148] The process of using Bayesian optimization to tune
the dynamic model parameters 1s given. The process begins
from an 1nitialization of probabilistic model of the objective
function, such as the objective function defined i EQ. 7,
EQ. 8 or EQ. 9. In some embodiments, the probabilistic
model of the objective function may comprise a Gaussian
process, a neural network, adaptive basis function regression
model (linear or non-linear).

[0149] Next, a dynamic model parameter to evaluate the
objective function 1s 1dentified. The identification may be
performed, at least 1 part by, using an acquisition utility
function and a probabilistic model of the objective function.
In some embodiments, an acquisition utility function that
depends on parameters of the probabilistic model may be
used such as, for example, a probability of improvement
acquisition utility function, an expected improvement acqui-
sition utility function, a regret minimization acquisition
utility function, and an entropy-based acquisition utility
function.

[0150] In some embodiments, the point at which to evalu-
ate the objective function may be identified as the point (or
as approximation to the point) at which the acquisition
utility function attains 1ts maximum value. In some embodi-
ments, Markov chain Monte Carlo methods may be used to
identily or approximate the point at which the integrated
acquisition utility function attains 1ts maximum value.

[0151] Adter the point at which the objective function 1s
identified, the probabilistic model of the objective function
1s updated based on results of the evaluation. The probabi-
listic model of the objective function may be updated 1n any
of numerous ways based on results of the new evaluation of
the objective function at the identified point. In one non-
limiting example, updating the probabilistic model of the
objective function may comprise updating the covariance
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kernel of the probabilistic model (e.g., when the probabilis-
tic model comprises a Gaussian process, the covariance
kernel of the Gaussian process may be updated based on
results of the new evaluation).

[0152] The above process may be repeated until 1t meets
the terminating criteria, icluding stagnation wherein the
values of the objective function have not increased by more
than a threshold value of iterations, such as 4+[D/2], D 1s the
number of parameters to be estimated. Once the terminating,
criteria are met, the optimal value for the dynamic model
parameters may be generated and stored for users’ review.
[0153] FIG. 9 illustrates a process 900 for using Bayesian
Optimization to optimize parameter 1dentifiability analysis
in accordance with the process 400 (shown i FIG. 4).
Process 900 1s similar to process 800 (shown 1n FIG. 8) and
based on process 400.

[0154] Process 900 1s configured to optimize not only the
generator model parameters (e.g., gains, transfer functions,
integrators, derivative, time constants, limiters, saturation
constants, dead zones, delay, etc.), but also the hyperparam-
cter 1n the parameter 1dentifiability algorithm 425, including
threshold for the SVD or angle. The parameter estimation
algorithm 430 1n this case may be Kalman filter, non-linear
least square optimization solver. The hyper parameter may
also include the max number of iterations, algorithm type
(Levenberg-Marquardt algorithm, Gauss-Newton algorithm,
Trust Region algorithm, Kalman filter algorithm, particle
swarm optimization algorithm, differential evolution algo-
rithm and Bayesian Optimization), residual tolerance, and
weight 1n objective functions in the parameter estimation
algorithm 430. As another embodiment, the parameter to be
estimated 1n Bayesian Optimization 805 may be a combi-
nation of both a parameter and a hyperparameter. In the
exemplary embodiment the hyperparameter will affect the
algorithm performance of the parameter i1dentifiability
analysis algorithm 425 and the parameter estimation algo-
rithm 430, but not the model itself. In some embodiments,
the hyperparameters include the weight parameters w as
described above. In these embodiments, the Bayesian Opti-
mization 803 1s used to find the 1deal weights for one or more
parameters.

[0155] In process 900, the Bayesian Optimization 8035
oversees the parameter 1dentifiability analysis algorithm 4235
and the parameter estimation algorithm 430.

[0156] In some embodiments, the Bayesian Optimization
805 may also replace the parameter estimation algorithm
430 as shown 1n FIG. 8. In these embodiments, the Bayesian
Optimization 805 analyzes both the parameters and the
hyperparameter.

[0157] FIG. 10 1llustrates a process 1000 for using Bayes-
1an Optimization to optimize a hyperparameter in accor-
dance with the process 400 (shown 1n FIG. 4). The process
1000 1s similar to the process 900 (shown i1n FIG. 9) and
based on the process 400.

