a9y United States
12y Patent Application Publication o) Pub. No.: US 2018/0253236 Al

US 20180253236A1

GADELRAB et al. 43) Pub. Date: Sep. 6, 2018
(54) SYSTEM AND METHOD FOR DYNAMIC (52) U.S. CL
CONTROL OF SHARED MEMORY CPC GO6F 3/0613 (2013.01); GO6F 3/0656
MANAGEMENT RESOURCES (2013.01); GO6F 3/0659 (2013.01); GO6F
221271024 (2013.01); GO6F 12/1009
(71) Applicant: QUALCOMM INCORPORATED, (2013.01); GO6F 9/5016 (2013.01); GO6F
SAN DIEGO, CA (US) 30673 (2013.01)
(72) Inventors: SERAG GADELRAB, Mar.kham (CA); (57) ARSTRACT
Jason Edward Podaima, Richmond
Hill (CA); Kyle Ernewein, Toronto A method and system for dynamic control of shared memory
(CA); Meghal Varia, North York (CA) resources within a portable computing device (“PCD”) are
disclosed. A limit request of an unacceptable deadline miss
(21) Appl. No.: 15/448,095 (“UDM”) engine of the portable computing device may be
_ determined with a limit request sensor within the UDM
(22) Filed: Mar. 2, 2017 element. Next, a memory management unit modifies a
o _ _ shared memory resource arbitration policy 1n view of the
Publication Classification limit request. By modifying the shared memory resource
(51) Int. CL arbitration policy, the memory management unit may
GO6F 3/06 (2006.01) smartly allocate resources to service translation requests
Gool’ 12/1009 (2006.01) separately queued based on having emanated from either a
GO6F 9/50 (2006.01) flooding engine or a non-flooding engine.
Portable Computing
Flooding | | Flooding Flooding Non-UDM Non-UDM UDM Pevice 100 ‘ 102 ‘
Traffic Traffic Traffic Traffic Traffic Traffic
Engine Engine Engine Engine Engine Engine
201A 201B 201n 202A 202n 203A
| s :
L e e e e e e e |
1 Flooder Input Address Translation : :
Scheduler and Buffer(s) 207 ' |
4 Non-Flooder Input Address £ Limit*
v v v v Translation Scheduler and Aggregation
Input Input Input Input Buffer(s) 209 Y Module 114
Transaction Transaction Transaction Transaction |
Buffer Buffer Buffer Buffer Output Address |
l 4 A i 4 i 3 Translation :
Scheduler and |
Output Output Output Output DeMux 213 NS N
Transaction Transaction Transaction Transaction |
Buffer Buffer Buffer Buffer Haraware Shared
[f T T 1 wliﬂf}s) Manh;geg o1 [¢7*] [ransiation
E— he 104
~_ N~ ~_ ~~_ 215 vache 1o
7 !
‘ Post-Translation Arbiter and Multiplexor ‘ MMU 204

L 4
<} Memory Controllers Interconnect

[> Chip 102

Sep. 6, 2018 Sheet 1 of 9 US 2018/0253236 Al

Patent Application Publication

J09UUODIBIU| SJB||0JJU0Y) AIOWSN

Joxs|diynA pue Jsigly uone|suel-1sod

Gie N\ AN N\ N\

01 auoen —
donersue) fes| TOT 00N, f (Shotem | F

POIEUS aJemMpleH

Jeyng
uoloesuUel |

JoLlny JoliNyg

uolnoesuel |
INAdINQO

Jjayng
uoljoesuel |

1gle}lale

uonoesuel |
ndino

IndinQ

€l¢ XnNeg

puB I8|NPayoss
uoneisues |

ssalppy IndinO

_ Jalng
uonoesuel |

JalNng

Jayng Jaung
uoloesuel | uoloesuel |
nduj . 1nduj

uonoesuel |
INduy

gl Bl

¥11 eInpony 60 (s)layung
uonefaibby pUE J8|Npayos uolje|suel |
T $$2Jppy Induj Jopooj4-UoN

T0¢ (s)isyng pue 1s|npayos
Uone|suel | ssalppy ndul Jepoo)| -

Ueoce Veol
auIbu suibu
olljed | Slyes |

NAN NN

ucoce Vc0c ULo¢ g10¢
suibu3g auIbu auIbu3 aubus

V10c
auibuz

olel] olel] olel | olel]
INQN-uoN INQN-UON BUIPOO| BUIPOO| 4

olyel |
buipoo| 4

001 @%1A8(
bunndwon e|genod

Patent Application Publication Sep. 6, 2018 Sheet 2 of 9 US 2018/0253236 Al

203A (UDM CORE)

| Displayor | 302

famera /

Latenoy

304 CIEG

FIFO Level to Danger

Mapping Table
- 306

‘ / Limit Request

to Limit
,,,,,,,,,,,,,,,,,,,,,, Aggregation
Module 114

!!!!!!!!!!!!!!!!!!!!!!

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

FIG. 2

Patent Application Publication Sep. 6, 2018 Sheet 3 of 9 US 2018/0253236 Al

300

N

START METHOD
FOR FIFO-LEVEL
BASED UDM FAILURE
PROXIMITY
DETECTION

305

Monitor Latency FIFO
buffer level

310

Compare level to

Remove any active limit

requests to MMU predefined Proximity to

Failure threshold

315

Threshold violation?

NO

YES

320

Output limit request to
MMU
RETURN

FIG. 3

Patent Application Publication

Remove any active limit
reguests to MMU

NO

Sep. 6, 2018 Sheet 4 of 9

START METHOD
FOR LATENCY
BASED UDM FAILURE
PROXIMITY
DETECTION

405

Monitor round-trip
latency for all
fransactions sent o
DRAM

410

Calculate average and/
or peak round-trip
latency over a fixed or
moving time frame

415

Compare latency
calculation to
predefined Proximity to
Failure threshold

420

Threshold violation?

YES 425

Output limit request to

MMU

RETURN

US 2018/0253236 Al

400

NV

FIG. 4

Patent Application Publication Sep. 6, 2018 Sheet 5 of 9

START METHOD
FOR SW DEADLINE
BASED UDM FAILURE
PROXIMITY
DETECTION

505

Monitor fraction of

completion for workload
relative to elapsed time

510

Estimate completion
fime for remainder of
workload

Remove any active limit
requests to MMU 515

Compare estimated
completion time to
nredefined target
deadline threshold

520

Proximity {o failure?

NO

YES | 525

Output limit request to
MMU
RETURN

US 2018/0253236 Al

500

0,

FIG. 5

Patent Application Publication

Remove any active iimit
requests to MMU

NO

Sep. 6, 2018 Sheet 6 of 9

START METHOD
FOR HW DEADLINE
BASED UDM FAILURE
PROXIMITY
DETECTION

605

Monitor fraction of

compietion for workload
relative to elapsed time

610

Estimate completion

time for remainder of
workload

615

Compare estimated

completion time to
predefined maximum
deadline threshold

620

Proximity to failure?

YES 805

Output limit request to
MMU

RETURN

US 2018/0253236 Al

600

NV

Patent Application Publication

START METHOD
FOR DYNAMIC
CONTROL OF
SHARED MMU

RESOURCES

705

Define each Engine as
either Flooding or Non-

Flooding

\dentify each Non-

Fiood:

g Engine that

has an Unacceptable
Deadline Miss ("UDM”)

715

Separately queue
translation requests
from Flooding and Non-

Flooding Engines

Sep. 6, 2018 Sheet 7 of 9

For each cache miss
from Flooding and Non-
Flooding Engine, assign
translation request {o a

UDM Engine
Limit Request?

YES

Modify translation
request arbitration

policy

DM Engine Limi
Request clear?

YES

Hardware Table Walker

US 2018/0253236 Al

700

W

720

725 |

NO

735

NO

FIG. 7

Patent Application Publication Sep. 6, 2018 Sheet 8 of 9 US 2018/0253236 Al

100
Display / USB
PMIC Touchscreen %Ca%;;hqgg Port
180 [| 132 — 142
. USB
Power Supply C?)Ir?t?i)alli , CPU 110 Controller
1—8—8— 128 Oth Core 222 li—-Q
Touch | 1 Core 224 | Memory
screen m _ 112
| Controller N™ Core 230
150 MMU
Video Video 204
Amp - Encoder N
136 134 eyy—
Stereo nggEeC
Speaker 113
154 ==
| GPU 135
Stereo Audio e
Speaker Amplifier Stereo | | SIM Card l
16 Jp | 1oz Audio | 146
CODEC]
/ _y 150 Analog Signal |
184) Radio o Processor RF
Tuner 126 — Transceiver
162] 168
Microphone Microphone Temp Sensors
160 Amp 158 157A
- T — 102
Stereo |
Headphones Keypad ~
166 174 :
100 172
— Mono -
ADC | Headset w/ R.F
Controller . Switch
103 Microphone 170
Temp Sensors

1578

———Iwgm FIG. 8

Patent Application Publication Sep. 6, 2018 Sheet 9 of 9 US 2018/0253236 Al

Memory
Startup Logic

Application
Store

204
211
Central Prccessing Unit (CPU) or Digital
Signal
Processor
(DSP) [core 0 | [Core 1 Core N
222 | 22 230
211
112
Management
Logic
260
File 290

System

Program Store

US 2018/0253236 Al

SYSTEM AND METHOD FOR DYNAMIC
CONTROL OF SHARED MEMORY
MANAGEMENT RESOURCES

DESCRIPTION OF THE RELATED ART

[0001] Portable computing devices (“PCDs”) are poweriul
devices that are becoming necessities for people on personal
and professional levels. Examples of PCDs may include
cellular telephones, portable digital assistants (“PDAs”),
portable game consoles, palmtop computers, and other por-
table electronic devices.

