US 20180293096A2
19) United States 10) Pub. No.: US 2018/0293096 A2
12) Patent Application Publication 43) Pub. Date: Oct. 11, 2018
Iniguez REPUBLICATION
(54) SYSTEM AND METHOD FOR SWARM Publication Classification

(71)

(72)

(21)

(22)

(65)

INTELLIGENCE USING DYNAMICALLY

CONFIGURABLE PROACTIVE
AUTONOMOUS AGENTS CELLS

Applicant: Swarm Technology LL.C, Mesa, AZ
(US)

Inventor: Alfonso Iniguez, Mesa, AZ (US)
Appl. No.: 15/852,480

Filed: Dec. 22, 2017

Prior Publication Data

US 2018/0121238 A1 May 3, 2018

600~

(51) Int. CL.
GOGF 9/48 (2006.01)
GOG6F 9/54 (2006.01)
GOGF 9/50 (2006.01)
(52) U.S. CL

CPC ... GOG6F 9/4843 (2013.01); GO6F 2209/5017
(2013.01); GO6F 9/544 (2013.01); GOGF 9/54
(2013.01); GO6F 9/5044 (2013.01)

(57) ABSTRACT

A parallel processing architecture includes a CPU, a task
pool populated by the CPU, and a plurality of autonomous
co-processing cells each having an agent configured to
proactively interrogate the task pool to retrieve tasks appro-
priate for a particular co-processor. Each co-processor com-
municates with the task pool through a switching fabric,
which facilitates connections for data transfer and arbitration
between all system resources. Each co-processor notifies the
task pool when a task or task thread 1s completed, where-
upon the task pool notifies the CPU.

602

Populate task pool

604
Proactively dispatch agent

from cell to task pool

6006

Retrieve and process task

603
Notify task pool and CPU

when task complete

610

Incorporate aqaditional

CO-Processor

Patent Application Publication Oct. 11,2018 Sheet 1 of 6 US 2018/0293096 A2

15
12n

12D

30n
14
12C~
FIG. 1

30D

..“.

12B

30C

13
30A
12A

10\

US 2018/0293096 A2

Oct. 11, 2018 Sheet 2 of 6

Patent Application Publication

¢ Ol

cl

O0¢

paa|dwon
8dA| pu0oag

J0)d119sa(]

Apeay 10N Apeoy "

adA| 18414 { 9dAL paiyl | |

J101d119se |

e e o e e e L e |
1111111111111111111111111 _

Apesy | paja|dwon "

adA] jsi L odAL payL |

sorduosa(| J0jduosaq _

A W T A T T T A S S s S s A A -

\ |
S .
_ adA| puodeg
| pa1oidwio sodwon | |
_ MQM p___m 1 H\m E_M_u m
| Joyduoseq - Pojo|atog Jojduosaq | |
' ez SUALPIYL vz |
viz-" i “

¢C

¢C

Patent Application Publication Oct. 11, 2018 Sheet 3 of 6 US 2018/0293096 A2

N
~
P

314
LB_
316
C
318
A B

<C
)
ﬁ - 3
-
N
o

336 342
306~
FIG. 3

332

310

302
304 ~

Patent Application Publication Oct. 11,2018 Sheet 4 of 6 US 2018/0293096 A2

416

408

418

422

O
-
<

fw\

402

Patent Application Publication Oct. 11,2018 Sheet 5 of 6 US 2018/0293096 A2

500

508

FIG. 5

<
-
O

502

Patent Application Publication Oct. 11, 2018 Sheet 6 of 6 US 2018/0293096 A2

602
Populate task pool

604

Proactively dispatch agent
from cell to task pool

606
Retrieve and process task

603

Notify task pool and CPU
when task complete

610

Incorporate additional
CO-processor

FIG. 6

US 2018/0293096 A2

SYSTEM AND METHOD FOR SWARM
INTELLIGENCE USING DYNAMICALLY
CONFIGURABLE PROACTIVE
AUTONOMOUS AGENTS CELLS

PRIORITY DATA

[0001] This application 1s a continuation of U.S. applica-
tion Ser. No. 14/340,332, filed Jul. 24, 2014, now U.S. Pat.

No. 9,852,004, 1ssued on Dec. 26, 2017, which 1s a con-
tinuation of U.S. application Ser. No. 13/750,696, filed Jan.

25, 2013, now U.S. Pat. No. 9,146,777, 1ssued on Sep. 29,
2015, which are incorporated herein by reference.

FIELD OF INVENTION

[0002] The present invention generally relates to parallel-
process computing, and swarm intelligence, and particularly
relates to a processing architecture which mvolves autono-
mous co-processors (such as robotic vehicles, Internet of
Things (IoT) components, and networked devices) config-
ured to proactively retrieve tasks from a task pool populated
by a central processing unit.

BACKGROUND

[0003] The Internet of Things (also referred to as the
Cloud of Things) refers to an ad hoc network of uniquely
identifiable embedded computing devices within the exist-
ing Internet infrastructure. In addition to or i conjunction
with IoT, swarm intelligence portends advanced connectiv-
ity of devices, systems, and robotic vehicles. The scope of
things contemplated by swarm intelligence and the IoT 1s
unlimited, and may include devices such as heart monitoring,
implants, biochip transponders, automobile sensors, aero-
space and defense field operation devices, unmanned ground
vehicle (UGVs), unmanned aernial vehicles (UAVs), and
public safety applications that assist fire-fighters 1n search
and rescue operations, for example. Current market
examples include home based networks that involve smart
thermostats, light bulbs, and washer/dryers that utilize wifi
for remote monitoring. Due to the ubiquitous nature of
connected objects 1n the 10T, 1t 1s estimated that more than
30 billion devices will be wirelessly connected to the
Internet of Things by 2020. Harnessing the processing
capacity of the controllers and processors associated with
these devices 1s one of the objectives of the present inven-
tion.

[0004] Computer processors traditionally execute
machine coded instructions serially. To run a plurality of
applications concurrently, a single processor interleaves
instructions from various programs and executes them seri-
ally, although from the user’s perspective the applications
appear to be processed 1n parallel. True parallel or multi-core
processing, on the other hand, 1s a computational approach
that breaks large computational tasks mto individual blocks
of computations and distributes them among two or more
processors. A computing architecture that uses task paral-
lelism (parallel processing) divides a large computational
requirement 1nto discrete modules of executable code. The
modules are then executed concurrently or sequentially,
based on their respective priorities.

