19) United States

12) Patent Application Publication
Kanteti

US 20180039650A9
(10) Pub. No.: US 2018/0039650 A9
48) Pub. Date: Feb. 8, 2018

CORRECTED PUBLICATION

(54)

(71)

(72)

(21)
(22)

(15)

(65)

(60)

(1)

KEY VALUE FILE SYSTEM

Applicant: Samsung Electronics Co., Ltd.,
Suwon-s1 (KR)

Inventor: Kumar Kanteti, Mountain View, CA
(US)

Appl. No.: 15/645,916

Filed: Jul. 10, 2017

Prior Publication Data

Correction of US 2017/0316028 A1 Nov. 2, 2017
See (60) Related U.S. Application Data.

US 2017/0316028 Al Nov. 2, 2017

Related U.S. Application Data

Provisional application No. 62/490,297, filed on Apr.
26, 2017.

Publication Classification

Int. CIL.
GO6F 17/30 (2006.01)
GO6F 9/54 (2006.01)

Application 130

(52) U.S. CL
CPC .. GOG6F 17/30138 (2013.01); GO6F 17/30221
(2013.01); GO6F 17/30135 (2013.01); GO6F
9/544 (2013.01); GO6F 17/30091 (2013.01):
GO6F 17/30106 (2013.01)

(57) ABSTRACT

A file system includes: an application programming inter-
tace (API) configured to provide a file system access to an
application running on a host computer; a key value file
system configured to represent a file or a directory as an
inode including one or more key-value pairs; a virtual file
system configured to direct a file system call received from
the application to the key value file system; and a key value
API configured to provide the file system access to data
stored 1n a data storage device. Each key-value pair con-
tained 1n the mnode includes a name of the file or the directory
as a key and an identifier of a container that 1s associated
with the file or the directory as a value. The data of the file
1s stored 1n the data storage device as being divided 1nto one
or more data blocks of a fixed size, and each of the one or
more data blocks associated with the data of the file 1s
accessible within the key value file system using the one or
more key-value pairs.

POSIX API 111

VES 112

W Key Value File System Stack 110

KV Store 120

Patent Application Publication

Key Value File System Stack 110
W y y

Feb. 8, 2018 Sheet 1 of 7

Application 130

US 2018/0039650 A9

U

POSIX API 11

b Y

= k.
hl <~
=

% o
- =
- &

¥

KVAPI 11

KV Store 120

FIG. 1

Feb. 8, 2018 Sheet 2 of 7 US 2018/0039650 A9

Patent Application Publication

¢ Ol

anjeA

Aoy

anfeA Aoy

an|eA Aoy
anjea ADY
anjep Aoy
40Gc J9UIEIUN]

an(ep

Aoy

anjen

Aoy

aniea

Aoy

- e e

SNIEA

Aoy

anfen

ASY

anjeA Aoy

B0CZ JOUIBJUOD

-

0¢¢

Feb. 8, 2018 Sheet 3 of 7 US 2018/0039650 A9

Patent Application Publication

¢ Ol

R4S, ¢
L CJ L CA(
me Aoyie

A% AL
110 L4
e Aeyine

20 Jaulejuo) 1zig

J0GE \»

|0 JaUtejuo :dig

Q0G¢ \i

00 JaulBjuoQ :0iQ

E0GE \

02t

Patent Application Publication Feb. 8, 2018 Sheet 4 of 7 US 2018/0039650 A9

451

'/
C11
C12
C13

attribute

420

Dirt1
Dir1?2
Dir13

FIG. 4

Patent Application Publication Feb. 8, 2018 Sheet 5 of 7 US 2018/0039650 A9

520

560
Datal

Data1

FIG. 5

Block(
Block

9 Ol

US 2018/0039650 A9

-

S

-

&

g

=

75

i ele(] L EjeP)
&

- L ETePH | 3901 ele(OElepPX
=

W I

= OElEP) 001G 199 Eie(S

Snglijje

o P

\

029

Patent Application Publication

US 2018/0039650 A9

L 9Dl

POCL ®I0I5 A 30CL 31015 MM JOCL 8i0)5 A e(0CL 8i0lG AM

e e

e iy

vl L 1dYAM

e -~ e

Feb. 8, 2018 Sheet 7 of 7

€0D L0914 4 1914
ejeq oji- 200 2040 LD ¥le
100 L0 0D 041Q
SOINCLNY SOINGLIY SeINGLUIY SOINGLNY
(100) 1elq0 (£00) 100l00 (09) 108100 (Aay:1004) 108190
£G/ \. 26/ \. - LG/ \u 06/ \»
1/ S4/M
211 SN
+
112 1dV XI1SOd

Patent Application Publication

US 2018/0039650 A9

KEY VALUE FILE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims the benefits of and priority
to U.S. Provisional Patent Application Ser. No. 62/322,035
filed Apr. 13, 2016, the disclosure of which 1s incorporated
herein by reference 1n 1ts entirety.

TECHNICAL FIELD

[0002] The present disclosure relates generally to a file
system for a data storage system, more particularly, to a file
system utilizing key-value pairs to represent files and direc-
tories.