[0158] The process 1000 1s configured to optimize not
only the generator model parameters (e.g., gains, transier
functions, integrators, derivative, time constants, limiters,
saturation constants, dead zones, delay), but also the hyper
parameter 1in the parameter estimation algorithm 430,
including max number of 1terations, algorithm type (Leven-
berg-Marquardt algorithm, Gauss-Newton algorithm, Trust
Region algorithm, Kalman filter algorithm, particle swarm
optimization algorithm, differential evolution algorlthm and
Bayesian Optimization), and residual tolerance in the

Oct. 15, 2020

parameter estimation algorithm. In some embodiments, the
hyperparameters 1nclude the weight parameters w as
described above. In these embodiments, the Bayesian Opti-
mization 805 1s used to find the 1deal weights for one or more
parameters.

[0159] FIG. 11 illustrates a process 1100 for using Bayes-
1an Optimization to optimize event sequences for sequential
model calibration, such as shown 1n the process 600 (shown
in FI1G. 6). The process 1100 may be executed by the system
300 (shown 1n FIG. 3), the system 700 (shown 1n FIG. 7),
and the platform 1400 (shown 1n FIG. 14).

[0160] In the process 1100, a Bayesian Optimization com-
ponent 1103 1s configured to optimize the sequence of events
for the sequential model calibration process 600 (shown 1n
FIG. 6). The Bayesian Optimization component 1105 uses
the best fitting error and the average {itting error to deter-
mine the optimal event sequence. In the exemplary embodi-
ment, the system 700 analyzes a first sequence of events,
such as event 1 602, event 2 610, and event 3 614. The
system 700 then calculates the average fitting error (also
known as average prediction residual) or the best fitting
error from the analysis of the sequence. The average fitting
error may be calculated by performing model validation 435
(shown 1n FIG. 4) over the three events 602, 610, and 614
with the third updated set of parameters 616. The best fitting,
error may be calculated by determining the minimum over
all fitting error. Based on the average fitting error or the best
fitting error, the Bayesian The optimization component 1105
determines the optimal event sequence for analysis. In some
embodiments, the system 700 then analyzes the events 602,
610, and 614 1n that sequence to get the parameter set. This
parameter set 1s used to calculate the average {fitting error
and/or the best fitting error. If the calculated average fitting
error and/or the best fitting error meets a threshold, then
process 1100 ends. Otherwise the Bayesian Optimization
component 1105 i1s called to determine another event
sequence for analysis and the process 1100 1s re-executed.
The process 1100 may be continually executed until a

terminating condition 1s reached, such as a minimum {fitting
error across all of the events 602, 610, and 614.

[0161] In some further embodiments, the Bayesian Opti-
mization component 1105 1s used to determine the optimal
initial values 604 that least to the least fitting error. In some
additional embodiments, the Bayesian Optimization com-
ponent 1105 1s used to both determine the ideal event
sequence and the optimal 1nitial values 604.

[0162] FIG. 12 illustrates candidate parameter estimation
algorithms 1200 according to some embodiments. In one
approach 1220, measured nput/output data 1210 (u, y™)
may be used by a power system component model 1222 and
an UKF based approach 1224 to create an estimation param-

cter (p™) 1240.

[0163] Inparticular, the system may compute sigma points
based on covariance and standard deviation information.
The Kalman Gain matrix K may be computed based on Y
and the parameters may be updated based on:

Pi=Pr_1+K(/"-P)

until p, converges. According to another approach 1230, the
measured input/output data 1210 (u, y”) may be used by a
power system component model 1232 and an optimization-
based approach 1234 to create the estimation parameter (p™)
1240. In this case, the following optimization problem may
be solved:
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min|[y" ~ ¥ (p)|

[0164] The system may then compute output as compared
to parameter Jacobian imnformation and iteratively solve the
above optimization problem by moving parameters 1n direc-
tions 1ndicated by the Jacobian information.

[0165] FIG. 13 illustrates a two-stage approach of the
process for model calibration. In this approach, PMU data
from events 1s fed into a dynamic simulation engine. The
dynamic simulation engine communicates with a parameter
identifiability analysis component and returns the changes to
the parameters. The parameter 1dentifiability analysis com-
ponent also transmits a set of identifiable parameters to a
model calibration algorithm component. The model calibra-
tion algorithm component uses the set of 1dentifiable param-
eters, PMU data from events, and other data from the
dynamic simulation engine to generate estimated param-
cters. This approach may be used to calibrate the tuning
model parameters.

