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(57) ABSTRACT

Systems and methods are disclosed that include generating
reservoir property profiles corresponding to reservoir prop-
erties for pseudo wells based on reservoir data, generating
seismic attributes for the pseudo wells, and training a
machine learning model by comparing the reservoir property
proflles against the seismic attributes. In this manner, the
machine learning model may be used to predict reservoir
properties for use with seismic exploration above a region of
a subsurface that contains structural or stratigraphic features
conducive to a presence, migration, or accumulation of
hydrocarbons.
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MACHINE LEARNING-BASED ANALYSIS OF
SEISMIC ATTRIBUTES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims benefit of U.S. provisional
application Ser. No. 62/731.,411 filed Sep. 14, 2018, and
entitled “Machine Learming-Based Analysis of Seismic
Attributes,” which 1s hereby incorporated herein by refer-
ence 1n its entirety for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable.
TECHNICAL FIELD
[0003] The present disclosure relates generally to analyz-

ing seismic attributes and reservoir properties, and more
specifically, to using machine learning to analyze the rela-
tionship between seismic attributes and reservoir properties.
Seismic attributes of seismic data can include, at least,
frequency-dependent amplitude variation with offset
(FAVO) responses, analytical seismic attributes (such as, for
example, quadrature traces and/or envelopes), and mnverted
seismic attributes (such as, for example, impedance, density,
and/or reflectivity). Reservoir properties can include, at
least, a rock’s fluid content, porosity, density or seismic
velocity, shear wave information, and/or fluid indicators
(hydrocarbon indications), for example. In general, a seis-
mic attribute can be considered to be a calculation/repre-
sentation that enhances a correlation between a seismic
amplitude and a reservoir property of interest.

BACKGROUND

[0004] This section 1s intended to mtroduce the reader to
various aspects of art that may be related to various aspects
of the present disclosure, which are described and/or
claimed below. This discussion 1s believed to be helpiul 1n
providing the reader with background information to facili-
tate a better understanding of the various aspects of the
present disclosure. Accordingly, 1t should be understood that
these statements are to be read in this light, and not as
admuissions of prior art.

[0005] Seismic analysis or surveying includes generating
an 1mage or map ol a subsurface region of the Earth by
sending sound (seismic) energy down into the ground and
recording the retlected sound energy that returns from the
geological layers within the subsurface region. Seismic
imaging attempts to generate a representation of the reser-
voir properties of the relevant subsurface region.

[0006] When sending waves of sound energy ito the
ground, the waves can scatter through a stack of geological
layers (within a reservoir, for example) to produce temporal
frequency dependent seismic amplitudes. The characteristics
of the scattering can be recorded by a corresponding fre-
quency amplitude versus offset (FAVO) response. Captured
FAVO responses can then be analyzed to draw an inference
upon the reservoir properties of the subsurface region. For
example, FAVO responses can be analyzed to infer upon the
subsurface region’s tluid content, porosity, density or seis-
mic velocity, shear wave information, and/or fluid indicators
(hydrocarbon indications) based on a seismic attribute (1.e.,
the amplitude), and also based on the distance between a
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source and a receiver (1.€., the oflset). Because FAVO-based
seismic analysis can take into account various geological
layer properties (e.g., layer thickness, seismic velocity, den-
sity) and incident wave properties (e.g., angle and {fre-
quency), and because the geological layer properties may
themselves be dependent on rock and fluid, or reservoir
properties (e.g., layer thickness, lithology, fluid, etc.), a
resulting FAVO response of the analysis can be complex
valued, which can be represented with real components and
also with 1maginary components, or as absolute amplitude
and phase, as a function of frequency. A captured FAVO
response, then, can be multidimensional, and may be difli-
cult to interpret when compared to other types of responses
that are captured by conventional seismic interpretation
methods, such as conventional amplitude variation with
oflset (AVO) seismic analysis. FAVO 1s an example seismic
attribute and 1s highlighted to understand the process. This
process 1s applicable to other seismic attributes or pre-stack
seismic CDP sorted gathers as well.

SUMMARY

[0007] A summary of certain embodiments disclosed
herein 1s set forth below. It should be understood that these
aspects are presented merely to provide the reader with a
brief summary of these certain embodiments and that these
aspects are not intended to limit the scope of this disclosure.
Indeed, this disclosure may encompass a variety of aspects
that may not be set forth below.

[0008] Machine learning can be used to analyze seismic
attributes. For example, one or more embodiments can
implement a machine-learning system 1n order to analyze a
relationship/correlation between at least one seismic attri-
bute and at least one reservoir property. Specifically, with
one or more embodiments, machine learning can be used to
analyze frequency-dependent amplitude variation with off-
set (FAVO) responses in order to predict at least one
reservoir property that 1s associated with the analyzed FAVO
responses. Further, in addition to analyzing FAVO
responses, other embodiments can use machine learming
techniques to analyze analytical seismic attributes and/or
inverted seismic attributes, for example. Although certain
embodiments can analyze FAVO responses, other embodi-
ments can analyze other types of seismic attributes. Specifi-
cally, aside from FAVO, other seismic attributes can be used
as inputs. Further, other types of seismic attributes can be
used 1 conjunction with FAVO responses for performing
reservolr property prediction.

[0009] In order to train a machine-learning system to learn
relationships/correlations between seismic attributes and
reservoir properties, the machine-learning system compares
the seismic attributes ol a well against a set of reservoir
properties of the same well (i.e., the reservoir property
profile of the well). After performing numerous comparisons
between the seismic attributes ol numerous wells against
numerous corresponding reservoir property profiles of the
same wells, the machine-learning system can learn the
relationships/correlations between the seismic attributes and
the reservoir properties.

[0010] However, training the machine-learning system
can be diflicult because the process of obtaining each
reservoir property profile of a well and the process of
obtaining the seismic attributes of the well can be time
consuming as well as costly. For example, with conventional
methods, a surveyor would generally need to physically
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perform a survey on a seismic region, physically drill a hole
at the seismic region, and physically perform the necessary
measurements. The surveyor would then have one reservoir
property profile and one set of seismic attributes that can be
used to train the machine-learning system. Therefore, in
order to train the machine-learning system using hundreds or
thousands of reservoir property profiles, the surveyor would
need to perform hundreds or thousands of physical surveys
and digs.