BACKGROUND

[0003] A file system of a computer system uses a
namespace and manages files and directories of the file
system. The namespace allows applications running on the
computer system to access data by traversing directories to
get to a desired file stored 1n a data storage device.

[0004] The namespace also maintains caches and orga-
nizes data stored on the data storage device to allow appli-
cations to obtain faster access to the data. For example, a
large directory including many files can be spread across
many data blocks on the data storage device. Managing the
data blocks requires multiple levels of metadata. To lookup
an entry (e.g., a file or a directory) 1n the large directory, the
namespace needs to traverse all the metadata of the large
directory. Hence, traversing a large directory involves
execution of multiple mputs/output (I/0) operations to the
data storage device that stores the entry.

[0005] The file system also maintains dirty data. The file
system typically makes several round trips to the data
storage device to allocate data blocks for the dirty data and
the associated metadata 1n the cache. The dirty blocks are
periodically flushed to the data storage device via synchro-
nous threads running on a host computer. The host computer
can employ various algorithms to optimally flush dirty data
from cache to the data storage device. The file system also
manages Iree and used data blocks in conjunction with the
metadata. The performance of the file system depends on the
elliciency of data being written to the data storage device.
The file system can efliciently allocate and free data blocks
on the data storage device to achieve the optimal perfor-
mance.

[0006] The file system can get fragmented as data 1is
written on the data storage device. The fragmented file
system may run in a fragmented mode executing random 1/0O
operations to the data storage device. Some {ile systems may
support data defragmentation and regrouping data in con-
tiguous data blocks to improve the I/O performance. How-
ever, a conventional file system consumes significant host
central processing unit (CPU) cycles to perform data block
management and defragmentation of data stored in a data
storage device.

SUMMARY

[0007] According to one embodiment, a file system
includes: an application programming interface (API) con-
figured to provide a file system access to an application
running on a host computer; a key value file system con-
figured to represent a file or a directory as an inode including

Feb. &, 2018

one or more key-value pairs; a virtual file system configured
to direct a file system call received from the application to
the key value file system; and a key value API configured to
provide the file system access to data stored 1n a data storage
device. Each key-value pair contained in the inode includes
a name of the file or the directory as a key and an identifier
ol a container that 1s associated with the file or the directory
as a value. The data of the file 1s stored 1n the data storage
device as being divided into one or more data blocks of a
fixed size, and each of the one or more data blocks associ-
ated with the data of the file 1s accessible within the key
value file system using the one or more key-value pairs.
[0008] According to another embodiment, a method
includes: storing a {ile or a directory in a data storage device
as an 1mode including one or more key-value pairs 1n a key
value {ile system; receiving a file system access request from
an application running on a host computer; directing the file
system access request to a file system call to the data storage
device; and providing the file system access to data stored 1n
the data storage device. Each key-value pair contained in the
inode includes a name of the file or the directory as a key and
an 1dentifier of a container that 1s associated with the file or
the directory as a value. The data of the file 1s stored in the
data storage device as being divided into one or more data
blocks of a fixed size, and each of the one or more data
blocks associated with the data of the file 1s accessible within
the key value file system using the one or more key-value
pairs.

[0009] The above and other preferred features, including
various novel details of implementation and combination of
events, will now be more particularly described with refer-
ence to the accompanying figures and pointed out in the
claims. It will be understood that the particular systems and
methods described herein are shown by way of 1illustration
only and not as limitations. As will be understood by those
skilled 1n the art, the principles and features described herein
may be employed in various and numerous embodiments
without departing from the scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, which are included
as part of the present specification, illustrate the presently
preferred embodiment and together with the general descrip-
tion given above and the detailed description of the preferred
embodiment given below serve to explain and teach the
principles described herein.

[0011] FIG. 1 shows layers of an example key value file
system, according to one embodiment;

[0012] FIG. 2 shows a block diagram of an example key
value store, according to one embodiment;

[0013] FIG. 3 shows an example key value store for
container directories, according to one embodiment;
[0014] FIG. 4 shows an example key value store including
an inline directory, according to one embodiment;

[0015] FIG. 5 shows an example key value store including
a container file, according to one embodiment;

[0016] FIG. 6 shows an example key value store including
an iline file, according to one embodiment; and

[0017] FIG. 7 illustrates distributed data and a path tra-
versal in an example key-value store, according to one
embodiment.

[0018] The figures are not necessarily drawn to scale and
clements of similar structures or functions are generally
represented by like reference numerals for illustrative pur-

US 2018/0039650 A9

poses throughout the figures. The figures are only 1intended
to facilitate the description of the various embodiments
described herein. The figures do not describe every aspect of
the teachings disclosed herein and do not limait the scope of
the claims.

DETAILED DESCRIPTION

[0019] FEach of the features and teachings disclosed herein
can be utilized separately or in conjunction with other
teatures and teachings to provide a key value file system and
a method of managing files and directories using the key
value file system. Representative examples utilizing many of
these additional features and teachings, both separately and
in combination, are described 1n further detail with reference
to the attached figures. This detailed description 1s merely
intended to teach a person of skill in the art further details
for practicing aspects of the present teachings and 1s not
intended to limit the scope of the claims. Therefore, com-
binations of features disclosed above 1n the detailed descrip-
tion may not be necessary to practice the teachings in the
broadest sense, and are instead taught merely to describe
particularly representative examples of the present teach-
ngs.

