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(57) ABSTRACT

Instructions and logic provide vector scatter-op and/or
gather-op functionality. In some embodiments, responsive to
an 1nstruction specitying: a gather and a second operation, a
destination register, an operand register, and a memory
address; execution units read values in a mask register,
wherein fields 1 the mask register correspond to oflset
indices 1n the indices register for data elements in memory.
A first mask value indicates the element has not been
gathered from memory and a second value indicates that the
clement does not need to be, or has already been gathered.
For each having the first value, the data element 1s gathered
from memory into the corresponding destination register
location, and the corresponding value 1n the mask register 1s
changed to the second value. When all mask register fields
have the second value, the second operation 1s performed
using corresponding data in the destination and operand
registers to generate results.
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INSTRUCTION AND LOGIC TO PROVIDE
VECTOR SCATTER-OP AND GATHER-OP
FUNCTIONALITY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application i1s a continuation of U.S. patent
application Ser. No. 13/977,729, filed on Jun. 30, 2013,

which 1s a U.S. National Phase Application under 35 U.S.C.
Section 371 of International Application No. PCT/US2011/
53328, filed on Sep. 26, 2011, 1s hereby incorporated herein

by reference in its entirety and for all purposes.

FIELD OF THE

DISCLOSURE

[0002] The present disclosure pertains to the field of
processing logic, microprocessors, and associated instruc-
tion set architecture that, when executed by the processor or
other processing logic, perform logical, mathematical, or
other functional operations. In particular, the dlsclosure
relates to structions and logic to provide vector scatter-op
and/or gather-op functionality.

BACKGROUND OF THE DISCLOSURE

[0003] Modern processors oiten include instructions to
provide operations that are computationally intensive, but
offer a high level of data parallelism that can be explmted
through an eflicient implementation using various data stor-
age devices, such as for example, single instruction multiple
data (SIMD) vector registers.

[0004] Vectorizing an application or soiftware code may
include making the application compile, install, and/or run
on specific systems or instruction-set architectures, such as
for example, a wide or large width vector architecture. For
some applications, memory access may be complex, mncon-
sistent, or noncontiguous, for example, as vector widths
increase (e.g., for operations such as three dimensional (3D)
image rendering). Memory used for vectorized processes
may be stored 1n noncontiguous or non-adjacent memory
locations. A number of architectures may require extra
instructions which minimizes instruction throughput and
significantly increase the number of clock cycles required to
order data 1n the registers before performing any arithmetic
operations.

[0005] Mechanisms for improving memory access and
ordering data to and from wider vectors may include imple-
menting gathering and scattering operations for generating,
local contiguous memory access for data from other non-
local and/or noncontiguous memory locations. Gather
operations may collect data from a set of noncontiguous or
random memory locations 1n a storage device and combine
the disparate data into a packed structure. Scatter operations
may disperse elements 1 a packed structure to a set of
noncontiguous or random memory locations. Some of these
memory locations may not be cached, or may have been
paged out of physical memory.

[0006] If gather operations are interrupted for a page fault
or some other reason, with some architectures, the state of
the machine may not be saved, requiring a repeat of the
entire gather operation rather than a restart where the gather
operation was interrupted. Since multiple memory accesses
may be required on any gather operation, many clock cycles
may be required for completion, for which any subsequent
dependent arithmetic operations must necessarily wait. Such

Dec. 14, 2017

delays represent a bottleneck, which may limit performance
advantages otherwise expected for example, from a wide or
large width vector architecture.

[0007] To date, potential solutions to such performance
limiting 1ssues and bottlenecks have not been adequately
explored.

BRIEF DESCRIPTION OF THE

[0008] The present invention 1s 1illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings.

[0009] FIG. 1A 15 a block diagram of one embodiment of
a system that executes instructions to provide vector scatter-
op and/or gather-op functionality.

[0010] FIG. 1B 1s a block diagram of another embodiment
of a system that executes instructions to provide vector
scatter-op and/or gather-op functionality.

[0011] FIG. 1C 1s a block diagram of another embodiment
of a system that executes instructions to provide vector
scatter-op and/or gather-op functionality.

[0012] FIG. 2 15 a block diagram of one embodiment of a
processor that executes structions to provide vector scat-
ter-op and/or gather-op functionality.

[0013] FIG. 3A illustrates packed data types according to
one embodiment.

[0014] FIG. 3B illustrates packed data types according one
embodiment.

[0015] FIG. 3C illustrates packed data types according to
one embodiment.

[0016] FIG. 3D illustrates an instruction encoding to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to one embodiment.

[0017] FIG. 3E illustrates an mstruction encoding to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment.

[0018] FIG. 3F illustrates an instruction encoding to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment.

[0019] FIG. 3G illustrates an instruction encoding to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment.

[0020] FIG. 3H illustrates an instruction encoding to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment.

[0021] FIG. 4A 1llustrates elements of one embodiment of
a processor micro-architecture to execute instructions that
provide vector scatter-op and/or gather-op functionality.
[0022] FIG. 4B illustrates elements of another embodi-
ment of a processor micro-architecture to execute mnstruc-
tions that provide vector scatter-op and/or gather-op func-
tionality.

[0023] FIG. 5 1s a block diagram of one embodiment of a
processor to execute mstructions that provide vector scatter-
op and/or gather-op functionality.

[0024] FIG. 6 15 a block diagram of one embodiment of a
computer system to execute instructions that provide vector
scatter-op and/or gather-op functionality.

[0025] FIG. 7 1s a block diagram of another embodiment
of a computer system to execute mnstructions that provide
vector scatter-op and/or gather-op functionality.

[0026] FIG. 8 1s a block diagram of another embodiment
of a computer system to execute mstructions that provide
vector scatter-op and/or gather-op functionality.

DRAWINGS
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[0027] FIG. 9 15 a block diagram of one embodiment of a
system-on-a-chip to execute mnstructions that provide vector
scatter-op and/or gather-op functionality.

[0028] FIG. 10 1s a block diagram of an embodiment of a
processor to execute instructions that provide vector scatter-
op and/or gather-op functionality.

[0029] FIG. 11 1s a block diagram of one embodiment of
an IP core development system that provides vector scatter-
op and/or gather-op functionality.

[0030] FIG. 12 illustrates one embodiment of an architec-
ture emulation system that provides vector scatter-op and/or
gather-op functionality.

[0031] FIG. 13 illustrates one embodiment of a system to
translate instructions that provide vector scatter-op and/or
gather-op functionality.

[0032] FIG. 14 illustrates a flow diagram for one embodi-
ment of a process to provide vector gather-op functionality.
[0033] FIG. 15 illustrates a flow diagram for another
embodiment of a process to provide vector gather-op func-
tionality.

[0034] FIG. 16 1llustrates a flow diagram for one embodi-
ment of a process to provide vector scatter-op Tunctionality.
[0035] FIG. 17 illustrates a flow diagram for another
embodiment of a process to provide vector scatter-op func-
tionality.

[0036] FIG. 18 illustrates an embodiment of fields to
encode an instruction.

DETAILED DESCRIPTION

[0037] The following description describes an 1nstruction
and processing logic to provide vector scatter-op and/or
gather-op functionality within or 1n association with a pro-
cessor, computer system, or other processing apparatus.
[0038] In some embodiments, responsive to an 1nstruction
specifying: for example, a gather and a second operation, a
destination register, an operand register and a memory
address, execution units read values 1 a mask register,
wherein fields 1 the mask register correspond to oflset
indices 1n the indices register for data elements 1n memory.
A first mask value indicates the element has not been
gathered from memory and a second value indicates that the
clement does not need to be, or has already been gathered.
For each having the first value, the data element 1s gathered
from memory into the corresponding destination register
location, and the corresponding value 1n the mask register 1s
changed to the second value. When all mask register fields
have the second value, the second operation 1s performed
using corresponding data in the destination and operand
registers to generate results. In some alternative embodi-
ments, responsive to an instruction speciiying: for example,
a scatter and a first operation, a destination register, an
operand register, and a memory address, execution units
may perform the first operation, with or without using the
mask register, and the mask values may be used to indicate
if the resulting element has not been scattered to memory or
that the element does not need to be, or has already been
scattered to memory.

[0039] In the following description, numerous speciiic
details such as processing logic, processor types, micro-
architectural conditions, events, enablement mechanisms,
and the like are set forth 1n order to provide a more thorough
understanding of embodiments of the present invention. It
will be appreciated, however, by one skilled 1n the art that
the invention may be practiced without such specific details.
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Additionally, some well known structures, circuits, and the
like have not been shown 1n detail to avoid unnecessarily
obscuring embodiments of the present invention.

[0040] Although the following embodiments are described
with reference to a processor, other embodiments are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present invention can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present invention are applicable to any
processor or machine that performs data manipulations.
However, the present invention 1s not limited to processors
or machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32
bit, or 16 bit data operations and can be applied to any
processor and machine 1n which manipulation or manage-
ment of data 1s performed. In addition, the following
description provides examples, and the accompanying draw-
ings show various examples for the purposes of illustration.
However, these examples should not be construed 1n a
limiting sense as they are merely intended to provide
examples ol embodiments of the present invention rather
than to provide an exhaustive list of all possible implemen-
tations of embodiments of the present invention.

[0041] Although the below examples describe instruction
handling and distribution 1n the context of execution units
and logic circuits, other embodiments of the present inven-
tion can be accomplished by way of a data or instructions
stored on a machine-readable, tangible medium, which when
performed by a machine cause the machine to perform
functions consistent with at least one embodiment of the
invention. In one embodiment, functions associated with
embodiments of the present invention are embodied 1n
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that 1s programmed with the instructions to perform the
steps of the present invention. Embodiments of the present
invention may be provided as a computer program product
or software which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present invention. Alternatively, steps of
embodiments of the present mvention might be performed
by specific hardware components that contain fixed-function
logic for performing the steps, or by any combination of
programmed computer components and fixed-tunction hard-
ware components.

[0042] Instructions used to program logic to perform
embodiments of the invention can be stored within a
memory 1n the system, such as DRAM, cache, flash
memory, or other storage. Furthermore, the instructions can
be distributed via a network or by way of other computer
readable media. Thus a machine-readable medium may
include any mechanism for storing or transmitting informa-
tion in a form readable by a machine (e.g., a computer), but
1s not limited to, floppy diskettes, optical disks, Compact
Disc, Read-Only Memory (CD-ROMs), and magneto-opti-
cal disks, Read-Only Memory (ROMs), Random Access
Memory (RAM), Frasable Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), magnetic or optical cards,
flash memory, or a tangible, machine-readable storage used
in the transmission of information over the Internet via
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clectrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, inirared signals, digital signals,
etc.). Accordingly, the computer-readable medium includes
any type ol tangible machine-readable medium suitable for
storing or transmitting electronic 1mstructions or information
in a form readable by a machine (e.g., a computer).