[0011] In contrast to the conventional methods, one more
embodiments can train the machine-learning system using
simulated reservoir property profiles and simulated seismic
attributes. In other words, as described 1n more detail below,
one or more embodiments can generate simulated reservoir
property profiles for a plurality of simulated wells (1.e.,
“pseudo-wells”), and one or more embodiments can gener-
ate seismic attributes for these pseudo-wells. In particular,
for a given reservoir, a plurality of pseudo-wells can be
generated. Each pseudo-well can be generated based on the
actual seismic data of the reservoir from which the pseudo-
well 1s dertved. Thus, for pseudo-wells that share a reservorr,
reservoir property profiles can be generated for these
pseudo-wells based on the actual seismic data of the shared
reservoir (e.g., reservolr data). A reservoir property profile of
a pseudo-well can include properties such as, for example,
thickness, lithology, fluid, sand ratio, shale ratio, etc., of the
pseudo-well.

[0012] With one or more embodiments, the simulated
seismic attributes for a pseudo well can include one or more
generated seismic attribute responses for the pseudo well. In
general, 11 a set of seismic attribute responses for a well
exhibits a patterned behavior, the patterned behavior can be
used to predict reservoir properties of the well. However,
using human eyes or conventional computer algorithms to
determine such patterned behavior may be 1naccurate,
tedious, and unrealistic. Getting back to the FAVO example,
determining/identifying patterned behavior within a set of
FAVO responses can be unrealistic because each FAVO
response can be multi-dimensional as a result of being a
function of multiple geological layer properties, as com-
pared to responses determined based on conventional seis-
mic 1nterpretation methods. Unlike FAVO responses,
responses based on conventional seismic interpretation
methods may be a function of a single geological layer
property. As such, mstead of using human eyes or conven-
tional computer algorithms, a machine learning model of
one or more embodiments can also be trained to predict the
reservoir properties of, for example, the wells of the reser-
voir, based on the set of FAVO or other seismic attribute
responses.

[0013] In particular, deep learming computational models,
like Convoluted Neural Networks (CNN), or Long Short-
Term Memory networks (LSTM) and/or a type of Recurrent
Neural Networks (RNN), can implement deep structures that
mimic the learning process in a human brain. Such deep
learning models have been proven eflective 1n determining
intricate structures in multi-dimensional (e.g., multi-vari-
able) data. For example, recently, deep learning techniques
have produced encouraging results 1n the 1image and speech
recognition fields. One or more embodiments 1mplement
deep learming models that add multiple hidden layers with a
different set of neurons for each layer to a simple neural
network model, resulting 1n a deep neural network. As
described 1n more detail below, a properly tramned deep
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learning model can receive seismic attributes of a well and
then infer/predict the reservoir properties of the well based
on the recerved seismic attributes. For example, one or more
embodiments can receive a set of captured seismic attribute
responses of a well, and one or more embodiments can
generate more eflective and accurate predictions of the
well’s reservoir properties as compared to the predictions

generated by manual computation or conventional computer
algorithms.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Various aspects of this disclosure may be better
understood upon reading the following detailed description
and upon reference to the drawings in which:

[0015] FIG. 1 1s a tlow chart of various processes that may
be performed based on analysis of seismic data acquired via
a seismic survey system, in accordance with embodiments
presented herein;

[0016] FIG. 2 1s a schematic diagram of a marine survey
system 1n a marine environment, 1 accordance with
embodiments presented herein;

[0017] FIG. 3 1s a schematic diagram of a land survey
system, 1n accordance with embodiments presented herein
[0018] FIG. 4 1s a block diagram of a computing system
that may perform operations described herein based on data
acquired via the marine survey system of FIG. 2 and/or the
land survey system of FIG. 3, 1n accordance with embodi-
ments presented herein;

[0019] FIG. 5 1s a flow chart of a method that may be
employed by the computing system of FIG. 4 to predict
reservoir property values of wells sharing a hydrocarbon
reservolr, 1n accordance with embodiments presented
herein;

[0020] FIG. 6 1s a schematic diagram showing an example
of scattered waves 1n a reservoir of thickness L., where the
characteristics of the scattering can be captured by a fre-
quency-dependent amplitude variation with offset (FAVO)
response, 1n accordance with embodiments presented herein
[0021] FIG. 7 15 a set of plots of an example FAVO
response of a shaley well and an example FAVO response of
a sandy well, along with the corresponding reservoir prop-
erties, 1 accordance with embodiments presented herein;

[0022] FIG. 8 1s a set of plots of example FAVO responses
when fluid 1s changing 1n a well, along with the correspond-
ing reservoir property profile, i accordance with embodi-
ments presented herein; and

[0023] FIG. 9 1s a flow chart of a method that may be
employed by the computing system of FIG. 4 to train a
machine learning model based on seismic attributes and
reservoir properties, 1 accordance with embodiments pre-
sented herein.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[0024] One or more specific embodiments will be
described below. In an effort to provide a concise description
of these embodiments, not all features of an actual 1mple-
mentation are described in the specification. It should be
appreciated that in the development of any such actual
implementation, as 1 any engineering or design project,
numerous implementation-specific decisions must be made
to achieve the developers’ specific goals, such as compli-
ance with system-related and business-related constraints,
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which may vary from one implementation to another. More-
over, 1t should be appreciated that such a development effort
might be complex and time consuming, but would never-
theless be a routine undertaking of design, fabrication, and
manufacture for those of ordinary skill having the benefit of

this disclosure.