[0020] In the description below, for purposes of explana-
tion only, specific nomenclature 1s set forth to provide a
thorough understanding of the present disclosure. However,
it will be apparent to one skilled 1n the art that these specific
details are not required to practice the teachings of the
present disclosure.

[0021] Some portions of the detailed descriptions herein
are presented 1n terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are used by those skilled in the data processing arts to
cllectively convey the substance of their work to others
skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transterred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

[0022] It should be bome 1n mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the below discussion, 1t 1s appreciated
that throughout the description, discussions utilizing terms
such as “processing,” “computing,” “calculating,” *“deter-
mimng,” “displaying,” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories to other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0023] Moreover, the various features of the representa-
tive examples and the dependent claims may be combined in
ways that are not specifically and explicitly enumerated in
order to provide additional useful embodiments of the

e B 4 4

Feb. &, 2018

present teachings. It 1s also expressly noted that all value
ranges or indications of groups of entities disclose every
possible intermediate value or intermediate entity for the
purpose of an original disclosure, as well as for the purpose
of restricting the claimed subject matter. It 1s also expressly
noted that the dimensions and the shapes of the components
shown 1n the figures are designed to help to understand how
the present teachings are practiced, but not intended to limat
the dimensions and the shapes shown in the examples.

[0024] The present disclosure describes a key-value file
system (KVFES) that operates on a data storage device.
Herein, the data storage device on which the KVFS is
operated 1s referred to as a key-value (KV) store, a KV drive,
or a KV solid-stated drive (SSD). The present disclosure
turther describes a method for organizing and managing data
in a KV store using a KV namespace. The data storage space
stores data of a file and a directory in one or more key-value
pairs contained in one or more 1nodes and provides eflicient
management of directories and files of the file system using
the key-value pairs.

[0025] The present KVFS can offload data block manage-
ment from a host CPU to a KV store. The 1/0 operations to
access data stored in the KV store can be reduced in the
present KVFS. The host CPU does not need to allocate and
free data blocks of the KV store. In addition, the KVFS does
not need to explicitly perform defragmentation to improve
the efliciency of data storage 1n the KV store.

[0026] The present KVFS maintains hierarchical data
structures that are persisted on the KV store for organizing
the KV namespace. By using containers in a KV store, the
present KVFES can perform a lookup of a directory or a file
inside the directory 1n a single IO operation. A conventional
file system 1s required to traverse multiple levels of metadata
to get a file resulting in several 1/O operations.

[0027] A conventional system maintains metadata i a
form of indirect blocks to support large files. Supporting
large files involves maintaining a cache for the indirect
blocks. Truncating a file involves traversing all the indirect
blocks to free them resulting 1n several round trips from the
host to the data storage device. The present KVES provides
containers in the KV store and offloads the truncate opera-
tion completely to the KV store. The present KVFS can
perform a truncate operation in a single 1/0O operation.

[0028] FIG. 1 shows layers of an example key value file
system (KVFS), according to one embodiment. The KVFES
stack 110 includes a portable operating system interface for
Unix (POSIX) application programming interface (API)
111, a virtual file system (VFS) 112, a key-value file system
(KVFS) 113, and a key-value API (KAPI) 114. Although the
present example shows that the KVFS stack 110 includes the
PDXIS API 111 1mp1y111g that the underlying operating
system (OS) 1s Unix, 1t 1s understood that operating systems
other than Unix can include the present KVFES 113 without
deviating from the scope of the present disclosure.

[0029] The KVFES 113 can access data stored 1n a KV store
120 using the KVAPI 114 that provides interfaces with the
KV store 120. The KVAPI 114 supports an interface to
generate a unique 1dentifier for each directory and file stored
in the KVFES stack 110. The unique identifier can be used as
an 1node name or an inode number. In one embodiment, the
KVAPI 114 can be implemented as a device driver running
within the KVFES 113 to access data stored on the KV store
120. Depending on the type of KV stores 120, one or more

KVAPI 114 may be provided by the KVFS stack 110.

US 2018/0039650 A9

[0030] The KVFS 113 implements different VFS inter-
faces exposed by an operating system (e.g., Linux) and runs
in a kernel of the operating system (e.g., a Linux kernel). The
KVEFES integrates into an existing file system stack and uses
the KVAPI 114 to access the KV store 120. An application
130 that 1s POSIX-compliant can run over the VFS 112 via
the POSIX API 111. The application 130 can make standard
VES calls to obtain access to the KV store 120 via the
KVAPI 114. The KVFS stack 110 allows the application 130
to use standard VFS calls to access the KV store 120 via the
POSIX API 111, therefore no changes are required to the
application 111terface The VFES calls by the application 130
destined to the KV store 120 can be directed to the KVFES
113 and the KVAPI 114.

[0031] According to one embodiment, the KVFS 113 can
construct and manage inodes to represent files or directories
in the KVFS stack 110. Each file or directory in the KVFES
stack 110 can be represented by a corresponding inode.
According to one embodiment, the KVFS 113 uses a key-
value pair to represent an 1node. In the case of files, the inode
can represent the key itself. A lookup for an inode 1s a lookup
for a key.