[0166] With the playback simulation capability, the user
can compare the response (active power and reactive power)
of system models with dynamics observed during distur-
bances 1n the system, which 1s called model validation. The
orid disturbance (aka. events) can also be used to correct the
system model when simulated response 1s significantly
different from the measured values, which 1s called model
calibration. As shown 1n the rnight side of FIG. 14, the goal
1s to achieve a satisfactory match between the measurement
data and simulated response. If obvious a discrepancy 1is
observed, then the model calibration process may be
employed.

[0167] The first step of the model calibration process 1s
parameter 1dentification, which aims to 1dentify a subset of
parameters with strong sensitivity to the observed event. In
the exemplary embodiment, the model calibration process
requires a balance on matching 1n measurement space and
reasonableness in the model parameter space. Numerical
curve fitting without adequate engineering guidance tends to
provide overfitted parameter results, and leads to non-unique
sets ol parameters (leading to same curve {itting perfor-
mance), which should be avoided.

[0168] The embodiments described herein may also be
implemented using any number of different hardware con-
figurations. For example, FIG. 14 1s a block diagram of an
apparatus or platform 1400 that may be, for example,
associated with the system 200 of FIG. 2 and/or any other
system described herein. The plattorm 1400 includes a
processor 1410, such as one or more commercially available
Central Processing Units (“CPUs™) 1n the form of one-chip
microprocessors, coupled to a communication device 1420
configured to communicate via a communication network
(not shown 1n FIG. 14). The communication device 1420
may be used to communicate, for example, with one or more
remote measurement units, components, user interfaces, etc.
The platform 1400 further includes an mput device 1440
(e.g., a computer mouse and/or keyboard to input power grid
and/or modeling information) and/an output device 1450
(e.g., a computer monitor to render a display, provide alerts,
transmit recommendations, and/or create reports). Accord-
ing to some embodiments, a mobile device, monitoring
physical system, and/or PC may be used to exchange infor-
mation with the platform 1400.
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[0169] The processor 1410 also communicates with a
storage device 1430. The storage device 1430 may include
any appropriate information storage device, including com-
binations of magnetic storage devices (e.g., a hard disk
drive), optical storage devices, mobile telephones, and/or
semiconductor memory devices. The storage device 1430
stores a program 1412 and/or a power system disturbance
based model calibration engine 1414 for controlling the
processor 1410. The processor 1410 performs structions of
the programs 1412, 1414, and thereby operates 1n accor-
dance with any of the embodiments described herein. For
example, the processor 1410 may calibrate a dynamic simu-
lation engine, having system parameters, associated with a
component of an electrical power system (e.g., a generator,
wind turbine, etc.). The processor 1410 may receive, from a
measurement data store 1460, measurement data measured
by an electrical power system measurement unit (e.g., a
phasor measurement unit, digital fault recorder, or other
means of measuring frequency, voltage, current, or power
phasors). The processor 1410 may then pre-condition the
measurement data and set-up an optimization problem based
on a result of the pre-conditioning. The system parameters of
the dynamic simulation engine may be determined by solv-
ing the optimization problem with an iterative method until
at least one convergence criteria 1s met. According to some
embodiments, solving the optimization problem includes a
Jacobian approximation that does not call the dynamic
simulation engine 1 an improvement ol residual meets a
pre-defined criterion.

[0170] The programs 1412, 1414 may be stored i a

compressed, uncompiled and/or encrypted format. The pro-
grams 1412, 1414 may furthermore include other program
clements, such as an operating system, clipboard applica-
tion, a database management system, and/or device drivers
used by the processor 1410 to interface with peripheral
devices.

[0171] As used herein, information may be “recerved” by
or “transmitted” to, for example: (1) the platform 1400 from
another device; or (11) a software application or module
within the platform 1400 from another software application,
module, or any other source.

[0172] In some other embodiments, the system 700
(shown 1 FIG. 7) stores a model of a device, such as
generator 110. The model includes a plurality of parameters.
The system 700 receives a plurality of events 602, 610, and
614 (shown in FIG. 6) associated with the device. In some
embodiments, the events 602, 610, and 614 include sensor
information of the event 602, 610, and 614 occurring at the
device. In other embodiments, the sensor information i1s
associated with a similar device.

[0173] The system 700 also receives a first set of 1nput
calibration values 604 (shown in FIG. 6) for the plurality of
parameters. The system 700 sequentially analyzes the plu-
rality of events 602, 610, and 614 in a first sequence to
determine a set of calibrated parameter values 616 (shown 1n
FIG. 6) for the model. The system 700 validates 435 (shown
in FIG. 4) the set of calibrated parameter values 616 for the
model to determine fit. The system 700 then performs
Bayesian optimization 1105 (shown i FIG. 11) on the
determined {it, the set of calibrated parameter values 616 for
the model, and the plurality of events 602, 610, and 614.