[0025] Seismic data may provide valuable information
with regard to geological formations, such as the location
and/or change of hydrocarbon deposits within a subsurface
region of the Earth. Seismic attributes are generated from
seismic data to enhance the sensitivity of reservoir property
to seismic. As discussed above, one type of seismic attribute
1s the FAVO response. Because FAVO-based seismic analy-
s1s 15 a function of (multiple) geological layer properties
(e.g., thickness, seismic velocity, density) and incident wave
properties (e.g., angle and frequency), and the geological
layer properties may themselves be dependent on reservoir
properties (e.g., thickness, lithology, fluid, sand ratio, shale
ratio, water ratio, etc.), a FAVO response can be complex
valued, which can be represented with real and imaginary
components or as an absolute amplitude and phase, as a
function of frequency. The FAVO response, then, 1s multi-
dimensional, which may be rich with information related to
the reservoir properties, but which may be diflicult to
interpret when compared to conventional seismic interpre-
tation methods that may be a function of a single geological
layer property, such as conventional amplitude varation
with offset (AVO) seismic analysis.

[0026] By way of introduction, seismic data may be
acquired using a variety ol seismic survey systems and
techniques, two of which are discussed with respect to FIG.
2 and FIG. 3. Regardless of the seismic data gathering
technique utilized, after the seismic data 1s acquired, a
computing system may analyze the acquired seismic data
and may use the results of the seismic data analysis (e.g.,
seismogram, map of geological formations, etc.) to perform
various operations within the hydrocarbon exploration and
production industries. For instance, FIG. 1 1s a flow chart of
a method 10 that details various processes that may be
undertaken based on the analysis of the acquired seismic
data. Although the steps of method 10 are described 1n a
particular order, 1t should be noted that the steps of method
10 may be performed 1n any suitable order.

[0027] Referring now to FIG. 1, at block 12, locations and
properties of hydrocarbon deposits within a subsurface
region of the Earth associated with the respective seismic
survey may be determined based on the analyzed seismic
data. In some embodiments, a machine learning model may
predict the locations and/or properties of hydrocarbon
deposits within the subsurface region by analyzing seismic
attributes such as, for example, FAVO responses.

[0028] Based on the identified locations and properties of
the hydrocarbon deposits, at block 14, certain positions or
parts of the subsurface region may be explored. That 1s,
hydrocarbon exploration orgamzations may use the loca-
tions of the hydrocarbon deposits to determine locations at
the surface of the subsurface region to drill into the Earth. As
such, the hydrocarbon exploration organizations may use the
locations and properties of the hydrocarbon deposits to
determine a path along which to drill into the Earth, how to
drill into the Farth, and the like.

[0029] After exploration equipment has been placed
within the subsurface region, at block 16, the hydrocarbons
that are stored 1n the hydrocarbon deposits may be produced
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via natural flowing wells, artificial lift wells, and the like. At
block 18, the produced hydrocarbons may be transported to
refineries and the like via transport vehicles, pipelines, and
the like. At block 20, the produced hydrocarbons may be
processed according to various refining procedures to
develop different products using the hydrocarbons.

[0030] It should be noted that the processes discussed with
regard to method 10 may 1nclude other suitable processes
that may be based on the locations and properties of hydro-
carbon deposits as indicated in the seismic data acquired via
one or more seismic surveys. As such, i1t should be under-
stood that the processes described above are not intended to
depict an exhaustive list of processes that may be performed
alter determining the locations and properties of hydrocar-
bon deposits within the subsurface region.

[0031] With the foregoing 1n mind, FIG. 2 1s a schematic
diagram of a marine survey system 22 (e.g., for use 1n
conjunction with block 12 of FIG. 1) that may be employed
to acquire seismic data (e.g., wavelorms) regarding a sub-
surface region of the Earth 1n a marine environment. Gen-
crally, a marine seismic survey using the marine survey
system 22 may be conducted in an ocean 24 or other body
ol water over a subsurface region 26 of the Earth that lies
beneath a seafloor 28.

[0032] The marine survey system 22 may include a vessel
30, a seismic source 32, a streamer 34, a recetver 36, and/or
other equipment that may assist 1n acquiring seismic 1mages
representative of geological formations within a subsurtace
region 26 of the Earth. The vessel 30 may tow the seismic
source 32 (e.g., an air gun array) that may produce energy,
such as sound waves (e.g., seismic wavelforms), that 1s
directed at a seafloor 28. The vessel 30 may also tow the
streamer 34 having a receiver 36 (e.g., hydrophones) that
may acquire seismic wavelorms that represent the energy
output by the seismic sources 32 subsequent to being
reflected ofl of various geological formations (e.g., salt
domes, faults, folds, etc.) within the subsurface region 26.
Although the above descriptions of the marine survey sys-
tem 22 are described with one seismic streamer 34, it should
be noted that the marine survey system 22 may include
multiple seismic streamers 34. In addition, additional vessels
30 may include additional sources 32, streamers 34, and the

like to perform the operations of the marine survey system
22.

[0033] FIG. 3 1s a schematic diagram of a land survey
system 38 (e.g., for use 1n conjunction with block 12 of FIG.
1) that may be employed to obtain information regarding the
subsurface region 26 of the Earth 1n a non-marine environ-
ment. The land survey system 38 may include a land-based
seismic source 40 and land-based receiver 44. In some
embodiments, the land survey system 38 may include one or
more multiple seismic sources 40 and one or more receivers
44 and 46. Indeed, for discussion purposes, the land survey
system 38 includes a land-based seismic source 40 and two
seismic receivers 44 and 46. The land-based seismic source
40 (e.g., seismic vibrator) that may be disposed on a surface
42 of the Earth above the subsurface region 26 of interest.
The land-based seismic source 40 may produce energy (e.g.,
sound waves, seismic waveforms) that 1s directed at the
subsurface region 26 of the Earth. Upon reaching various
geological formations (e.g., salt domes, faults, folds) within
the subsurface region 26 the energy output by the land-based
seismic source 40 may be reflected ofl of the geological
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formations and acquired or recorded by one or more land-
based receivers (e.g., 44 and 46).