[0032] According to one embodiment, attributes of an
inode can also be stored in the key value of the key-value
pair corresponding to the inode. The size of the attributes
may be fixed when an 1node 1s created. Retrieval of an inode
involves retrieval of a key-value pair corresponding to the
inode and reading a key value of the key-value pair. It the
attributes of the inode 1s stored in the key value, the
attributes of the mode can also be read when the key-value
pair 1s retrieved. The storage of the attributes and key value
of an 1node 1n the same key value can improve the perfor-
mance of the KVFS stack 110. Alternatively, attributes of an
inode can be stored 1n a different key value other than the
key value corresponding to the inode. In this case, the
retrieval of the attributes may involve two separate accesses
to the first key-value pair corresponding to the mode 1itself
and the second key-value pair that stores the attributes.

[0033] According to one embodiment, a key-value pair
representing an inode includes a name and an 1node, 1.e.,
(name, mode), in the KVFS stack 110. The name 1s the
file/directory name that a user creates, and the inode 1s the
key that the KVFS stack 110 allocates as described above.
The name of a directory key-value pair can be stored 1n
multiple formats and fields. For the ease of explanation, a
directory entry including a single name entry 1s used 1n the
following examples.

[0034] FIG. 2 shows a block diagram of an example key
value store, according to one embodiment. The KV store 220
can include multiple containers 250a and 2505, and each
container can store data in a plurality of key-value pairs.
Some key-value pairs may be global key-value pairs that do
not belong to any container. Any two containers may have
the same key.

[0035] The KVFS stack 110 uses file system metadata
including a namespace. The namespace 1includes directories
and files. The KVFS stack 110 manages block metadata
including the management of free blocks and offload the
metadata block management to the KV store 120.

[0036] A root directory 1s a special directory in the KVES
stack 110 that 1s a known key. The root directory 1s a starting
point for a path traversal to a file or a directory of the KVFS

stack 110.

Feb. &, 2018

[0037] The KVFS stack 110 can manage a directory either
as a key-value pair or a container including a plurality of
key-value pairs. According to one embodiment, the KVFES
stack 110 supports inline directories and container directo-
ries depending on the number of the entries 1n the directo-
ries.

[0038] FIG. 3 shows an example key value store for
container directories, according to one embodiment. In the
present example, the KV store 320 includes three inodes
350a, 3505, and 350c¢. Each of the inodes 350qa, 3505, and
350c¢ represents a container directory containing more than
one subdirectories. It 1s understood that any number of
container directories may be present i the KV store 320
without deviating from the scope of the present disclosure.
In some embodiment, the KV store 320 can include a mix of
container directories and inline directories as shown in FIG.

4.

[0039] Attributes of a directory, in a container directory,
are stored 1n a special key-value pair. The actual attributes
are stored 1n the value portion of the key-value pair. The
attribute values of the container directory can include vari-
ous parameters pertaining to the container directory such as
a permission, an owner, a group, etc.

[0040] According to one embodiment, the present KVFES
uses a container directory (e.g., container directories 350aq,
3505, and 350c¢) when a directory contains a large number of
entries (e.g., subdirectories and files). The container direc-
tory represented as an iode (e.g., mmode 350aq, 3505, or
350c¢) of the KVFS 1s stored 1n the KV store 320. Files and
subdirectories contained in the container directory can be
stored as key-value pairs. A key-value parr (key, value)
includes a key and the corresponding value. For example,
the key of a key-value pair 1s the name of a file or a directory
(or subdirectory), and the value of the key-value pair 1s an
identifier of a container that i1s associated with the file or the
directory. To access a file mn the KVFS, the KVFS can
execute an I/O operation to look up a container correspond-
ing to the name of a file or a directory that 1s to be accessed.
Depending on the number of entries required to access the
file, the same number of IO operations may be required. For
example, 11 a file 1s stored 1n root/dirl/dirll 1n the KVFS,
three 1/0 operations are required to access the file including
I/O operations for each directory root, dirl, and dirll. The
lookup operation can be offloaded to the KV store 320
irrespective of the number of entries to get to the target file
or directory.

[0041] The KVFS exposes mdividual key-value pairs
stored 1n a container using their names. A key-value pair can
be an entry to another container (e.g., a contaimner of a
subdirectory). The name of the key-value pair 1s used as a
key that can be searched 1n the namespace of the KVES, and
the value of the key-value pair 1s used to store information
about the corresponding key. The value can be an identifier
of an 1node that 1s idenftifiable 1n the namespace of the
KVFS. The directory attributes can be stored as a special
key-value pair 1in the container. Fach container directory
may 1nclude one or more special key-value pairs to store the
attributes of the container.

[0042] Referring to FIG. 3, the mnode 350q represents the
container C0. The container CO0 1s 1dentified as “Dir(0” 1n the
namespace ol the KVFS. The directory Dir0 includes a
plurality of key-value pairs including an attribute key-value
of itsell and two additional key-value pairs for the two
subdirectories Dirl and Dir2 included in the directory Dir0.