[0002] PCDs typically employ systems-on-chips
(“SOCs”). Each SOC may contain multiple processing cores
that have deadlines that, 1f missed, may cause detectable/
visible failures that are not acceptable during operation of a
PCD. Deadlines for hardware elements, such as cores, are
usually driven by amount of bandwidth (“BW™) a core
receives from shared resources, such as memory or buses,
like dynamic random access memory (“DRAM”), Internal
static random access memory (“SRAM”) memory
(“IMEM?”), or other memory such as a Peripheral Compo-
nent Interconnect Express (“PCI-¢””) external transport links
over a short period of time. What 1s, or 1s not, a short period
of time depends on the particular type of processing core,
but 1s usually 1n the range of about 10 seconds to about 100
milliseconds.

[0003] When certain processing cores do not receive a
required memory BW over specified period of time, or
experience excessive transaction latency due to overbur-
dened resources in the memory system (such as hardware
table walkers), failures that directly and visibly impact user
experience may occur. For example, consider a display
engine for a PCD: 1t reads data from a memory clement
(usually DRAM) and outputs data to a display panel/device
for a user to view. If the display engine i1s not able to read
enough data from DRAM within a fixed period of time, then
such an 1ssue may cause a display engine to “run out” of
application data and be forced to render a fixed, solid color
(usually blue or black) on a display due to the lack of display
data available to the display engine. This error condition 1s
often referred to 1n the art as “Display Undertlow” or
“Display Under Run” or “Dasplay tearing,” as understood by
one of ordinary skill 1n the art.

[0004] As another example of potential failures when a
hardware element does not receive suflicient throughput or
bandwidth from a memory element, a camera 1n a PCD may
rece1ve data from a sensor and write that data to the DRAM.
I1 a suflicient amount of data i1s not written to DRAM within
a fixed period of time, then this may cause the camera engine
to lose mput camera data. Such an error condition 1s often
referred to 1n the art as “Camera overflow” or “Camera
Image corruption,” as understood by one of ordinary skill 1n
the art.

[0005] Another example for potential failure 1s a modem
core not bemng able to read/write enough data from/to
DRAM over a fixed period to complete critical tasks. If
critical tasks are not completed within deadline, modem
firmware may crash: voice or data calls of a PCD are lost for
period of time or an Internet connection may appear sluggish
(1.e.—stuttering during an internet connection).

[0006] Accordingly, there 1s a need 1n the art for a system
and method that dynamically controls access to, and allo-
cation of, shared memory resources. More specifically, there
1s a need 1n the art for a system and method that dynamically

Sep. 6, 2018

modifies arbitration policies for shared memory resources
such that transactions associated with unacceptable deadline
miss (“UDM”) engines are prioritized over low priority
transactions emanating from “flooder” engines.

SUMMARY OF THE DISCLOSURE

[0007] A method and system for dynamic control of
shared memory resources within a portable computing
device (“PCD”) are disclosed. An exemplary embodiment of
the solution begins by classifying each of a plurality of
traflic engines 1n the PCD as either a flooding engine or a
non-flooding engine. As would be understood by one of
ordinary skill 1n the art, a flooding engine processes work-
loads that have a relatively ligh effect on a Quality of
Service (“QQoS”) level relative to workloads processed by a
non-tlooding engine. Next, for each non-tflooding engine, the
exemplary embodiment identifies those having an unaccept-
able deadline miss status. As would be understood by those
of ordinary skill 1n the art, missing a deadline for servicing
a translation request emanating {from a non-flooding engine
having an unacceptable deadline miss status detrimentally
impacts QoS.

[0008] Translation requests emanating from flooding
engines are queued 1n a flooding engine queue and transla-
tion requests emanating from non-flooding engines are
queued 1n a non-flooding engine queue. The flooding engine
queue and the non-tflooding engine queue are separate
queues that, depending on embodiment, may be physically
separate and/or logically separate. The method then pro-
cesses translation requests from flooding engines and trans-
lation requests from non-flooding engines according to a
default memory resource arbitration policy unless and until
one or more limit requests are received from one or more of
the non-flooding engines having an unacceptable deadline
status. In response to the one or more limit requests, the
exemplary method modifies the default memory resource
arbitration policy such that there 1s an increase 1n allocation
of memory resources to translation requests in the non-
flooding engine queue.

[0009] The one or more limit requests transmitted to the
memory manage unit by one or more non-tlooding engines
processing workloads subject to an unacceptable deadline
miss requirement may be based on, inter alia, a FIFO bufler
level, an average round trip latency for servicing a transla-
tion request, or a workload completion percentage rate.
Examples of non-flooding engines having an unacceptable
deadline miss status includes, but 1s not limited to including,
a processing core, a display engine, a camera controller, a
graphical processing unit, a modem, and soiftware or firm-
ware running on a programmable computing engine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] In the drawings, like reference numerals refer to
like parts throughout the various views unless otherwise
indicated. For reference numerals with letter character des-
ignations such as “102A” or “102B”, the letter character
designations may differentiate two like parts or elements
present in the same figure. Letter character designations for
reference numerals may be omitted when it 1s intended that
a reference numeral to encompass all parts having the same
reference numeral 1n all figures.

[0011] FIG. 1 1s a functional block diagram of an exem-
plary system within a portable computing device (“PCD™)

US 2018/0253236 Al

for dynamic control of shared memory resources based on
danger signals monitored from one or more unacceptable
deadline miss (“UDM?”) elements;

[0012] FIG. 2 1s a functional block diagram of an exem-
plary limit request sensor for an unacceptable deadline miss
(“UDM”) trailic engine, such as a core of a multicore
Processor;

[0013] FIG. 3 1s a logical flowchart illustrating in more
detail the exemplary method for FIFO-level based failure
proximity detection described relative to the FIG. 2 limit
request sensor;

[0014] FIG. 4 1s a logical flowchart 1llustrating 1n more
detail the exemplary method for latency based failure prox-
imity detection described relative to the FIG. 2 limit request
SEeNnsor;

[0015] FIG. 5 1s a logical flowchart illustrating in more
detail the exemplary method for software deadline based
tailure proximity detection described relative to the FIG. 2
limit request sensor;

[0016] FIG. 6 1s a logical flowchart illustrating in more
detail the exemplary method for hardware deadline based
tallure proximity detection described relative to the FIG. 2
limit request sensor;

[0017] FIG. 7 1s a logical tlowchart 1llustrating an exem-
plary method for dynamic control of shared memory
resources;

[0018] FIG. 8 1s a functional block diagram of an exem-
plary, non-limiting aspect of a PCD 1n the form of a wireless
telephone for implementing methods and systems for
dynamic control of shared memory resources; and

[0019] FIG.9 1s a schematic diagram 1llustrating an exem-
plary software architecture of the PCD of FIG. 8 for execut-
ing methodologies for dynamic control of shared memory
resources.

DETAILED DESCRIPTION

[0020] The word “exemplary” 1s used herein to mean
serving as an example, 1mstance, or illustration. Any aspect
described herein as “exemplary” 1s not necessarily to be
construed as exclusive, preferred or advantageous over other
aspects.

[0021] Inthis description, the term “application” may also
include files having executable content, such as: object code,
scripts, byte code, markup language files, and patches. In
addition, an “application” referred to herein, may also
include files that are not executable i1n nature, such as
documents that may need to be opened or other data files that
need to be accessed.

[0022] As used 1n this description, the terms “component,”
“database,” “module,” “system,” “processing component,”
“engine,” “client” and the like are intended to refer to a
computer-related entity, either hardware, firmware, a com-
bination of hardware and software, software, or software 1n
execution. For example, a component may be, but 1s not
limited to being, a process running on a processor, a pro-
cessor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an
application running on a computing device and the comput-
ing device may be a component. One or more components
may reside within a process and/or thread of execution, and
a component may be localized on one computer and/or
distributed between two or more computers. In addition,
these components may execute from various computer read-
able media having various data structures stored thereon.

Sep. 6, 2018

The components may communicate by way of local and/or
remote processes such as 1 accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, dis-
tributed system, and/or across a network such as the Internet
with other systems by way of the signal).

[0023] In this description, the terms “‘central processing
umt (“CPU”),” “digital signal processor (“DSP”),” and
“chip” are used 1nterchangeably. Moreover, a CPU, DSP, or
a chip may be comprised of one or more distinct processing
components generally referred to herein as “core(s).”

[0024] In this description, unacceptable deadline miss
(“UDM”) elements or engines are those hardware and/or
soltware elements that may cause significant or catastrophic
fallures of a PCD as described 1n the background section
listed above. Specifically, UDM engines are those elements
which may cause exemplary error conditions such as, but not
limited to, “Display Undertlows,” “Display Under runs,”
“Display tearing,” “Camera overflows,” “Camera Image
corruptions,” dropped telephone calls, sluggish Internet con-
nections, etc. as understood by one of ordinary skill 1n the
art. Any hardware and/or software element of a PCD may be
characterized and treated as a UDM engine depending on the
particular embodiment of the solution.