[0043] A design may go through various stages, from
creation to simulation to fabrication. Data representing a
design may represent the design in a number of manners.
First, as 1s useful in simulations, the hardware may be
represented using a hardware description language or
another functional description language. Additionally, a cir-
cuit level model with logic and/or transistor gates may be
produced at some stages of the design process. Furthermore,
most designs, at some stage, reach a level of data represent-
ing the physical placement of various devices 1n the hard-
ware model. In the case where conventional semiconductor
tabrication techniques are used, the data representing the
hardware model may be the data specitying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit. In any repre-
sentation of the design, the data may be stored in any form
ol a machine readable medium. A memory or a magnetic or
optical storage such as a disc may be the machine readable
medium to store information transmitted via optical or
clectrical wave modulated or otherwise generated to trans-
mit such information. When an electrical carrier wave
indicating or carrying the code or design 1s transmitted, to
the extent that copying, buflering, or re-transmission of the
clectrical signal 1s performed, a new copy 1s made. Thus, a
communication provider or a network provider may store on
a tangible, machine-readable medium, at least temporarily,
an article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven-
tion.

[0044] In modern processors, a number of diflerent execus-
tion units are used to process and execute a variety of code
and 1instructions. Not all instructions are created equal as
some are quicker to complete while others can take a number
of clock cycles to complete. The faster the throughput of
instructions, the better the overall performance of the pro-
cessor. Thus i1t would be advantageous to have as many
istructions execute as fast as possible. However, there are
certain instructions that have greater complexity and require
more 1n terms of execution time and processor resources.
For example, there are floating point 1nstructions, load/store
operations, data moves, eftc.

[0045] As more computer systems are used in Internet,
text, and multimedia applications, additional processor sup-
port has been mtroduced over time. In one embodiment, an
instruction set may be associated with one or more computer
architectures, including data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
(1/0).

[0046] In one embodiment, the mstruction set architecture
(ISA) may be implemented by one or more micro-architec-
tures, which includes processor logic and circuits used to
implement one or more 1nstruction sets. Accordingly, pro-
cessors with different micro-architectures can share at least
a portion of a common 1instruction set. For example, Intel®
Pentium 4 processors, Intel® Core™ processors, and pro-
cessors from Advanced Micro Devices, Inc. of Sunnyvale
Calif. implement nearly identical versions of the x86

"y
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instruction set (with some extensions that have been added
with newer versions), but have different internal designs.
Similarly, processors designed by other processor develop-
ment companies, such as ARM Holdings, Ltd., MIPS, or
their licensees or adopters, may share at least a portion a
common 1nstruction set, but may include different processor
designs. For example, the same register architecture of the
ISA may be mmplemented in different ways in different
micro-architectures using new or well-known techniques,
including dedicated physical registers, one or more dynami-
cally allocated physical registers using a register renaming
mechanism (e.g., the use of a Register Alias Table (RAT), a
Reorder Bufler (ROB) and a retirement register file. In one
embodiment, registers may include one or more registers,
register architectures, register files, or other register sets that
may or may not be addressable by a software programmer.

[0047] Inoneembodiment, an instruction may include one
or more 1struction formats. In one embodiment, an instruc-
tion format may indicate various fields (number of bits,
location of bits, etc.) to specily, among other things, the
operation to be performed and the operand(s) on which that
operation 1s to be performed. Some instruction formats may
be further broken defined by instruction templates (or sub
formats). For example, the instruction templates of a given
instruction format may be defined to have different subsets
of the istruction format’s fields and/or defined to have a
given field interpreted differently. In one embodiment, an
instruction 1s expressed using an instruction format (and, 1f
defined, 1n a given one of the instruction templates of that
instruction format) and specifies or indicates the operation
and the operands upon which the operation will operate.

[0048] Scientific, financial, auto-vectorized general pur-
pose, RMS (recognition, mining, and synthesis), and visual
and multimedia applications (e.g., 2D/3D graphics, image
processing, video compression/decompression, voiCe recog-
nition algorithms and audio manipulation) may require the
same operation to be performed on a large number of data
items. In one embodiment, Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used 1n processors that can logically
divide the bits 1n a register into a number of fixed-sized or
variable-sized data elements, each of which represents a
separate value. For example, 1n one embodiment, the bits 1n
a 64-bit register may be organized as a source operand
containing four separate 16-bit data elements, each of which
represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and
operands of this data type are referred to as packed data
operands or vector operands. In one embodiment, a packed
data item or vector may be a sequence of packed data
clements stored within a single register, and a packed data
operand or a vector operand may a source or destination
operand of a SIMD 1nstruction (or ‘packed data instruction’
or a ‘vector instruction’). In one embodiment, a SIMD
instruction specifies a single vector operation to be per-
formed on two source vector operands to generate a desti-
nation vector operand (also referred to as a result vector
operand) of the same or different size, with the same or
different number of data elements, and in the same or
different data element order.

[0049] SIMD technology, such as that employed by the
Intel® Core™ processors having an instruction set including
x86, MMX™  Streaming SIMD Extensions (SSE), SSE2,
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SSE3, SSE4.1, and SSE4.2 1nstructions, ARM processors,
such as the ARM Cortex® family of processors having an
instruction set including the Vector Floating Point (VFP)
and/or NEON 1nstructions, and MIPS processors, such as the
Loongson family of processors developed by the Institute of
Computing Technology (ICT) of the Chinese Academy of
Sciences, has enabled a significant improvement 1n appli-
cation performance (Core™ and MMX™ are registered
trademarks or trademarks of Intel Corporation of Santa

Clara, Calit.).

[0050] In one embodiment, destination and source regis-
ters/data are generic terms to represent the source and
destination of the corresponding data or operation. In some
embodiments, they may be implemented by registers,
memory, or other storage arcas having other names or
functions than those depicted. For example, 1n one embodi-
ment, “DEST1” may be a temporary storage register or other
storage area, whereas “SRC1” and “SRC2” may be a first
and second source storage register or other storage area, and
so forth. In other embodiments, two or more of the SRC and
DEST storage areas may correspond to diflerent data storage
clements within the same storage area (e.g., a SIMD regis-
ter). In one embodiment, one of the source registers may also
act as a destination register by, for example, writing back the
result of an operation performed on the first and second
source data to one of the two source registers serving as a
destination registers.

[0051] FIG. 1A 1s a block diagram of an exemplary
computer system formed with a processor that includes
execution units to execute an instruction 1n accordance with
one embodiment of the present invention. System 100
includes a component, such as a processor 102 to employ
execution units including logic to perform algorithms for
process data, in accordance with the present invention, such
as 1n the embodiment described herein. System 100 1is
representative ol processing systems based on the PEN-
TIUM® III, PENTIUM® 4, Xeon™, [tanium®, XScale™
and/or StrongARM™ microprocessors available from Intel
Corporation of Santa Clara, Calif., although other systems
(including PCs having other microprocessors, engineering
workstations, set-top boxes and the like) may also be used.
In one embodiment, sample system 100 may execute a
version of the WINDOWS™ operating system available
from Microsoft Corporation of Redmond, Wash., although
other operating systems (UNIX and Linux for example),
embedded software, and/or graphical user interfaces, may
also be used. Thus, embodiments of the present invention are
not limited to any specific combination of hardware circuitry
and software.

[0052] Embodiments are not limited to computer systems.
Alternative embodiments of the present mvention can be
used 1n other devices such as handheld devices and embed-
ded applications. Some examples of handheld devices
include cellular phones, Internet Protocol devices, digital
cameras, personal digital assistants (PDAs), and handheld
PCs. Embedded applications can include a micro controller,
a digital signal processor (DSP), system on a chip, network
computers (NetPC), set-top boxes, network hubs, wide area
network (WAN) switches, or any other system that can
perform one or more nstructions in accordance with at least
one embodiment.

[0053] FIG. 1A 1s a block diagram of a computer system
100 formed with a processor 102 that includes one or more
execution units 108 to perform an algorithm to perform at
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least one instruction 1n accordance with one embodiment of
the present invention. One embodiment may be described in
the context of a single processor desktop or server system,
but alternative embodiments can be included in a multipro-
cessor system. System 100 1s an example of a ‘hub’ system
architecture. The computer system 100 includes a processor
102 to process data signals. The processor 102 can be a
complex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or
any other processor device, such as a digital signal proces-
sor, for example. The processor 102 1s coupled to a processor
bus 110 that can transmit data signals between the processor
102 and other components 1n the system 100. The elements
of system 100 perform their conventional functions that are
well known to those familiar with the art.

[0054] In one embodiment, the processor 102 includes a
Level 1 (1) internal cache memory 104. Depending on the
architecture, the processor 102 can have a single internal
cache or multiple levels of internal cache. Alternatively, 1n
another embodiment, the cache memory can reside external
to the processor 102. Other embodiments can also include a
combination of both internal and external caches depending
on the particular implementation and needs. Register file
106 can store different types of data in various registers
including integer registers, tloating point registers, status
registers, and instruction pointer register.

[0055] Execution umit 108, including logic to perform
integer and floating point operations, also resides in the
processor 102. The processor 102 also includes a microcode
(ucode) ROM that stores microcode for certain macroin-
structions. For one embodiment, execution unit 108 includes
logic to handle a packed instruction set 109. By including
the packed instruction set 109 in the instruction set of a
general-purpose processor 102, along with associated cir-
cuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data 1n a general-purpose processor 102. Thus, many
multimedia applications can be accelerated and executed
more efhiciently by using the full width of a processor’s data
bus for performing operations on packed data. This can
climinate the need to transfer smaller units of data across the
processor’s data bus to perform one or more operations one
data element at a time.

[0056] Alternate embodiments of an execution unit 108
can also be used 1n micro controllers, embedded processors,
graphics devices, DSPs, and other types of logic circuits.
System 100 includes a memory 120. Memory 120 can be a
dynamic random access memory (DRAM) device, a static
random access memory (SRAM) device, flash memory
device, or other memory device. Memory 120 can store
instructions and/or data represented by data signals that can
be executed by the processor 102.

[0057] A system logic chip 116 1s coupled to the processor
bus 110 and memory 120. The system logic chip 116 in the
illustrated embodiment 1s a memory controller hub (MCH).
The processor 102 can communicate to the MCH 116 via a
processor bus 110. The MCH 116 provides a high bandwidth
memory path 118 to memory 120 for mstruction and data
storage and for storage ol graphics commands, data and
textures. The MCH 116 1s to direct data signals between the
processor 102, memory 120, and other components in the
system 100 and to bridge the data signals between processor
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bus 110, memory 120, and system 1/O 122. In some embodi-
ments, the system logic chip 116 can provide a graphics port
for coupling to a graphics controller 112. The MCH 116 1s
coupled to memory 120 through a memory interface 118.
The graphics card 112 1s coupled to the MCH 116 through
an Accelerated Graphics Port (AGP) interconnect 114.

[0058] System 100 uses a proprietary hub interface bus
122 to couple the MCH 116 to the 1/O controller hub (ICH)
130. The ICH 130 provides direct connections to some 1/O
devices via a local 1/0 bus. The local I/0 bus 1s a high-speed
I/O bus for connecting peripherals to the memory 120,
chupset, and processor 102. Some examples are the audio
controller, firmware hub (tflash BIOS) 128, wireless trans-
ceiver 126, data storage 124, legacy I/O controller contain-
ing user mput and keyboard interfaces, a serial expansion
port such as Unmiversal Serial Bus (USB), and a network
controller 134. The data storage device 124 can comprise a

hard disk drive, a floppy disk drive, a CD-ROM device, a
flash memory device, or other mass storage device.