[0005] A typical multiprocessor system includes a central
processing unit (“CPU”") and one or more co-processors. The
CPU partitions the computational requirements 1nto tasks
and distributes the tasks to co-processors. Completed

Oct. 11, 2018

threads are reported to the CPU, which continues to distrib-
ute additional threads to the co-processors as needed. Pres-
ently known multiprocessing approaches are disadvanta-
geous 1n that a significant amount of CPU bandwidth 1s
consumed by task distribution; waiting for tasks to be
completed before distributing new tasks (often with depen-
dencies on previous tasks); responding to interrupts from
co-processors when a task 1s completed; and responding to
other messages from co-processors. In addition, co-proces-
sors often remain 1dle while waiting for a new task from the
CPU.

[0006] A multiprocessor architecture 1n thus needed which
reduces CPU management overhead, and which also more
cllectively harnesses and exploits available co-processing
resources.

SUMMARY OF THE INVENTION

[0007] Various embodiments of a parallel processing com-
puting architecture include a CPU configured to populate a
task pool, and one or more co-processors configured to
proactively retrieve threads (tasks) from the task pool. Each
co-processor notifies the task pool upon completion of a
task, and pings the task pool until another task becomes
available for processing. In this way, the CPU communicates
directly with the task pool, and communicates indirectly
with the co-processors through the task pool.

[0008] The co-processors may also be capable of acting
autonomously; that 1s, they may interact with the task pool
independently of the CPU. In a preferred embodiment, each
co-processor includes an agent that interrogates the task pool
to seek a task to perform. As a result, the co-processors work
together “in solidarity” with one another and with the task
pool to complete aggregate computational requirements by
autonomously retrieving and completing individual tasks
which may or may not be inter-related. By way of non-
limiting example, suppose a task B mvolves computing an
average temperature over time. By defining a task A to
include capturing temperature readings over time, and fur-
ther by defining task B to including obtaining the captured
readings, the CPU and the various co-processors may
thereby inferentially communicate with each other via the
task pool.

[0009] In various embodiments the co-processors are
referred to as autonomous, proactive solidarity cells. In this
context, the term autonomous implies that a co-processor
may interact with the task pool without being instructed to
do so by the CPU or by the task pool. The term proactive
suggests that each co-processor may be configured (e.g.,
programmed) to periodically send an agent to monitor the
task pool for available tasks appropriate to that co-processor.
The term solidarity implies that co-processing cells share a
common objective 1n monitoring and executing all available
tasks within the task pool.

[0010] A solidarity cell (co-processor) may be a general
purpose or special purpose processor, and therefore may
have the same or different instruction set, architecture, and
microarchitecture as compared to the CPU and other soli-
darity cells 1n the system. Moreover, the software programs
to be executed and data to be processed may be contained
within one or more memory units. In a typical computer
system, for example, a software program consists of a series
of instructions that may require data to be used by the
program. For example, 1f the program corresponds to a
media player, then the data contained 1n memory may be

US 2018/0293096 A2

compressed audio data which 1s read by a co-processor and
eventually played on a speaker.

[0011] Each solidanty cell 1in the system may be config-
ured to communicate, ohmically or wirelessly, with the task
pool through a crossbar switch, also known as fabric. In a
purely wireless mesh topology, the radio signals themselves
may constitute the fabric. In various embodiments, the
co-processors may also communicate directly with the CPU.
The switching fabric facilitates communication among sys-
tem resources. Hach solidarity cell 1s proactive, in that it
obtains a task to perform by sending its agent to the task pool
when the solidarity cell has no processing to perform or,
alternatively, when the solidarity cell 1s able to contribute
processing cycles without impeding 1ts normal operation. By
way of non-limiting example, 1n the context of the Internet-
of-Things (discussed 1n greater detail below), a co-processor
associated with a device such as a light bulb may be
programmed to listen for “on” and “off” commands from a
master device (such as a smartphone) as 1ts normal opera-
tion, but 1ts processing resources may also be harnessed
through a task pool.

[0012] In the context of various embodiments described
herein, the term agent refers to a software module, analo-
gous to a network packet, associated with a co-processor that
interacts with the task pool to thereby obtain available tasks
which are appropriate for that co-processor cell. The soli-
darity cells may execute the tasks sequentially, when the
tasks are contingent on the execution of a previous task, or
in parallel, when more than one solidarity cell 1s available
and more than one matching tasks are available for execu-
tion. The tasks may be executed imndependently or collab-
oratively, depending on the task thread restrictions (if any)
provided by the CPU. Interdependent tasks within the task
pool may be logically combined. The task pool notifies the
CPU when a task thread i1s completed. If a task thread 1is
composed of a single task, then the task pool may notify the
CPU at completion of such task. It a task thread 1s composed
of multiple tasks, the task pool may notity the CPU at
completion of such chain of tasks. Since task threads may be
logically combined, 1t 1s conceivable to have a case 1n which
the task pool notifies the CPU after completion of logically
combined task threads.

[0013] Those skilled 1n the art will appreciate that interop-
crability among the CPU and co-processors may be facili-
tated by configuring the CPU to compose and/or structure
tasks at a level of abstraction which 1s independent of the
instruction set architecture associated with the various co-
processors, thereby allowing the components to communi-
cate at a task level rather than at an instruction level. As
such, devices and their associated co-processors may be
added to a network on a “plug and play” basis. Another
aspect of this invention provides interoperability within a

heterogeneous array of CPUs with different mstruction set
architectures.

[0014] Various features of the invention are applicable to,
inter alia, a network of Internet-of-Things devices and
sensors; heterogeneous computing environments; high per-
formance computing, two dimensional and three dimen-
sional monolithic integrated circuits; and motion control and
robotics.

Oct. 11, 2018

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The present invention will heremafter be described
in conjunction with the appended drawing figures, wherein
like numerals denote like elements, and:

[0016] FIG. 1 1s a schematic block diagram of a parallel
processing architecture including a CPU, memory, task pool,
and a plurality of co-processors configured to communicate
through a fabric 1n accordance with an embodiment;
[0017] FIG. 2 1s a schematic block diagram illustrating
details of an exemplary task pool in accordance with an
embodiment;

[0018] FIG. 3 1s a schematic block diagram of a network

including co-processing cells and their corresponding agents
interacting with a task pool 1n accordance with an embodi-

ment,

[0019] FIG. 4 1s a schematic layout of an internet of things
network including available plug and play devices 1n accor-
dance with an embodiment; and

[0020] FIG. 5 1s a schematic layout diagram of an exem-
plary internet of things use case illustrating dynamic har-
nessing ol nearby devices in accordance with an embodi-
ment; and

[0021] FIG. 6 1s a flow chart 1llustrating the operation of
an exemplary parallel computing environment in accordance
with an embodiment.