[0025] In this description, the terms “workload,” “process
load” and ““process workload™ are used interchangeably and
generally directed toward the processing burden, or percent-
age of processing burden, associated with a given processing
component 1n a given embodiment. Further to that which 1s
defined above, a “processing component” may be, but i1s not
limited to, a central processing unit, a graphical processing
unit, a core, a main core, a sub-core, a processing area, a
hardware engine, a client, etc. or any component residing
within, or external to, an integrated circuit within a portable
computing device.

[0026] In this description, the term “portable computing
device” (“PCD”) 1s used to describe any device operating on
a limited capacity power supply, such as a battery. Although
battery operated PCDs have been 1n use for decades, tech-
nological advances in rechargeable batteries coupled with
the advent of third generation (*3G”), fourth generation
(““4(G”) and fifth generation (*5G”) wireless technology have
enabled numerous PCDs with multiple capabailities. There-
fore, a PCD may be a cellular telephone, a satellite tele-
phone, a pager, a PDA, a smartphone, a navigation device,
a smartbook or reader, a media player, a combination of the
alorementioned devices, a laptop computer with a wireless
connection, a notebook computer, an ultrabook computer, a
tablet personal computer (“PC”), among others. Notably,
however, even though exemplary embodiments of the solu-
tions are described herein within the context of a PCD, the
scope of the solutions are not limited to application imn PCDs
as they are defined above. For instance, the system described
herein could be implemented 1n a typical portable computer,
such as a laptop or notebook computer.

[0027] FEmbodiments of the solution configure the
memory management unit (“MMU”) on a a-priori basis to
recognize which one or more of a plurality of clients
interfacing with the MMU 1s characterized as a “tlooding”
client or potential “aggressor” client and which one or more
of the plurality of clients interfacing with the MMU 1s
characterized as a “non-flooding” client or potential “vic-
tim” client. Depending on the embodiment of the solution,
the MMU may be an aggregated MMU or it may be a

US 2018/0253236 Al

distributed MMU. Advantageously, the MMU may leverage
separate queuing structures for translation requests emanat-
ing from flooding clients versus translation requests ema-
nating ifrom non-flooding clients. It 1s envisioned that the
separate queuing structures may be instantiated 1in physically
separate memory components or may be instantiated 1in
separate areas of a single memory component. Regardless,
so long as the queuing structure for translation requests for
flooding clients are separate and distinguishable from the
queuing structure for non-flooding clients, embodiments of
the solution may be able to dynamically control access to,
and allocation of, memory resources of the MMU that are
shared by both classes of clients. In this way, 1t 1s an
advantage of the solution that non-flooding clients process-
ing workloads subject to unacceptable deadline misses may
be given dynamic priority to shared memory resources over

flooding clients such that QoS experienced by a user is
optimized.

[0028] To optimize QoS, an MMU according to embodi-
ments of the solution may dynamically control the number
of hardware table walker components (“HTWs™) that are
simultaneously occupied with servicing of translation
requests associated with flooding clients. As would be
understood by one of ordinary skill 1n the art, an HTW may
be leveraged to retrieve data or responses ifrom long-term
memory 1f/when a translation request cannot be serviced
from cache—1Il.e., a “cache miss.” In the event of a cache
miss, the client from which the translation request emanated
has to wait until a HT'W 1s able to search through long-term
memory and respond with the “answer” to the translation
request. As would be understood by one of ordinary skill in
the art, the latency for return of a response from long-term
memory 1s necessarily increased when compared to the low
latency for return of a response from cache. Moreover,
latency 1s further increased, sometimes exponentially, if 1n
the event of a cache miss the translation request must be
queued until a HI'W component becomes available. Such
scenar1os that increase latency for responses to translation
requests may be detrimental, 1f not fatal, to a non-tflooding,

client working subject to an unacceptable deadline miss
(“UDM client” or “UDM engine”).

[0029] According to embodiments of the solution, victim
clients such as UDM clients may be configured to monitor
critical failure indicators, such as bufler fill levels, workload
completion times, translation request latencies, etc. If a
victim client determines from the monitoring of 1ts critical
tailure mdicator(s) that 1t 1s nearing a failure point, I.e. 1t 1s
in danger of experiencing a deadline miss that 1s unaccept-
able, 1t may signal to the MMU to adjust its arbitration
policies as applied to flooding clients. That 1s, the MMU
may, among other things, respond to a signal from the victim
client by limiting service to known flooder clients. It 1s
envisioned that the limit signal sent by a victim UDM client
may be binary 1n nature or, depending on embodiment, may
be a numeric indication of the relative proximity to which
the UDM client 1s to experiencing a failure (e.g., a “higher”
signal level indicates that the UDM client 1s relatively closer
to experiencing a failure than when a “lower” signal level 1s
transmitted). Further, depending on the embodiment of the
solution, a victim UDM client may continue to transmit a
limit request signal to the MMU unless and until it deter-
mines that 1t 1s no longer 1n critical danger of experiencing,
an unacceptable deadline miss.

Sep. 6, 2018

[0030] An MMU according to the solution may combine
multiple incoming limit requests from multiple UDM clients
into one or more aggregated limit idicators (“ALIs™). In
view of the ALI level, the MMU may respond by restricting
access of translation requests from one or more flooder
clients to hardware page table walkers (“HTWs”) by
dynamically adjusting the maximum number of HTWs
available to those flooders. In doing so, the MMU may “free
up” one or more HT'Ws for servicing of translation requests
emanating from UDM clients while translation requests
emanating from tlooder clients are queued up pending the
availability of an HI'W eligible for servicing a translation
request from a tlooder client.

[0031] It 1s envisioned that dynamically adjusting the
maximum number of HTWs available for servicing of
flooder client requests may include pre-empting any trans-
lation from flooder clients already in the process of being
serviced by an HT'W. In this way, 1ii/when the MMU adjusts
the maximum number of HT W' that may be used for service
of flooder client translation requests in response to an ALI
level, embodiments of the solution may ensure that the
newly adjusted maximum number of HTWs 1s not exceeded
due to more than the maximum number of HI'Ws already
being occupied with flooder requests. Simply put, 1t 1s
envisioned that embodiments of the solution may terminate
an ongoing table walk associated with a flooder client
request 1n the event that allowing the table walk to continue
would cause the maximum number of HI'Ws allocable to
flooder clients to be exceeded.

[0032] It 1s also envisioned that 1n some embodiments the
level or amount of HTW limitations may be a function of the
relative intensity of the ALI level indication (e.g., dependent
upon the number of victim UDM clients signaling for
flooder limits or the numeric indication for proximity of
fallure from each victim UDM client). The appropriate
amount or level of HI'W limitations for flooder client
requests 1n view ol a given ALI signal may be determined
from a look-up table or, in some embodiments, may be the
output of a predefined formula or function, as would be
understood by one of ordinary skill in the art.

[0033] Notably, the ALI level, which 1s a direct reflection
of the number and/or intensity of limit requests coming from
victim UDM clients, may be leveraged by embodiments of
the solution to dynamically control or adjust allocation of
shared memory management resources, such as HI'Ws, to
servicing translation requests emanating from tlooder cli-
ents. Advantageously, because translation requests from
flooder clients are queued separately from translation
requests from non-tlooder clients, such as UDM clients,
embodiments of the solution may smartly and dynamically
allocate shared memory resources 1n view of the ALI level.
The ALI level dictates how the MMU may adjust its
arbitration policies for shared memory resources between
flooder and non-tflooder clients while the separate queuing of
translation requests from flooder and non-flooder clients
enables the MMU to allocate access according to the
adjusted arbitration policies.

[0034] Embodiments of the solution may provide for the
MMU to revert back to a default policy for shared memory
resource allocation, such as a “first 1n first out” or FIFO
policy, 1it/when the ALI level reaches or nears zero or some
other predefined low threshold level.

E

US 2018/0253236 Al

[0035] Referring now to the figures, exemplary embodi-
ments and exemplary aspects of the solution are described in
more detail.

[0036] FIG. 1 1s a functional block diagram of an exem-
plary system 102 within a portable computing device
(“PCD”) 100 (See FIG. 8) for dynamic control of shared
memory resources 204 based on limit requests monitored
from one or more unacceptable deadline miss (“UDM”)
clements 203.

[0037] Each UDM element 203, such as UDM engines
203A-203n, may comprise a limit request module (not
illustrated) that produces a limit request signal (depicted
with dashed line arrows) that i1s recerved and monitored by
the limit aggregation module 114. Further details of an
exemplary limit request module that produces limit request

signals will be described 1n further detail below 1n connec-
tion with FIG. 2.

[0038] Other hardware elements such as Non-UDM
engines 202A-n may be part of the PCD 100 and the system
101. The Non-UDM engines 202A-n may not comprise or
include limit request modules. Alternatively, in other exem-
plary embodiments, 1t 1s possible for Non-UDM engines
202A-n to have limit request modules, however, such limait
request modules of Non-UDM hardware engines 202 are
either not coupled to the limit aggregation module 114 or,
alternatively, a switch (not illustrated) has turned these limait
request modules to an “off” position such that the limit
aggregation module 114 does not recerve any limit request
signals from these designated/assigned Non-UDM hardware
engines 202.