[0059] For another embodiment of a system, an instruction
in accordance with one embodiment can be used with a
system on a chip. One embodiment of a system on a chip
comprises ol a processor and a memory. The memory for
one such system 1s a flash memory. The flash memory can
be located on the same die as the processor and other system
components. Additionally, other logic blocks such as a
memory controller or graphics controller can also be located
on a system on a chip.

[0060] FIG. 1B illustrates a data processing system 140
which implements the principles of one embodiment of the
present invention. It will be readily appreciated by one of
skill 1n the art that the embodiments described herein can be
used with alternative processing systems without departure
from the scope of embodiments of the mvention.

[0061] Computer system 140 comprises a processing core
159 capable of performing at least one instruction 1n accor-
dance with one embodiment. For one embodiment, process-
ing core 159 represents a processing unit of any type of
architecture, including but not limited to a CISC, a RISC or
a VLIW type architecture. Processing core 159 may also be
suitable for manufacture 1 one or more process technolo-
gies and by being represented on a machine readable media
in suflicient detail, may be suitable to facilitate said manu-
facture.

[0062] Processing core 139 comprises an execution unit
142, a set of register file(s) 145, and a decoder 144.
Processing core 159 also includes additional circuitry (not
shown) which 1s not necessary to the understanding of
embodiments of the present invention. Execution unit 142 1s
used for executing instructions received by processing core
159. In addition to performing typical processor instructions,
execution umt 142 can perform instructions in packed
instruction set 143 for performing operations on packed data
formats. Packed instruction set 143 includes instructions for
performing embodiments of the invention and other packed
istructions. Execution unit 142 1s coupled to register file
145 by an 1nternal bus. Register file 145 represents a storage
area on processing core 139 for storing information, includ-
ing data. As previously mentioned, it 1s understood that the
storage area used for storing the packed data 1s not critical.
Execution unit 142 1s coupled to decoder 144. Decoder 144
1s used for decoding instructions received by processing core
159 into control signals and/or microcode entry points. In
response to these control signals and/or microcode entry
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points, execution unit 142 performs the appropriate opera-
tions. In one embodiment, the decoder 1s used to interpret the
opcode of the mstruction, which will indicate what operation
should be performed on the corresponding data indicated
within the 1nstruction.

[0063] Processing core 159 1s coupled with bus 141 for
communicating with various other system devices, which
may include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 146,
static random access memory (SRAM) control 147, burst
flash memory interface 148, personal computer memory
card international association (PCMCIA)/compact flash
(CF) card control 149, liquid crystal display (LCD) control
150, direct memory access (DMA) controller 151, and
alternative bus master interface 152. In one embodiment,
data processing system 140 may also comprise an I/O bridge
154 for communicating with various 1/0 devices via an 1/O
bus 153. Such IO devices may include but are not limited
to, for example, universal asynchronous receiver/transmitter

(UART) 155, universal serial bus (USB) 156, Bluetooth
wireless UART 157 and I/O expansion interface 158.

[0064] One embodiment of data processing system 140
provides for mobile, network and/or wireless communica-
tions and a processing core 159 capable of performing
SIMD operations including a text string comparison opera-
tion. Processing core 159 may be programmed with various
audio, video, imaging and communications algorithms
including discrete transformations such as a Walsh-Had-
amard transform, a fast Fourier transform (FFT), a discrete
cosine transform (DCT), and their respective inverse trans-
forms; compression/decompression techniques such as color
space transformation, video encode motion estimation or
video decode motion compensation; and modulation/de-
modulation (MODEM) functions such as pulse coded modu-
lation (PCM).

[0065] FIG. 1C 1illustrates another alternative embodi-
ments of a data processing system capable of executing
instructions to provide vector scatter-op and/or gather-op
functionality. In accordance with one alternative embodi-
ment, data processing system 160 may include a main
processor 166, a SIMD coprocessor 161, a cache memory
167, and an mput/output system 168. The input/output
system 168 may optionally be coupled to a wireless interface
169. SIMD coprocessor 161 1s capable of performing opera-
tions icluding instructions 1n accordance with one embodi-
ment. Processing core 170 may be suitable for manufacture
in one or more process technologies and by being repre-
sented on a machine readable media 1n suflicient detail, may
be suitable to facilitate the manufacture of all or part of data
processing system 160 including processing core 170.

[0066] For one embodiment, SIMD coprocessor 161 com-
prises an execution unit 162 and a set of register file(s) 164.
One embodiment of main processor 166 comprises a
decoder 165 to recognize instructions of nstruction set 163
including instructions in accordance with one embodiment
for execution by execution umt 162. For alternative embodi-
ments, SIMD coprocessor 161 also comprises at least part of
decoder 165B to decode instructions of instruction set 163.
Processing core 170 also includes additional circuitry (not
shown) which 1s not necessary to the understanding of
embodiments of the present invention.

[0067] In operation, the main processor 166 executes a
stream of data processing instructions that control data
processing operations of a general type including interac-
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tions with the cache memory 167, and the nput/output
system 168. Embedded within the stream of data processing
instructions are SIMD coprocessor instructions. The decoder
165 of main processor 166 recognizes these SIMD copro-
cessor mstructions as being of a type that should be executed
by an attached SIMD coprocessor 161. Accordingly, the
main processor 166 1ssues these SIMD coprocessor mstruc-
tions (or control signals representing SIMD coprocessor
instructions) on the coprocessor bus 171 where from they
are received by any attached SIMD coprocessors. In this
case, the SIMD coprocessor 161 will accept and execute any
received SIMD coprocessor 1nstructions intended for 1it.

[0068] Data may be received via wireless interface 169 for
processing by the SIMD coprocessor instructions. For one
example, voice communication may be received 1n the form
of a digital signal, which may be processed by the SIMD
coprocessor instructions to regenerate digital audio samples
representative of the voice communications. For another
example, compressed audio and/or video may be received 1n
the form of a digital bit stream, which may be processed by
the SIMD coprocessor instructions to regenerate digital
audio samples and/or motion video frames. For one embodi-
ment of processing core 170, main processor 166, and a
SIMD coprocessor 161 are integrated into a single process-
ing core 170 comprising an execution unit 162, a set of
register file(s) 164, and a decoder 165 to recognize instruc-
tions of instruction set 163 including instructions 1n accor-
dance with one embodiment.

[0069] FIG. 2 1s a block diagram of the micro-architecture
for a processor 200 that includes logic circuits to perform
istructions in accordance with one embodiment of the
present invention. In some embodiments, an instruction in
accordance with one embodiment can be implemented to
operate on data elements having sizes of byte, word, double-
word, quadword, etc., as well as datatypes, such as single
and double precision integer and floating point datatypes. In
one embodiment the in-order front end 201 1s the part of the
processor 200 that fetches instructions to be executed and
prepares them to be used later 1n the processor pipeline. The
front end 201 may include several units. In one embodiment,
the instruction prefetcher 226 fetches instructions from
memory and feeds them to an instruction decoder 228 which
in turn decodes or interprets them. For example, 1 one
embodiment, the decoder decodes a received 1nstruction 1nto
one or more operations called “micro-instructions™ or
“micro-operations’” (also called micro op or uops) that the
machine can execute. In other embodiments, the decoder
parses the mnstruction into an opcode and corresponding data
and control fields that are used by the micro-architecture to
perform operations 1n accordance with one embodiment. In
one embodiment, the trace cache 230 takes decoded uops
and assembles them into program ordered sequences or
traces 1n the vop queue 234 for execution. When the trace
cache 230 encounters a complex instruction, the microcode
ROM 232 provides the uops needed to complete the opera-
tion.

[0070] Some instructions are converted mto a single
micro-op, whereas others need several micro-ops to com-
plete the full operation. In one embodiment, 1 more than
four micro-ops are needed to complete a instruction, the
decoder 228 accesses the microcode ROM 232 to do the
instruction. For one embodiment, an instruction can be
decoded 1nto a small number of micro ops for processing at
the instruction decoder 228. In another embodiment, an
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instruction can be stored within the microcode ROM 232
should a number of micro-ops be needed to accomplish the
operation. The trace cache 230 refers to a entry point
programmable logic array (PLA) to determine a correct
micro-instruction pointer for reading the micro-code
sequences to complete one or more instructions in accor-
dance with one embodiment from the micro-code ROM 232.
After the microcode ROM 232 finishes sequencing micro-
ops for an instruction, the front end 201 of the machine
resumes fetching micro-ops from the trace cache 230.

[0071] The out-of-order execution engine 203 1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of builers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buflers and
resources that each uop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register file. The allocator also allocates an entry for
cach uop 1n one of the two uop queues, one for memory
operations and one for non-memory operations, 1n front of
the 1nstruction schedulers: memory scheduler, fast scheduler
202, slow/general floating point scheduler 204, and simple
floating point scheduler 206. The uop schedulers 202, 204,
206, determine when a uop 1s ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 202 of one
embodiment can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule uvops for execution.

[0072] Register files 208, 210, sit between the schedulers
202, 204, 206, and the execution units 212, 214, 216, 218,
220, 222, 224 1n the execution block 211. There 1s a separate
register file 208, 210, for integer and floating point opera-
tions, respectively. Each register file 208, 210, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been
written into the register file to new dependent uops. The
integer register file 208 and the floating point register file
210 are also capable of communicating data with the other.
For one embodiment, the integer register file 208 1s split into
two separate register files, one register file for the low order
32 bits of data and a second register file for the high order
32 bits of data. The floating point register file 210 of one
embodiment has 128 bit wide entries because floating point
instructions typically have operands from 64 to 128 bits 1n

width.

[0073] The execution block 211 contains the execution
units 212, 214, 216, 218, 220, 222, 224, where the 1nstruc-
tions are actually executed. This section includes the register
files 208, 210, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 200 of one embodiment 1s comprised of a
number of execution units: address generation unit (AGU)
212, AGU 214, fast ALU 216, fast ALU 218, slow ALU 220,
floating point ALU 222, floating point move unit 224. For
one embodiment, the floating point execution blocks 222,
224, execute floating point, MMX, SIMD), and SSE, or other
operations. The floating point ALU 222 of one embodiment
includes a 64 bit by 64 bit tloating point divider to execute
divide, square root, and remainder micro-ops. For embodi-
ments of the present invention, instructions mvolving a
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floating point value may be handled with the floating point
hardware. In one embodiment, the ALU operations go to the
high-speed ALU execution units 216, 218. The fast ALUs
216, 218, of one embodiment can execute fast operations
with an eflective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the
slow ALU 220 as the slow ALU 220 includes integer
execution hardware for long latency type of operations, such
as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations are executed by the AGUs
212, 214. For one embodiment, the integer AL Us 216, 218,
220, are described in the context of performing integer
operations on 64 bit data operands. In alternative embodi-
ments, the ALUs 216, 218, 220, can be implemented to
support a variety of data bits including 16, 32, 128, 256, efc.
Similarly, the floating point units 222, 224, can be imple-
mented to support a range of operands having bits of various
widths. For one embodiment, the floating point units 222,
224, can operate on 128 bits wide packed data operands 1n
conjunction with SIMD and multimedia instructions.