DETAILED DESCRIPTION

[0022] Various embodiments relate to parallel processing
computing systems and environments (such as IoT and
swarm 1ntelligence environments), ranging from simple
switching and control functions to complex programs and
algorithms including, without limitation: robot control, data
encryption; graphics, video, and audio processing; direct
memory access; mathematical computations; data mining;
game algorithms; ethernet packet and other network proto-
col processing including construction, reception and trans-
mission of data the outside network; financial services and
business methods; search engines; internet data streaming
and other web-based applications; execution of internal or
external software programs; switching on and off and/or
otherwise controlling or manipulating appliances, light
bulbs, consumer electronics, robotic vehicles, and the like,
¢.g., 1n the context of the Internet-of-Things and/or swarm
intelligence systems.

[0023] Various {features may be incorporated into any
presently known or later-developed computer architecture.
For example, parallel processing concerns relating to syn-
chronization, data security, out-of-order execution, and main
processor 1terrupts may be addressed using the mventive
concepts described herein.

[0024] Referring now to FIG. 1, a distributed processing
system 10 for use in connection with, for example, an IoT
network or swarm 1ntelligence system includes a single or
multi-core CPU 11 and one or more solidarity or co-
processing cells 12A-12 configured to communicate with a
task pool 13 through a cross-bar switching fabric 14. The
solidarity cells 12 may also commumicate with each other
through the switching fabric 14 or through a separate cell
bus (not shown). The CPU 11 may communicate with the
task pool 13 directly or through the switching fabric 14. One
or more memory units 15 each contain data and/or mstruc-
tions. In this context, the term “instructions” include a
software program that may be compiled for execution by the

US 2018/0293096 A2

CPU 11. The memory units 15, cells 12, and the task pool 13
may be ohmically or wirelessly mterconnected to commu-
nicate with the CPU and/or with each other via the switching,
fabric 14. In some embodiments, the CPU 11 communicates
with the cells 12 only indirectly through the task pool. In
other embodiments, the CPU 11 may also communicate
directly with the cells 12 without using the task pool as an
intermediary.

[0025] In some embodiments the system 10 may include
more than one CPU 11 and more than one task pools 13, in
which case a particular CPU 11 may interact exclusively
with a particular task pool 13, or multiple CPUs 11 may
share one or more task pools 13. Moreover, each solidarity
cell may be configured to interact with more than one task
pool 13. Alternatively, a particular cell may be configured to
interact with a single designated task pool, for example, 1n
a high performance or high security context.

[0026] In various embodiments cells may be dynamically
paired, ohmically (plug and play) or wirelessly (on the tly),
with a task pool when the following three conditions are
meet:

[0027] 1) The cell 1s able to communicate, ohmically or
wirelessly, with the task pool. The connection to the
task pool can be through a port 1n the task pool itsell,
or through a switching fabric that 1s connected to the
task pool;

[0028] 2) The task pool recognizes the agent sent by the
cell as trustworthy, for example, using input from the
user, with or without password, through traditional
Wi-F1, Blootooth or similar pairing, manually through
a graphical software program running on a smartphone
or tablet, or by any other secure or unsecure method;
and

[0029] 3) At least one of the available tasks within the

task pool 1s compatible with the capabilities of the
solidarity cell.

[0030] In the case of a multi-processor environment with
multiple task pools, the foregoing dynamic pairing condi-
tions apply, except that a given cell may be locked or
restricted to work with only one of the task pools; otherwise,
the cells may connect with one or more task pools, using a
first found basis, round robin basis or any other selection
scheme. It 1s also possible to assign priorities to the tasks
within the task pools, whereby the cells give preference to
the high priority tasks and serve the lower priority tasks
when not otherwise engaged by the higher priority tasks.

[0031] The CPU 11 may be any single or multi-core
processor, applications processor or microcontroller, used to
execute a soltware program. The system 10 may be imple-
mented on a personal computer, smart phone, tablet, or
Internet-of-Things device, 1n which case the CPU 11 may be
any personal computer, central processor, or processor clus-
ter, such as an Intel® Pentium® or multi-core processor
local to or remote from the immediate computing environ-
ment. Alternatively, the system 10 may be implemented on
a supercomputer and the CPU 11 may be a reduced instruc-
tion set computer (“RISC”) processor, applications proces-
sor, a microcontroller, or the like.

[0032] In other embodiments, the system 10 may be
implemented on a locally connected series of personal
computers, such as a Beowult cluster, in which case the CPU
11 may include the central processors of all, a subset, or one
of the networked computers. Alternatively, the system 10
may be implemented on a network of remotely connected

Oct. 11, 2018

computers, 1n which case the CPU 11 may be a presently
known or later developed central processor for a server or
mainiframe. The particular manner in which the CPU 11
performs the subject parallel processing methods within the
presently described system 10 may be influenced by the
CPU’s operating system. For example, the CPU 11 may be
configured for use within the system 10 by programing 1t to
recognize and communicate with the task pool 13 and divide
the computing requirements into threads, as described
below.

[0033] It 1s further contemplated that the system 10 may
be implemented retroactively on any computer or computer
network having an operating system that may be modified or
otherwise configured to 1mplement the functionality
described herein. As 1s known in the art, the data to be
processed 1s contained within the memory units 15, for
example 1n the context of addressable regions or sectors of
random access or read-only memory, cache memory for the
CPU 11, or other forms of data storage such as tlash memory
and magnetic storage. The memory units 15 contain the data
to be processed as well as the location to place the results of
the processed data. Not every task 1s required to access the
memory units 15, as in the case of, for example, smart
meters and automotive instrumentation, which may return
data to the system 10, or as 1n the case of a robot and motor
controllers which may actuate a mechanism.

[0034] Each cell 12 1s a conceptually or logically inde-
pendent computational unit capable of executing one or
more tasks/threads. A cell 12 may be a microcontroller, a
microprocessor, application processor, a “dumb” switch, or
a standalone computer such as a machine in a Beowull
cluster.

[0035] A cell 12 may be a general or special purpose
co-processor configured to supplement, perform all of, or
perform a limited range of functions of the CPU, or func-
tions that are foreign to the CPU 11 such as ambient
monitoring and robotic actuators, for example. A special-
purpose processor may be a dedicated hardware module
designed, programmed, or otherwise configured to perform
a specialized task, or 1t may be a general-purpose processor
configured to perform specialized tasks such as graphics
processing, floating-point arithmetic, or data encryption.

