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(37) ABSTRACT

A method for automatically mapping program functions to
distributed heterogeneous platforms based on hardware
attributes and specified constraints 1s disclosed. The method
includes receiving a plurality of program functions and
determining constraint information for each. The method
further includes determining attributes of a plurality of
hardware processing elements, wherein ones of the plurality
of hardware processing elements have different attributes
with respect to other ones of the hardware processing
clements. The plurality of program functions may be auto-
matically mapped for execution on at least a subset of the
hardware processing elements, wherein the mapping 1s
based on constraint information and the attributes.
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AUTOMATICALLY MAPPING PROGRAM
FUNCTIONS TO DISTRIBUTED
HETEROGENEOUS PLATFORMS BASED ON
HARDWARE ATTRIBUTES AND SPECIFIED
CONSTRAINTS

PRIORITY INFORMAITON

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/316,284, filed on Mar. 31, 2016
and titled “Automatically Mapping Program Functions to
Distributed Heterogenous Platforms Based on Hardware
Attributes and Specified Constraints™, and 1s fully mncorpo-
rated by reference herein.

BACKGROUND

Technical Field

[0002] This disclosure relates to computer processing and
more particularly to mapping program code to distributed
heterogeneous hardware elements.

Description of the Related Art

[0003] Applications for computer-based systems are typi-

cally growing i complexity and computing hardware 1s
available 1n many forms. Some hardware elements perform
certain tasks better than others. For example, field-program-
mable gate arrays (FPGAs) may be best suited for certain
tasks while more traditional central processing units (CPUs)
may be better for other tasks.

[0004] Many systems such as PCI-Extended (PXI) sys-
tems allow customizable connections of different hardware
clements via a high-speed communication backplane. A
heterogeneous PXI system may include, in some implemen-
tations multiple processors, FPGAs, fixed-function circuitry
modules, and/or custom input/output (I/O) circuitry. The
way 1 which a complex application 1s distributed across
available processing elements may be key to successiul
system deployment. Given performance requirements and
platform complexities, however, a good mapping may not be
intuitive to find, and an exhaustive exploration may not be
teasible even for modestly sized platform configurations.
[0005] Further, improvements may be desired i tech-
niques for specilying constraints for applications such as
timing constraints, relationships between program functions,
bandwidth requirements, etc.

SUMMARY

[0006] A method for automatically mapping program
functions to distributed heterogeneous platiorms based on
hardware attributes and specified constraints 1s disclosed. In
one embodiment, a method includes receiving a plurality of
program functions and determining constraint information
with each. The method further includes determining attri-
butes of a plurality of hardware processing elements,
wherein ones of the plurality of hardware processing ele-
ments have diflerent attributes with respect to other ones of
the hardware processing elements. The plurality of program
functions may be mapped for execution on at least a subset
of the hardware processing elements, wherein the mapping
1s based on constraint information and the attributes.

[0007] In one embodiment, a computer system may auto-
matically perform the mapping of program functions to
hardware processing elements. Additionally, after a mapping,

Oct. 5, 2017

has been generated, the computer system may simulate
operation of the mapping on the selected hardware process-
ing elements. If the mapping 1s deemed unsatisfactory, or
performance improvements are desired, one or more addi-
tional mapping iterations may be performed. The computer
system may also deploy the program functions, as mapped,
to the selected hardware processing elements.

[0008] A non-transitory computer readable medium stor-
ing instructions that, when executed by a processor, carry
out an embodiment of the methodology discussed herein 1s
also contemplated. Similarly, the present disclosure contem-
plated a computer system that carries out embodiments of
the methodology described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The following detailed description makes reference
to the accompanying drawings, which are now briefly
described.

[0010] FIG. 1 1s an exemplary system having an auto-
mated mapping system according to one embodiment.
[0011] FIGS. 2A-2C 1illustrate various aspects of an “Out
of Many, One” context for various embodiments.

[0012] FIG. 3A 1s a block diagram illustrating an exem-
plary embodiment of a target system.

[0013] FIG. 3B i1s a block diagram 1llustrating an embodi-
ment ol a system that includes multiple hierarchically-
arranged Peripheral Component Interconnect Express
(PCle) switches and multiple field programmable gate arrays
(FPGASs).