[0074] In one embodiment, the uops schedulers 202, 204,
206, dispatch dependent operations before the parent load
has finished executing. As uops are speculatively scheduled
and executed in processor 200, the processor 200 also
includes logic to handle memory misses. If a data load
misses 1n the data cache, there can be dependent operations
in flight in the pipeline that have left the scheduler with
temporarily incorrect data. A replay mechanism tracks and
re-executes 1nstructions that use incorrect data. Only the
dependent operations need to be replayed and the indepen-
dent ones are allowed to complete. The schedulers and
replay mechanism of one embodiment of a processor are
also designed to catch instructions that provide vector scat-
ter-op and/or gather-op functionality.

[0075] The term “registers” may refer to the on-board
processor storage locations that are used as part of nstruc-
tions to 1dentily operands. In other words, registers may be
those that are usable from the outside of the processor (from
a programmer’s perspective). However, the registers of an
embodiment should not be limited 1n meaning to a particular
type of circuit. Rather, a register of an embodiment 1s
capable of storing and providing data, and performing the
tfunctions described herein. The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques, such as dedicated physi-
cal registers, dynamically allocated physical registers using
register renaming, combinations of dedicated and dynami-
cally allocated physical registers, etc. In one embodiment,
integer registers store thirty-two bit integer data. A register
file of one embodiment also contains eight multimedia
SIMD registers for packed data. For the discussions below,
the registers are understood to be data registers designed to
hold packed data, such as 64 bits wide MMX™ registers
(also referred to as ‘mm’ registers in some 1nstances) in
microprocessors enabled with MMX technology from Intel
Corporation of Santa Clara, Calif. These MMX registers,
available in both integer and floating point forms, can
operate with packed data elements that accompany SIMD
and SSE instructions. Similarly, 128 bits wide XMM regis-
ters relating to SSE2, SSE3, SSE4, or beyond (referred to
generically as “SSEx™) technology can also be used to hold
such packed data operands. In one embodiment, 1n storing
packed data and integer data, the registers do not need to
differentiate between the two data types. In one embodi-
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ment, iteger and floating point are either contained 1n the
same register file or diflerent register files. Furthermore, 1n
one embodiment, floating point and integer data may be
stored 1n different registers or the same registers.

[0076] In the examples of the following figures, a number
of data operands are described. FIG. 3 A illustrates various
packed data type representations in multimedia registers
according to one embodiment of the present invention. FIG.
3 A 1llustrates data types for a packed byte 310, a packed
word 320, and a packed doubleword (dword) 330 for 128
bits wide operands. The packed byte format 310 of this
example 1s 128 bits long and contains sixteen packed byte
data elements. A byte 1s defined here as 8 bits of data.
Information for each byte data element 1s stored 1n bit 7
through bit 0 for byte 0, bit 15 through bit 8 for byte 1, bit
23 through bit 16 for byte 2, and finally bit 120 through bat
127 for byte 15. Thus, all available bits are used in the
register. This storage arrangement increases the storage
clliciency of the processor. As well, with sixteen data
clements accessed, one operation can now be performed on
sixteen data elements 1n parallel.

[0077] Generally, a data element 1s an individual piece of
data that 1s stored in a single register or memory location
with other data elements of the same length. In packed data
sequences relating to SSEx technology, the number of data
clements stored 1n a XMM register 1s 128 bits divided by the
length 1 bits of an individual data element. Similarly, 1n
packed data sequences relating to MMX and SSE technol-
ogy, the number of data elements stored 1n an MMX register
1s 64 bits divided by the length 1n bits of an individual data
clement. Although the data types illustrated in FIG. 3A are
128 bit long, embodiments of the present invention can also
operate with 64 bit wide, 256 bit wide, 512 bit wide, or other
s1zed operands. The packed word format 320 of this example
1s 128 bits long and contains eight packed word data
clements. Each packed word contains sixteen bits of infor-
mation. The packed doubleword format 330 of FIG. 3A 1s
128 bits long and contains four packed doubleword data
clements. Fach packed doubleword data element contains
thirty two bits of information. A packed quadword 1s 128 bits
long and contains two packed quad-word data elements.

[0078] FIG. 3B illustrates alternative in-register data stor-
age Tformats. Fach packed data can include more than one
independent data element. Three packed data formats are
illustrated; packed half 341, packed single 342, and packed
double 343. One embodiment of packed half 341, packed
single 342, and packed double 343 contain fixed-point data
clements. For an alternative embodiment one or more of
packed half 341, packed single 342, and packed double 343
may contain floating-point data elements. One alternative
embodiment of packed haltf 341 1s one hundred twenty-eight
bits long containing eight 16-bit data elements. One embodi-
ment of packed single 342 1s one hundred twenty-eight bits
long and contains four 32-bit data elements. One embodi-
ment of packed double 343 1s one hundred twenty-eight bits
long and contains two 64-bit data elements. It will be
appreciated that such packed data formats may be further
extended to other register lengths, for example, to 96-bits,
160-bits, 192-bits, 224-bits, 256-bits, 512-bits or more.

[0079] FIG. 3C illustrates various signed and unsigned
packed data type representations in multimedia registers
according to one embodiment of the present invention.
Unsigned packed byte representation 344 illustrates the
storage of an unsigned packed byte in a SIMD register.
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Information for each byte data element 1s stored in bit seven
through bit zero for byte zero, bit fifteen through bit eight for
byte one, bit twenty-three through bit sixteen for byte two,
etc., and finally bit one hundred twenty through bit one
hundred twenty-seven for byte fifteen. Thus, all available
bits are used 1n the register. This storage arrangement can
increase the storage efliciency of the processor. As well, with
sixteen data elements accessed, one operation can now be
performed on sixteen data elements in a parallel fashion.
Signed packed byte representation 345 illustrates the storage
of a signed packed byte. Note that the eighth bit of every
byte data element 1s the sign indicator. Unsigned packed
word representation 346 1llustrates how word seven through
word zero are stored i a SIMD register. Signed packed
word representation 347 1s similar to the unsigned packed
word 1n-register representation 346. Note that the sixteenth
bit of each word data element 1s the sign indicator. Unsigned
packed doubleword representation 348 shows how double-
word data elements are stored. Signed packed doubleword
representation 349 1s similar to unsigned packed doubleword
in-register representation 348. Note that the necessary sign
bit 1s the thirty-second bit of each doubleword data element.

[0080] FIG. 3D 1s a depiction of one embodiment of an
operation encoding (opcode) format 360, having thirty-two
or more bits, and register/memory operand addressing
modes corresponding with a type of opcode format
described in the “Intel® 64 and IA-32 Intel Architecture
Software Developer’s Manual Combined Volumes 2A and
2B: Instruction Set Reference A-Z.,” which 1s which 1s
available from Intel Corporation, Santa Clara, Calif. on the
world-wide-web (www) at intel.com/products/processor/
manuals/. In one embodiment, and instruction may be
encoded by one or more of fields 361 and 362. Up to two
operand locations per mstruction may be identified, includ-
ing up to two source operand identifiers 364 and 3635. For
one embodiment, destination operand identifier 366 1s the
same as source operand identifier 364, whereas 1n other
embodiments they are different. For an alternative embodi-
ment, destination operand identifier 366 1s the same as
source operand identifier 365, whereas 1n other embodi-
ments they are different. In one embodiment, one of the
source operands 1dentified by source operand 1dentifiers 364
and 365 1s overwritten by the results of the instruction,
whereas 1n other embodiments 1dentifier 364 corresponds to
a source register element and 1dentifier 365 corresponds to
a destination register element. For one embodiment, operand
identifiers 364 and 365 may be used to i1dentity 32-bit or
64-bit source and destination operands.

[0081] FIG. 3E 1s a depiction of another alternative opera-
tion encoding (opcode) format 370, having forty or more
bits. Opcode format 370 corresponds with opcode format
360 and comprises an optional prefix byte 378. An instruc-
tion according to one embodiment may be encoded by one
or more of fields 378, 371, and 372. Up to two operand
locations per instruction may be i1dentified by source oper-
and 1dentifiers 374 and 375 and by prefix byte 378. For one
embodiment, prefix byte 378 may be used to 1dentity 32-bit
or 64-bit source and destination operands. For one embodi-
ment, destination operand identifier 376 1s the same as
source operand identifier 374, whereas 1n other embodi-
ments they are different. For an alternative embodiment,
destination operand identifier 376 i1s the same as source
operand identifier 375, whereas 1n other embodiments they
are different. In one embodiment, an 1nstruction operates on
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one or more of the operands 1dentified by operand 1dentifiers
374 and 375 and one or more operands identified by the
operand 1dentifiers 374 and 375 1s overwritten by the results
of the instruction, whereas 1n other embodiments, operands
identified by 1dentifiers 374 and 375 are written to another
data element 1n another register. Opcode formats 360 and
370 allow register to register, memory to register, register by
memory, register by register, register by immediate, register
to memory addressing specified 1n part by MOD fields 363
and 373 and by optional scale-index-base and displacement

bytes.

[0082] Turning next to FIG. 3F, in some alternative
embodiments, 64-bit (or 128-bit, or 256-bit, or 512-bit or
more) single istruction multiple data (SIMD) arithmetic
operations may be performed through a coprocessor data
processing (CDP) instruction. Operation encoding (opcode)
format 380 depicts one such CDP instruction having CDP
opcode fields 382 and 389. The type of CDP instruction, for
alternative embodiments, operations may be encoded by one
or more of fields 383, 384, 387, and 388. Up to three operand
locations per instruction may be 1dentified, including up to
two source operand 1dentifiers 385 and 390 and one desti-
nation operand identifier 386. One embodiment of the
coprocessor can operate on 8, 16, 32, and 64 bit values. For
one embodiment, an 1struction 1s performed on integer data
clements. In some embodiments, an instruction may be
executed conditionally, using condition field 381. For some
embodiments, source data sizes may be encoded by field
383. In some embodiments, Zero (7), negative (N), carry
(C), and overtlow (V) detection can be done on SIMD fields.

For some instructions, the type of saturation may be encoded
by field 384.

[0083] Turning next to FIG. 3G 1s a depiction of another
alternative operation encoding (opcode) format 397, to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment, corresponding with a type of
opcode format described in the “Intel® Advanced Vector
Extensions Programming Reference,” which 1s available
from Intel Corp., Santa Clara, Calif. on the world-wide-web
(www) at 1ntel.com/products/processor/manuals/.

[0084] The original x86 instruction set provided for a
1-byte opcode with various formats of address syllable and
immediate operand contained i1n additional bytes whose
presence was known from the first “opcode” byte. Addition-
ally, there were certain byte values that were reserved as
modifiers to the opcode (called prefixes, as they had to be
placed before the instruction). When the original palette of
256 opcode bytes (including these special prefix values) was
exhausted, a single byte was dedicated as an escape to a new
set 01 256 opcodes. As vector mstructions (e.g., SIMD) were
added, a need for more opcodes was generated, and the “two
byte” opcode map also was 1nsuflicient, even when
expanded through the use of prefixes. To this end, new
instructions were added in additional maps which use 2
bytes plus an optional prefix as an 1dentifier.