[0174] In some embodiments, the system 700 determines
a second sequence of events based on the Bayesian optimi-
zation 1105. The system 700 sequentially analyzes the
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plurality of events 602, 610, and 614 based on the second
sequence to determine a second {it. The system 700 performs
Bayesian optimization 1105 on the second fit, the set of
calibrated parameter values 616 for the model, and the
plurality of events 602, 610, and 614 to determine a third
sequence. The system 700 sequentially analyzes the plural-
ity of events based 602, 610, and 614 on the third sequence.

[0175] In other embodiments, the system 700 determines
a second set of mput calibration values 604 based on the
Bayesian optimization 1105. The system 700 sequentially
analyzes the plurality of events 602, 610, and 614 based on
the second set of input calibration values 604 to determine
a second {it. The system 700 performs Bayesian optimiza-
tion on the second fit, the set of calibrated parameter values
616 for the model, and the plurality of events 602, 610, and
614 to determine a third set of mput calibration values 604.
The system 700 sequentially analyzes the plurality of events
602, 610, and 614 based on the third set of input calibration
values 604.

[0176] In some embodiments, the system 700 compares
the fit to a terminating condition. When the terminating
condition 1s reached, the system 700 updates the model to
include the set of calibrated parameter values 616.

[0177] In some embodiments, the fit 1s based on an aver-
age fitting error of the set of calibrated parameter values 616
across the plurality of events 602, 610, and 614. In other
embodiments, the it 1s based on a best fitting error of the set

of calibrated parameter values 616 across the plurality of
events 602, 610, and 614.

[0178] Insome embodiments, the model 1s a power system
model and the Bayesian optimization maintains a probabi-
listic surrogate model and an acquisition function. In these
embodiments, the system 700 mitializes the probabilistic
surrogate model of an objective function using a plurality of
initial parameter points. The probabilistic surrogate model
of the objective function includes a stationary probabilistic
model including a non-linear one-to-one mapping of values
of the plurality of parameters from a first domain to a second
domain. The system 700 also generates a new set of param-
cter values corresponding to at least one parameter of the
plurality of parameters by optimizing an acquisition func-
tion. The acquisition function 1s based at least in part on the
set of calibrated parameter values and the probabilistic
surrogate model of the objective function. The system 700
turther evaluates the objective function using the power
system model operated with the new set of parameter values.
In addition, the system 700 updates the probabilistic surro-
gate model of the objective function to obtain an updated
probabilistic surrogate model of the objective function.
Moreover, the system 700 repeats until reaching at least one
of a predetermined number of iterations, a predetermined
period of time, and a termination condition.

[0179] In the exemplary embodiment, the system 300
(shown 1n FIG. 3) stores a model of a device. The model
includes a plurality of parameters. The system 300 receives
a first event 308 associated with the device. The system 300
analyzes the first event 308 to 1dentity a subset of important
parameters from the plurality of parameters. The system 300
performs Bayesian optimization 805 (shown in FIG. 8) on
the subset of important parameters to determine a set of
calibrated parameter values for the model.

[0180] In some embodiments, the system 300 analyzes the
first event using at least one of a single value decomposition
(SVD) approach and a dot product angle (DPA) approach. In
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some embodiments, the subset of important parameters
includes less than ten parameters.

[0181] In some further embodiments, the system 300
receives a second event 308 associated with the device. The
system 300 analyzes the second event 308 to determine a
second subset of important parameters from the plurality of
parameters based on the set of calibrated parameter values.
The system 300 performs Bayesian optimization 805 on the
second subset of important parameters to determine a second
set of calibrated parameter values for the model.

[0182] In the exemplary embodiment, the system 300
stores a model of a device. The model includes a plurality of
parameters. The system 300 receive a first event 308 asso-
ciated with the device. The system 300 analyzes the first
event 308 to 1dentily a subset of important parameters from
the plurality of parameters. The system 300 determines at
least one hyperparameter based on the analysis. The system
300 performs Bayesian optimization 805 on the hyperpa-
rameter.

[0183] In some embodiments, the system 300 analyzes the
first event 308 using at least one of a single value decom-
position (SVD) approach and a dot product angle (DPA)
approach. In some embodiments, the at least one hyperpa-
rameter includes at least one of a maximum number of
iterations, a residual tolerance, and one or more parameter
weights.