[0036] In an embodiment, any cell 12 that 1s a special-
purpose processor may also be configured to access and
write to memory and execute descriptors, as described
below, as well as other software programs.

[0037] Moreover, any number of cells 12 may comprise a
heterogeneous computing environment; that 1s, a system that
uses more than one kind of processor such as an AMD-based
and/or an Intel-based processor, or a mixture of 32-bit and
64-bit processors.

[0038] Each cell 12 configured to perform one or a plu-
rality of specialized tasks, as illustrated in the following
sequence of events. During a poll phase each cell periodi-
cally sends an agent to the task pool until a matching task 1s
found. To facilitate this matching, both the cell and the task
pool may be equipped with a transceiver. In the case of the
task pool, the transceiver maybe located in the task pool
itsell or in the switching fabric to which the task pool is
connected. When a task match 1s found within a task pool,
the task pool transmits an acknowledgement to the cell. The
next step 1s the “communication channel” phase. During the
communication channel phase, the cell receives the task and
begins to execute the task. In one implementation, once the

US 2018/0293096 A2

first task 1s completed, the communication channel 1s main-
tained so that the solidary cell can fetch another task without
having to repeat the “poll” and “acknowledge” phases.

[0039] The system 10 may include a plurality of cells,
wherein some of the cells are capable of performing the
same task types as other cells, to thereby create redundancy
in the system 10. The set of task types performed by a given
cell 12 may be a subset of the set of task types performed by
another cell. For example, in FIG. 1, the system 10 may
divides an aggregate computational problem into a group of
tasks, and populate the task pool 13 with a first type, a
second type, and a third type of tasks. A first cell 12A may
capable of performing only tasks of the first type; a second
cell 12B may be capable of perform tasks of the second type;
a third cell 12C may be capable of performing tasks of the
third type; a fourth cell 12D may be capable of performing
tasks of the second or third types; and a fifth cell 12N may
be capable of performing all three task types. The system 10
may be configured with this redundancy so that if a given
cell 1s removed from the system 10 (or currently busy or
otherwise unavailable), the system 10 may continue to
function seamlessly. Furthermore, 11 a cell 1s dynamically
added to the system 10, the system 10 may continue to
function seamlessly with the benefit of increased perfor-
mance.

[0040] Referring now to FIGS. 1 and 2, the task pool 13
may occupy a region of physical memory that 1s accessible
by the CPU 11. Alternatively, the task pool 13 may be
accessible by MAC address or IP address. Multiple embodi-
ments are envisioned for the task pool 13; it may be
physically located with the CPU in the same 2D or 3D
monolithic IC, or 1t may be implemented as a stand-alone IC
and be physically interconnected to a computer board, smart
phone, tablet, router or Internet-of-Things device. In a
turther alternative embodiment, the task pool may be a
stand-alone multi-port, wired and/or wireless connected
device which may be shared among multiple CPU 11
systems, or dedicated to a given CPU 11. The task pool 13
may also be addressable by the cells 12. The task pool 13
may be disposed 1n a dedicated hardware block to provide
maximum access speed by the CPU 11 and cells 12. Alter-
natively, the task pool 13 may be soiftware based, wherein
the contents of the task pool 13 are stored in memory,
analogous to the hardware-based embodiment, but repre-
sented by data structures.

[0041] Upon being populated by the CPU 11, the task pool
13 contains one or more task threads 21. Each task thread 21
represents a computational task that may be a component or
subset of the larger aggregate computational requirement
imposed on the CPU 11. In one embodiment, the CPU 11
may 1nitialize and then populate the task pool 13 with
concurrently executable threads 21. Each thread 21 may
include one or more discrete tasks 22. A task 22 may have
a task type and a descriptor. The task type idicates which
cells 12 are capable of performing the task 22. The task pool
13 may also use the task type to prioritize tasks 22 having
the same type. In one embodiment, the task pool 13 may
maintain a prioritization table (not shown) that documents
the solidarity cells 12 present 1n the system 10, the types of
tasks 22 each cell 1s capable of performing, and whether or
not each cell 1s presently processing a task 22. The task pool
13 may use the prioritization table to determine which of the
cligible tasks 22 to assign to a requesting cell, as described
below.

Oct. 11, 2018

[0042] In some embodiments, the CPU 11 may retrieve
and execute a task or thread from the task pool. Moreover,
the CPU 11 may abort any task that 1s determined to be stale,
broken, stuck, or erroneous. In such case, the CPU 11 may
refresh the task, making available for subsequent processing.
Nothing precludes the CPU 11 from implementing adaptive
task management, for example, as may be required by
Artificial Intelligence, whereupon the CPU 11 may add,
remove, or change tasks within an unfinished existing thread
21.

[0043] The descriptor may contain one or more of a
specific mstruction to be executed, a mode of execution, the
location (e.g., address) of the data to be processed, and the
location for placement of the task results, if any. The
location for placement of results 1s optional, such as 1n the
case of animation and multimedia tasks that often present
results to a display rather than storing them in memory.
Moreover, task descriptors may be chained together, as 1n a
linked list, so that the data to be processed may be accessed
with fewer memory calls than if the descriptors were not
chained together. In an embodiment, the descriptor 1s a data
structure containing a header and a plurality of reference
pointers to memory locations, and the task 22 includes the
memory address of the data structure. The header defines the
function or instruction to be executed. A first pointer refer-
ences the location of the data to be processed. A second,
optional pointer, references the location for placement of
processed data. If the descriptor 1s linked to another descrip-
tor to be sequentially executed, the descriptor may include
a third pointer that references the next descriptor. In an
alternative embodiment where the descriptor 1s a data struc-
ture, the task 22 may include the tull data structure.

[0044] A thread 21 may further comprise a “recipe”
describing the order in which the tasks 22 may be performed
and any conditions that affect the order of performance.
According to the recipe, the tasks 22 may be executed
sequentially, concurrently, out-of order, interdependently, or
conditionally according to Boolean operations. For example,
in FIG. 2, thread 21 A comprises four tasks: 22A, 22B, 22C,
and 22D. In the 1llustrated embodiment, the first task 22A
must be completed before either the second task 22B or the
third task 22C can begin. According to the recipe, once
either the second task 22B or third task 22C i1s complete, the
fourth task 22D may begin.

[0045] Threads 21 may also be interdependent. For
example, as shown 1n FIG. 2, due to the Boolean operation
in thread 21B, a completed task 22C may allow processing
of tasks 1n thread 21B to continue. The task pool 13 may
lock a task 22 while the task 22 1s waiting for completion of
another task 22 upon which 1t depends. When a task 22 is
locked, 1t cannot be acquired by a cell. When the tasks 22 of
a thread 21 are completed, the task pool 13 may notily the
CPU 11 of the completion. The CPU may then advance
processing beyond the completed thread 21.