[0085] Additionally, in order to facilitate additional reg-
isters 1 64-bit mode, an additional prefix may be used
(called “REX”") in between the prefixes and the opcode (and

any escape bytes necessary to determine the opcode). In one
embodiment, the REX may have 4 “payload” bits to indicate
use of additional registers in 64-bit mode. In other embodi-
ments 1t may have fewer or more than 4 bits. The general
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format of at least one instruction set (which corresponds
generally with format 360 and/or format 370) 1s 1llustrated
generically by the following:

[prefixes] [rex] escape [escape2] opcode modrm
(etc.)

[0086] Opcode format 397 corresponds with opcode for-
mat 370 and comprises optional VEX prefix bytes 391
(beginming with C4 hex 1n one embodiment) to replace most
other commonly used legacy instruction prefix bytes and
escape codes. For example, FIG. 18 illustrates an embodi-
ment using two fields to encode an instruction, which may
be used when a second escape code 1s present 1n the original
instruction, or when extra bits (e.g, the XB and W fields) 1n
the REX field need to be used. In the embodiment 1llustrated.,
in FIG. 18, legacy escape i1s represented by a new escape
value, legacy prefixes are fully compressed as part of the
“payload” bytes, legacy prefixes are reclaimed and available
for future expansion, the second escape code 1s compressed
in a “map” field, with future map or feature space available,
and new features are added (e.g., increased vector length and
an additional source register specifier).

[0087] An instruction according to one embodiment may
be encoded by one or more of fields 391 and 392. Up to four
operand locations per instruction may be 1dentified by field
391 in combination with source operand 1dentifiers 374 and
375 and 1n combination with an optional scale-index-base
(SIB) identifier 393, an optional displacement 1dentifier 394,
and an optional immediate byte 395. For one embodiment,
VEX prefix bytes 391 may be used to i1dentify 32-bit or
64-bit source and destination operands and/or 128-bit or
256-bit SIMD register or memory operands. For one
embodiment, the functionality provided by opcode format
397 may be redundant with opcode format 370, whereas 1n
other embodiments they are different. Opcode formats 370
and 397 allow register to register, memory to register,
register by memory, register by register, register by imme-
diate, register to memory addressing specified 1 part by
MOD field 373 and by optional (SIB) identifier 393, an

optional displacement identifier 394, and an optional 1imme-
diate byte 395.

[0088] Turning next to FIG. 3H 1s a depiction of another
alternative operation encoding (opcode) format 398, to pro-
vide vector scatter-op and/or gather-op functionality accord-
ing to another embodiment. Opcode format 398 corresponds
with opcode formats 370 and 397 and comprises optional
EVEX prefix bytes 396 (beginning with 62 hex in one
embodiment) to replace most other commonly used legacy
instruction prefix bytes and escape codes and provide addi-
tional functionality. An mstruction according to one embodi-
ment may be encoded by one or more of fields 396 and 392.
Up to four operand locations per instruction and a mask may
be 1dentified by field 396 1n combination with source oper-
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and 1dentifiers 374 and 375 and in combination with an
optional scale-index-base (SIB) i1dentifier 393, an optional
displacement identifier 394, and an optional immediate byte
395. For one embodiment, EVEX prefix bytes 396 may be
used to i1dentity 32-bit or 64-bit source and destination
operands and/or 128-bit, 256-bit or 512-bit SIMD register or
memory operands. For one embodiment, the functionality
provided by opcode format 398 may be redundant with
opcode formats 370 or 397, whereas 1n other embodiments
they are different. Opcode format 398 allows register to
register, memory to register, register by memory, register by
register, register by immediate, register to memory address-
ing, with masks, specified 1n part by MOD field 373 and by
optional (SIB) identifier 393, an optional displacement 1den-
tifier 394, and an optional immediate byte 3935. The general
format of at least one instruction set (which corresponds
generally with format 360 and/or format 370) 1s 1llustrated
generically by the following:

evexl RXBmmmmm WvvvLpp evex4 opcode
modrm [sib] [disp] [imm]

[0089] For one embodiment an instruction encoded
according to the EVEX format 398 may have additional
“payload” bits that may be used to provide vector scatter-op
and/or gather-op functionality with additional new features
such as, for example, a user configurable mask register, or an
additional operand, or selections from among 128-bit, 256-
bit or 512-bit vector registers, or more registers from which
to select, etc.

[0090] For example, where VEX format 397 may be used
to provide vector scatter-op and/or gather-op functionality
with an implicit mask or where the additional operation 1s
unary such as a type conversion, the EVEX format 398 may
be used to provide vector scatter-op and/or gather-op func-
tionality with an explicit user configurable mask and where
the additional operation 1s binary such as addition or mul-
tiplication requiring an additional operand. Some embodi-
ments of EVEX format 398 may also be used to provide
vector scatter-op and/or gather-op functionality and an
implicit completion mask where the additional operation 1s
ternary. Additionally, where VEX format 397 may be used
to provide vector scatter-op and/or gather-op functionality
on 128-bit or 256-bit vector registers, EVEX format 398
may be used to provide vector scatter-op and/or gather-op
functionality on 128-bit, 256-bit, 512-bit or larger (or
smaller) vector registers. Thus mstructions to provide vector
scatter-op and/or gather-op functionality may eliminate
dependencies between instructions for additional operations
and instructions for memory operations such as gathering or
scattering data.

[0091] Example mstructions to provide vector scatter-op
and/or gather-op functionality are illustrated by the follow-
ing examples:

destination/

Instruction 1st source

gather-op Vmml

scatter-op Vmml

sourcel mask source2 sourcel description

Vmm2 Maskl Mem32 Vindex Use Vindex and Mem3?2 to
gather according to Maskl1
into Vmm1 and then apply
Op to Vmm1 and Vmm?2

Vmm2 Maskl Mem32 Vindex Apply Opto Vmml and

Vmm?2 then use Vindex and

Mem32 to scatter according
to Maskl1
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Use Vindex and Mem32 to
gather (1implicit mask) mto
Vmml and then apply Op to
Vmml and Vmm?2

Apply Op to Vmm1 and
Vmm?2 then use Vindex and
Mem32 to scatter (implicit

Use Vindex and Mem32 to
gather according to Maskl
into VmmJ1 and then apply
unary Op to Vmml

Apply unary Op to Vmml
and use Vindex and Mem32
to scatter according to

Use Vindex and Mem32 to

gather according to Maskl
into temp and then apply Op
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to Vmm]l and temp

-continued
destination/

Instruction 1st source sourcel mask source2 source3 description
gather-op Vmml Vmm?2 Mem32 Vindex
scatter-op Vmml Vmm?2 Mem32 Vindex

mask)
gather-op Vmml Maskl Mem32 Vindex
scatter-op Vmml Maskl Mem32 Vindex

Mask]1
gather-op Vmml Maskl Mem32 Vindex
[0092] FIG. 4A 15 a block diagram 1llustrating an in-order

pipeline and a register renaming stage, out-of-order 1ssue/
execution pipeline according to at least one embodiment of
the mnvention. FIG. 4B 1s a block diagram illustrating an
in-order architecture core and a register renaming logic,
out-of-order i1ssue/execution logic to be included 1n a pro-
cessor according to at least one embodiment of the inven-
tion. The solid lined boxes 1n FIG. 4A illustrate the in-order
pipeline, while the dashed lined boxes illustrates the register
renaming, out-of-order issue/execution pipeline. Similarly,
the solid lined boxes in FIG. 4B illustrate the in-order
architecture logic, while the dashed lined boxes illustrates
the register renaming logic and out-of-order 1ssue/execution
logic.

[0093] In FIG. 4A, a processor pipeline 400 includes a
fetch stage 402, a length decode stage 404, a decode stage
406, an allocation stage 408, a renaming stage 410, a
scheduling (also known as a dispatch or issue) stage 412, a
register read/memory read stage 414, an execute stage 416,
a write back/memory write stage 418, an exception handling
stage 422, and a commit stage 424.

[0094] In FIG. 4B, arrows denote a coupling between two
or more units and the direction of the arrow indicates a
direction of data flow between those units. FIG. 4B shows
processor core 490 including a front end unit 430 coupled to
an execution engine unit 450, and both are coupled to a
memory unit 470.

[0095] The core 490 may be a reduced instruction set
computing (RISC) core, a complex instruction set comput-
ing (CISC) core, a very long instruction word (VLIW) core,
or a hybrid or alternative core type. As yet another option,
the core 490 may be a special-purpose core, such as, for
example, a network or communication core, compression
engine, graphics core, or the like.

[0096] The front end unit 430 includes a branch prediction
unit 432 coupled to an mnstruction cache unit 434, which 1s
coupled to an instruction translation lookaside butler (TLB)
436, which 1s coupled to an mstruction fetch unit 438, which
1s coupled to a decode unit 440. The decode unit or decoder
may decode 1nstructions, and generate as an output one or
more micro-operations, micro-code entry points, microin-

structions, other instructions, or other control signals, which
are decoded from, or which otherwise reflect, or are derived
from, the original instructions. The decoder may be imple-
mented using various different mechanisms. Examples of
suitable mechanisms include, but are not limited to, look-up
tables, hardware implementations, programmable logic
arrays (PLAs), microcode read only memories (ROMs), etc.
The 1nstruction cache unit 434 1s further coupled to a level
2 (L2) cache unit 476 1n the memory unit 470. The decode
umt 440 1s coupled to a rename/allocator unit 452 1n the
execution engine unit 450.

[0097] The execution engine unmit 450 includes the rename/
allocator unit 452 coupled to a retirement unit 454 and a set
of one or more scheduler unit(s) 456. The scheduler unit(s)
456 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 456 1s coupled to the physical register
file(s) unit(s) 458. Each of the physical register file(s) units
458 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, etc.,
status (e.g., an instruction pointer that 1s the address of the
next mstruction to be executed), etc. The physical register
f1le(s) unit(s) 458 1s overlapped by the retirement unit 454 to
illustrate various ways 1n which register renaming and
out-of-order execution may be implemented (e.g., using a
reorder bufler(s) and a retirement register file(s), using a
future file(s), a history buller(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.).
Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types of registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 454 and the
physical register file(s) unit(s) 438 are coupled to the execu-
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tion cluster(s) 460. The execution cluster(s) 460 includes a
set of one or more execution units 462 and a set of one or
more memory access units 464. The execution umts 462
may perform various operations (e.g., shiits, addition, sub-
traction, multiplication) and on various types of data (e.g.,
scalar tloating point, packed integer, packed floating point,
vector integer, vector floating point). While some embodi-
ments may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
456, physical register file(s) unit(s) 458, and execution
cluster(s) 460 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar tloating point/packed integer/packed floating point/
vector 1nteger/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster,
and 1n the case of a separate memory access pipeline, certain
embodiments are implemented 1n which only the execution
cluster of this pipeline has the memory access unit(s) 464).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
1ssue/execution and the rest in-order.