[0184] In some further embodiments, the system 300
reanalyzes the first event 308 to identily the subset of
important parameters from the plurality of parameters based
on the hyperparameter. The system 300 determines a set of
calibrated parameter values for the model based on the
subset of important parameters.

[0185] In still further embodiments, the system 300 deter-
mines a set of calibrated parameter values for the model
based on the subset of important parameters and the hyper-
parameter. In other embodiments, the system 300 performs
Bayesian optimization 805 on the subset of important
parameters to determine a set of calibrated parameter values
for the model.

[0186] At least one of the technical solutions to the
technical problems provided by this system may include: (1)
improved speed in modeling parameters; (1) more robust
models 1n response to measurement noise; (111) compliance
with NERC mandated grid reliability requirements; (1v)
reduce the chance that an important parameter 1s not
updated; (v) improved accuracy in parameter identifiability;
(vi) improved accuracy in parameter estimation; and (vii)
improved optimization of parameters based on event train-
ng.

[0187] The methods and systems described herein may be
implemented using computer programming or engineering
techniques including computer software, firmware, hard-
ware, or any combination or subset thereol, wherein the
technical effects may be achieved by performing at least one
of the following steps: a) store a model of a device, wherein
the model includes a plurality of parameters; b) receive a
plurality of events associated with the device; ¢) receive a
first set of input calibration values for the plurality of
parameters; d) sequentially analyze the plurality of events in
a lirst sequence to determine a set of calibrated parameter
values for the model; e) validate the set of calibrated
parameter values for the model to determine fit; 1) perform
Bayesian optimization on the determined fit, the set of
calibrated parameter values for the model, and the plurality
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of events; g) determine a second sequence of events based
on the Bayesian optimization; h) sequentially analyze the
plurality of events based on the second sequence to deter-
mine a second fit; 1) perform Bayesian optimization on the
second {it, the set of calibrated parameter values for the
model, and the plurality of events to determine a third
sequence; 1) sequentially analyze the plurality of events
based on the third sequence; k) determine a second set of
input calibration values based on the Bayesian optimization;
1) sequentially analyze the plurality of events based on the
second set of mput calibration values to determine a second
fit; m) perform Bayesian optimization on the second fit, the
set of calibrated parameter values for the model, and the
plurality of events to determine a third set of mput calibra-
tion values; n) sequentially analyze the plurality of events
based on the third set of input calibration values; o) compare
the {it to a terminating condition; and p) when the terminat-
ing condition 1s reached, update the model to include the set

of calibrated parameter values.

[0188] In other embodiments, the technical eflects may be
achieved by performing at least one of the following steps:
a) store a model of a device, wherein the model includes a
plurality of parameters; b) receive a first event associated
with the device; ¢) analyze the first event to 1dentily a subset
of 1important parameters from the plurality of parameters,
wherein the subset of important parameters includes less
than ten parameters; d) perform Bayesian optimization on
the subset of important parameters to determine a set of
calibrated parameter values for the model; e) analyze the
first event using at least one of a single value decomposition
approach and a dot product angle approach; 1) receive a
second event associated with the device; g) analyze the
second event to determine a second subset of important
parameters from the plurality of parameters based on the set
of calibrated parameter values; and h) perform Bayesian
optimization on the second subset of important parameters

to determine a second set of calibrated parameter values for
the model.

[0189] In still other embodiments, the technical effects
may be achieved by performing at least one of the following
steps: a) store a model of a device, wherein the model
includes a plurality of parameters; b) receive a first event
associated with the device; ¢) analyze the first event to
identily a subset of important parameters from the plurality
of parameters; d) determine at least one hyperparameter
based on the analysis, wherein the at least one hyperparam-
cter includes at least one of a maximum number of itera-
tions, a residual tolerance, and one or more parameter
weights; e) perform Bayesian optimization on the hyperpa-
rameter; 1) analyze the first event using at least one of a
single value decomposition approach and a dot product
angle approach; g) reanalyze the first event to identify the
subset ol important parameters from the plurality of param-
cters based on the hyperparameter; h) determine a set of
calibrated parameter values for the model based on the
subset of 1important parameters; 1) determine a set of cali-
brated parameter values for the model based on the subset of
important parameters and the hyperparameter; and j) per-
form Bayesian optimization on the subset of important
parameters to determine a set of calibrated parameter values
for the model.