[0034] In some embodiments, the land-based receivers 44
and 46 may be dispersed across the surface 42 of the Earth
to form a grid-like pattern. As such, each land-based receiver
44 or 46 may receive a retlected seismic wavelorm 1n
response to energy being directed at the subsurface region 26
via the seismic source 40. In some cases, one seismic
waveform produced by the seismic source 40 may be
reflected ofl of different geological formations and received
by different receivers. For example, as shown 1n FIG. 3, the
seismic source 40 may output energy that may be directed at
the subsurface region 26 as seismic wavelform 48. A first
receiver 44 may receive the reflection of the seismic wave-
form 48 off of one geological formation and a second
receiver 46 may receive the reflection of the seismic wave-
form 48 ofl of a different geological formation. As such, the
first receiver 44 may receive a reflected seismic wavelorm
50 and the second receiver 46 may recerve a retlected
seismic wavelorm 52.

[0035] Regardless of how the seismic data 1s acquired, a
computing system (e.g., for use 1n conjunction with block 12
of FIG. 1) may analyze the seismic waveforms acquired by
the receivers 36, 44, 46 to determine seismic information
regarding the geological structure, the location and property
of hydrocarbon deposits, and the like within the subsurface
region 26. FIG. 4 1s a block diagram of an example of such
a computing system 60 that may perform various data
analysis operations to analyze the seismic data acquired by
the receivers 36, 44, 46 to determine the structure and/or
predict reservoir properties of the geological formations
within the subsurface region 26.

[0036] Referring now to FIG. 4, the computing system 60
may include a communication component 62, a processor
64, memory 66, storage 68, input/output (I/0) ports 70, and
a display 72. In some embodiments, the computing system
60 may omit one or more of the display 72, the communi-
cation component 62, and/or the mput/output (I/0) ports 70.
The communication component 62 may be a wireless or
wired communication component that may facilitate com-
munication between the receivers 36, 44, 46, one or more
databases 74, other computing devices, and/or other com-
munication capable devices. In one embodiment, the com-
puting system 60 may receive receiver data 76 (e.g., seismic
data, seismograms, etc.) via a network component, the
database 74, or the like. The processor 64 of the computing
system 60 may analyze or process the receiver data 76 to
ascertain various features regarding geological formations
within the subsurface region 26 of the Earth.

[0037] The processor 64 may be any type ol computer
pProcessor or microprocessor capable of executing computer-
executable code. The processor 64 may also include multiple
processors that may perform the operations described below.
The memory 66 and the storage 68 may be any suitable
articles of manufacture that can serve as media to store
processor-executable code, data, or the like. These articles of
manufacture may represent computer-readable media (e.g.,
any suitable form of memory or storage) that may store the
processor-executable code used by the processor 64 to
perform the presently disclosed techniques. Generally, the
processor 64 may execute software applications that include
programs that process seismic data acquired via receivers of
a seismic survey according to the embodiments described
herein.
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[0038] The memory 66 and the storage 68 may also be
used to store the data, analysis of the data, the software
applications, and the like. The memory 66 and the storage 68
may represent non-transitory computer-readable media (e.g.,
any suitable form of memory or storage) that may store the
processor-executable code used by the processor 64 to
perform various techniques described herein. It should be
noted that non-transitory merely indicates that the media 1s
tangible and not a signal.

[0039] With one or more embodiments, processor 64 can
support the implementation of a neural network. A data
structure representing a neural network can be stored by one
or more embodiments. The neural network can include, at
least, a number of mput nodes, a number of output nodes, a
number of hidden nodes, and interconnections between the
nodes. The nodes or interconnections can be adaptively
weighted. With one or more embodiments, the neural net-
work can be a feediorward neural network. By changing the
adaptive weights, the neural network can be trained, and
thus can implement a machine-learming model. Data can
enter the neural network via the input nodes, and a resulting
computation can appear on the output nodes. Many different
training methods exist for adapting the neural network, and
other neural network architectures can exist.

[0040] With one or more embodiments, the neural network
can be simulated on a processor such as, for example,
processor 64. In other embodiments, the neural network (and
thus the machine-learning model) can be constructed by
using physical hardware processors, circuits, and data links,
or by using by using a customized neural network process-
ing chip.

[0041] The I/O ports 70 may be interfaces that may couple
to other peripheral components such as input devices (e.g.,
keyboard, mouse), sensors, iput/output (I/0) modules, and
the like. I/O ports 70 may enable the computing system 60
to communicate with the other devices 1n the marine survey
system 22, the land survey system 38, or the like via the I/O
ports 70.

[0042] The display 72 may depict visualizations associ-
ated with software or executable code being processed by
the processor 64. In one embodiment, the display 72 may be
a touch display capable of rece1ving inputs from a user of the
computing system 60. The display 72 may also be used to
view and analyze results of the analysis of the acquired
seismic data to determine the geological formations within
the subsurface region 26, the location and property of
hydrocarbon deposits within the subsurface region 26, pre-
dictions of reservoir properties associated with one or more
wells 1 the subsurface region 26, and the like. The display
72 may be any suitable type of display, such as a liquid
crystal display (LCD), plasma display, or an organic light
emitting diode (OLED) display, for example. In addition to
depicting the visualization described herein via the display
72, 1t should be noted that the computing system 60 may also
depict the visualization via other tangible elements, such as
paper (e.g., via printing) and the like.

[0043] With the foregoing 1n mind, the present techniques
described herein may also be performed using a supercoms-
puter that employs multiple computing systems 60, a cloud-
computing system, or the like to distribute processes to be
performed across multiple computing systems 60. In this
case, each computing system 60 operating as part of a super
computer may not include each component listed as part of
the computing system 60. For example, each computing
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system 60 may not include the display component 72 since
multiple display components 72 may not be useful to for a

supercomputer designed to continuously process seismic
data.

[0044] After performing various types of seismic data
processing, such as FAVO-based seismic analysis, the com-
puting system 60 may store the results, such as one or more
sets of FAVO responses, of the analysis in one or more
databases 74. The databases 74 may be communicatively
coupled to a network that may transmit and receive data to
and from the computing system 60 via the communication
component 62. In addition, the databases 74 may store
information regarding the subsurface region 26, such as
previous seismograms, geological sample data, seismic
images, and the like regarding the subsurface region 26.