[0014] FIG. 4A 1s a diagram 1illustrating a multi-rate data
flow representation of one embodiment of a software pro-
gram having multiple program functions.

[0015] FIG. 4B 1s a diagram 1illustrating a multi-rate data
flow representation of one embodiment of a software pro-
gram mapped to another hardware configuration.

[0016] FIG. 4C 1s a diagram illustrating a multi-rate data
flow representation of one embodiment of a software pro-
gram mapped to a third hardware configuration

[0017] FIG. 5 15 a block diagram 1llustrating one embodi-
ment of an exemplary data flow program.

[0018] FIG. 6 1s a block diagram illustrating another
embodiment of a system that includes multiple hierarchi-
cally-arranged Peripheral Component Interconnect Express
(PCle) switches and multiple field programmable gate arrays
(FPGASs).

[0019] FIG. 7 1s a block diagram illustrating an exemplary
mapping ol functionality for one embodiment of a multi-
input multi-output (MIMO) wireless transmitter to particular
hardware elements.

[0020] FIG. 8 1s a flow diagram illustrating one embodi-
ment of a method for automatically mapping program func-
tions to distributed heterogeneous hardware platiforms.
[0021] FIG. 9 1s a diagram 1illustrating one embodiment of
an exemplary hardware configuration to which automatic
mapping of program functions may be performed.

[0022] FIG. 10 1s a diagram 1llustrating one embodiment
ol a platiorm model for the hardware embodiment of FIG.
9.

[0023] FIG. 11 1s a diagram illustrating a multi-rate data
flow representation of another embodiment of a software
program having multiple program functions.

[0024] FIG. 12 15 a diagram illustrating mapping of vari-
ous functions of the program of FIG. 11 to various hardware
clements.
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[0025] FIG. 13 1s a diagram 1llustrating an OOMO frame-
work for one embodiment.

[0026] FIG. 14 1s a diagram 1llustrating further details of
one embodiment of an OOMO framework.

[0027] FIG. 15 1s an 1llustration of a multi-rate datatlow
diagram with timing configurations for one embodiment of
a program.

[0028] FIG. 16 1s an illustration of inputs and outputs for
one embodiment of a method for generating a timeline
dependency graph.

[0029] FIG. 17 1s exemplary timeline dependency graph
for the program embodiment of FIG. 15.

[0030] FIG. 18 15 a flow diagram illustrating one embodi-
ment of a method for generating a timeline dependency
graph.

[0031] FIG. 19 1s a block diagram of one embodiment of
a computer system configured to carry out the various
methodologies discussed herein.

[0032] Although the embodiments disclosed herein are
susceptible to various modifications and alternative forms,
specific embodiments are shown by way of example 1n the
drawings and are described herein 1n detail. It should be
understood, however, that drawings and detailed description
thereto are not intended to limait the scope of the claims to the
particular forms disclosed. On the contrary, this application
1s intended to cover all modifications, equivalents and alter-
natives falling within the spirit and scope of the disclosure
ol the present application as defined by the appended claims.
[0033] This disclosure i1ncludes references to ‘‘one
embodiment,” “a particular embodiment,” “some embodi-
ments,” “various embodiments,” or “an embodiment.” The
appearances ol the phrases “in one embodiment,” “in a
particular embodiment,” “in some embodiments,” “in vari-
ous embodiments,” or “in an embodiment” do not necessar-
1ly refer to the same embodiment. Particular features, struc-
tures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

[0034] Withuin this disclosure, different entities (which
may variously be referred to as “units,” *“‘circuits,” other
components, etc.) may be described or claimed as “config-
ured” to perform one or more tasks or operations. This
formulation—{entity] configured to [perform one or more
tasks|—is used herein to refer to structure (1.e., something,
physical, such as an electronic circuit). More specifically,
this formulation 1s used to indicate that this structure 1s
arranged to perform the one or more tasks during operation.
A structure can be said to be “configured to” perform some
task even 11 the structure 1s not currently being operated. A
“credit distribution circuit configured to distribute credits to
a plurality of processor cores” 1s intended to cover, for
example, an integrated circuit that has circuitry that per-
forms this function during operation, even 1f the integrated
circuit 1n question 1s not currently being used (e.g., a power
supply 1s not connected to it). Thus, an entity described or
recited as “configured to” perform some task refers to
something physical, such as a device, circuit, memory
storing program 1instructions executable to implement the
task, etc. This phrase 1s not used herein to refer to something
intangible.