[0190] The computer-implemented methods discussed
herein may include additional, less, or alternate actions,
including those discussed elsewhere herein. The methods
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may be implemented via one or more local or remote
processors, transceivers, servers, and/or sensors, and/or via
computer-executable instructions stored on non-transitory
computer-readable media or medium.

[0191] Additionally, the computer systems discussed
herein may include additional, less, or alternate functional-
ity, including that discussed elsewhere herein. The computer
systems discussed herein may include or be implemented via
computer-executable instructions stored on non-transitory
computer-readable media or medium.

[0192] A processor or a processing element may employ
artificial intelligence and/or be trained using supervised or
unsupervised machine learning, and the machine learning
program may employ a neural network, which may be a
convolutional neural network, a deep learning neural net-
work, or a combined learning module or program that learns
in two or more fields or areas of interest. Machine learning
may involve identifying and recognizing patterns in existing
data in order to facilitate making predictions for subsequent
data. Models may be created based upon example mnputs 1n
order to make valid and reliable predictions for novel inputs.

[0193] Additionally or alternatively, the machine learning
programs may be trained by inputting sample data sets or
certain data into the programs, such as image data, text data,
report data, and/or numerical analysis. The machine learning
programs may utilize deep learning algorithms that may be
primarily focused on pattern recognition, and may be trained
alter processing multiple examples. The machine learning
programs may include Bayesian program learning (BPL),
voice recognmition and synthesis, image or object recognition,
optical character recognition, and/or natural language pro-
cessing—either 1ndividually or 1n  combination. The
machine learming programs may also include natural lan-
guage processing, semantic analysis, automatic reasoning,
and/or machine learning.

[0194] In supervised machine learning, a processing ele-
ment may be provided with example mputs and their asso-
ciated outputs, and may seek to discover a general rule that
maps inputs to outputs, so that when subsequent novel imnputs
are provided the processing element may, based upon the
discovered rule, accurately predict the correct output. In
unsupervised machine learning, the processing element may
be required to find 1ts own structure 1n unlabeled example
inputs. In one embodiment, machine learning techniques
may be used to extract data about the computer device, the
user of the computer device, the computer network hosting
the computer device, services executing on the computer
device, and/or other data.

[0195] Based upon these analyses, the processing element
may learn how to i1dentily characteristics and patterns that
may then be applied to training models, analyzing sensor
data, and detecting abnormalities.

[0196] As will be appreciated based upon the foregoing
specification, the above-described embodiments of the dis-
closure may be implemented using computer programming
or engineering techniques including computer software,
firmware, hardware or any combination or subset thereof.
Any such resulting program, having computer-readable code
means, may be embodied or provided within one or more
computer-readable media, thereby making a computer pro-
gram product, 1.e., an article of manufacture, according to
the discussed embodiments of the disclosure. The computer-
readable media may be, for example, but 1s not limited to, a
fixed (hard) drive, diskette, optical disk, magnetic tape,
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semiconductor memory such as read-only memory (ROM),
and/or any transmitting/receiving medium, such as the Inter-
net or other communication network or link. The article of
manufacture containing the computer code may be made
and/or used by executing the code directly from one
medium, by copying the code from one medium to another
medium, or by transmitting the code over a network.

[0197] These computer programs (also known as pro-
grams, soltware, software applications, “apps”, or code)
include machine instructions for a programmable processor,
and can be implemented 1n a high-level procedural and/or
object-oriented programming language, and/or 1n assembly/
machine language. As used herein, the terms “machine-
readable medium” and “computer-readable medium™ refer
to any computer program product, apparatus and/or device
(e.g., magnetic discs, optical disks, memory, Programmable
Logic Devices (PLDs)) used to provide machine instructions
and/or data to a programmable processor, ncluding a
machine-readable medium that recerves machine instruc-
tions as a machine-readable signal. The “machine-readable
medium” and “computer-readable medium,” however, do
not include transitory signals. The term “machine-readable
signal” refers to any signal used to provide machine 1nstruc-
tions and/or data to a programmable processor.

[0198] As used herein, a processor may include any pro-
grammable system including systems using micro-control-
lers, reduced instruction set circuits (RISC), application
specific mtegrated circuits (ASICs), logic circuits, and any
other circuit or processor capable of executing the functions
described herein. The above examples are example only, and
are thus not intended to limit 1n any way the definition and/or
meaning of the term “processor.”