[0046] The cells advantageously maintain solidarity with
cach other and with the CPU 11, thereby helping the system
10 to perform complex computations by autonomously and
proactively retrieving tasks from the task pool 13. The cells
12 act autonomously in that they may act independently of
the CPU 11 or any other coprocessor. Alternatively, a cell
may be acted upon or nstructed directly by the CPU. Each
cell acts proactively in that it seeks a task 22 from the task
pool 13 as soon as the cell becomes available for further
processing.

US 2018/0293096 A2

[0047] More particularly, in an embodiment, a cell 12
acquires a task from the task pool by sending an agent 30 to
interrogate (search for) the task pool and retrieve an avail-
able task 22 that requires completion, i1s not locked, and that
has a task type that can be performed by the cell. Typically,
the system 10 has the same number of agents as solidarity
co-processing cells. In this context, an agent 1s generally
analogous to a data frame in the networking sense, 1n that an
agent may be equipped with a source address, a destination
address, and a payload. In an embodiment, the destination
address 1s the address of the task pool 13 when the agent 30
1s seeking a task 22, and the destination address 1s the
address of the corresponding cell 12 when the agent 30 1s
returning to 1ts cell with a task 22. Correspondingly, the
source address 1s the address of the cell 12 when the agent
30 1s seeking a task 22, and the source address 1s the address

of the task pool 13 when the agent 30 1s returning to 1ts cell
with a task 22.

[0048] In addition, the source and destination addresses
may facilitate frame synchronization. That 1s, the system 10
may be configured to unequivocally differentiate addresses
from payload data, so that when the contents of an agent 30
are read, the destination address indicates the beginning of
the frame and the source address indicates the end of the
frame, or vice versa. This allows the payload to vary 1n size
when 1t 1s placed between the addresses. In another embodi-
ment of a variable-size payload, an agent 30 may 1nclude a
header that indicates the payload size. The header informa-
tion may be compared to the payload to vernily the data
integrity. In still another embodiment, the payload may be a
fixed length. When an agent 30 1s dispatched to the task pool
13 by 1ts co-processor cell, the payload contains 1dentiiying
information of the types of tasks the cell 12 can perform.
When the agent 30 returns from the task pool 13, the payload
contains the descriptor of the task 22, either in the form of
a memory location or the full descriptor data structure.

[0049] In other embodiments, some or all of the agents 30
are autonomous representatives of their respective corre-
sponding cells 12. That 1s, each agent 30 may be dispatched
by 1ts corresponding cell 12 to retrieve a task 22 any time the
cell 1s 1dle or capable of performing additional processing.
In this way, the processing capacity of the solidarity cells 12
may be more fully exploited, inasmuch as the cells need not
wait 1dly for an 1nstruction from the CPU 11. This approach
has the additional benefit of reducing CPU overhead by
relieving the CPU of the need to send a request to a cell to
retrieve a task from the task pool. These advantages render
the system 10 more eflicient than traditional computer
architectures 1n which auxiliary modules and co-processors
are dependent on instructions from the main CPU.

[0050] Further, the solidarity cells 12A-12» are ambiva-

lent as to the particular composition of the thread itself.
Rather, an agent 1s only concerned about finding a match
between the capabilities of 1ts corresponding cell and an
available task 22 to be completed 1n the task pool 13. That
1s, as long as there are available tasks 22 1n the task pool 13,
and an available task 22 matches the capability of the cell,
then the system may eflectively harness the processing
capacity of the cell.

[0051] Some or all of the solidarity cells 12A-127» may
work independently of each other, or may communicate with
cach other directly, through the switching fabric 14, through
the task pool 13, or pursuant to a command or request from
the CPU to invoke another solidarity cell to assist i pro-

Oct. 11, 2018

cessing, moving, or transmitting data. In one embodiment,
the agent 30A may search for a match between the task type
of the ready tasks 22 and the types of tasks that the cell 12A
1s able to perform. This architecture may involve hard-
coding of the types of tasks that the CPU 11 is configured to
create. Thus, if the task pool 13 contains three types of tasks
22, and the large computational requirement includes a task
ol a fourth type, this fourth type of task may not be placed
in the task pool 13 even 1f a cell capable of performing tasks
of the fourth type 1s included 1n or added to the system 10.
Consequently, the CPU 11 may be configured to “learn” or
be taught how to create tasks of the fourth type 1n order to
more fully exploit the available processing resources.

[0052] In another embodiment, the agent 30A searches the
task 22 descriptors for an executable instruction that
matches one of the instructions that that cell 12A 1s capable
of executing. When a matching task 22 1s found, the agent
30A delivers the descriptor of the matching task 22 to the
cell 12A, whereupon the cell 12A begins to process the task
22. In particular, the agent 30A may deliver the memory
address of the descriptor to the cell 12A, and the cell 12A
retrieves the data structure from memory. Alternatively,
where the descriptor’s entire data structure 1s contained in
the task 22, the agent 30A may deliver the complete data
structure to the cell 12A for processing. The descriptor
informs the cell 12A which instruction to execute, the
location 1n memory units 15 where the data to be processed
may be found, and the location in memory 15 where the
results are to be placed. Upon completion of the task 22, the
cell 12A notifies the task pool 13 to change the status of the
selected task 22 from ‘to be completed’ to ‘completed.’
Further, once the cell 12A finishes a task 22, the cell may
dispatch its agent 30A to the task pool 13 to seek another

task 22.

[0053] Some or all of the agents 30A-30nz may travel
through the system 10 by wire or wirelessly, for example,
using a Wi-Fi1 network, wireless Ethernet, wireless USB,
wireless bridge, wireless repeater, wireless router, Zigbee®,
ANT+® or Bluetooth® pairing, according to the particular
architecture and/or implementation of the system 10. In an
embodiment, an agent 30 may be guided to the task pool 13
wirelessly by including a receptor feature at the task pool 13
and further by including a transmitter feature with the cell
12. Similarly, the task pool may answer wirelessly to the
cells by equipping the task pool with a transmitter and the
solidarity cells with a recerver. In this manner, the cells may
communicate wirelessly with the task pool with or without
use of the switching fabric.