[0039] Each of Flooding Traflic Engines 201, UDM Trat-
fic Engines 203 and Non-UDM Trailic Engines 202 may be
coupled to the Memory Management Unit (“MMU™) 204 via
one or more mterconnects. Similarly, the MMU 204 may be
coupled, via an 1interconnect, to one or more memory
controllers (not 1illustrated) coupled to memory 112 (see
FIG. 8). As described above, 1t 1s envisioned that the MMU
may be an aggregated MMU or a distributed MMU, depend-
ing on embodiment. Memory 112 may include, but 1s not
limited to, dynamic random access memory (“DRAM™). An
interconnect, as would be understood by one of ordinary
skill 1n the art, may comprise one or more switch fabrics,
rings, crossbhars, buses etc. Moreover, an interconnect may
have additional elements, which are omitted for simplicity,
such as controllers, bufllers (caches), drivers, repeaters, and
recervers, to enable communications. Further, an intercon-
nect may include address, control, and/or data connections
to enable appropriate communications among its aforemen-
tioned components.

[0040] FEach UDM engine 203 has a limit request sensor
that monitors proximity to failure and produces a limit
request signal to the limit aggregation module 114. The limit
request signal operates as a request by a given UDM engine
203 for the MMU 204 to adjust its resource arbitration
policy to adjust access and/or allocation of MMU resources,
such as hardware table walkers (“HTW”) 215, for one or

more tlooding traflic engines 201.

[0041] Limit request signals may comprise information
indicating levels or degrees at which a UDM engine 203
believes that 1t 1s 1n danger of not meeting a deadline and/or
it 1s 1n danger of a failure. The failure may comprise one or
more error conditions described above in the background
section for hardware devices such as, but not limited to, a
display engine, a camera, and a modem. As such, each limait

Sep. 6, 2018

request signal may be unique relative to a respective hard-
ware element type. In other words, the limit request signal
produced by first UDM core 203 A may be different relative
to the limit request signal produced by second UDM core
203n. For example, the limit request signal produced by the
first UDM core 203 A may have a magnitude or scale of five
units while the limit request signal produced by the second
UDM core 203n may have a magnitude or scale of three
units. The differences are not limited to magnitude or scale:
other differences may exist for each unique UDM hardware
clement as understood by one of ordinary skill 1n the art.
Each limit request signal, however, generally corresponds to
a time-to-failure or probability of failure value.

[0042] The limit aggregation module 114 momitors the
limit request signals (dashed line arrows) that are sent to 1t
from the respective UDM engines 203. Based on the limat
request signals, the limit aggregation module 114 determines
a relative limit request level that 1t signals to the MMU
manager 101 (dashed line arrow from module 114 to module
101). It 1s envisioned that the limit aggregation module 114
may aggregate all incoming limit requests into one or more
aggregated limit indicator (““ALI) signals that are transmiut-
ted to the MMU manager 101, as illustrated in FIG. 1 by the
dashed line signal arrow from the limit aggregation module
114 to the MMU manager 101.

[0043] The MMU manager 101, 1n view of the ALI signals

received from the limit aggregation module 114, dynami-
cally controls assignment of HI'W resources 215 for servic-
ing of translation requests. That 1s, the MMU manager 101
uses the ALI signal(s) to dynamically adjust the maximum
allowable number of HI'W resources 215 that may be
simultaneously allocated to translation requests associated
with flooding traflic engines 201. As such, changes in the
ALI signal(s) may cause the MMU manager 101 to dynami-
cally adjust the maximum allowable number of HTW
resources 215 that may be simultancously allocated to

translation requests associated with flooding traflic engines
201.

[0044] In embodiments of the solution, and as can be
understood from the exemplary FIG. 1 illustration of system
102, traflic emanating from flooding tratlic engines 201 are
scheduled and multiplexed (“muxed”) separately from trai-
fic emanating from non-flooding clients (e.g, UDM engines
203 and Non-UDM engines 202). In this way, embodiments
of the solution ensure that translation requests associated
with flooding traflic engines 201 do not cause head-oi-line-
blocking for translation requests associated with non-flood-
ing engines 202-203. Moreover, although the FIG. 1 1llus-
tration depicts a single physical butler 207 for all translation
traffic from all tflooder engines 201, 1t 1s envisioned that
bufler 207 may be comprised of logical buflers and/or may
comprise multiple buflers for separation of engines 201 or
subgroups of engines 201.

[0045] Referring back to the FIG. 1 illustration, translation
request traflic emanating from flooding trafic engines 201,
Non-UDM engines 202 and UDM engines 203 are directed
over busses to certain mput transaction buflers uniquely
associated with the respective engines 201, 202, 203. Nota-
bly, while Non-UDM engines 202 and UDM engines 203
may be associated with a common mput transaction builer
(and, by extension, a common output transaction bufler),
flooding traflic engines 201 are associated with mput and
output transaction buflers that are dedicated to flooding
tratlic engines 201.

US 2018/0253236 Al

[0046] All address translation requests from the input
butflers are forwarded to translation schedulers and builers
207, 209. For those translation requests associated with
flooding traflic engines 201, the translation requests are
pushed to flooder mput address translation scheduler and
buflers 207. For those translation requests associated with
Non-UDM engines 202 and UDM engines 203, the trans-
lation requests are pushed to non-flooder input address
translation scheduler and bufler(s) 209. For advantageous
reasons described above, scheduler and bufler(s) 207 asso-
ciated with flooder translation requests are physically and/or
logically separate from scheduler and bufler(s) 209 associ-
ated with non-flooder translation requests.

[0047] The MMU manager 101 may coordinate to satisty
address translation requests from modules 207 and 209 by
querying the shared translation cache and/or assigning the
translation requests to a hardware table walker component
215. The order or priority 1n which the translation requests
are addressed by the MMU manager 101, whether addressed
via query of the shared translation cache 104 or allocation to
an HTW 215, 1s determined in view of the ALI signals
received from the limit aggregation module 114.

[0048] A response to a translation request satisfied from
the shared translation cache 1s supplied by the MMU man-
ager 101 back to the respective scheduler 207, 209 which, 1n
turn, forwards the response back to the appropriate input
transaction bufler via the output address translation sched-
uler and demux module 213. A response from a HI'W 215
1s forwarded to the MMU manager which then may cache
the result in the shared translation cache 104 and provide 1t
to the appropnate mput transaction bufler via the output
address translation scheduler and demux module 213.

[0049] As described above, allocation of shared memory
resources, such as HITWs 215, are made by the MMU
manager 101 i view of the ALI signal transmitted from the
limit aggregation module 114. Depending on the ALI signal,
the MMU manager 101 may adjust the number of HTWs
215 that are eligible to respond to a translation request
associated with a flooder engine 201. Depending on embodi-
ment, adjusting the number of HI'Ws 215 that are eligible to
respond to a translation request associated with a flooder
engine 201 may comprise terminating an ongoing page walk
so that an otherwise occupied HTW 215 becomes available
and earmarked for translation requests associated with a
non-tlooder engine such as a UDM engine. Further depend-
ing on embodiment, adjusting the number of HI'Ws 215 that
are eligible to respond to a translation request associated
with a flooder engine 201 may comprise deprioritizing,
translation requests associated with a certain one or more
flooder engines 201 that are associated with a certain one or
more UDM engines 203 making limit requests (e.g., a
display may cause throttling to a GPU and DSP but not a
CPU). Also, and as described previously, the number of
HTWs 215 that an MMU manager 101 earmarks for non-
flooder clients versus flooder clients may be a function of the
ALI signal generated by the limit aggregation module 114.
In this way, the ALI may be weighted depending on the
particular UDM engine 203 sending a limit request to the
limit aggregation module 114. Moreover, depending on
embodiment, there may be one or more ALI signals from the
module 114 to the MMU manager 101 per group of tlooder
engines 201. Each ALI signal may have a value assigned to

Sep. 6, 2018

it as a function of the number and intensity of active limait
requests transmitted from the associated UDM cores 203 to

the module 114.

[0050] It 1s further envisioned that the ALI signal from the
limit aggregation module 114 may be used by some embodi-
ments of the solution as a threshold to prevent allocation of
flooder engine 201 translations into the shared cache,
thereby mitigating or preventing flooder clients 201 from
overwriting translations for non-tlooder clients 202, 203 that
may be nearing failure.

[0051] Referring now to FIG. 2, this figure 1s a functional
block diagram of an exemplary limit request sensor for an
unacceptable deadline miss (“UDM?”) trailic engine 203 A,
such as a display core for example. The limit request sensor
operates to detect a UDM traflic engine 203 proximity to
fallure. The limit request sensor may comprise a first-in,
first-out (FIFO) data bufler 302 and a FIFO level danger
mapping table 306. Each FIFO data bufler 302 may com-
prise a set of read and write pointers, storage and control

logic. Storage may be static random access memory
(“SRAM?”), thip-tlops, latches or any other suitable form of
storage.

[0052] According to one exemplary embodiment, each
FIFO data bufler 302 may track data that 1s received by the
UDM trailic engine 203A. For example, suppose that the
UDM ftraflic engine 203A comprises a display engine. The
display engine 203 A or a display controller 128 (see FIG. 8)
would read from DRAM memory 112 display data that
would be stored 1n the FIFO data bufler 302. The display
engine 203A (or display controller 128 of FIG. 8) would
then take the display data from the FIFO dater bufler 302

and send it to a display or touchscreen 132 (see FIG. 8).

[0053] The FIFO data bufler 302 has a fill level 304 which
may be tracked with a danger mapping table 306. As the fill
level 304 for the FIFO data bufler 302 decreases 1n value, the
limit request tracked by the danger mapping table 306 would
increase because if the FIFO data bufler 302 becomes empty
or does not have any data to send to the display or touch-
screen 132, then the error conditions described above as the
“Display Undertlow” or “Display Under run” or “Display
tearing,” may occur. The output of the danger mapping table
306 1s the limit request signal that 1s sent to the limait
agoregation module 114 as described above.