[0035] The term “configured to” 1s not intended to mean
“configurable to.” An unprogrammed FPGA, for example,
would not be considered to be “configured to” perform some
specific function, although 1t may be “configurable to”
perform that function after programming.,

Oct. 5, 2017

[0036] Reciting 1n the appended claims that a structure 1s
“configured to” perform one or more tasks 1s expressly
intended not to mvoke 35 U.S.C. §112() for that claim
clement. Accordingly, none of the claims 1n this application
as filed are intended to be interpreted as having means-plus-
function elements. Should Applicant wish to invoke Section
112(1) during prosecution, 1t will recite claim elements using
the “means for” [performing a function] construct.

[0037] As used herein, the term “based on™ 1s used to
describe one or more factors that aflect a determination. This
term does not foreclose the possibility that additional factors
may aflect the determination. That 1s, a determination may
be solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B 1s a factor that 1s used to determine A or that aflects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s determined based solely on B. As used
herein, the phrase “based on 1s synonymous with the phrase
“based at least 1n part on.”

[0038] As used herein, the phrase “in response to”
describes one or more factors that trigger an eflect. This
phrase does not foreclose the possibility that additional
factors may aflect or otherwise trigger the effect. That 1s, an
cllect may be solely 1n response to those factors, or may be
in response to the specified factors as well as other, unspeci-
fied factors. Consider the phrase “perform A 1n response to
B.” This phrase specifies that B 1s a factor that triggers the
performance of A. This phrase does not foreclose that
performing A may also be 1n response to some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s performed solely 1n response to B.
[0039] As used herein, the terms “first,” “second,” etc. are
used as labels for nouns that they precede, and do not imply
any type of ordering (e.g., spatial, temporal, logical, etc.),
unless stated otherwise. For example, 1n a register file
having eight registers, the terms “first register” and “second
register” can be used to refer to any two of the eight
registers, and not, for example, just logical registers O and 1.
[0040] When used 1n the claims, the term *“‘or” 1s used as
an inclusive or and not as an exclusive or. For example, the
phrase “at least one of X, y, or z” means any one of X, y, and
z, as well as any combination thereof.

[0041] In the following description, numerous speciiic
details are set forth to provide a thorough understanding of
the disclosed embodiments. One having ordinary skill 1n the
art, however, should recognize that aspects of disclosed
embodiments might be practiced without these specific
details. In some instances, well-known circuits, structures,
signals, computer program instruction, and techniques have
not been shown 1n detail to avoid obscuring the disclosed
embodiments.

2L

DETAILED DESCRIPTION

[0042] This specification includes references to “one
embodiment” or “an embodiment.” The appearances of the
phrases “in one embodiment™ or “in an embodiment” do not
necessarily refer to the same embodiment. Particular fea-
tures, structures, or characteristics may be combined in any
suitable manner consistent with this disclosure.

[0043] Various units, circuits, or other components may be
described or claimed as “configured to” perform a task or
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tasks. In such contexts, “configured to” 1s used to connote
structure by indicating that the umits/circuits/components
include structure (e.g., circuitry) that performs the task or
tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when
the specified unit/circuit/component 1s not currently opera-
tional (e.g., 1s not on). The units/circuits/components used
with the “configured to” language include hardware—ifor
example, circuits, memory storing program instructions
executable to implement the operation, etc. Reciting that a
unit/circuit/component 1s “configured to” perform one or
more tasks 1s expressly itended not to invoke 35 U.S.C.
§112(1) for that unit/circuit/component.