[0045] Although the components described above have
been discussed with regard to the computing system 60, 1t
should be noted that similar components may make up the
computing system 60. Moreover, the computing system 60
may also be part of the marine survey system 22 or the land
survey system 38, and thus may monitor and control certain
operations of the source 32 or 40, the receivers 36, 44, 46,
and the like. Further, it should be noted that the listed
components are provided as example components and the
embodiments described herein are not to be limited to the
components described with reference to FIG. 4.

[0046] In some embodiments, the computing system 60
may generate a two-dimensional representation or a three-
dimensional representation ol the subsurface region 26
based on the seismic data received via the receivers men-
tioned above. Additionally, seismic data associated with
multiple source/receiver combinations may be combined to
create a near continuous profile of the subsurface region 26
that can extend for some distance. In a two-dimensional
(2-D) seismic survey, the receiver locations may be placed
along a single line, whereas 1n a three-dimensional (3-D)
survey the receiver locations may be distributed across the
surface 1n a grid pattern. As such, a 2-D seismic survey may
provide a cross sectional picture (vertical slice) of the Earth
layers as they exist directly beneath the recording locations.
A 3-D seismic survey, on the other hand, may create a data
“cube” or volume that may correspond to a 3-D picture of
the subsurface region 26.

[0047] In addition, a 4-D (or time-lapse) seismic survey
may include seismic data acquired during a 3-D survey at
multiple times. Using the different seismic images acquired
at different times, the computing system 60 may compare the
two 1mages to 1dentily changes in the subsurface region 26.

[0048] In any case, a seismic survey may be composed of
a very large number of individual seismic recordings or
traces. As such, the computing system 60 may be employed
to analyze the acquired seismic data to obtain an image
representative ol the subsurface region 26 (e.g., the com-
puting system can be employed to perform a FAVO-based
seismic analysis), and to determine and/or predict locations
and properties of hydrocarbon deposits. To that end, a
variety of seismic data processing algorithms may be used to
remove noise from the acquired seismic data, to migrate the
pre-processed seismic data, to 1dentify shifts between mul-
tiple seismic 1mages, to align multiple seismic 1images, and
the like.

[0049] After the computing system 60 analyzes the
acquired seismic data, the results of the seismic data analysis
(e.g., seismogram, seismic 1mages, map of geological for-
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mations, etc.) may be used to perform various operations
within the hydrocarbon exploration and production indus-
tries. For instance, as described above, the acquired seismic
data may be used to perform the method 10 of FIG. 1 that
details various processes that may be undertaken based on
the analysis of the acquired seismic data. As such, the
computing system 60 may include a specific improvement to
computer-related technology, beyond use of a generic com-
puter 1in 1ts ordinary capacity. Specifically, the computing
system 60 may perform FAVO-based seismic analysis and
analyze FAVO-based seismic analysis results using, for
example, machine learning. Thus, the computing system 60
may be tramned to predict the reservoir properties of, for
example, rock and fluid types at a well location, based on a
received set of FAVO responses at the well. The predictions
performed by one or more embodiments can be more
accurate as compared to the predictions that are derived
based on perceptions by the human eye or that are derived
based on conventional computer algorithms.

[0050] With the foregoing in mind, FIG. 5 1s a flow chart
of a method 80 that may be employed by the computing
system 60 to predict one or more reservoir property values
of one or more wells, 1n accordance with one or more
embodiments presented herein. In some embodiments, at
least some of the steps of the method 80 may be performed
in an alternative order or omitted entirely. Moreover, while
the steps of the method 80 are described as being performed
by the processor 64 of the computing system 60, it should be
understood that any suitable devices or systems, or combi-
nation of suitable devices or systems, including the proces-
sor 64, may perform the steps of the method 80, such as
processing units or circuitry ol computing devices or sys-
tems external to, but communicatively coupled to, the com-
puting system 60 and the execution of the steps of method
80 may involve the processor 64 operating 1n conjunction
with or utilizing software stored on a tangible machine
readable medium to perform the steps of method 80.

[0051] As 1llustrated 1n step 82, the processor 64 may
receive data of a reservoir. This reservoir data may include
any suitable form of data relating to the reservoir, and, as
described above, the reservoir data can include actual data of
the subsurface region 26. For example, the reservoir data
may 1nclude data of a prior distribution of wells which share
the reservoir. The reservoir data can include data relating to
vertical stacking patterns of different rock types and rock or
seismic property trends (e.g., data relating to thickness,
lithology, flmd, etc.). In some embodiments, the reservoir
data may include well logs (e.g., historical data of actual
wells which share the reservorr).

[0052] As described above, 1n order to train a machine
learning model to recognize relationships/correlations
between seismic attributes and reservoir properties, the
machine learning system may compare hundreds or thou-
sands of reservoir property profiles against their correspond-
ing seismic attributes. Further, as described above, 1n order
to obtain these numerous reservoir property profiles to train
the machine-learning system, one or more embodiments can
generate simulated, pseudo wells. In step 84, the processor
64 may generate reservolr property profiles for a group (e.g.,
hundreds or thousands) of these simulated or modeled wells
(1.e., pseudo wells). The generated reservoir property pro-
files can be based on actual reservoir data of one or more
known wells 1n a survey. These known wells 1n the survey
can be, for example, known wells that share the reservoir. In
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this manner, a large amount of (pseudo) data may be
acquired 1 a relatively short amount of time for use 1n
training the machine-learning system. Further, (pseudo) res-
ervoir property profiles can be generated at far less cost and
with far less risk as compared to obtaining real-world
reservoir property profiles.

[0053] As described above, the reservoir property profile
of a pseudo well can be based on reservoir data or can be
based on the data of other wells which share the same
reservoir as the pseudo well. The pseudo wells may simulate
any suitable type of well, such as a well with reservorr fluid
as gas, brine, o1l, Paleo-residual gas, low saturation gas, and
the like. The processor 64 may generate one or more
reservoir property profiles for pseudo wells, where the one
or more reservolr property profiles reflect the reservoir
properties for wells which share the reservoir.