[0054] According to another exemplary embodiment, sup-
pose the UDM ftraflic engine 203A of FIG. 2 comprises a
camera controller. The camera controller (not illustrated)
within the SoC 102 reads data from the camera sensor 148
(See FIG. 8) and stores i1t within the FIFO data butler 302.
The camera controller then outputs the camera data from the
FIFO data bufler 302 to DRAM memory 112. In this
example embodiment, 1f the FIFO data bufler 302 overtlows
from the camera data, then some camera data may be lost
and the error conditions of “Camera overtlow” or “Camera
Image corruption,” may occur. So according to this exem-
plary embodiment, as the FIFO {ill level 304 increases, then
the limit request output signal also increases. This limit
request of the camera sensor 148 1s opposite to the limit
request display embodiment described previously.

[0055] According to another exemplary embodiment, sup-
pose the UDM ftraflic engine 203A of FIG. 2 comprises a

modem or analog signal processor 126 (see FIG. 8) or a
graphical processing unit (“GPU”) 182 (see F1G. 8). Accord-
ing to such embodiments, the UDM traflic engine 203 A may
monitor the round-trip latency of all 1ts transactions which

US 2018/0253236 Al

are sent to the DRAM memory 112. The UDM traflic engine
203A may calculate an average and/or peak round-trip
DRAM latency over a fixed or a sliding time window. A limait
request signal output may be generated 1n proportion to the
average and/or peak latency observed by the UDM traflic
engine 203A: for low latency transactions the limit request
may be characterized as “low,” while for transactions in

which latency increases, the limit request may be charac-
terized as “high.”

[0056] According to other exemplary embodiments, the
UDM traflic engine 203A of FIG. 2 and 1ts respective limit
request sensor may comprise a software-based deadline
projection module (not i1llustrated 1n FIG. 2). The software
may be executed by a CPU 110 or a digital signal processor.
Alternatively, the UDM trathic engine 203 A may comprise
firmware running on a programmable computing engine that
continuously tracks the completion of tasks as well as
fraction of tasks already completed and elapsed time since
cach task was commenced by UDM tratlic engine 203A. The
soltware and/or firmware of the UDM trailic engine 203A
may estimate the completion time for task and compares that
completion time to a target or maximum deadline to com-
plete one or more tasks as specified by a user and/or an
application program.

[0057] According to this firmware/soltware exemplary
embodiment for the UDM traflic engine 203A, the limait
request signal output 1s determined and generated based on
a look-up-table or a formula that uses one or more variables
as mput. Those one or more variables may include, but are
not lmited to, elapsed time, fraction of completed task,
maximum deadline completion time, and/or concurrent total
load on the computing engine.

[0058] According to another exemplary embodiment, the
UDM traflic engine 203 A may comprise a hardware element
that has a deadline projection mechanism. For example, such
a UDM tratlic engine 203A may comprise a video encoder
134 (see FI1G. 8) or a video codec. The video encoder 134 or
video codec may comprise a fixed function computing
engine that may continuously check {fractions of tasks
already completed as well as elapsed times since individual
tasks have started. Such dedicated hardware may estimate
completion time for each task 1in compared to a maximum
deadline completion time that may be specified by a user
and/or an application program. A video codec may comprise
hardware that logs a percentage of video frames that are
encoded or decoded any given time.

[0059] The limit request signal output for such a video
oriented UDM traflic engine 203A would be determined and
generated based on a table or formula that may use, but 1s not
limited to using, one or more of the following variables as
iput: elapsed time, fraction of completed task, maximum
deadline for completion time, and the concurrent load on the
fixed function engine.

[0060] FIG. 3 1s a logical flowchart illustrating in more
detail the exemplary method 300 for FIFO-level based
tallure proximity detection described relative to the FIG. 2
limit request sensor. A limit request sensor configured for
FIFO-level based failure proximity detection may be com-
prised within a UDM ftraflic engine 203 A such as, but not
limited to, a display engine or a camera engine.

[0061] Beginming with block 305, a latency FIFO bufler

level may be monitored. At block 310, the monitored level
in the FIFO bufler may be compared to a predefined prox-
imity to failure threshold. If the UDM ftraflic engine com-

Sep. 6, 2018

prising the limit request sensor 1s a display engine, for
example, the predefined proximity to failure threshold may
be a low threshold that, 1f reached, indicates that the FIFO
bufler 1s nearing empty (thereby risking that there will be no
data available for rendering on the display panel). As such,
for a UDM trailic engine 203A in the form of a display
engine, the proximity to failure level monitored by the
sensor at block 305 increases as the FIFO fill level
decreases. By contrast, if the UDM tratlic engine comprising
the limit request sensor 1s a camera engine, for example, the
predefined proximity to failure threshold may be a high
threshold that, if reached, indicates that the FIFO buller 1s
nearing full (thereby risking that camera data may be lost
betfore being written to the DRAM 112). As such, for a UDM
traflic engine 203A 1n the form of a camera engine, the
proximity to failure level monitored by the sensor at block
303 increases as the FIFO fill level increases.

[0062] Returning to the method 300, at decision block 315
the method determines whether there has been a violation of
the predefined proximity to failure threshold. If not, then the
“NO” branch 1s followed to block 317 and the output limait
request to the MMU 1s removed before the method 300 loops
back to block 305 and the limit request sensor associated
with the UDM engine 203 A continues to monitor the FIFO
level. I the predefined proximity to failure threshold has
been violated, then the “YES” branch is followed to block

320 and a limit request for flooders 1s output to the limat
aggregation module 114 of the MMU 204.

[0063] FIG. 4 1s a logical flowchart illustrating 1n more
detail the exemplary method 400 for latency based failure
proximity detection described relative to the FIG. 2 limit
request sensor. A limit request sensor configured for latency
based failure proximity detection may be comprised within
a UDM traflic engine 203A such as, but not limited to, a
modem or a graphical processing unit (“GPU”).

[0064] Beginning with block 405, a latency calculation
may be monitored. The average and/or peak round trip
latency of transactions emanating from the UDM traflic
engine 203 A over a predefined time window may be moni-
tored. At blocks 410 and 415, the average and/or peak
latency may be calculated and compared to a predefined
proximity to failure threshold. The predefined proximity to
failure threshold may be set relatively high, as a low average
and/or peak latency calculation would indicate a low or
non-existent risk of failure. By contrast, the higher the
average and/or peak latency calculation, the higher the risk
of failure by the UDM engine 203A to meet 1ts QoS
demands.

[0065] Returning to the method 400, at decision block 420
the method determines whether there has been a violation of
the predefined proximity to failure threshold. If not, then the
“NO” branch 1s followed to block 417 and the output limait
request to the MMU 1s removed before the method 400 loops
back to block 405 and the limit request sensor associated
with the UDM engine 203 A continues to monitor the round
trip latencies of requests. If the predefined proximity to
failure threshold has been violated, then the “YES” branch
1s followed to block 425 and a limit request for flooders 1s
output to the limit aggregation module 114 of the MMU 204.

[0066] FIG. 5 1s a logical flowchart illustrating in more
detail the exemplary method 3500 for software deadline
based failure proximity detection described relative to the
FIG. 2 limit request sensor. A limit request sensor configured
for software deadline based failure proximity detection may

US 2018/0253236 Al

be comprised within a UDM traflic engine 203 A such as, but
not limited to, a central processing unit (“CPU”) or a digital
signal processor (“DSP”).

[0067] Beginning with block 505, a workload completion
percentage rate may be monitored. At blocks 510 and 515,
the time for completion of the remainder of the workload not
yet processed may be estimated and compared to a pre-
defined proximity to failure threshold. The predefined prox-
imity to failure threshold may be set according to a target or
maximum deadline to complete a workload. Therefore, the
higher the workload completion percentage rate calculation,
the more likely that the remainder of the workload will be
completed before the deadline and, as such, the lower the
risk of failure by the UDM engine 203 A to meet its QoS

demands.

[0068] Returning to the method 500, at decision block 520
the method determines whether there has been a violation of
the predefined proximity to failure threshold. If not, then the
“NO” branch 1s followed to block 517 and the output limat
request to the MMU 1s removed before the method 500 loops
back to block 505 and the limit request sensor associated
with the UDM engine 203 A continues to monitor the frac-
tion of completion for the workload relative to an elapsed
amount of time since the UDM engine 203 A began process-
ing the workload. If the predefined proximity to failure
threshold has been violated, then the “YES” branch 1is
followed to block 525 and a limit request for flooders 1s
output to the limit aggregation module 114 of the MMU 204.
It 1s envisioned that, depending on the percentage of work-
load that has been processed over a given period of time, the
magnitude of the limit request sent to the limit aggregation
module 114 may vary.

[0069] FIG. 6 1s a logical flowchart illustrating in more
detail the exemplary method 600 for hardware deadline
based failure proximity detection described relative to the
FIG. 2 limit request sensor. A limit request sensor configured
for hardware deadline based failure proximity detection may
be comprised within a UDM traflic engine 203 A such as, but
not limited to, a video codec, an 1image signal processor, or
a “fixed function” engine.