[0098] The set of memory access units 464 1s coupled to
the memory unit 470, which includes a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (LL2)
cache unit 476. In one exemplary embodiment, the memory
access units 464 may include a load unit, a store address
unit, and a store data unit, each of which 1s coupled to the
data TLB unit 472 1n the memory unit 470. The L2 cache
unit 476 1s coupled to one or more other levels of cache and
eventually to a main memory.

[0099] By way of example, the exemplary register renam-
ing, out-of-order i1ssue/execution core architecture may
implement the pipeline 400 as follows: 1) the instruction
tetch 438 performs the fetch and length decoding stages 402
and 404; 2) the decode unit 440 performs the decode stage
406; 3) the rename/allocator unit 452 pertforms the allocation
stage 408 and renaming stage 410; 4) the scheduler unit(s)
456 performs the schedule stage 412; 5) the physical register
file(s) unit(s) 458 and the memory umt 470 perform the
register read/memory read stage 414; the execution cluster
460 perform the execute stage 416; 6) the memory unit 470
and the physical register file(s) unit(s) 458 perform the write
back/memory write stage 418; 7) various units may be
involved in the exception handling stage 422; and 8) the
retirement unit 454 and the physical register file(s) unit(s)
4358 perform the commit stage 424.

[0100] The core 490 may support one or more mstructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM

istruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.).

[0101] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so 1n a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core 1s simultane-
ously multithreading), or a combination thereof (e.g., time
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sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
0gy).

[0102] While register renaming 1s described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes a separate nstruction and data cache units 434/474
and a shared L2 cache unit 476, alternative embodiments
may have a single iternal cache for both instructions and
data, such as, for example, a Level 1 (1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that 1s external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

[0103] FIG. 51s ablock diagram of a single core processor
and a multicore processor 500 with integrated memory
controller and graphics according to embodiments of the
invention. The solid lined boxes in FIG. § illustrate a
processor 500 with a single core 502A, a system agent 510,
a set of one or more bus controller units 516, while the
optional addition of the dashed lined boxes illustrates an
alternative processor 500 with multiple cores S02A-N, a set
of one or more mntegrated memory controller unit(s) 314 1n
the system agent umt 510, and an mtegrated graphics logic

508.

[0104] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 506, and external memory (not shown) coupled to the
set of integrated memory controller units 514. The set of
shared cache units 506 may 1nclude one or more mid-level
caches, such as level 2 (L2), level 3 (LL3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While 1n one embodiment a ring
based interconnect unit 512 interconnects the integrated
graphics logic 508, the set of shared cache units 506, and the
system agent unit 510, alternative embodiments may use any
number of well-known techniques for interconnecting such
units.

[0105] In some embodiments, one or more of the cores
502A-N are capable of multi-threading. The system agent
510 includes those components coordinating and operating
cores S02A-N. The system agent unit 310 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 502A-N and the
integrated graphics logic 508. The display unit 1s for driving
one or more externally connected displays.

[0106] The cores S02A-N may be homogenous or hetero-
geneous 1n terms ol architecture and/or nstruction set. For
example, some of the cores 502A-N may be in order while
others are out-of-order. As another example, two or more of
the cores 502A-N may be capable of execution the same
instruction set, while others may be capable of executing
only a subset of that instruction set or a different instruction
set

[0107] The processor may be a general-purpose processor,
such as a Core™ 13, 15, 17, 2 Duo and QQuad, Xeon™,
Itantum™, XScale™ or StrongARM™ processor, which are

available from Intel Corporation, of Santa Clara, Calif.

Alternatively, the processor may be from another company,
such as ARM Holdings, Ltd, MIPS, etc. The processor may
be a special-purpose processor, such as, for example, a
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network or communication processor, compression engine,
graphics processor, co-processor, embedded processor, or
the like. The processor may be implemented on one or more
chups. The processor 300 may be a part of and/or may be
implemented on one or more substrates using any of a
number of process technologies, such as, for example,

BiCMOS, CMOS, or NMOS.

[0108] FIGS. 6-8 are exemplary systems suitable for
including the processor 500, while FIG. 9 1s an exemplary
system on a chip (SoC) that may include one or more of the
cores 302. Other system designs and configurations known
in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, net-
work devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general,
a huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

[0109] Referring now to FIG. 6, shown 1s a block diagram
of a system 600 1n accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 6135, which are coupled to graphics memory
controller hub (GMCH) 620. The optional nature of addi-

tional processors 6135 1s denoted 1n FIG. 6 with broken lines.

[0110] Each processor 610,615 may be some version of
the processor 500. However, 1t should be noted that 1t 1s
unlikely that itegrated graphics logic and integrated
memory control units would exist 1n the processors 610,615.
FIG. 6 illustrates that the GMCH 620 may be coupled to a
memory 640 that may be, for example, a dynamic random
access memory (DRAM). The DRAM may, for at least one
embodiment, be associated with a non-volatile cache.

[0111] The GMCH 620 may be a chipset, or a portion of
a chipset. The GMCH 620 may communicate with the
processor(s) 610, 615 and control interaction between the
processor(s) 610, 615 and memory 640. The GMCH 620
may also act as an accelerated bus interface between the
processor(s) 610, 615 and other elements of the system 600.
For at least one embodiment, the GMCH 620 communicates
with the processor(s) 610, 615 via a multi-drop bus, such as

a frontside bus (FSB) 695.

[0112] Furthermore, GMCH 620 1s coupled to a display
645 (such as a flat panel display). GMCH 620 may include
an integrated graphics accelerator. GMCH 620 1s further
coupled to an mput/output (I/O) controller hub (ICH) 650,
which may be used to couple various peripheral devices to
system 600. Shown for example 1n the embodiment of FIG.
6 1s an external graphics device 660, which may be a discrete
graphics device coupled to ICH 650, along with another
peripheral device 670.

[0113] Alternatively, additional or different processors
may also be present in the system 600. For example,
additional processor(s) 615 may include additional proces-
sors(s) that are the same as processor 610, additional pro-
cessor(s) that are heterogeneous or asymmetric to processor
610, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processor. There can be a variety of
differences between the physical resources 610, 615 1n terms
of a spectrum of metrics of merit including architectural,
micro-architectural, thermal, power consumption character-
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1stics, and the like. These differences may effectively mani-
fest themselves as asymmetry and heterogeneity amongst
the processors 610, 615. For at least one embodiment, the
various processors 610, 615 may reside 1n the same die
package.

[0114] Retferring now to FIG. 7, shown 1s a block diagram
of a second system 700 1n accordance with an embodiment
of the present invention. As shown 1n FIG. 7, multiprocessor
system 700 1s a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of the pro-
cessor 500 as one or more of the processors 610,615.

[0115] While shown with only two processors 770, 780, 1t
1s to be understood that the scope of the present invention 1s
not so limited. In other embodiments, one or more additional
processors may be present 1n a given processor.

[0116] Processors 770 and 780 are shown including inte-
grated memory controller umts 772 and 782, respectively.
Processor 770 also includes as part of its bus controller units
point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown 1n FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

[0117] Processors 770, 780 may each exchange informa-
tion with a chipset 790 via individual P-P interfaces 752, 754
using point to point interface circuits 776, 794, 786, 798.
Chipset 790 may also exchange information with a high-
performance graphics circuit 738 via a high-performance
graphics interface 739.

[0118] A shared cache (not shown) may be included 1n
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in

the shared cache 11 a processor 1s placed to a low power
mode.

[0119] Chipset 790 may be coupled to a first bus 716 via
an 1terface 796. In one embodiment, first bus 716 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0O

interconnect bus, although the scope of the present invention
1s not so limited.

[0120] As shown in FIG. 7, various I/O devices 714 may
be coupled to first bus 716, along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment, second bus 720 may be a low pin count (LPC)
bus. Various devices may be coupled to second bus 720
including, for example, a keyboard and/or mouse 722,
communication devices 727 and a storage unit 728 such as
a disk drive or other mass storage device which may include
instructions/code and data 730, in one embodiment. Further,
an audio I/O 724 may be coupled to second bus 720. Note
that other architectures are possible. For example, instead of
the point-to-point architecture of FIG. 7, a system may
implement a multi-drop bus or other such architecture.

[0121] Referring now to FIG. 8, shown 1s a block diagram
of a third system 800 in accordance with an embodiment of
the present invention Like elements 1n FIG. 7 and FIG. 8
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bear like reference numerals, and certain aspects of FIG. 7
have been omitted from FIG. 8 in order to avoid obscuring,
other aspects of FIG. 8.

[0122] FIG. 8 illustrates that the processors 870, 880 may

include mtegrated memory and 1/0 control logic (“CL™") 872
and 882, respectively. For at least one embodiment, the CL
872, 882 may include integrated memory controller units
such as that described above 1n connection with FIGS. § and
7. In addition. CL 872, 882 may also include I/O control
logic. FIG. 8 illustrates that not only are the memories 832,
834 coupled to the CL 872, 882, but also that I/O devices
814 are also coupled to the control logic 872, 882. Legacy
I/O devices 815 are coupled to the chipset 890.

[0123] Referring now to FIG. 9, shown 1s a block diagram
of a SoC 900 1n accordance with an embodiment of the
present invention. Similar elements 1n FIG. 5 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 9, an interconnect
unit(s) 902 1s coupled to: an application processor 910 which
includes a set of one or more cores 502A-N and shared cache
unit(s) 506; a system agent umt 510; a bus controller unit(s)
516; an integrated memory controller unit(s) 514; a set of
one or more media processors 920 which may include
integrated graphics logic 508, an image processor 924 for
providing still and/or video camera functionality, an audio
processor 926 for providing hardware audio acceleration,
and a video processor 928 for providing video encode/
decode acceleration; an static random access memory
(SRAM) unit 930; a direct memory access (DMA) unit 932;
and a display unit 940 for coupling to one or more external
displays.

[0124] FIG. 10 illustrates a processor containing a central
processing unit (CPU) and a graphics processing unit
(GPU), which may perform at least one mnstruction accord-
ing to one embodiment. In one embodiment, an instruction
to perform operations according to at least one embodiment
could be performed by the CPU. In another embodiment, the
instruction could be performed by the GPU. In still another
embodiment, the instruction may be performed through a
combination of operations performed by the GPU and the
CPU. For example, 1n one embodiment, an instruction 1n
accordance with one embodiment may be received and
decoded for execution on the GPU. However, one or more
operations within the decoded instruction may be performed
by a CPU and the result returned to the GPU {for final
retirement of the instruction. Conversely, 1n some embodi-
ments, the CPU may act as the primary processor and the
GPU as the co-processor.

[0125] In some embodiments, instructions that benefit
from highly parallel, throughput processors may be per-
tormed by the GPU, while mstructions that benefit from the
performance of processors that benefit from deeply pipe-
lined architectures may be performed by the CPU. For
example, graphics, scientific applications, financial applica-
tions and other parallel workloads may benefit from the
performance of the GPU and be executed accordingly,
whereas more sequential applications, such as operating

system kernel or application code may be better suited for
the CPU.