[0054] A reservoir property profile for the pseudo well
may include a variety of reservoir properties (e.g., including
the porosity, the fluid saturation, the shale fraction, etc.) of
the pseudo well. In some embodiments, the processor 64
may generate (pseudo) reservoir property profiles that pro-
vide reservoir property information over a depth of the
pseudo well. For example, each reservoir property profile
may provide measurements of shale volume (Vsh) of the
well at different depths of the pseudo well. It should be
understood that the reservoir property profiles may provide
any suitable reservoir property or combination of reservoir
properties, including, but not limited to, sand fraction, shale
fraction, fluid composition, thickness, lithology, porosity
(Phit), saturation, primary wave (P-wave) velocity (Vp),
secondary wave (S-wave) velocity (Vs), density, etc. The
pseudo wells may include any suitable type of well, such as
gas, fluid, brine, oil, Paleo-residual gas, low saturation gas,

and the like.

[0055] At step 86, the processor 64 may generate one or
more seismic attributes for each pseudo reservoir property
profile. These one or more pseudo seismic attributes may
include, for example, frequency-dependent amplitude varia-
tion with oflset (FAVO) responses. One or more pseudo
seismic attributes can be generated for each pseudo reservoir
property profile that was generated 1n step 6 84.

[0056] In step 88, the processor 64 may train a machine
learning model based on the seismic attributes (e.g., FAVO
responses) and the reservoir properties, as explained in detail
below. For example, as described above, the machine learn-
ing model/system can be tramned by comparing sets of
seismic attributes against corresponding sets ol reservoir
properties. In this manner, the machine learming model/
system can learn relationships/correlations between seismic
attributes and reservoir properties. In some embodiments,
the machine learning model may be a deep learning model,
though any suitable machine learning model 1s contem-
plated.

[0057] In step 90, the processor 64 may generate a library
ol learned associations/correlations between seismic attri-
butes (such as, for example, FAVO responses) and the
reservolr properties, which were learned by the machine
learning model. In particular, the processor 64 may use the
machine learning model to generate a library of reservoir
properties that are correlated with seismic attributes. Using,
the machine learning model to generate the library of
correlated reservoir properties and seismic attributes repre-
sents a specific improvement over conventional systems,
and an 1improved computing system 60 having improved
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functionality. In particular, training the machine learning
model by using seismic attributes and reservoir properties of
pseudo wells 1mproves accuracy and efliciency in predic-
tions by the computing system 60 when compared to per-
forming the analysis by, for example, computer systems
performing conventional computer algorithms.

[0058] Adfter the machine learning model has been trained
using simulated, pseudo-well data, the machine learming
model can then receive mput in the form of information
relating to actual, real-life seismic regions. The trained
machine learning model can then generate predictions relat-
ing to the actual, real-life seismic regions based on the
machine learning model’s earlier training. In step 92, the
processor 64 may receive actual, real-life well data of a well
sharing the reservoir. In step 94, the processor 64 may
determine a seismic attribute based on the actual well data.
Any suitable seismic attribute may be determined by the
processor 64, such as, for example, a FAVO response at the
well.

[0059] In order to predict reservoir properties with one or
more embodiments, 1n step 96, the processor 64 can generate
a simulated seismic attribute (e.g., a simulated FAVO
response) to accompany the determined seismic attribute
that 1s based on the actual well data. Next, 1in step 98, the
processor 64 may calibrate the determined seismic attribute
that 1s based on the actual well data (e.g., the determined
FAVO response) by using the simulated seismic attribute.
For example, the processor 64 can average the values of the
determined FAVO response with the simulated FAVO
response. The resulting calibrated FAVO response (of mea-
sured seismic data) can be a more accurate and/or a more
useful FAVO response (for inputting into the trained
machine learning model) due to, for example, the removal of
noise, removal of inaccurate reservoir property values,
removal of undesirable changes 1n reservoir property values,
and the like, as compared to merely inputting the actual
determined FAVO response into the trained machine leamn-
ing model. Proper calibration between the real and the
simulated seismic attributes at the real well location can be
performed by one or more embodiments.

[0060] In step 100, the processor 64 may generate one or
more reservolr property predictions/inferences based on the
real-life 1nputted seismic attributes (which can be a cali-
brated FAVO response or an un-calibrated FAVO response,
for example). The predictions/inferences can be generated
based on the library of learned associations/correlations
between seismic attributes and reservoir properties. That 1s,
the processor 64 may use the library to generate a prediction
of reservoir properties that are predicted to exist based on the
inputted seismic attributes. For example, the processor 64
may output one or more predictions of reservoir property
values corresponding to the inputted calibrated/un-cali-
brated FAVO response by utilizing the machine learning
model. In this manner, the computing system 60 may
employ the method 80 to predict one or more reservolr
properties from real-life seismic values of wells sharing a
hydrocarbon reservorr.

[0061] FIG. 9 1s a flow chart of a method 230 that may be
employed by the computing system 60 to train the machine
learning model based on inputted seismic attributes and
inputted reservoir properties, in accordance with embodi-
ments presented herein and as described above 1n step 88 of

FIG. 5.
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[0062] In some embodiments, at least some of the steps of
the method 230 may be performed in an alternative order or
omitted entirely. Moreover, while the steps of the method
230 are described as being performed by the processor 64 of
the computing system 60, 1t should be understood that any
suitable devices or systems, or combination of suitable
devices or systems, including the processor 64, may perform
the steps of the method 230, such as processing units or
circuitry ol computing devices or systems external to, but
communicatively coupled to, the computing system 60.

[0063] As illustrated 1n step 232, to train the machine
learning model based on the seismic attributes (e.g., FAVO
responses) and the reservoir properties, the processor 64
may receive a set of seismic attributes for each pseudo well.
In a combined FAVO response, one or more FAVO
responses for the pseudo well can be combined together.
That 1s, for each pseudo well, the processor 64 may combine
one or more FAVO responses associated with the pseudo
well.