US 2018/0039650 A9

The key-value pair for the subdirectory Dirl has a name
“Dir1” as the key and “contaimner C1” as the value. The
container C1 corresponds to another mode 3506 1n the
KVEFS. The key-value pair for the subdirectory Dir2 has a
name “Dir2” as the key and “container C2” as the value. The
container C2 corresponds to another mmode 350c¢ in the

KVES.

[0043] The contamer C1 1s i1dentified as “Dirl” 1n the
namespace of the KVFS. The contamner C1 includes a
plurality of key-value pairs including an attribute key-value
of 1itsell and two additional key-value pairs for the two
subdirectories Dirll and Dirl2. The key-value pair for the
subdirectory Dirll has a name “Dirll” as the key and
“container C11” as the value. The key-value pair for the
subdirectory Dirl2 has a name “Dirl2” as the key and
“container C12” as the value. The containers C11 and C12
correspond to another inodes (not shown) 1 the KVFES.

[0044] The container C2 1s i1dentified as “Dir2” 1n the
namespace of the KVFS. The container C2 includes a
plurality of key-value pairs including an attribute key-value
of itself and two additional key-value pairs for the two
subdirectories Dir21 and Dir22. The key-value pair for the
subdirectory Dir21 has a name “Dir21” as the key and
“container C21” as the value. The key-value pair for the
subdirectory Dir22 has a name “Dir22” as the key and
“container C22” as the value. The containers C21 and C22
correspond to another inodes (not shown) 1n the KVFES.

[0045] FIG. 4 shows an example key value store including
an inline directory, according to one embodiment. In the
present example, the KV store 420 includes a single mode
450. The mode 450 represents an nline directory identified
as “Dir0” in the namespace of the KVFS. It 1s understood
that any number of directory containers may be present in
the KV store 420 without deviating from the scope of the
present disclosure. In some embodiment, the KV store 420
can include a mix of inline directories and container direc-
tories.

[0046] According to one embodiment, the KVFS can use
an 1inline directory when the number of entries 1n a directory
1s small. The mline directory 1s stored 1n a single key-value
pair. The name of the key-value pair 1s a key for the inline
directory Dir0 that can be searched in the namespace of the
KVEFS. The value of the key-value pair can hold data 451
including attributes of the inline directory Dir0 and multiple
key-value pairs. The key-value pairs 1n the data 451 can
include attributes of the inline directory Dir0 and one or
more key-value pairs for each of the subdirectories (e.g.,
Dirll, Dirl2, and Dirl3) included in the mline directory
Dir0. For example, the attributes of the inline directory Dir0
are stored 1n the first 512 bytes of the data 451. The values
of the key-value pairs corresponding to the containers C11,
(C12, and C13 for the subdirectories Dirll, Dirl12, and Dirl3.
The containers C11, C12, and C13 correspond to another
inodes (not shown) in the KVFES.

[0047] The maximum number of the entries that can be
included in the inline directory Dir0 can be fixed when the
inline directory 1s created. The KVES looks up a name of an
inode (e.g., files and directories) by looking up the values of
the key-value pairs to find the mode associated with the
name. The 1node can be a key to a file or a subdirectory in
the inline directory DirQ. The attributes of a file or a
subdirectory can be read to determine the type of the file or
the subdirectory. The lookup for a name inside the inline

Feb. &, 2018

directory Dir0 1s bounded because the maximum number of
entries 1n the nline directory 1s fixed.

[0048] According to one embodiment, an inline directory
can be converted to a container directory when the number
ol entries exceeds a threshold size. Similarly, a container
directory can be converted to an inline container when the
number of entries 1s reduced below the threshold size. For
example, the threshold size 1s 64.

[0049] According to one embodiment, the present KVFES
supports both inline files and container files depending on
the size of a file. A large file can be stored as a container file,
and a small file can be stored as an inline file.

[0050] FIG. S shows an example key value store including
a container file, according to one embodiment. A container
file named “Fi1le00” 1s an mnode of the KVFS. The container
560 can hold all data associated with the container file F1le00
including attributes and one or more data blocks storing the
data. The attributes of the container file File00 1s stored at
the beginning of the container file 560 as a special key. The
data of the container file Fi1le00 may be stored 1n one or more
key-value pairs. Each of the key-value pairs includes a block
number as the key and the associated data as the value. For
example, if the file system block size 1s 4 kB, block0 can
hold data from 0-4 kB, block 1 can hold data ranging from
4 kB-8 kB, etc. As the size of the container filer gets bigger,
more blocks can be added in the container 560. According
to one embodiment, the value of each key-value pair can
point to another key 1n a different container on the same KV
store 520 or a ditl

erent KV store.

[0051] According to one embodiment, the KV store 520
supports updates to key-value pairs of the container file
File00. File truncation of the container file File00 can be
oflloaded completely to the KV store 520. When truncating
the data of the container file File00, the KVFS can delete the
data and the associated blocks within the container. In this
case, there 1s no need to traverse the keys to truncate or
delete the container file File00. When truncating the data of
a container file including data blocks 1n containers 1 mul-
tiple file containers or multiple KV stores, the truncated data
may be deleted by accessing each data blocks containing the
truncated data. The maximum number traversals to delete or
truncate a data block 1s determined by the number of I/O
operations to access the data block.