[0126] In FIG. 10, processor 1000 includes a CPU 1005,
GPU 1010, image processor 1015, video processor 1020,
USB controller 1025, UART controller 1030, SPI/SDIO
controller 1035, display device 1040, High-Definition Mul-
timedia Interface (HDMI) controller 1045, MIN controller
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1050, flash memory controller 1055, dual data rate (DDR)
controller 1060, security engine 1065, and I°S/I°C (Inte-
grated Interchip Sound/Inter-Integrated Circuit) interface
1070. Other logic and circuits may be included in the
processor of FIG. 10, including more CPUs or GPUs and
other peripheral interface controllers.

[0127] One or more aspects of at least one embodiment
may be implemented by representative data stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium
(“tape’) and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor. For example, IP cores, such as
the Cortex™ family of processors developed by ARM
Holdings, Ltd. and Loongson IP cores developed the Insti-
tute of Computing Technology (ICT) of the Chinese Acad-
emy of Sciences may be licensed or sold to various custom-
ers or licensees, such as Texas Instruments, Qualcomm,
Apple, or Samsung and implemented in processors produced
by these customers or licensees.

[0128] FIG. 11 shows a block diagram illustrating the
development of IP cores according to one embodiment.
Storage 1130 1includes simulation software 1120 and/or
hardware or software model 1110. In one embodiment, the
data representing the IP core design can be provided to the
storage 1130 via memory 1140 (e.g., hard disk), wired
connection (e.g., internet) 1150 or wireless connection 1160.
The IP core information generated by the simulation tool and
model can then be transmitted to a fabrication facility where
it can be fabricated by a third party to perform at least one
instruction 1n accordance with at least one embodiment.

[0129] In some embodiments, one or more nstructions
may correspond to a first type or architecture (e.g., x86) and
be translated or emulated on a processor of a different type
or architecture (e.g., ARM). An 1nstruction, according to one
embodiment, may therefore be performed on any processor
or processor type, including ARM, x86, MIPS, a GPU, or
other processor type or architecture.

[0130] FIG. 12 illustrates how an instruction of a first type
1s emulated by a processor of a different type, according to
one embodiment. In FIG. 12, program 12035 contains some
instructions that may perform the same or substantially the
same function as an instruction according to one embodi-
ment. However the instructions of program 1205 may be of
a type and/or format that 1s different or incompatible with
processor 1215, meaming the instructions of the type in
program 1205 may not be able to be executed natively by the
processor 1215. However, with the help of emulation logic,
1210, the instructions of program 1205 are translated into
instructions that are natively capable of being executed by
the processor 1215. In one embodiment, the emulation logic
1s embodied 1n hardware. In another embodiment, the emu-
lation logic 1s embodied 1n a tangible, machine-readable
medium contaiming soitware to translate instructions of the
type 1n the program 1205 into the type natively executable
by the processor 1215. In other embodiments, emulation
logic 1s a combination of fixed-function or programmable
hardware and a program stored on a tangible, machine-
readable medium. In one embodiment, the processor con-
tains the emulation logic, whereas in other embodiments, the
emulation logic exists outside of the processor and is pro-
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vided by a third party. In one embodiment, the processor 1s
capable of loading the emulation logic embodied 1 a
tangible, machine-readable medium containing software by
executing microcode or firmware contained 1n or associated
with the processor.

[0131] FIG. 13 is a block diagram contrasting the use of a
soltware 1struction converter to convert binary instructions
in a source instruction set to binary instructions 1n a target
istruction set according to embodiments of the mvention.
In the illustrated embodiment, the instruction converter 1s a
software instruction converter, although alternatively the
instruction converter may be implemented 1n software, firm-
ware, hardware, or various combinations thereotf. FIG. 13
shows a program i1n a high level language 1302 may be
compiled using an x86 compiler 1304 to generate x86 binary
code 1306 that may be natively executed by a processor with
at least one x86 1nstruction set core 1316. The processor with
at least one x86 1nstruction set core 1316 represents any
processor that can perform substantially the same functions
as a Intel processor with at least one x86 1nstruction set core
by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 1nstruction set core, 1n order to achieve
substantially the same result as an Intel processor with at
least one x86 1nstruction set core. The x86 compiler 1304
represents a compiler that 1s operable to generate x86 binary
code 1306 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 1instruction set core 1316. Similarly,
FIG. 13 shows the program 1n the high level language 1302
may be compiled using an alternative instruction set com-
piler 1308 to generate alternative istruction set binary code
1310 that may be natively executed by a processor without
at least one x86 instruction set core 1314 (e.g., a processor
with cores that execute the MIPS 1nstruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1312 1s used to convert the
x86 binary code 1306 into code that may be natively
executed by the processor without an x86 instruction set
core 1314. This converted code 1s not likely to be the same
as the alternative instruction set binary code 1310 because
an 1nstruction converter capable of this 1s dithcult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive 1nstruction set. Thus, the instruction converter 1312
represents software, firmware, hardware, or a combination
thereol that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1306.

[0132] FIG. 14 illustrates a flow diagram for one embodi-
ment of a process 1401 to provide vector gather-op func-
tionality. Process 1401 and other processes herein disclosed
are performed by processing blocks that may comprise
dedicated hardware or soitware or firmware operation codes
executable by general purpose machines or by special pur-
pose machines or by a combination of both.

[0133] In processing block 1409 of process 1401, a dupli-

cate 1s optionally created from the mask to be used when the
second operation 1s performed. Processing then proceeds to
processing block 1410 where a next value 1s read from each

Dec. 14, 2017

field of a plurality of mask fields 1n a mask register. It will
be appreciated that while the process 1401 1s illustrated as
being 1terative, 1t may be preferable to perform many of the
operations 1n parallel when possible. Each of the plurality of
mask fields in the mask register may correspond to an oflset
for a data element in a memory, and for each field in the
mask register, one value indicates the corresponding element
has not been gathered from the memory and a second value
indicates that the corresponding data element does not need
to be gathered, or has already been gathered from the
memory. In one embodiment the mask register 1s an archi-
tecturally visible register. In another embodiment the mask
register may be implicit, for example with all fields mitially
indicating that the corresponding element has not been
gathered from the memory. In processing block 1420, the
fields of the mask register are compared to the first value
indicating that the corresponding eclement has not been
gathered from the memory. If it 1s not equal to the first value,
processing proceeds to processing block 1450 where the
gathering operation reiterates until finished. Otherwise 1n
processing block 1430 the corresponding data element 1s
gathered from the memory and stored into a vector register
having a plurality of data fields, a portion of which to store
the gathered data elements. Upon successiul completion of
processing block 1430, the corresponding field in the mask
register 1s changed 1n processing block 1440 to the second
value indicating that the corresponding data element has
already been gathered from the memory.

[0134] It will be appreciated that 1n one alternative
embodiment the duplicate mask of processing block 1409
may be built by setting a field 1n a duplicate mask register
to the first value for use by the second operation when the
corresponding field in the mask register 1s changed 1n
processing block 1440 to the second value. Thus permitting
the completion of the second operation under a partially
duplicated mask and restarting a gather-op instruction after
a memory fault using the new mask could be made to track
only elements that still needed the execution of the gather-op
istruction.

[0135] In processing block 1450, a determination 1s made
whether the gathering operation 1s finished (i.e. each field of
the plurality of mask fields 1n the mask register has the
second value). If not processing reiterates starting in pro-
cessing block 1410. Otherwise processing proceeds to pro-
cessing block 1460 where the second operation 1s per-
formed. In one embodiment the second operation may be
performed using the duplicate mask from optional process-
ing block 1409. In another embodiment the second operation
may be performed without using a mask. Then 1n processing
block 1470 the results of the SIMD gather-op struction are
stored 1n a vector register.

[0136] FIG. 15 illustrates a flow diagram for another
embodiment of a process 1501 to provide vector gather-op
functionality. In processing block 1505 of process 1501, a
gather-operation instruction 1s decoded. Processing proceeds
in processing block 1509 where a duplicate 1s optionally
created from the mask to be used when the second operation
1s performed. Processing then proceeds to processing block
1510 where a next value 1s read from each field of a plurality
of mask fields in a mask register. Again, while the process
1501 1s illustrated as being iterative, many of the operations
may be performed 1n parallel when possible. In processing
block 1520, the next field of the mask register 1s compared
to the first value to indicate that the corresponding element
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has not been gathered from the memory. I1 1t 1s not equal to
the first value, processing proceeds to processing block 15350
where the gathering operation reiterates until finished. Oth-
erwise 1n processing block 1530 the corresponding data
clement 1s gathered from the memory and 1n processing
block 1535 stored 1nto a vector destination register having a
plurality of data fields, a portion of which to store the
gathered data elements. Upon successiul completion of
processing block 1533, the corresponding field 1n the mask
register 1s changed 1n processing block 1540 to the second
value indicating that the corresponding data element has
already been gathered from the memory.

[0137] Again, 1t will be appreciated that 1n an alternative
embodiment the duplicate mask of processing block 1509
may be built by setting a field 1n a duplicate mask register
to the first value for use by the second operation when the
corresponding field in the mask register 1s changed in
processing block 1540 to the second value. Thus permitting,
the completion of the second operation under a partially
duplicated mask and restarting a gather-op instruction after
a memory fault using the new mask could be made to track
only elements that still needed the execution of the gather-
operation instruction.

[0138] In processing block 1550, a determination 1s made
whether the gathering operation 1s finished (1.e. each field of
the plurality of mask fields 1n the mask register has the
second value). IT not processing reiterates starting 1n pro-
cessing block 1510. Otherwise processing proceeds to pro-
cessing block 1565 where the second operation 1s performed
on elements from the destination register and elements from
a second operand register. In one embodiment the second
operation may be performed using the duplicate mask from
optional processing block 1509. In another embodiment the
second operation may be performed without using a mask.
Then 1n processing block 1570 the results of the SIMD
gather-operation instruction are stored in the vector desti-
nation register.

[0139] It will be appreciated that dependencies between
the gather operation and a second operation may be efli-
ciently handled by hardware, especially in an out of order
micro-architecture, thereby permitting further compiler opti-
mizations and improved instruction throughput.

[0140] FIG. 16 illustrates a flow diagram for one embodi-
ment of a process 1601 to provide vector scatter-op func-
tionality. In processing block 1610 of process 1601, the first
operation 1s performed on elements from a first operand
register and corresponding elements from a second operand
register. Processing then proceeds to processing block 1620
where a next value 1s read from a field of a plurality of mask
fields 1n a mask register. It will be appreciated that while the
process 1601 1s 1illustrated as being iterative, 1t may be
preferable to perform many of the operations 1n parallel
when possible. Each of the plurality of mask fields in the
mask register may correspond to an oflset for a data element
in a memory, and for each field in the mask register, one
value indicates the corresponding element has not been
scattered to the memory and a second value indicates that the
corresponding data element does not need to be scattered, or
has already been scattered to the memory. In one embodi-
ment the mask register 1s an architecturally visible register.
In another embodiment the mask register may be implicit,
for example with all fields initially indicating that the
corresponding element has not been scattered to the
memory. In processing block 1630, the fields of the mask
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register are compared to the first value indicating that the
corresponding element has not been scattered to the
memory. If 1t 1s not equal to the first value, processing
proceeds to processing block 1660 where the scattering
operation reiterates until finished. Otherwise in processing
block 1640 the corresponding data element 1s scattered to
the memory. Upon successtul completion of processing
block 1640, the corresponding field in the mask register 1s
changed 1n processing block 1650 to the second value
indicating that the corresponding data element has already
been scattered to the memory.