[0064] In some embodiments, certain portions of the
FAVO responses may be extracted before being combined to
generate the combined FAVO response 1n order to reduce an
amount of processing power that 1s used to process the
combined FAVO response or to save memory space. These
portions may be selected based on typical prediction usage.
For example, the processor 64 may extract real and 1magi-
nary components of each FAVO response (e.g., for several
frequency components) corresponding to 10, 20, and 30
degrees to generate the combined FAVO response, as these
angles may correspond to typical angle stacks that might be
used (and available) for prediction. The processor 64 may
then combine these extracted portions to generate the com-
bined FAVO response for each pseudo well (e.g., to generate
a combined FAVO signature for each pseudo well, which
may be, for example, represented as a vector).

[0065] In step 234, the processor 64 may then train a
machine learning model by comparing the pseudo seismic
attributes (e.g., the combined FAVO responses) against a
corresponding set of pseudo reservoir property values. The
machine learning model can determine patterns/relation-
ships/correlations that map the seismic attributes to the
corresponding reservoir property values. This way, the
machine learning model may be trained to associate certain
seismic attributes with reservoir properties. The machine
learning model can also be trained to recognize changing
seismic attributes with future reservoir property values, thus
enabling the machine learning model to more accurately
predict future reservoir property values based on changing
seismic attributes and/or changing reservoir property values.
As another example, the processor 64 may input changing,
seismic attributes and a total porosity height (PhutH) 1n gas
wells to the machine learning model so that the machine
learning model determines patterns which map the changing
seismic attribute values to the total porosity height. This
way, the machine learning model may be trained to associate
changing reservoir property values with future total porosity
height, thus enabling the machine learning model to more
accurately predict changing reservoir property values based
on a future total porosity height. As yet another example, the
processor 64 can predict reservoir properties such as an
amount of different fluids (e.g., brine, oil, water, etc.).

[0066] FIG. 6 1s a schematic diagram showing an example
of scattered waves, where the characteristics of the scatter-
ing can be captured by a FAVO response. As 1llustrated 1n
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FIG. 6, a reservoir 130 has a thickness (Z) of L, 1n accor-
dance with embodiments presented herein. The reservoir
130 1includes three layers 132, 134, 136 having varying
thicknesses, seismic velocity, and density. As such, there are
four seismic reflectors 138, 140, 142, 144 for an incident
P-wave 146 applied at the top of the reservoir 130. The
seismic reflectors 138, 140, 142, 144 generate reflected
waves 148, 150, 152, and 154 from the incident P-wave 146.

[0067] Conventional seismic interpretation techniques,
such as conventional amplitude variation with oflset (AVO)
seismic analysis, typically model only the top reservoir layer
132. FAVO-based seismic analysis may model all layers
132, 134, 136 by considering an appropriate phase (e.g.,
time delay) from each layer 132, 134, 136, resulting 1n the

complex Irequency-dependent seismic values associated
with the reflected waves 148, 150, 152, and 154.

[0068] A FAVO response (that captures the characteristics
of the reflections/scattering) can be represented as real and
imaginary components in terms of frequency, amplitude, and
angle. For example, FIG. 7 15 a set of plots of an example
FAVO response 170 of a shaley (e.g., shale intensive for-
mation) well and an example FAVO response 172 of a sandy
(e.g., sand intensive formation) well as functions of a
reservoir property (specifically shale volume (Vsh), as 1llus-
trated), 1n accordance with embodiments presented herein
(e.g., additional examples of the FAVO responses generated
in step 86). For reference, respective shale volume (Vsh)
curves 174, 176 are shown next to the FAVO responses 170,
172. The plots 1llustrate reflectivity 1n the FAVO responses
170, 172 as a function of angle and frequency, and include
real components 178, 180 and imaginary components 182,

184.

[0069] FIG. 8 1s a set of plots of example FAVO responses
200, 202, 204 when fluid (e.g., brine, o1l, gas, and the like)
1s changing 1n a well for a given reservoir property profile
(Vsh curve), in accordance with embodiments presented
herein (e.g., further examples of the FAVO responses gen-
crated 1n step 86). The example reservoir property of FIG. 8
1s a shale fraction (Vsh) curve 206, which 1s shown next to
the FAVO responses 200, 202, 204. The FAVO responses
200, 202, 204 1llustrate the amount of brine, o1l, and gas 1n
the well at a given depth. As with FIG. 8, the FAVO
responses 200, 202, 204 1llustrate retlectivity as a function of
angle and frequency, and include real components 208, 210,
212 and mmaginary components 214, 216, 218. The difler-
ences of the FAVO responses (200, 202, 204) 1n the presence
of brine, o1l, and gas can be very subtle. As such, the human
eye and conventional computer algorithms may not be able
to discern that the shape of the FAVO response for oil 202
1s different from the FAVO response for gas 204. However,
as described above, the machine-learning system of one or
more embodiments can etliciently discern between different
shapes.

[0070] Using the disclosed techmiques to analyze the
FAVO responses via a machine learning model to determine
patterned behavior on which to base predictions of reservoir
properties may result in more accurate predictions 1n a more
cllicient manner, particularly when compared to performing
the analysis by, for example, human eyes or by conventional
computer algorithms. The disclosed techniques may be
implemented 1n a particular way of programming or design-
ing soltware 1n, for example, the memory 66 of the com-
puting system 60, for execution by the processor 64, to
generate FAVO responses for reservoir property profiles,
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train a machine learning model based on the FAVO
responses and reservoir property profiles, and predict reser-
voir property values based on the FAVO responses of
measured seismic data. In some embodiments, the comput-
ing system 60 may include particular logic (e.g., imple-
mented 1n hardware and/or software) that 1s specially
designed to perform the functions of the disclosed tech-
niques, such as a FAVO generation logic that generates
FAVO responses for reservoir property profiles, machine
learning training logic that trains a machine learning model
based on the FAVO responses and reservoir property pro-
files, and prediction logic that predicts reservoir property
values based on the FAVO responses. This logic may include
non-abstract 1mprovements over conventional computer
technology by performing their respective tasks in a quicker,
more eflicient manner based on being specially designed for
these tasks.
[0071] The specific embodiments described above have
been shown by way of example, and 1t should be understood
that these embodiments may be susceptible to various modi-
fications and alternative forms. It should be further under-
stood that the claims are not intended to be limited to the
particular forms disclosed, but rather to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of this disclosure.
[0072] The techniques presented and claimed herein are
referenced and applied to material objects and concrete
examples of a practical nature that demonstrably improve
the present techmical field and, as such, are not abstract,
intangible or purely theoretical. Further, 1if any claims
appended to the end of this specification contain one or more
clements designated as “means for [perform]ing [a function]
7 or “step for [perform]ing [a function] . . . 7, 1t 1s
intended that such elements are to be interpreted under 35
U.S.C. 112(1). However, for any claims containing elements
designated 1n any other manner, it 1s intended that such
clements are not to be interpreted under 35 U.S.C. 112(1).