[0070] Beginming with block 605, an estimated workload
completion time may be monitored via dedicated hardware,
the arrangement of which would be understood by one of
ordinary skill i the art. For example, 11 the UDM ftraflic
engine 203 A was 1n the form of a video codec, the dedicated
hardware may be comprised within the video codec and
configured to log the percentage of a frame that has been
encoded or decoded at a given point in time. At blocks 610
and 615, the time for completion of the remainder of the
workload not yet processed may be estimated and compared
to a predefined proximity to failure threshold. The proximity
to failure level may be defined, determined and signaled
based on a table or formula that considers variables such as,
but not limited to, elapsed time, fraction of task completed,
maximum deadline for full completion of task, and concur-
rent workload on the fixed function UDM engine 203A.

[0071] Returning to the method 600, at decision block 620
the method determines whether there has been a violation of
the predefined proximity to failure threshold. If not, then the
“NO” branch 1s followed to block 617 and the output limait
request to the MMU 1s removed before the method 600 loops
back to block 605 and the limit request sensor associated
with the UDM engine 203 A continues to monitor the frac-
tion of completion for the workload relative to an elapsed

Sep. 6, 2018

amount of time since the UDM engine 203 A began process-
ing the workload. If the predefined proximity to failure
threshold has been wviolated, then the “YES” branch 1is

followed to block 625 and a limit request for flooders is
output to the limit aggregation module 114 of the MMU 204.
It 1s envisioned that, depending on the percentage of work-
load that has been processed over a given period of time, the
magnitude of the limit request sent to the limit aggregation
module 114 may vary.

[0072] FIG. 7 1s a logical tflowchart illustrating an exem-
plary method 700 for dynamic control of shared memory
resources. Beginning at block 703, each trailic engine with
access to the shared memory resource may be defined or
classified as either a flooding engine or a non-flooding
engine. UDM engines 203 may be classified as non-flooding
engines at block 710. Next, at block 713, translation requests
emanating from flooding engines may be separately queued
from translation requests emanating from non-flooding
engines. The method 700 then proceeds to block 720.

[0073] At block 720, for each cache miss from flooding
engines 201 and non-tflooding engines 202, 203 the method
700 may assign a shared memory resource, such as a
hardware table walker (“HTW?), to respond to the transla-
tion request. At block 720, the method 700 may be allocating
the shared memory resources according to a default alloca-
tion policy without regard for the classification of the engine
from which a given translation request emanated. The
method 700 continues to decision block 725 to determine 1
a UDM engine(s) 203 has 1ssued a limit request for the
MMU 204 to limit access for tlooder engines 201 to memory
resources.

[0074] If no UDM engine 203 limit requests have been
received, the “NO” branch may be followed from decision
block 725 and the method 700 may continue to allocate
shared memory resources according to a default allocation
policy. If, however, one or more limit requests have been
received by the MMU 204, the “YES” branch may be
followed from decision block 725 to process block 730. At
process block 730, the method 700 may modily the trans-
lation request arbitration policy according to one or more
factors previously described such that one or more shared
memory resources, such as HI'Ws, are freed up for servicing
UDM engine 203 translation requests. The method contin-
ues to decision block 733 and, 1f the UDM engine 203 limit
requests are cleared (I.e., no UDM engine 203 1s in danger
of failure), the method loops back to block 720 where the
default arbitration policy 1s resumed. Otherwise the method
700 follows the “NO” branch from decision block 735 back
to process block 730 where arbitration of shared memory
resources 1s dynamically adjusted to ensure that translation
requests emanating from UDM engines 203 are timely
serviced.

[0075] Referring now to FIG. 8, this figure 1s a functional
block diagram of an exemplary, non-limiting aspect of a
PCD 100 1n the form of a wireless telephone for implement-
ing methods and systems for dynamic control of shared
memory resources. As shown, the PCD 100 includes an
on-chip system 102 that includes a multi-core central pro-
cessing unit (“CPU”) 110 and an analog signal processor
126 that are coupled together. The CPU 110 may comprise
a zeroth core 222, a first core 224, and an Nth core 230 as
understood by one of ordinary skill in the art. Further,

US 2018/0253236 Al

instead of a CPU 110, a digital signal processor (“DSP”)
may also be employed as understood by one of ordinary
skill.

[0076] In general, memory management unit 204 may be
formed from hardware and/or firmware and may be respon-
sible for dynamically controlling allocation of shared
memory resources among and between flooding engines and
non-tlooding engines. As illustrated in FIG. 8, a display
controller 128 and a touch screen controller 130 are coupled
to the digital signal processor 110. A touch screen display
132 external to the on-chip system 102 i1s coupled to the
display controller 128 and the touch screen controller 130.
PCD 100 may further include a video encoder 134, e.g., a
phase-alternating line (“PAL”) encoder, a sequential couleur
avec memoire (“SECAM™) encoder, a national television
system(s) committee (“NTSC”) encoder or any other type of
video encoder 134. The video encoder 134 1s coupled to the
multi-core CPU 110. A video amplifier 136 1s coupled to the
video encoder 134 and the touch screen display 132. A video
port 138 1s coupled to the video amplifier 136. As depicted
in FIG. 8, a umiversal serial bus (“USB”) controller 140 1s
coupled to the CPU 110. Also, a USB port 142 1s coupled to
the USB controller 140.

[0077] A memory 112, which may include a PoP memory,
a cache, a mask ROM/Boot ROM, a boot OTP memory, a
type DDR of DRAM memory may also be coupled to the
CPU 110. A subscriber identity module (“SIM”) card 146
may also be coupled to the CPU 110. Further, as shown in
FIG. 8, a digital camera 148 may be coupled to the CPU 110.
In an exemplary aspect, the digital camera 148 1s a charge-
coupled device (“CCD”) camera or a complementary metal-
oxide semiconductor (“CMOS”) camera.

[0078] As further illustrated in FIG. 8, a stereo audio

CODEC 150 may be coupled to the analog signal processor
126. Moreover, an audio amplifier 152 may be coupled to
the stereo audio CODEC 150. In an exemplary aspect, a first
stereo speaker 154 and a second stereo speaker 156 are
coupled to the audio amplifier 152. FIG. 8 shows that a
microphone amplifier 158 may be also coupled to the stereo
audio CODEC 150. Additionally, a microphone 160 may be
coupled to the microphone amplifier 158. In a particular
aspect, a frequency modulation (“FM”) radio tuner 162 may
be coupled to the stereo audio CODEC 150. Also, an FM
antenna 164 1s coupled to the FM radio tuner 162. Further,
stereo headphones 166 may be coupled to the stereo audio

CODEC 150.

[0079] FIG. 8 further indicates that a radio frequency
(“RE”) transceiver 168 may be coupled to the analog signal
processor 126. An RF switch 170 may be coupled to the RF
transceiver 168 and an RF antenna 172. As shown 1n FIG. 8,
a keypad 174 may be coupled to the analog signal processor
126. Also, a mono headset with a microphone 176 may be
coupled to the analog signal processor 126. Further, a
vibrator device 178 may be coupled to the analog signal
processor 126. FIG. 8 also shows that a power supply 188,
for example a battery, 1s coupled to the on-chip system 102
through a power management integrated circuit (“PMIC™)
180. In a particular aspect, the power supply 188 includes a
rechargeable DC battery or a DC power supply that 1s
derived from an alternating current (“AC”) to DC trans-
former that 1s connected to an AC power source.

[0080] The CPU 110 may also be coupled to one or more
internal, on-chip thermal sensors 157A as well as one or
more external, off-chip thermal sensors 157B. The on-chip

Sep. 6, 2018

thermal sensors 157A may comprise one or more propor-
tional to absolute temperature (“PTAT”) temperature sensors
that are based on vertical PNP structure and are usually
dedicated to complementary metal oxide semiconductor
(“CMOS”) very large-scale integration (“VLSI”) circuits.
The off-chip thermal sensors 157B may comprise one or
more thermistors. The thermal sensors 157 may produce a
voltage drop that 1s converted to digital signals with an
analog-to-digital converter (“ADC”) controller (not shown).
However, other types of thermal sensors 157 may be
employed.

[0081] The touch screen display 132, the video port 138,
the USB port 142, the camera 148, the first stereo speaker
154, the second stereo speaker 156, the microphone 160, the
FM antenna 164, the stereo headphones 166, the RF switch
170, the RF antenna 172, the keypad 174, the mono headset
176, the vibrator 178, thermal sensors 1578, the PMIC 180
and the power supply 188 are external to the on-chip system
102. It will be understood, however, that one or more of
these devices depicted as external to the on-chip system 102
in the exemplary embodiment of a PCD 100 1n FIG. 14 may
reside on chip 102 1n other exemplary embodiments.

[0082] In a particular aspect, one or more of the method
steps described herein may be implemented by executable
instructions and parameters stored in the memory 112 or as
form the MMU 204. Further, the MMU 204, the memory
112, the instructions stored therein, or a combination thereof
may serve as a means for performing one or more of the
method steps described herein.

[0083] FIG. 91s a schematic diagram 1llustrating an exem-
plary software architecture of the PCD of FIG. 8 for execut-
ing methodologies for dynamic control of shared memory
resources. As illustrated 1n FIG. 9, the CPU or digital signal
processor 110 1s coupled to the memory 112 via MMU 204
and main bus 211. The CPU 110, as noted above, 1s a
multiple-core processor having N core processors. That 1s,
the CPU 110 includes a first core 222, a second core 224, and
an N core 230. As is known to one of ordinary skill in the
art, each of the first core 222, the second core 224 and the
N7 core 230 are available for supporting a dedicated appli-
cation or program. Alternatively, one or more applications or
programs may be distributed for processing across two or
more of the available cores.