[0052] FIG. 6 shows an example key value store including
an 1nline file, according to one embodiment. The mline file
FF00 1s stored 1n a file container 660 of the KV store 620.
The file container 660 1s an 1node of the KVFS. Similar to
an inline directory, the inline file FF00 can be stored 1n a
single key-value pair. The key of the key-value pair 1s the
inode name “File00”, and the value of the key-value pair
holds data 661 associated with the inline file. The attributes
of the node are stored at the beginning of the data 661, and
the data of the inline file FF00 1s stored 1in one or more
key-value pairs of a fixed size. Depending on the size of the
file FF00, the data of the file FF00 can be split into multlple
data blocks Each of the key-value pairs contained 1n the
data 661 can include a name of the data block as the key and
the data associated with the data block as the value. For
example, the data of the inline file File00 1s divided into two
data blocks Block0 and Block 1. Block0 1s stored with the
key “kdata0,” and Block1 1s stored with the key “kdatal.”
The size of the data blocks 1n the inline file can be fixed, for
example, 4 kB. In this case, Block0 holds data ranging 0-4
kB and Blockl holds data ranging 4 kB-8 kB.

US 2018/0039650 A9

[0053] According to one embodiment, an inline file
exceeding a predetermined file size (or the number of entries
of a fixed sized data blocks exceeding a threshold), for
example, 1 MB, can be converted to a container file.
Similarly, a container file reduced to a file size smaller than
the predetermined file size can be converted to an inline file.

[0054] FIG. 7 illustrates distributed data and a path tra-

versal 1 an example key-value store, according to one
embodiment. An application 1ssues a file access command to
access File01 stored in the KV store 720a via the POSIX
API 711. The file access command from the application
invokes a generic VFS call in the VFS 712. The VFS 712
directs the VFES call to a KVFS call in the KVFES 713. In the
KVEFES 713, the requested file Fi1le01 1s stored 1n the directory
Root/Dir0.

[0055] The KVFS 713 includes modes 750, 751, 752, and
753. The mode 750 corresponds to the root directory of the
KVEFES that contains three entries including two directories
Dir0 and Dirl and a file Filel. The subdirectory Dir0 of the
root contains three entries including two directories Dir01
and D1r02 and a file File01. The subdirectory Dirl of the root
corresponds to the mode 753 and contains attributes but no
entries. The requested file File01 1s stored in the 1node 751.
According to one embodiment, the mnode 750 1s a container

directory including key-value pairs for the subdirectories
Dir0 and Dirl.

[0056] Lookups inside a directory can be completely
offloaded to the KV store 720. The number of I/O operations
1s bounded and 1s equal to the number of subdirectories 1n a
traversed path. In the present example, two 1/O operations
can get to the requested file File01 including the 1/0O opera-
tion to the mode 750 and another I/O operation to the inode
751. In contrast, path traversal in a conventional file system
can take multiple I/O operations depending on several
tactors, for example, the number entries 1n each subdirectory
in the path and how the metadata 1s managed. The lookup of
entries 1 an inode to find the next inode in the path 1s
offloaded to the KV store 720. The performance of the
KVEFES can be further improved by etlicient arrangement and
management of the keys stored 1n the KV stores.

[0057] The KVFS call corresponding to the application’s
file access command to the File01 enables an access to the
KV store 720qa that stores the actual data of the File01. The
KVAPI 714 provides the file access interface to the KV store
720a.

[0058] According to one embodiment, the present KVES
requires no metadata to manage data blocks. The block
management 1s completely offloaded to the KV store using,
key-value pairs. The KV store can efliciently manage the
data blocks by storing data for a file 1n one or more data
blocks 1n the same container. In some embodiment, the data
blocks of a file can be stored in more than one containers or
more than one KV stores. For example, a replicated data
may be stored in a KV store that 1s geographically separated
from the KV store that stores the original data. In this case,
an mode of the KVFS can have a key-value tuple, for
example, (KV store 1d, key, container 1d). This allows the
KVES to span multiple KV stores as identified by the KV
Store 1d.

[0059] According to one embodiment, a file system
includes: an application programming interface (API) con-
figured to provide a file system access to an application
running on a host computer; a key value file system con-
figured to represent a file or a directory as an inode including

Feb. &, 2018

one or more key-value pairs; a virtual file system configured
to direct a file system call received from the application to
the key value file system; and a key value API configured to
provide the file system access to data stored 1n a data storage
device. Each key-value pair contained in the inode includes
a name of the file or the directory as a key and an identifier
ol a container that 1s associated with the file or the directory
as a value. The data of the file 1s stored 1n the data storage
device as being divided into one or more data blocks of a
fixed size, and each of the one or more data blocks associ-
ated with the data of the file 1s accessible within the key
value file system using the one or more key-value pairs.
[0060] The API may be portable operating system inter-
face for Unix (POSIX) API, and an operating system of the
file system may be Linux.

[0061] Attributes of the mnode may be stored 1n a key-
value pair of the one or more key-value pairs.