What 1s claimed 1s:

1. A system, comprising:

a processor configured to:

generate a plurality of reservoir property profiles for a
plurality of pseudo wells;

generate a plurality of attributes for the plurality of
pseudo wells; and

train a machine learning model to predict reservoir
properties for use with seismic exploration above a
region ol a subsurface containing structural or strati-
graphic features conducive to a presence, migration,
or accumulation of hydrocarbons by comparing the
plurality of reservoir property profiles against the
plurality of attributes.

2. The system of claim 1, wherein the plurality of reser-
voir property profiles are generated based on recerved res-
ervoir data, and the reservoir data corresponds to data of a
hydrocarbon reservorr.

3. The system of claim 1, wherein each reservoir property
profile of the plurality of reservoir property profiles 1s
generated for a respective reservoir property for each pseudo
well of the plurality of pseudo wells.

4. The system of claam 1, wherein the processor 1s
configured to generate the plurality of reservoir property
profiles for the plurality of pseudo wells by:

generating a plurality of well profiles for the plurality of
pseudo wells;
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determining a set of reservoir properties; and

generating each reservoir property profile of the plurality

of reservoir property profiles for each reservoir prop-
erty of the set of reservoir properties for each well
profile of the plurality of well profiles.

5. The system of claim 4, wherein each well profile of the
plurality of well profiles 1s configured to provide reservoir
property information over a depth of a respective pseudo
well of the plurality of pseudo wells, wherein the reservoir
property information comprises sand fraction, shale fraction,
fluid composition, thickness, lithology, porosity, saturation,
primary P-wave velocity, secondary S-wave velocity, den-
sity, or any combination thereof.

6. The system of claim 4, wherein each reservoir property
of the set of reservoir properties comprises sand Iraction,
shale fraction, fluid composition, thickness, lithology, poros-
ity, saturation, primary P-wave velocity, secondary S-wave
velocity, density, or any combination thereof.

7. A method comprising;

generating a plurality of reservoir property profiles for a

plurality of pseudo wells;

generating a plurality of attributes for the plurality of

pseudo wells; and

training a machine learning model to predict reservoir

properties for use with seismic exploration above a
region ol a subsurface containing structural or strati-
graphic features conducive to a presence, migration, or
accumulation of hydrocarbons by comparing the plu-
rality of reservoir property profiles against the plurality
of attributes.

8. The method of claam 7, wherein the plurality of
reservoir property profiles are generated based on received
reservolr data, the reservoir data corresponds to data of a
hydrocarbon reservoir, the reservoir properties comprise
sand fraction, shale fraction, fluid composition, thickness,
lithology, porosity, saturation, primary wave velocity, sec-
ondary wave velocity, density, or any combination thereof.

9. The method of claim 7, wherein the reservoir data
comprises sand fraction, shale fraction, fluild composition,
thickness, lithology, porosity, saturation, primary P-wave
velocity, secondary S-wave velocity, density, or any com-
bination thereof.

10. The method of claim 7, comprising generating a
library of seismic attributes associated with the reservoir
properties.

11. The method of claam 10, comprising receiving well
data of a well sharing the hydrocarbon reservorr.

12. The method of claim 11, comprising generating a
seismic attribute based on the well data.

13. The method of claim 12, comprising generating a
simulated seismic attribute.

14. The method of claim 13, comprising calibrating the
seismic attribute with the simulated seismic attribute to
generate a calibrated seismic attribute.

15. The method of claim 14, comprising generating one or
more reservolr property predictions based on the calibrated
seismic attribute using the library of seismic attributes.

16. One or more tangible, non-transitory, machine-read-
able media comprising instructions configured to cause a
processor to:

generate a plurality of reservoir property profiles for a

plurality of pseudo wells;

generate a plurality of attributes for the plurality of

pseudo wells;
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train a machine learning model to predict reservoir prop-
erties for use with seismic exploration above a region
of a subsurface containing structural or stratigraphic
features conducive to a presence, migration, or accu-
mulation of hydrocarbons by comparing the plurality of
reservoir property profiles against the plurality of attri-
butes.

17. The one or more machine-readable media of claim 16,
comprising instructions to cause the processor to combine at
least portions of two or more attributes of the plurality of
attributes associated with a respective pseudo well of the
plurality of pseudo wells together to generate a plurality of
combined attributes, wherein the plurality of reservoir prop-
erty profiles are generated based on received reservoir data,
the reservoir data corresponds to data of a hydrocarbon
reservolr.

18. The one or more machine-readable media of claim 17,
comprising instructions to cause the processor to extract at
least the portions of the two or more attributes prior to
combining the two or more attributes together.

19. The one or more machine-readable media of claim 17,
wherein the portions comprise real and imaginary compo-
nents of each attribute of the two or more attributes asso-
ciated with angle stacks used for prediction.

20. The one or more machine-readable media of claim 17,
wherein comparing the plurality of reservoir property pro-
files against the plurality of attributes comprises comparing
the plurality of reservoir property profiles against the plu-
rality of combined attributes.
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