[0054] In a preferred embodiment, however, some form of
switching fabric 14 1s used. The switching fabric 14 facili-
tates connections for data transfer and arbitration between
system resources. The switching fabric 14 may be a router
or crossbar switch that provides connectivity between the
various cells and the task pool. The switching fabric 14 may
further provide connectivity between each solidarity cell
12A-12# and system resources such as the CPU 11, memory
units 15, and traditional system components including, with-
out limitation: direct memory access units, transmitters, hard
disks and their controllers, display and other input/output
devices, and other coprocessors. The cells 12A-127 may be
connected physically to the switching fabric 14, or the cells
may be connected wirelessly.

[0055] The wireless connection of cells into the system 10
tacilitates the dynamic addition and/or removal of cells for

US 2018/0293096 A2

use 1n the system 10. For example, the CPU 11 may recruit
cells from other cell systems, allowing for dynamic expan-
s1on and increased performance. In this manner, two or more
cell systems (e.g., networks) may share solidarity cells. In
one embodiment, a cell that becomes 1dle may look for
and/or be recruited by another system that has a need for
additional processing resources, 1.e., 1t has available pro-
cessing tasks that need to be completed. Similarly, the
system 10 may expand performance by incorporating clus-
ters of additional cells for a particular task. For example, the
system 10 may enhance performance ol an encryption/
decryption function, or the processing of audio and/or video
data, by incorporating nearby cells capable of performing
these tasks.

[0056] To guard against undesirable connections, the CPU
11 may provide the task pool 13 with a list of or, alterna-
tively, criteria for 1dentifying trusted and/or untrusted cells
as well as authentication requirements or protocols. More-
over, the task pool 1tself may exclude particular cells on the
basis of low performance, unreliable connection, poor data
throughput, or suspicion of malicious or otherwise 1nappro-
priate activity. In various embodiments, cells 12 may be
added to a task pool 13, or excluded from a task pool 13, by
a user through the use of a smartphone, tablet or other device
or application. In one embodiment, a graphical application
interface may provide the user with useful statistical and/or
iconic information such as location of available cells and
other devices, performance gain, or performance penalty, as
a result of adding or removing particular cells from a
network.

[0057] In an alternative embodiment, some or all of the
co-processing cells may connect directly to the task pool 13,
such as by a wired configuration that does not require a
switching fabric 14 for communication. The wired connec-
tion of cells may further facilitate dynamic expansion and
contraction of the system 10 analogous to the wireless
configuration discussed above, although wired connections
may physical (e.g., manual) integration and extraction of
peripheral devices. In either case, scalability of the system 1s
greatly enhanced over conventional parallel processing
schemes, as co-processors may be added and removed
without reprogramming the CPU 11 to account for the
changes to the system 10.

[0058] Referring now to FIG. 3, a network 300 includes a
CPU 302, a first memory 304, a second memory 306, a task
pool 308, a switching fabric 310, a first co-processing cell
312 configured to perform (execute) type A tasks, a second
cell 314 configured to perform type B tasks, a third cell 316
configured to perform type C tasks, and a fourth cell 318
configured to perform both type A and type B tasks. As
shown, the task pool 308 1s populated (e.g., by the CPU 302)
with tasks (or task threads) 330 and 332 of task type A; tasks
334 and 336 of task type B; and tasks 340 and 342 of task
type C. In an embodiment, each cell preferably has a unique,
dedicated agent. In particular, cell 312 includes an agent
320; cell 314 includes an agent 322; cell 316 includes an
agent 324; and cell 318 includes an agent 326. Each agent
preferably includes an information field or header which
identifies the type of tasks 1ts associated cell 1s configured to
perform, for example, a single task or combination of tasks
A, B, C.

[0059] During operation, when a cell 1s either idle or
otherwise has available processing capacity, 1ts agent pro-
actively interrogates the task pool to determine whether any

Oct. 11, 2018

tasks are in the task queue which are approprniate for that
particular cell. For example, cell 312 may dispatch 1ts agent
320 to retrieve one or both of tasks 330 and 332 correspond-
ing to task type A. Similarly, cell 314 may dispatch 1ts agent
322 to retrieve eitther task 334 or 336 (depending on their
relative priorities) corresponding to task type B, and so on.
For cells which are capable of performing more than one
task type, such as cell 318 configured to perform task types
A and B, agent 326 may retrieve any one of tasks 330, 332,
334, and/or 336.

[0060] Upon retrieving a task from the task pool, a cell
may then process that task, typically by retrieving data from
a particular location 1n first memory 304, processing that
data, and storing the processed data at a particular location
within second memory 306. When a task 1s completed, the
cell notifies the task pool, the task pool marks the task as
completed, and the task pool notifies the CPU that the task
1s completed. Alternatively, the task pool may notify the
CPU when a task thread 1s completed, mnasmuch as a task
thread may comprise a single task, a series of tasks, or
Boolean combination of tasks. Sigmificantly, the retrieval of
tasks and the processing of data by the cells may occur
without direct communication between the CPU and the
various cells.

[0061] Referring now to FIG. 4, an mternet of things
network 400 includes a controller (CPU) 402, a task pool
408, and various devices 410-422, some or all of which
include an associated or embedded microcontroller, such as
an integrated circuit (IC) chip or other component which
embodies processing capacity. By way of non-limiting
example, the devices may include a light bulb 410, a
thermostat 412, an electrical receptacle 414, a power switch
416, an appliance (e.g., toaster) 418, a vehicle 420, a
keyboard 422, and virtually any other plug and play device
or application capable of interfacing with a network.

[0062] In the illustrated embodiment, the controller 402
may be a smartphone, tablet, laptop, or other device which
may include a display 404 and a user interface (e.g., keypad)
406 for facilitating user interaction with the various devices
on the network. To the extent the processing capacity (e.g.,
bandwidth) of the controller 402 may be suflicient to
adequately support the network, the controller may efiec-
tively harvest or recruit processing resources from the
peripheral devices via the task pool, for example as
explained below 1n conjunction with FIG. 5.

[0063] Referring now to FIG. 5, an mternet of things
network 500 use case illustrates the dynamic harnessing of
nearby (or otherwise available) devices. Network 500
includes a primary control unit 502 (e.g., a laptop, tablet, or
gaming device), a task pool 504, a first co-processor device
506, and a second co-processor device 508. An exemplary

use case 1n the context of network 500 will now be
described.

[0064] Suppose a user 1s playing a video game on her
laptop computer 502. The video game requires detailed
computer-generated 1magery, and perhaps the processing
power 1n laptop 502 1s suflicient to render a single realistic-
looking character, but when a second character 1s introduced
onto the screen, the image quality degrades, and the move-
ment of the characters 1s no longer continuous. The present
invention proposes a method to harness the processing
power ol underutilized computer resources located within
the vicinity of, or otherwise available to, the user.