[0062] The directory may be represented by either a
container directory or an inline directory depending on a
number of key-value pair entries contained in the container
of the directory.

[0063] The container of the inline directory may include a
single key-value pair. The value of the single key-value pair
may include attributes of the inline directory and one or
more key-value pairs corresponding to one or more subdi-
rectories of the iline directory or one or more files stored 1n
the inline directory.

[0064] The inline directory may be converted to the con-
tamner directory when the number of entries exceeds a
predetermined size, and the container directory may be
converted to the inline directory when the number of entries
1s reduced below the predetermined size.

[0065] The file may be represented by either a container
file or an 1mline file depending on a number of key-value pair
entries contained 1n the container of the file.

[0066] The container of the container file may include one
or more key-value pairs corresponding to the one or more
data blocks of the data for the container file.

[0067] The container of the inline file may include one or
more key-value pairs, and at least one key-value pair of the
one or more key-value pairs may include a name of the
inline file and data associated with the inline file. The data
of the at least one key-value pair includes one or more
key-value pairs corresponding to data blocks storing data of
the inline file.

[0068] The inline file may be converted to the container
file when the number of entries 1n the container of the inline
file exceeds a predetermined size, and the container file may
be converted to the inline file when the number of entries 1s
reduced below the predetermined size.

[0069] The file may be stored 1n a plurality of data storage
devices, and the imnode may include one or more key-value
tuples including an identifier of the data storage device, an
identifier of the container, and the key.

[0070] The file may be truncatable or deletable 1n a single
I/O operation within the key value file system without
traversing layers ol metadata corresponding to one or more
directories within which the file 1s stored.

[0071] According to another embodiment, a method
includes: storing a file or a directory in a data storage device
as an 1mode including one or more key-value pairs 1n a key
value {ile system; receiving a file system access request from
an application running on a host computer; directing the file
system access request to a file system call to the data storage

US 2018/0039650 A9

device; and providing the file system access to data stored 1n
the data storage device. Each key-value pair contained in the
inode includes a name of the file or the directory as a key and
an 1dentifier of a container that 1s associated with the file or
the directory as a value. The data of the file 1s stored in the
data storage device as being divided into one or more data
blocks of a fixed size, and each of the one or more data
blocks associated with the data of the file 1s accessible within
the key value file system using the one or more key-value
pairs.

[0072] The file system access request from the application
may be received via POSIX API, and an operating system of
the key value file system may be Linux.

[0073] Attributes of the inode may be stored 1 a key-
value pair of the one or more key-value patrs.

[0074] The directory may be represented by either a
container directory or an inline directory depending on a
number of key-value pair entries contained in the container
of the directory.

[0075] The container of the inline directory may include a
single key-value pair. The value of the single key-value pair
may include attributes of the inline directory and one or
more key-value pairs corresponding to one or more subdi-
rectories of the inline directory or one or more files stored in
the 1nline directory.

[0076] The inline directory may be converted to the con-
tainer directory when the number of entries exceeds a
predetermined size, and the container directory may be
converted to the inline directory when the number of entries
1s reduced below the predetermined size.

[0077] The file may be represented by either a container
file or an 1mline file depending on a number of key-value pair
entries contained 1n the container of the file.

[0078] The container of the container file may include one
or more key-value pairs corresponding to the one or more
data blocks of the data for the contamer file.

[0079] The container of the inline file may include one or
more key-value pairs, and at least one key-value pair of the
one or more key-value pairs may include a name of the
inline file and data associated with the inline file. The data
of the at least one key-value pair may include one or more

key-value pairs corresponding to data blocks storing data of
the 1nline file.

[0080] The inline file may be converted to the container
file when the number of entries 1n the container of the inline
file exceeds a predetermined size, and the container file may
be converted to the inline file when the number of entries 1s
reduced below the predetermined size.

[0081] The file may be stored 1n a plurality of data storage
devices, and the mnode may include one or more key-value
tuples including an 1dentifier of the data storage device, an
identifier of the container, and the key.

[0082] The method may further include: truncating or
deleting the file 1n a single I/O operation within the key
value file system without traversing layers ol metadata
corresponding to one or more directories within which the
file 1s stored.

[0083] The above example embodiments have been
described hereinabove to illustrate various embodiments of
implementing a key value file system and a method of
managing files and directories using the key value file
system. Various modifications and departures from the dis-
closed example embodiments will occur to those having

Feb. &, 2018

ordinary skill in the art. The subject matter that 1s intended
to be within the scope of the mvention is set forth in the
tollowing claims.

What 1s claimed 1s:
1. A file system comprising;

an application programming interface (API) configured to
provide a file system access to an application runnming
on a host computer;

a key value file system configured to represent a file or a
directory as an inode including one or more key-value
pairs;

a virtual file system configured to direct a file system call
received from the application to the key value file
system; and

a key value API configured to provide the file system
access to data stored 1n a data storage device,

wherein each key-value pair contained in the 1inode
includes a name of the file or the directory as a key and
an 1dentifier of a container that 1s associated with the
file or the directory as a value, and

wherein the data of the file 1s stored 1n the data storage
device as being divided 1into one or more data blocks of
a fixed size, and each of the one or more data blocks
associated with the data of the file 1s accessible within
the key value file system using the one or more key-
value pairs.