[0084] The CPU 110 may receive commands from the
MMU 204 that may comprise software and/or hardware. If
embodied as software, the MMU 204 comprises instructions
that are executed by the CPU 110 that 1ssues commands to
other application programs being executed by the CPU 110
and other processors.

[0085] The first core 222, the second core 224 through to
the Nth core 230 of the CPU 110 may be integrated on a
single integrated circuit die, or they may be integrated or
coupled on separate dies i a multiple-circuit package.
Designers may couple the first core 222, the second core 224
through to the N? core 230 via one or more shared caches
and they may implement message or instruction passing via
network topologies such as bus, ring, mesh and crossbar
topologies.

[0086] Bus 211 may include multiple communication
paths via one or more wired or wireless connections, as 1s
known 1n the art and described above 1n the definitions. The
bus 211 may have additional elements, which are omitted for
simplicity, such as controllers, buflers (caches), drivers,
repeaters, and recervers, to enable communications. Further,

US 2018/0253236 Al

the bus 211 may include address, control, and/or data
connections to enable appropriate commumnications among
the aforementioned components.

[0087] When the logic used by the PCD 100 1s imple-

mented 1n software, as 1s shown 1n FIG. 9, 1t should be noted
that one or more of startup logic 250, management logic 260,
MMU interface logic 270, applications 1n application store
280 and portions of the file system 290 may be stored on any
computer-readable medium for use by, or 1n connection
with, any computer-related system or method.

[0088] In the context of this document, a computer-read-
able medium 1s an electronic, magnetic, optical, or other
physical device or means that may contain or store a
computer program and data for use by or in connection with
a computer-related system or method. The various logic
clements and data stores may be embodied 1n any computer-
readable medium for use by or in connection with an
instruction execution system, apparatus, or device, such as a
computer-based system, processor-containing system, or
other system that can fetch the instructions from the mstruc-
tion execution system, apparatus, or device and execute the
instructions. In the context of this document, a “computer-
readable medium” can be any means that can store, com-
municate, propagate, or transport the program for use by or
in connection with the instruction execution system, appa-
ratus, or device.

[0089] The computer-readable medmum can be, {for
example but not limited to, an electronic, magnetic, optical,
clectromagnetic, mfrared, or semiconductor system, appa-
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium would include the following: an electrical connec-
tion (electronic) having one or more wires, a portable
computer diskette (magnetic), a random-access memory
(RAM) (electronic), a read-only memory (ROM) (elec-
tronic), an erasable programmable read-only memory
(EPROM, EEPROM, or Flash memory) (electronic), an
optical fiber (optical), and a portable compact disc read-only
memory (CDROM) (optical). Note that the computer-read-
able medium could even be paper or another suitable
medium upon which the program 1s printed, as the program
can be eclectronically captured, for instance via optical
scanning ol the paper or other medium, then compiled,
interpreted or otherwise processed in a suitable manner if
necessary, and then stored 1n a computer memory.

[0090] In an alternative embodiment, where one or more
of the startup logic 250, management logic 260 and perhaps
the MMU 1nterface logic 270 are implemented in hardware,
the various logic may be implemented with any or a com-
bination of the following technologles which are each well
known 1n the art: a discrete logic circuit(s) having logic gates
for implementing logic functions upon data signals, an
application specific integrated circuit (ASIC) having appro-
priate combinational logic gates, a programmable gate array
(s) (PGA), a field programmable gate array (FPGA), etc.

[0091] The memory 112 1s a non-volatile data storage
device such as a flash memory or a solid-state memory
device. Although depicted as a single device, the memory
112 may be a distributed memory device with separate data
stores coupled to the digital signal processor 110 (or addi-
tional processor cores).

[0092] The startup logic 250 includes one or more execut-
able instructions for selectively identifying, loading, and
executing a select program for dynamic control of shared

Sep. 6, 2018

memory resources. The startup logic 250 may 1dentify, load
and execute a select program. An exemplary select program
may be found in the program store 296 of the embedded file
system 290. The exemplary select program, when executed
by one or more of the core processors in the CPU 110 may
operate 1n accordance with one or more signals provided by
the MMU 204 to implement methodologies for dynamic
control of shared memory resources.

[0093] The management logic 260 includes one or more
executable 1nstructions for terminating a program on one or
more of the respective processor cores, as well as selectively
identifying, loading, and executing a more suitable replace-
ment program. The management logic 260 is arranged to
perform these functions at run time or while the PCD 100 1s
powered and 1n use by an operator of the device. A replace-
ment program may be found 1n the program store 296 of the

embedded file system 290.

[0094] The interface logic 270 includes one or more
executable instructions for presenting, managing and inter-
acting with external inputs to observe, configure, or other-
wise update information stored in the embedded file system
290. In one embodiment, the interface logic 270 may operate
in conjunction with manufacturer inputs recerved via the
USB port 142. These inputs may include one or more
programs to be deleted from or added to the program store
296. Alternatively, the inputs may include edits or changes
to one or more of the programs in the program store 296.
Moreover, the inputs may identify one or more changes to,
or entire replacements of one or both of the startup logic 250
and the management logic 260. By way of example, the
inputs may include a change to a given proximity to failure
threshold for a certain type of engine designated as a UDM
engine.

[0095] The interface logic 270 enables a manufacturer to
controllably configure and adjust an end user’s experience
under defined operating conditions on the PCD 100. When
the memory 112 1s a flash memory, one or more of the
startup logic 250, the management logic 260, the interface
logic 270, the application programs 1n the application store
280 or information 1n the embedded file system 290 may be
edited, replaced, or otherwise modified. In some embodi-
ments, the mterface logic 270 may permit an end user or
operator of the PCD 100 to search, locate, modily or replace
the startup logic 250, the management logic 260, applica-
tions in the application store 280 and information in the
embedded file system 290. The operator may use the result-
ing interface to make changes that will be implemented upon
the next startup of the PCD 100. Alternatively, the operator
may use the resulting interface to make changes that are
implemented during run time.

[0096] The embedded file system 290 includes a hierar-
chically arranged memory management store 292. In this
regard, the file system 290 may include a reserved section of
its total file system capacity for the storage of information
for the configuration and management of the wvarious

memory management and resource arbitration algorithms
used by the PCD 100.

[0097] Certain steps in the processes or process tlows
described 1n this specification naturally precede others for
the invention to function as described. However, the inven-
tion 1s not limited to the order of the steps described if such
order or sequence does not alter the functionality of the
invention. That 1s, 1t 1s recognized that some steps may
performed belore, after, or parallel (substantially simultane-

US 2018/0253236 Al

ously with) other steps without departing from the scope and
spirit of the mnvention. In some instances, certain steps may
be omitted or not performed without departing from the
invention. Further, words such as “thereafter”, “then”,
“next”, “subsequently”, etc. are not intended to limit the
order of the steps. These words are simply used to guide the
reader through the description of the exemplary method.

[0098] The various operations and/or methods described
above may be performed by various hardware and/or sofit-
ware component(s) and/or module(s), and such component
(s) and/or module(s) may provide the means to perform such
operations and/or methods. Generally, where there are meth-
ods illustrated in Figures having corresponding counterpart
means-plus-function Figures, the operation blocks corre-
spond to means-plus-function blocks with similar number-
ing. For example, blocks 805 through 845 illustrated in FIG.
8 correspond to means-plus-functions that may be recited 1n
the claims.

[0099] Additionally, one of ordinary skill 1n programming
1s able to write computer code or identily appropriate
hardware and/or circuits to implement the disclosed inven-
tion without difliculty based on the flow charts and associ-
ated description 1n this specification, for example. There-
fore, disclosure of a particular set of program code
instructions or detailed hardware devices 1s not considered
necessary for an adequate understanding of how to make and
use the mmvention. The inventive functionality of the claimed
computer implemented processes 1s explained 1n more detail
in the above description and 1n conjunction with the draw-
ings, which may 1illustrate various process tlows.

[0100] In one or more exemplary aspects, the functions
described may be implemented 1n hardware, software, firm-
ware, or any combination thereof. If implemented 1n soft-
ware, the functions may be stored on or transmitted as one
or more 1nstructions or code on a computer-readable
medium. Computer-readable media iclude both computer
storage media and communication media including any
medium that facilitates transfer of a computer program from
one place to another. A storage media may be any available
media that may be accessed by a computer. By way of
example, and not limitation, such computer-readable media
may comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to
carry or store desired program code in the form of instruc-
tions or data structures and that may be accessed by a
computer.

[0101] Also, any connection 1s properly termed a com-
puter-readable medium. For example, if the soiftware 1s
transmitted from a website, server, or other remote source
using a coaxial cable, fiber optic cable, twisted pair, digital
subscriber line (“DSL”), or wireless technologies such as
infrared, radio, and microwave, then the coaxial cable, fiber

optic cable, twisted pair, DSL, or wireless technologies such
as infrared, radio, and microwave are included 1n the defi-

nition of medium.

[0102] Disk and disc, as used herein, includes compact
disc (*CD”), laser disc, optical disc, digital versatile disc
(“DVD?”), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also
be mncluded within the scope of computer-readable media.

[0103] The methods or systems, or portions of the system
and methods, may be implemented 1n hardware or software.

Sep. 6, 2018

If implemented in hardware, the devices can include any, or
a combination of, the following technologies, which are all
well known 1n the art: discrete electronic components, an
integrated circuit, an application-specific integrated circuit
having appropriately configured semiconductor devices and
resistive elements, etc. Any of these hardware devices,
whether acting or alone, with other devices, or other com-
ponents such as a memory may also form or comprise
components or means for performing various operations or
steps of the disclosed methods.