US 2018/0293096 A2

[0065] To address the need for additional processing
power, the laptop 502 connects to the task pool 504. In this
regard, the laptop itself may be equipped with a task pool,
or the task pool may be in the form an external device or
application located within wireless reach from the laptop
502. In the case of an external task pool, the task pool itself
could perform the duties of a switching fabric with ports to
allow connection to multiple co-processing cells. The laptop
502 populates the task pool 504 with computationally mnten-
sive tasks. A nearby underutilized device, such as a smart-
phone 508, subsequently connects to the task pool 504 and
sends 1ts agent to fetch a matching task type. Consequently,
the smart phone 508 becomes a co-processor seamlessly
assisting the laptop 502, thereby enhancing the video game
experience. The same method may be repeated 1n the event
other underutilized processing resources exist and are
needed. Indeed, even the processing power of an available
light-bulb 506 may become a co-processor to the laptop.

[0066] FIG. 6 1s a tlow chart 1llustrating the operation of
an exemplary parallel computing environment. In particular,
a method 600 includes populating a task pool with tasks
(Step 602), proactively dispatching one or more agents from
one or more corresponding cells to the task pool (Step 604),
retrieving and processing a task (Step 606), and notifying the
task pool and the CPU that the task thread has been
performed (Step 608). The method 600 further includes
dynamically incorporating (Step 610) an additional device
into the network, as needed.

[0067] A processing system 1s thus provided which

includes a task pool, a controller configured to populate the
task pool with a first task, and a first co-processor configured

to proactively retrieve the first task from the task pool.

[0068] In an embodiment, the first co-processor comprises
a first agent configured to retrieve the first task from the task
pool without communicating with the controller.

[0069] In an embodiment, the first task includes indicia of
a first task type, the first co-processor 1s configured to
perform tasks of the first type, and the first agent 1s config-
ured to search the task pool for a task of the first type.

[0070] In an embodiment, the first co-processor 1s further

configured to process the first and notify the task pool upon
completion of the first task, and the task pool i1s configured

to notily the controller upon completion of the first task.

[0071] In an embodiment, the controller and the first
co-processor are configured communicate with each other
only through the task pool.

[0072] In an embodiment, the controller and the first
co-processor are configured communicate with each other
directly and through the task pool.

[0073] In an embodiment, the first co-processor 1s config-
ured to determine that 1t has available processing capacity,
and to dispatch the agent to the task pool 1n response to the
determination.

[0074] In an embodiment, the controller 1s further config-
ured to populate the task pool with a second task, and
wherein the system further comprises a second co-processor
having a second agent configured to proactively retrieve the
second task from the task pool.

[0075] In an embodiment, the second task includes indicia
of a second task type, the second co-processor 1s configured

to perform tasks of the second type, and the second agent 1s
configured to search the task pool for a task of the second

type.

Oct. 11, 2018

[0076] In an embodiment, the controller and the task pool
reside on a monolithic integrated circuit (IC), and the first
co-processor does not reside on the IC.

[0077] In another embodiment, the controller, the task
pool, and the first and second co-processors reside on a
monolithic integrated circuit (I1C).

[0078] A method 1s also provided for dynamically con-
trolling processing resources 1 a network of the type
including a central processing umt (CPU) configured to
populate a task pool with a first task having a first task type.
The method 1ncludes the steps of: programming a first cell
to perform the first task type; adding the programmed first
cell to the network; proactively sending a first agent from the
first cell to the task pool; searching the task pool, by the first
agent, for a task of the first type; retrieving, by the first agent,
the first task from the task pool; transporting, by the first
agent, the first task to the first cell; processing, by the first
cell, the first task; and sending a nofification from the first
cell to the task pool that the first task 1s completed.

[0079] Inan embodiment, the method also includes: mark-
ing, by the task pool, the first task as being completed; and
sending a notification from the task pool to the CPU that the
first task 1s completed.

[0080] In an embodiment, the method also includes con-
figuring the first cell to determine that the first cell has
available processing capacity as a predicate to proactively
sending the first agent to the task pool.

[0081] In an embodiment, the method also includes inte-
grating the first cell into a first device prior to adding the
programmed first cell to the network.

[0082] In an embodiment, the first device comprises one
ol a sensor, light bulb, power switch, appliance, biometric
device, medical device, diagnostic device, lap top, tablet,
smartphone, motor controller, and a security device.
[0083] In an embodiment, adding the programmed first
cell to the network comprises establishing a communication
link between the first cell and the task pool.

[0084] In an embodiment, the (CPU) 1s further configured
to populate the task pool with a second task having a second
task type, the method further comprising the steps of:
programming the second cell to perform the second task
type; establishing a communication link between the second
cell and the task pool; proactively sending a second agent
from the second cell to the task pool; searching the task pool,
by the second agent, for a task of the second type; retrieving,
by the second agent, the second task from the task pool;
transporting, by the second agent, the second task to the
second cell; processing, by the second cell, the second task;
sending a notification from the second cell to the task pool
that the second task 1s completed; marking, by the task pool,
the second task as being completed; and sending a notifi-
cation from the task pool to the CPU that the second task 1s
completed.

[0085] A system i1s also provided for controlling distrib-
uted processing resources in an internet of things (IoT)
computing environment, including: a CPU configured to
partition an aggregate computing requirement into a plural-
ity of tasks and place the tasks 1n a pool; and a plurality of
devices each having a umique dedicated agent configured to
proactively retrieve a task from the pool without direct
communication with the CPU.

[0086] While there has been illustrated an enabling
description of various embodiments including the best mode
known to the inventors, it will be understood by those skilled

US 2018/0293096 A2

in the art that various changes and modifications may be
made and equivalents may be substituted for various ele-
ments without departing from the scope of the mvention.
Theretfore, 1t 1s intended that the inventions disclosed herein
not be limited to the particular embodiments disclosed, but
that the invention will include all embodiments falling
within the literal and equivalent scope of the appended
claims.

I claim:

21. A swarm 1ntelligence system, comprising;

a task pool;

a controller configured to populate the task pool with a
plurality of first tasks and a plurality of second tasks;

a first robotic vehicle configured to successively: retrieve
a first task from the task pool; process the first task;
generate first resulting data; and update the task pool to
reflect completion of the first task, all without any
communication between the first robotic vehicle and
the controller; and

a second robotic vehicle configured to successively:
retrieve a second task from the task pool; process the
second task; generate second resulting data; and update
the task pool to reflect completion of the second task,
all without any communication between the second
robotic vehicle and the controller:;

wherein the swarm intelligence system 1s configured to
dynamically accept the first robotic vehicle, the second
robotic vehicle, and an additional robotic vehicle into
the processing system on a plug-and-play basis without
any communication with the controller.