[0199] As used herein, the terms “software” and “firm-
ware” are interchangeable, and include any computer pro-
gram stored 1n memory for execution by a processor, includ-
ing RAM memory, ROM memory, EPROM memory,
EEPROM memory, and non-volatile RAM (NVRAM)
memory. The above memory types are example only, and are
thus not limiting as to the types of memory usable for
storage ol a computer program.

[0200] In another embodiment, a computer program 1s
provided, and the program 1s embodied on a computer-
readable medium. In an example embodiment, the system 1s
executed on a single computer system, without requiring a
connection to a server computer. In a further example
embodiment, the system 1s bemng run i a Windows®
environment (Windows 1s a registered trademark of Micro-
soit Corporation, Redmond, Wash.). In yet another embodi-
ment, the system 1s run on a mainirame environment and a
UNIX® server environment (UNIX 1s a registered trade-
mark of X/Open Company Limited located in Reading,
Berkshire, United Kingdom). In a further embodiment, the
system 1s run on an 10S® environment (10S 1s a registered
trademark of Cisco Systems, Inc. located in San Jose,
Calif.). In yet a further embodiment, the system 1s run on a
Mac OS® environment (Mac OS 1s a registered trademark
of Apple Inc. located 1n Cupertino, Calif.). In still yet a
turther embodiment, the system 1s run on Android® OS
(Android 1s a registered trademark of Google, Inc. of Moun-
tain View, Calif.). In another embodiment, the system 1s run
on Linux® OS (Linux 1s a registered trademark of Linus
Torvalds of Boston, Mass.). The application 1s flexible and
designed to run in various different environments without
compromising any major functionality.
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[0201] In some embodiments, the system includes mul-
tiple components distributed among a plurality of computer
devices. One or more components may be in the form of
computer-executable instructions embodied 1n a computer-
readable medium. The systems and processes are not limited
to the specific embodiments described herein. In addition,
components of each system and each process can be prac-
ticed independent and separate from other components and
processes described herein. Each component and process
can also be used 1n combination with other assembly pack-
ages and processes. The present embodiments may enhance
the functionality and functioning of computers and/or com-
puter systems.

[0202] As used herein, an element or step recited 1n the
singular and preceded by the word “a” or “an” should be
understood as not excluding plural elements or steps, unless
such exclusion 1s explicitly recited. Furthermore, references
to “example embodiment,” “exemplary embodiment,” or
“one embodiment” of the present disclosure are not intended
to be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.
[0203] The patent claims at the end of this document are
not intended to be construed under 35 U.S.C. § 112(1) unless
traditional means-plus-function language 1s expressly
recited, such as “means for” or “step for” language being
expressly recited in the claim(s).

[0204] This written description uses examples to disclose
the disclosure, including the best mode, and also to enable
any person skilled in the art to practice the disclosure,
including making and using any devices or systems and
performing any incorporated methods. The patentable scope
of the disclosure 1s defined by the claims, and may include
other examples that occur to those skilled 1n the art. Such
other examples are mtended to be within the scope of the
claims 1f they have structural elements that do not difler
from the literal language of the claims, or if they include
equivalent structural elements with insubstantial diflerences
from the literal language of the claims.

In the claims:

1. A system for power system model calibration compris-
ing a computing device comprising at least one processor 1n
communication with at least one memory device, wherein
said at least one processor 1s programmed to:

store a model of a device, wherein the model includes a
plurality of parameters;

recetve a plurality of events associated with the device;

recerve a first set of mput calibration values for the

plurality of parameters;

sequentially analyze the plurality of events i a first

sequence to determine a set of calibrated parameter
values for the model:;

validate the set of calibrated parameter values for the

model to determine a fit; and

perform Bayesian optimization on the determined fit, the

set of calibrated parameter values for the model, and
the plurality of events.

2. The system 1n accordance with claim 1, wherein the
model 1s a power system model, wherein the Bayesian
optimization maintains a probabilistic surrogate model and
an acquisition function, and wherein to perform Bayesian
optimization said at least one processor 1s further pro-
grammed to:

initialize the probabilistic surrogate model of an objective
function using a plurality of mitial parameter points,
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wherein the probabilistic surrogate model of the objec-
tive Tunction comprises a stationary probabilistic model
including a non-linear one-to-one mapping of values of
the plurality of parameters from a first domain to a
second domain;
generate a new set of parameter values corresponding to
at least one parameter of the plurality of parameters by
optimizing an acquisition function, wherein the acqui-
sition function 1s based at least in part on the set of
calibrated parameter values and the probabilistic sur-
rogate model of the objective function;
cvaluate the objective function using the power system
model operated with the new set of parameter values;