Terms

[0044] The following 1s a glossary of terms used in the
present application:

[0045] Memory Medium—Any of various types of
memory devices or storage devices. The term “memory
medium” 1s intended to include an installation medium, e.g.,
a CD-ROM, floppy disks, or tape device; a computer system
memory or random access memory such as DRAM, DDR
RAM, SRAM, EDO RAM, Rambus RAM, etc.; a non-
volatile memory such as a Flash, magnetic media, e.g., a
hard drive, or optical storage; registers, or other similar
types of memory elements, etc. The memory medium may
include other types of memory as well or combinations
thereol. In addition, the memory medium may be located in
a first computer system in which the programs are executed,
or may be located in a second different computer system
which connects to the first computer system over a network,
such as the Internet. In the latter instance, the second
computer system may provide program instructions to the
first computer for execution. The term “memory medium”™
may include two or more memory mediums which may
reside 1n different locations, e.g., in different computer
systems that are connected over a network. The memory
medium may store program instructions (e.g., embodied as
computer programs) that may be executed by one or more
Processors.

[0046] Carrier Medium—a memory medium as described
above, as well as a physical transmission medium, such as
a bus, network, and/or other physical transmission medium
that conveys signals such as electrical, electromagnetic, or
digital signals.

[0047] Computer System—any of various types of com-
puting or processing systems, including a personal computer
system (PC), mainirame computer system, workstation,
network appliance, Internet appliance, personal digital assis-
tant (PDA), personal communication device, smart phone,
television system, grid computing system, or other device or
combinations of devices. In general, the term “computer
system’ can be broadly defined to encompass any device (or
combination of devices) having at least one processor that
executes instructions from a memory medium.

[0048] Processing Element—refers to various elements or
combinations of elements. Processing elements include, for
example, circuits such as an ASIC (Application Specific
Integrated Circuit), portions or circuits of individual proces-
sor cores, entire processor cores, individual processors,
programmable hardware devices such as a field program-
mable gate array (FPGA), and/or larger portions of systems
that include multiple processors.
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[0049] Automatically—refers to an action or operation
performed by a computer system (e.g., software executed by
the computer system) or device (e.g., circuitry, program-
mable hardware elements, ASICs, etc.), without user input
directly specitying or performing the action or operation.
Thus the term “automatically” 1s 1n contrast to an operation
being manually performed or specified by the user, where
the user provides mput to directly perform the operation. An
automatic procedure may be initiated by input provided by
the user, but the subsequent actions that are performed
“automatically” are not specified by the user, 1.e., are not
performed “manually”, where the user specifies each action
to perform. For example, a user filling out an electronic form
by selecting each field and providing input specitying infor-
mation (e.g., by typing imformation, selecting check boxes,
radio selections, etc.) 1s filling out the form manually, even
though the computer system must update the form in
response to the user actions. The form may be automatically
filled out by the computer system where the computer
system (e.g., software executing on the computer system)
analyzes the fields of the form and fills 1n the form without
any user mput specifying the answers to the fields. As
indicated above, the user may invoke the automatic filling of
the form, but 1s not 1nvolved 1n the actual filling of the form
(e.g., the user 1s not manually specitying answers to fields
but rather they are being automatically completed). The
present specification provides various examples ol opera-
tions being automatically performed 1n response to actions
the user has taken.

Overview of Framework 1for Deploying Application
Function on Distributed Heterogeneous Platforms

[0050] FIG. 1 shows an example system that includes an
automated mapping system 1350, according to some embodi-
ments. In the illustrated embodiment, the automated map-
ping system 150 recerves specified program functions 110A-
110M, specified constraints 130, and hardware attribute
information 140. Based on this information, automated
mapping system 150 maps the program functions to hard-
ware elements 120A-120N. The automated mapping system
150 may be implemented as a software program that per-
forms the mapping function automatically, 1.e., without
manual user input required to specity the mapping.

[0051] Program functions 110 may be specified using an
application model that may include a library of building
blocks. The program functions may be automatically speci-
fied using one or more 1nstruction set architecture supported
by the application model.

[0052] Specified constraints 130 may include, without
limitation: timing constraints, cost constraints, quality-oi-
result constraints, relationship between functions, etc. These
constraints may be specified by the user and used to both
automatically select hardware elements and automatically
determine a mapping of program functions to hardware
elements. In some embodiments, hardware elements are
selected from a set of available hardware to suggest the
mapping while 1n other embodiments a fixed set of hardware
clements (e.g., that have already been purchased) 1s used for
the mapping.