22. The swarm 1ntelligence system of claim 21, wherein

the plurality of first tasks and the plurality of second tasks
are associated with a common objective; and

the first and second robotic vehicles autonomously work
together in solidarity with the task pool to complete the
common objective.

23. The swarm intelligence system of claim 21, wherein
at least one of the first and second robotic devices 1s an
unmanned ground vehicle (UGV).

24. The swarm intelligence system of claim 21, wherein
at least one of the first and second robotic devices i1s an
unmanned aerial vehicle (UAV).

25. The swarm intelligence system of claim 21, wherein
the first robotic vehicle 1s configured to perform at least one
of depositing a new task into the task pool and modifying an
existing task within the task pool.

26. The swarm intelligence system of claim 21, wherein:
the first robotic vehicle includes a first agent;
the second robotic vehicles includes a second agent;

the first task includes indicia of a first task type, the first
robotic vehicle 1s configured to perform tasks of the
first type, and the first agent 1s configured to search the
task pool for a task of the first type; and

the second task includes indicia of a second task type, the
second robotic vehicle 1s configured to perform tasks of
the second type, and the second agent 1s configured to
search the task pool for a task of the second type.

27. The swarm 1ntelligence system of claim 21, wherein
the first robotic vehicle 1s configured to determine when 1t
has available processing capacity, and to dispatch the first
agent to the task pool 1n response to the determination.

28. The swarm intelligence system of claim 21, wherein
the controller and the task pool reside on a monolithic

Oct. 11, 2018

integrated circuit (IC) that 1s not a component of either the
first or second robotic vehicles.

29. A swarm intelligence system, comprising:

a task pool;

a controller configured to populate the task pool with a
plurality of first tasks and a plurality of second tasks;

a first robotic vehicle configured to successively: retrieve
a first task from the task pool; deliver the first task to
the first robotic vehicle; process the first task; generate
first resulting data; and update the task pool to reflect
completion of the first task, all without any communi-
cation between the first robotic vehicle and the con-
troller; and

a second robotic vehicle including a second agent com-
prising a second source address, a second destination
address, and a second payload, the second robotic
vehicle configured to successively: retrieve a second
task from the task pool; process the second task;
generate second resulting data; and update the task pool
to retlect completion of the second task, all without any
communication between the second robotic vehicle and
the controller;

wherein:

the processing system 1s configured to dynamically accept
the first robotic vehicle, the second robotic vehicle, and
an additional robotic vehicle into the swarm intelli-
gence system on a plug-and-play basis without any
communication with the controller;

the first robotic vehicle includes a first agent comprising
a first source address, a first destination address, and a
first payload,;

the second robotic vehicles includes a second agent
comprising a second source address, a second destina-
tion address, and a second payload,;

the first task includes indicia of a first task type, the first
robotic vehicle 1s configured to perform tasks of the
first type, and the first agent 1s configured to search the
task pool for a task of the first type;

the second task 1includes indicia of a second task type, the
second robotic vehicle 1s configured to perform tasks of
the second type, and the second agent 1s configured to
search the task pool for a task of the second type;

turther wherein:

when the first agent is retrieving the first task from the
task pool, the first source address corresponds to an
address associated with the first robotic vehicle, the
first destination address corresponds to an address
associated with the task pool, and the first payload
includes a first function which the first robotic vehicle
1s configured to perform;

when the first agent 1s returning from the task pool, the
first source address 1s the task pool’s address, the first
destination address 1s the first robotic vehicle’s address,
and the first payload includes a descriptor of the first
task;

when the second agent 1s retrieving the second task from
the task pool, the second source address corresponds to
an address associated with the second robotic vehicle,
the second destination address corresponds to an
address associated with the task pool, and the second
payload includes a second function which the second
robotic vehicle 1s configured to perform; and

when the second agent 1s returning from the task pool, the
second source address i1s the task pool’s address, the

US 2018/0293096 A2

second destination address 1s the second robotic vehi-
cle’s address, and the second payload includes a
descriptor of the second task.

30. The swarm 1intelligence system of claim 29, wherein
the first robotic vehicle 1s configured to perform at least one

of depositing a new task into the task pool and modifying a
task within the task pool.

31. The swarm intelligence system of claim 30, wherein
the first robotic device 1s an unmanned autonomous vehicle
configured to operate as at least one of a ground vehicle and
an aerial vehicle 1n connection with defense field operations.

32. The swarm 1intelligence system of claim 30, wherein
the first robotic vehicle 1s configured to determine when 1t
has available processing capacity, and to dispatch the first
agent to the task pool 1n response to the determination.

33. The swarm intelligence system of claim 30, wherein
neither the controller and task pool are not incorporated nto
either the first or second robotic vehicles.

34. A method of using swarm 1ntelligence to achieve an
objective, comprising:

populating a task pool, with a controller, such that the task

pool includes a plurality of tasks associated with the

objective, wherein each of the tasks has a respective
task type; and

dynamically introducing into an environment, on a plug-
and-play basis without any communication with the
controller, a plurality of autonomous robotic vehicles,

cach of which 1s compatible with one or more of the
task types,

Oct. 11, 2018

wherein, upon introduction into the environment, the
plurality of autonomous robotic vehicles operate in
solidarity with each other and the task pool to complete
the objective, without communication with the control-
ler, by: retrieving a task having a compatible task type
from the task pool; completing the task; and updating

the task pool to reflect completion of the task.
35. The method of claam 34, wherein the plurality of
autonomous robotic vehicles includes at least one of an
unmanned aerial vehicle (UAV) and an unmanned ground

vehicle (UGV).

36. The method of claim 34, wherein at least one of the
plurality of autonomous robots 1s configured to modily an
existing task 1n the task pool.

37. The method of claim 34, wherein at least one of the
plurality of autonomous robots 1s configured to add a task to
the task pool.

38. The method of claim 34, wherein:

at least one of the plurality of robotic vehicles includes an

agent configured to select from the task pool a task of
a compatible type and deliver the selected task to the at
least one robotic vehicle.

39. The method of claim 34, wherein the at least one
robotic vehicles 1s configured to determine whether 1t has
available processing capacity, and to dispatch the agent to
the task pool 1n response to the determination.

40. The method of claiam 34, wherein the plurality of
autonomous robots retrieve the tasks from the task pool via
a wireless data connection.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