[0141] In processing block 1660, a determination 1s made
whether the scattering operation 1s finished (1.e. each field of
the plurality of mask fields 1n the mask register has the
second value). If not processing reiterates starting in pro-
cessing block 1620. Otherwise processing proceeds to pro-
cessing block 1670 where the results of the SIMD scatter-op
instruction are stored in a vector register.

[0142] FIG. 17 illustrates a flow diagram for another
embodiment of a process 1701 to provide vector scatter-op
functionality. In processing block 1705 of process 1701, a
scatter-operation instruction 1s decoded. Processing pro-
ceeds 1n processing block 1720 where a next value 1s read
from a field of a plurality of mask fields in a mask register.
It will be appreciated that while the process 1701 1s 1llus-
trated as being iterative, it may be prelerable to perform
many of the operations in parallel when possible.

[0143] In one embodiment the mask register 1s an archi-
tecturally visible register. In another embodiment the mask
register may be implicit, for example with all fields mitially
indicating that the corresponding eclement has not been
scattered to the memory. In processing block 1730, the fields
of the mask register are compared to the first value indicat-
ing that the corresponding element has not been scattered to
the memory. If 1t 1s not equal to the first value, processing
proceeds to processing block 1760 where the scattering
operation reiterates until finished. Otherwise 1n processing
block 1710 the first operation 1s performed on corresponding
clements from a first operand/destination register and cor-
responding elements from a second operand register. In
processing block 1740 the corresponding data element 1s
scattered to the memory. Upon successiul completion of
processing block 1740, the corresponding field in the mask
register 1s changed in processing block 1750 to the second
value indicating that the corresponding data element has
already been scattered to the memory.

[0144] In processing block 1760, a determination 1s made
whether the scattering operation 1s finished (1.e. each field of
the plurality of mask fields 1in the mask register has the
second value). If not, processing reiterates starting in pro-
cessing block 1720. Otherwise processing proceeds to pro-
cessing block 1770 where the results of the SIMD scatter-op
instruction are stored 1n a vector register.

[0145] Embodiments of the present mnvention mvolve an
istruction to provide vector scatter-op and/or gather-op
functionality where dependencies between the gather or
scatter operation and another operation may be efliciently
handled by hardware, especially 1n an out-of-order micro-
architecture, thereby permitting further compiler optimiza-
tions and improved instruction throughput.

[0146] Embodiments of the mechanisms disclosed herein
may be implemented 1n hardware, soitware, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
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programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
clements), at least one mput device, and at least one output
device.

[0147] Program code may be applied to input instructions
to perform the functions described herein and generate
output information. The output information may be applied
to one or more output devices, in known fashion. For
purposes of this application, a processing system includes
any system that has a processor, such as, for example; a
digital signal processor (DSP), a microcontroller, an appli-
cation specific integrated circuit (ASIC), or a microproces-
SOF.

[0148] The program code may be implemented 1n a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented 1n assembly or machine language,
it desired. In fact, the mechanisms described herein are not
limited 1n scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0149] One or more aspects of at least one embodiment
may be implemented by representative mstructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0150] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritable’s (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMSs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMSs), magnetic
or optical cards, or any other type of media suitable for
storing electronic instructions.

[0151] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0152] In some cases, an 1nstruction converter may be
used to convert an instruction from a source instruction set
to a target istruction set. For example, the instruction
converter may translate (e.g., using static binary translation,
dynamic binary translation including dynamic compilation),
morph, emulate, or otherwise convert an instruction to one
or more other instructions to be processed by the core. The
instruction converter may be implemented in software, hard-

Dec. 14, 2017

ware, firmware, or a combination thereof. The instruction
converter may be on processor, ofl processor, or part on and
part ofl processor.

[0153] Thus, techmiques for performing one or more
instructions according to at least one embodiment are dis-
closed. While certain exemplary embodiments have been
described and shown 1n the accompanying drawings, it 1s to
be understood that such embodiments are merely 1llustrative
of and not restrictive on the broad invention, and that this
invention not be limited to the specific constructions and
arrangements shown and described, since various other
modifications may occur to those ordinarily skilled 1n the art
upon studying this disclosure. In an area of technology such
as this, where growth 1s fast and further advancements are
not easily foreseen, the disclosed embodiments may be
readily modifiable 1n arrangement and detail as facilitated by
enabling technological advancements without departing
from the principles of the present disclosure or the scope of
the accompanying claims.

What 1s claimed 1s:

1. A processor comprising;

a decoder to decode a single-instruction multiple-data
(SIMD) 1nstruction, the SIMD 1nstruction to indicate a
first source register that 1s to have a first plurality of
data elements, to indicate a second source register that
1s to have a second plurality of data elements that are
cach to correspond to a different data element of the
first plurality of data elements, to indicate a third source
register that 1s to have a plurality of indices that are
cach to correspond to a different data element of the
first plurality of data elements; and

one or more execution units, coupled with the decoder,
and responsive to the decoded SIMD instruction, to:

perform a operation on each of data elements of the first
plurality of data elements, and a corresponding data
clement of the second plurality of data elements, to
generate a corresponding result data element; and

store each result data element to a location 1n memory that
1s to be identified by a corresponding index of the
plurality of indices.

2. The processor of claim 1, wherein the operation 1s
binary.

3. The processor of claim 2, wherein the operation 1s
addition.

4. The processor of claim 2, wherein the operation 1s
multiplication.

5. The processor of claim 1, wheremn the operation 1s
ternary

6. The processor of claam 1, wheremn the first source
register comprises S12-bits, and wherein the data elements
of the first source register are one of 32-bit data elements and
64-bit data elements.

7. A processor comprising:

a decoder to decode a single-instruction multiple-data
(SIMD) instruction, the SIMD 1nstruction to indicate a
first source register that 1s to have a first plurality of
data elements, to indicate a second source register that
1s to have a second plurality of data elements that are
cach to correspond to a different data element of the
first plurality of data elements, to indicate a third source
register that 1s to have a plurality of indices that are
cach to correspond to a different data element of the
first plurality of data elements, and to indicate a mask
register that 1s to have a plurality of mask fields that are
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cach to correspond to a different data element of the
first plurality of data elements; and

one or more execution units, coupled with the decoder,
and responsive to the decoded SIMD instruction, to:

perform a binary operation, which 1s one of addition and
multiplication, on each of the data elements of the first
plurality of data elements, which corresponds to a mask
field that 1s to have a first value, and a corresponding
data element of the second plurality of data elements,
to generate corresponding result data elements; and

store each of the result data elements to a location 1n
memory that 1s to be identified by a corresponding
index of the plurality of indices.

8. The processor of claim 7, wherein the operation 1s

multiplication.

9. The processor of claim 7, wherein the operation 1s
addition.

10. The processor of claim 7, wherein each mask field 1s
a single bit, and wherein each first value 1s binary one.

11. The processor of claim 7, wherein the one or more
execution units, responsive to the decoded SIMD instruc-
tion, are to perform the operation on each of the data
clements of the first plurality of data elements that 1s to
correspond to the mask field that 1s to have the first value
before storing any of the result data elements to memory.

12. The processor of claim 7, wherein the one or more
execution units, responsive to the decoded SIMD 1nstruc-
tion, are also to change a value of the corresponding mask
field from the first value to a second value, for each of the
result data elements that are to be stored to the memory,
wherein each mask field with the first value 1s to indicate that
corresponding result data element has not yet been, but
needs to be, stored to memory.

13. A processor comprising;

a decoder to decode a single-instruction multiple-data
(SIMD) 1nstruction, the SIMD 1nstruction to indicate a
first source register that 1s to have a first plurality of
data elements, to 1indicate a second source register that
1s to have a second plurality of data elements that are
cach to correspond to a different data element of the
first plurality of data elements, to indicate a third source
register that 1s to have a plurality of indices that are
cach to correspond to a different data element of the
first plurality of data elements, and to indicate a mask
register that 1s to have a plurality of mask fields that are
cach to correspond to a different data element of the
first plurality of data elements; and

one or more execution units, coupled with the decoder,
and responsive to the decoded SIMD 1instruction, to:

perform an operation, which 1s one of a binary operation
and a ternary operation, on each of the data elements of
the first plurality of data elements, which corresponds
to a mask field that 1s to have a first value, and a
corresponding data element of the second plurality of
data elements, to generate corresponding result data
elements; and

store each of the result data elements to a location 1n
memory that 1s to be identified by a corresponding
index of the plurality of indices.
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14. The processor of claim 13, wherein the one or more
execution units, responsive to the decoded SIMD 1nstruc-
tion, are to perform the operation on each of the data
clements of the first plurality of data elements that 1s to
correspond to the mask field that 1s to have the first value
before storing any of the result data elements to memory.

15. The processor of claim 13, wherein the one or more
execution units, responsive to the decoded SIMD 1nstruc-
tion, are also to change a value of the corresponding mask
field from the first value to a second value, for each of the
result data elements that are to be stored to the memory,
wherein each mask field with the first value 1s to indicate that
corresponding result data element has not yet been, but
needs to be, stored to memory.

16. The processor of claim 13, wherein the operation 1s
binary and 1s multiplication.

17. The processor of claim 13, wherein the operation 1s
binary and 1s addition.

18. The processor of claim 13, wherein the operation 1s
ternary.

19. A processor comprising:

a decoder to decode a single-instruction multiple-data
(SIMD) 1nstruction, the SIMD 1nstruction to indicate a
first source register that 1s to have a first plurality of
data elements, to indicate a second source register that
1s to have a second plurality of data elements that are
cach to correspond to a different data element of the
first plurality of data elements, to indicate a third source
register that 1s to have a plurality of indices that are
cach to correspond to a different data element of the
first plurality of data elements, and to indicate a mask
register that 1s to have a plurality of mask bits that are
cach to correspond to a different data element of the
first plurality of data elements; and

one or more execution units, coupled with the decoder,
and responsive to the decoded SIMD instruction, to:

perform a binary operation, which 1s one of addition and
multiplication, on each of the data elements of the first
plurality of data elements, which corresponds to a mask
bit that 1s to have a first value of one, and a corre-
sponding data element of the second plurality of data
clements, to generate corresponding result data ele-
ments;

store each of the result data elements to a location in
memory that 1s to be identified by a corresponding
index of the plurality of indices; and

change a value of the corresponding mask bit from the
first value of one to a value of zero, for each of the
result data elements that are to be stored to the memory,
wherein each mask bit with the first value of one 1s to
indicate that a corresponding result data element has
not yet been, but needs to be, stored to memory.

20. The processor of claim 19, wherein the one or more
execution units, responsive to the decoded SIMD 1nstruc-
tion, are to perform the operation on each of the data
clements of the first plurality of data elements that 1s to
correspond to the mask field that 1s to have the first value
before storing any of the result data elements to memory.
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