update the probabilistic surrogate model of the objective
function to obtain an updated probabilistic surrogate
model of the objective function; and

repeat until reaching at least one of a predetermined

number of 1terations, a predetermined period of time,
and a termination condition.
3. The system 1n accordance with claim 1, wherein said at
least one processor 1s further programmed to determine a
second sequence of events based on the Bayesian optimi-
zation.
4. The system i1n accordance with claim 3, wherein said at
least one processor 1s further programmed to sequentially
analyze the plurality of events based on the second sequence
to determine a second fit.
5. The system 1n accordance with claim 4, wherein said at
least one processor 1s further programmed to:
perform Bayesian optimization on the second fit, the set
of calibrated parameter values for the model, and the
plurality of events to determine a third sequence; and

sequentially analyze the plurality of events based on the
third sequence.

6. The system 1n accordance with claim 1, wherein said at
least one processor 1s further programmed to determine a
second set of iput calibration values based on the Bayesian
optimization.

7. The system 1n accordance with claim 6, wherein said at
least one processor 1s further programmed to sequentially
analyze the plurality of events based on the second set of
input calibration values to determine a second fit.

8. The system 1n accordance with claim 7, wherein said at
least one processor 1s further programmed to:

perform Bayesian optimization on the second fit, the set

of calibrated parameter values for the model, and the
plurality of events to determine a third set of input
calibration values; and

sequentially analyze the plurality of events based on the

third set of mput calibration values.

9. The system 1n accordance with claim 1, wherein said at
least one processor 1s further programmed to:

compare the fit to a terminating condition; and

when the terminating condition 1s reached, update the
model to include the set of calibrated parameter values.
10. The system 1n accordance with claim 1, wherein the
fit 1s based on one of an average fitting error of the set of
calibrated parameter values across the plurality of events
and a best fitting error of the set of calibrated parameter
values across the plurality of events.
11. A system for power system model calibration com-
prising a computing device comprising at least one proces-
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sor 1n communication with at least one memory device,
wherein said at least one processor 1s programmed to:

store a model of a device, wherein the model includes a

plurality of parameters;
receive a first event associated with the device;
analyze the first event to i1dentily a subset of important
parameters from the plurality of parameters; and

perform Bayesian optimization on the subset of important
parameters to determine a set of calibrated parameter
values for the model.
12. The system in accordance with claim 11, wherein said
at least one processor 1s turther programmed to analyze the
first event using at least one of a single value decomposition
approach and a dot product angle approach.
13. The system 1n accordance with claim 11, wherein the
subset of important parameters includes less than ten param-
eters.
14. The system in accordance with claim 11, wherein said
at least one processor 1s further programmed to:
receive a second event associated with the device;
analyze the second event to determine a second subset of
important parameters from the plurality of parameters
based on the set of calibrated parameter values; and

perform Bayesian optimization on the second subset of
important parameters to determine a second set of
calibrated parameter values for the model.

15. A system for power system model calibration com-
prising a computing device comprising at least one proces-
sor 1n communication with at least one memory device,
wherein said at least one processor 1s programmed to:

store a model of a device, wherein the model includes a

plurality of parameters;

receive a first event associated with the device;

analyze the first event to i1dentily a subset of important

parameters from the plurality of parameters;
determine at least one hyperparameter based on the analy-
s1s; and

perform Bayesian optimization on the hyperparameter.

16. The system 1n accordance with claim 15, wherein said
at least one processor 1s turther programmed to analyze the
first event using at least one of a single value decomposition
approach and a dot product angle approach.

17. The system in accordance with claim 135, wherein said
at least one hyperparameter includes at least one of a
maximum number of iterations, a residual tolerance, and one
or more parameter weights.

18. The system in accordance with claim 135, wherein said
at least one processor 1s further programmed to:

re-analyze the first event to 1dentify the subset of 1impor-

tant parameters from the plurality of parameters based
on the hyperparameter; and

determine a set of calibrated parameter values for the

model based on the subset of important parameters.

19. The system 1n accordance with claim 15, wherein said
at least one processor 1s further programmed to determine a
set of calibrated parameter values for the model based on the
subset of important parameters and the hyperparameter.

20. The system 1n accordance with claim 15, wherein said
at least one processor 1s further programmed to perform
Bayesian optimization on the subset of important parameters
to determine a set of calibrated parameter values for the
model.
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