2. The file system of claim 1, wherein the API 1s portable
operating system interface for Unmix (POSIX) API, and an
operating system of the file system 1s Linux.

3. The file system of claim 1, wherein attributes of the
inode are stored in a key-value pair of the one or more
key-value pairs.

4. The file system of claim 1, wherein the directory 1s
represented by eirther a container directory or an inline
directory depending on a number of key-value pair entries
contained 1n the container of the directory.

5. The file system of claim 4, wherein the container of the
inline directory 1includes a single key-value pair, and
wherein the value of the single key-value pair includes
attributes of the inline directory and one or more key-value
pairs corresponding to one or more subdirectories of the
inline directory or one or more files stored in the inline
directory.

6. The file system of claim 4, the inline directory 1s
converted to the container directory when the number of
entries exceeds a predetermined size, and the container
directory 1s converted to the inline directory when the
number of entries 1s reduced below the predetermined size.

7. The file system of claim 1, wherein the file 1s repre-
sented by either a container file or an 1nline file depending
on a number of key-value pair entries contained in the
container of the file.

8. The file system of claim 7, wherein the container of the
container file includes one or more key-value pairs corre-
sponding to the one or more data blocks of the data for the
container file.

9. The file system of claim 7, wherein the container of the
inline file includes one or more key-value pairs, and at least
one key-value pair of the one or more key-value pairs
includes a name of the inline file and data associated with the
inline file, and wherein the data of the at least one key-value
pair includes one or more key-value pairs corresponding to
data blocks storing data of the inline file.

US 2018/0039650 A9

10. The file system of claim 7, the inline file 1s converted
to the container file when the number of entries 1n the
container of the inline file exceeds a predetermined size, and
the container file 1s converted to the inline file when the
number of entries 1s reduced below the predetermined size.

11. The file system of claim 1, wherein the file 1s stored
in a plurality of data storage devices, and the inode includes
one or more key-value tuples including an i1dentifier of the
data storage device, an identifier of the container, and the
key.

12. The file system of claim 1, wherein the file 1s
truncatable or deletable in a single 1/O operation within the
key value file system without traversing layers ol metadata
corresponding to one or more directories within which the
file 1s stored.

13. A method comprising:

storing a {ile or a directory in a data storage device as an
inode including one or more key-value pairs in a key
value file system:;

receiving a file system access request from an application

running on a host computer;

directing the file system access request to a file system call

to the data storage device; and

providing the file system access to data stored 1n the data

storage device,

wherein each key-value pair contamned in the 1inode

includes a name of the file or the directory as a key and
an 1dentifier of a container that 1s associated with the
file or the directory as a value, and

wherein the data of the file 1s stored in the data storage

device as being divided 1nto one or more data blocks of
a fixed size, and each of the one or more data blocks
associated with the data of the file 1s accessible within
the key value file system using the one or more key-
value patrs.

14. The method of claim 13, wherein the file system
access request from the application 1s received via POSIX
API, and an operating system of the key value file system 1s
Linux.

15. The method of claim 13, wherein attributes of the
inode 1s stored in a key-value pair of the one or more
key-value pairs.

16. The method of claim 13, wherein the directory is
represented by eirther a container directory or an inline

Feb. &, 2018

directory depending on a number of key-value pair entries
contained 1n the container of the directory.

17. The method of claim 16, wherein the container of the
inline directory 1includes a single key-value pair, and
wherein the value of the single key-value pair includes
attributes of the inline directory and one or more key-value
pairs corresponding to one or more subdirectories of the
inline directory or one or more files stored in the inline
directory.

18. The method of claim 16, the inline directory 1s
converted to the container directory when the number of
entries exceeds a predetermined size, and the container
directory 1s converted to the inline directory when the
number of entries 1s reduced below the predetermined size.

19. The method of claim 13, wherein the file 1s repre-
sented by either a container file or an 1nline file depending
on a number of key-value pair entries contained in the
container of the file.

20. The method of claim 19, wherein the container of the
container file icludes one or more key-value pairs corre-
sponding to the one or more data blocks of the data for the
container file.

21. The method of claim 19, wherein the container of the
inline file includes one or more key-value pairs, and at least
one key-value pair of the one or more key-value pairs
includes a name of the 1nline file and data associated with the
inline file, and wherein the data of the at least one key-value
pair includes one or more key-value pairs corresponding to
data blocks storing data of the inline file.

22. The method of claim 19, the inline file 1s converted to
the container file when the number of entries 1n the container
of the mline file exceeds a predetermined size, and the
container file 1s converted to the inline file when the number
of entries 1s reduced below the predetermined size.

23. The method of claim 13, wherein the file 1s stored in
a plurality of data storage devices, and the mnode includes
one or more key-value tuples including an identifier of the
data storage device, an 1dentifier of the container, and the
key.

24. The method of claim 13, further comprising: truncat-
ing or deleting the file 1n a single I/O operation within the
key value file system without traversing layers ol metadata
corresponding to one or more directories within which the
file 1s stored.

	Front Page
	Drawings
	Specification
	Claims