[0104] The software and data used in representing various
clements can be stored in a memory and executed by a
suitable instruction execution system (microprocessor). The
soltware may comprise an ordered listing of executable
instructions for implementing logical functions, and can be
embodied 1n any “processor-readable medium™ for use by or
in connection with an instruction execution system, appa-
ratus, or device, such as a single or multiple-core processor
or processor-containing system. Such systems will generally
access the instructions from the instruction execution sys-
tem, apparatus, or device and execute the instructions.

[0105] Therefore, although selected aspects have been
1llustrated and described 1n detail, 1t will be understood that
various substitutions and alterations may be made therein
without departing from the spirit and scope of the present
invention, as defined by the following claims.

1. A method for dynamic control of shared memory
resources within a portable computing device, the method
comprising:

e

classitying each of a plurality of traflic engines as either
a flooding engine or a non-flooding engine, wherein a
flooding engine processes workloads that are capable of
generating bursts of high bandwidths within short peri-
ods of times at low priorities 1n Quality of Service
(““Q0oS”) schemes relative to workloads processed by a
non-tlooding engine;

for each non-flooding engine, identifying those having an
unacceptable deadline miss status, wherein missing a
deadline for servicing a translation request emanating
from a non-flooding engine having an unacceptable
deadline miss status detrimentally impacts QoS and
produces user-noticeable degradation in device perfor-
mance;

queuing translation requests from flooding engines 1n a
flooding engine queue and translation requests from
non-tflooding engines in a non-tlooding engine queue,
wherein the flooding engine queue and the non-flood-
Ing engine queue are separate;

processing translation requests from flooding engines and
translation requests from non-flooding engines accord-
ing to a default memory resource arbitration policy;

recerving one or more limit requests from one or more of
the non-tlooding engines having an unacceptable dead-
line status; and

based on the one or more limit requests, modifying the
default arbitration policy for memory address transla-
tion resource such that there 1s an increase 1n allocation
of memory address translation resources to translation
requests 1 the non-flooding engine queue.

2. The method of claim 1, wherein the flooding engine
queue and the non-flooding engine queue are physically
separate.

US 2018/0253236 Al

3. The method of claim 1, wherein the flooding engine
queue and the non-flooding engine queue are logically
separate.

4. The method of claim 1, wherein the one or more limit
requests are associated with a FIFO bufler level.

5. The method of claim 1, wherein the one or more limait
requests are associated with an average round trip latency
for servicing a translation request.

6. The method of claim 1, wherein the one or more limait
requests are associated with a workload completion percent-
age rate.

7. The method of claim 1, wherein a non-flooding engine
having an unacceptable deadline miss status comprises at
least one of a processing core, a display engine, a camera
controller, a graphical processing unit, a modem, and sofit-
ware or firmware running on a programmable computing,
engine.

8. The method of claim 1, wherein the portable computing
device comprises at least one of a mobile telephone, a
personal digital assistant, a pager, a smartphone, a naviga-
tion device, and a hand-held computer with a wireless
connection or link.

9. A system for dynamic control of shared memory
resources within a portable computing device, the system
comprising:

a memory management unit configured to:

classily each of a plurality of trathic engines as either a
flooding engine or a non-flooding engine, wherein a
flooding engine processes workloads that are capable
ol generating bursts of high bandwidths within short
periods of times at low priorities m Quality of

Service (“QoS”’) schemes relative to workloads pro-
cessed by a non-flooding engine;

for each non-tflooding engine, identity those having an
unacceptable deadline miss status, wherein missing a
deadline for servicing a translation request emanat-
ing from a non-tflooding engine having an unaccept-
able deadline miss status detrimentally impacts QoS;

queue translation requests from flooding engines 1n a
flooding engine queue and translation requests from
non-flooding engines 1 a non-flooding engine
queue, wherein the flooding engine queue and the
non-tlooding engine queue are separate;

process address ftranslation requests from flooding
engines and address translation requests from non-
flooding engines according to a default memory
resource arbitration policy;

receive one or more limit requests from one or more of
the non-tflooding engines having an unacceptable
deadline status: and

based on the one or more limit requests, modily the
default memory address translation resource arbitra-
tion policy such that there 1s an increase 1n allocation
of memory address translation resources to transla-
tion requests 1n the non-flooding engine queue.

10. The system of claim 9, wherein the flooding engine
queue and the non-flooding engine queue are physically
separate.

11. The system of claim 9, wherein the flooding engine

queue and the non-flooding engine queue are logically
separate.

12. The system of claim 9, wherein the one or more limait
requests are associated with a FIFO bufler level.

Sep. 6, 2018

13. The system of claim 9, wherein the one or more limit
requests are associated with an average round trip latency
for servicing a translation request.

14. The system of claim 9, wherein the one or more limit
requests are associated with a workload completion percent-
age rate.

15. The system of claim 9, wherein a non-flooding engine
having an unacceptable deadline miss status comprises at
least one of a processing core, a display engine, a camera
controller, a graphical processing unit, a modem, and sofit-
ware or firmware running on a programmable computing
engine.

16. The system of claim 9, wherein the portable comput-
ing device comprises at least one of a mobile telephone, a
personal digital assistant, a pager, a smartphone, a naviga-
tion device, and a hand-held computer with a wireless
connection or link.

17. A system for dynamic control of shared memory
resources within a portable computing device, the system
comprising;

means for classiiying each of a plurality of traflic engines
as either a flooding engine or a non-flooding engine,
wherein a flooding engine processes workloads that are
capable of generating bursts of high bandwidths within
short periods of times at low priornities 1 Quality of
Service (“QQoS”) schemes relative to workloads pro-
cessed by a non-flooding engine;

for each non-tflooding engine, means for identifying those
having an unacceptable deadline miss status, wherein
missing a deadline for servicing a translation request
emanating from a non-flooding engine having an unac-
ceptable deadline miss status detrimentally impacts
Qo5

means for queuing translation requests from flooding
engines 1 a flooding engine queue and translation
requests from non-tflooding engines in a non-tlooding
engine queue, wherein the flooding engine queue and
the non-flooding engine queue are separate;

means for processing translation requests from flooding
engines and translation requests from non-flooding
engines according to a default memory resource arbi-
tration policy;

means for receiving one or more limit requests from one

or more of the non-flooding engines having an unac-
ceptable deadline status; and

means for, based on the one or more limit requests,
moditying the default memory address translation
resource arbitration policy such that there 1s an increase
in allocation of memory address translation resources
to translation requests 1 the non-flooding engine
queue.

18. The system of claim 17, wherein the flooding engine

queue and the non-flooding engine queue are physically
separate.

19. The system of claim 17, wherein the flooding engine

queue and the non-flooding engine queue are logically
separate.

20. The system of claim 17, wherein the one or more limit
requests are associated with a FIFO butler level.

21. The system of claim 17, wherein the one or more limit
requests are associated with an average round trip latency
for servicing a translation request.

US 2018/0253236 Al

22. The system of claim 17, wherein the one or more limit
requests are associated with a workload completion percent-
age rate.

23. The system of claim 17, wherein a non-flooding
engine having an unacceptable deadline miss status com-
prises at least one of a processing core, a display engine, a
camera controller, a graphical processing unit, a modem, and
software or firmware running on a programmable computing
engine.

24. A computer program product comprising a non-
transitory computer usable medium having a computer read-
able program code embodied therein, said computer read-
able program code adapted to be executed to implement a
method for dynamic control of shared memory resources
within a portable computing device, said method compris-
ng:

classitying each of a plurality of traflic engines as either

a flooding engine or a non-flooding engine, wherein a
flooding engine processes workloads that are capable of
generating bursts of high bandwidths within short peri-
ods of times at low priorities 1n Quality of Service
(““Q0S”) schemes relative to workloads processed by a
non-tlooding engine;

for each non-flooding engine, 1dentifying those having an

unacceptable deadline miss status, wherein missing a
deadline for servicing a translation request emanating
from a non-flooding engine having an unacceptable
deadline miss status detrimentally impacts QoS;

queuing translation requests from flooding engines 1n a

flooding engine queue and translation requests from
non-tflooding engines 1n a non-flooding engine queue,
wherein the flooding engine queue and the non-flood-
Ing engine queue are separate;

Sep. 6, 2018

processing translation requests from flooding engines and
translation requests from non-flooding engines accord-

ing to a default memory resource arbitration policy;
recerving one or more limit requests from one or more of

the non-flooding engines having an unacceptable dead-
line status; and

based on the one or more limit requests, moditying the

default memory address translation resource arbitration
policy such that there 1s an increase in allocation of
memory address translation resources to translation
requests 1 the non-flooding engine queue.

25. The computer program product of claim 24, wherein
the flooding engine queue and the non-flooding engine
queue are physically separate.

26. The computer program product of claim 24, wherein
the flooding engine queue and the non-flooding engine
queue are logically separate.

277. The computer program product of claim 24, wherein
the one or more limit requests are associated with a FIFO
buffer level.

28. The computer program product of claim 24, wherein
the one or more limit requests are associated with an average
round trip latency for servicing a translation request.

29. The computer program product of claim 24, wherein
the one or more limit requests are associated with a work-
load completion percentage rate.

30. The computer program product of claim 24, wherein
a non-tlooding engine having an unacceptable deadline miss
status comprises at least one of a processing core, a display
engine, a camera controller, a graphical processing unit, a
modem, and software or firmware running on a program-
mable computing engine.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