[0053] Hardware attribute information 140 may specity,
without limitation: bandwidth constraints, throughput con-

straints, area constraints, number of slices, clock frequency,
availability of parallel processing capability, etc.
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[0054] Hardware elements 120 may include program-
mable hardware elements, general purpose processors, digi-
tal signal processors, fixed function circuitry, communica-
tions hardware, etc. Hardware elements 120 may vary
among a given type of element. For example, hardware
clements 120 may include multiple different FPGAs with
different capabailities.

[0055] In some embodiments, an “out of many one”
(OOMOQO) framework may simplily deployment of large and
complex domain specific software applications on to a
hardware platform of heterogeneous targets. As applications
grow bigger and more complex, optimizing variables (or
improving variables) such as cost, power, and/or perfor-
mance typically requires domain expertise and specialized
knowledge of not only the software that the application 1s
written 1n, but the hardware platform on which the applica-
tion 1s deployed. Selecting the right combination of hard-
ware targets, 1.e. choosing between FPGAs, sequential pro-
cessors, parallel processors, etc. 1s not an easy task. Many
programmers do not have such specialization across the
spectrum of hardware and software. Further, improving
implementation details may mmpact the productivity of
domain experts, who could spend their time better focusing
on algorithmic challenges.

[0056] FIG. 2A shows an example Y-structure flow dia-
gram 1n the OOMO context. In some embodiments, the
OOMO framework allows an automated system level syn-
thesis and exploration to automatically deploy complex
applications on distributed heterogeneous platforms. The
framework may include a well-defined and analyzable appli-
cation model and a library of platform building blocks with
relevant performance characteristics. This may be included
in platform model 220. Application logic 210 may include
program functions specified by a developer, which may
include various library functions. The analysis and mapping
step 230 may employ a toolbox of strategies, €.g., trading off
elliciency of computation and quality of results, to automati-
cally determine an organization of the application compo-
nents on the platform. Subsequent performance evaluation
240 feeds back revisions to the application model and
platform configuration. Eventually, the automatically deter-
mined mapping may be used to automatically deploy the
application logic 210 to computing hardware. This auto-
matic operation may enable an application domain expert to
quickly explore the space of system configurations and
discover suitable deployments without getting bogged down
with lower level implementation details.

[0057] Example domains of applications that can benefit
from the OOMO technology are radio frequency (RF),
communications, vision, and distributed control applica-
tions. These applications are typically deployed on hetero-
geneous hardware platforms that are composed of macro and
micro instruction processors, FPGAs, real-time processors,
and fixed function circuitry. These processing elements are
typically interconnected 1n a distributed network along with
memories and 1/O.

[0058] Components of the OOMO {framework may
include:

[0059] 1. Application model specification

[0060] 2. Platform description

[0061] 3. Performance and resource characterization
[0062] 4. Constraints specification

[0063] 3. Analysis and mapping
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[0064] 6. Feedback and visualization
[0065] 7. Implementation and deployment
[0066] In some embodiments the application model 1s

specified 1n an intuitive graphical environment. The envi-
ronment may provide language features customized for an
application domain. Underlying the application model 1s a
well-defined and analyzable model of computation, where
the model of computation may be procedural, data flow, etc.
The user can describe functions and their mteractions and
turther can contemplate functional execution characteristics
of his application at this level. Additionally, the user can
integrate pre-existing functional blocks and IP into his
application. The language encapsulates the formal properties
of the application model while presenting an abstraction that
enables a domain expert to easily specily an application. The
language captures the tasks, data dependencies, memory and
I/O 1nteractions, and relevant performance and resource
constraints in the application. In addition, it provides fea-
tures to explicitly specily large-scale task, data, and pipeline
level concurrency that 1s representative of modern high
performance distributed applications.

[0067] The platform description captures the processing
and networking elements that can be composed to form a
suitable platform for the application. The user can specily a
complete platform configuration based on cost and perfor-
mance requirements. Alternatively, in some embodiments
the OOMO framework can suggest a platform that 1s best
suited for the application after analyzing the application and
its requirements and constraints. The platform may include
both computation and communication elements. In some
embodiments, some or all platform elements are pre-char-
acterized and their characterized properties are available to
the analysis components.

[0068] The OOMO approach may allow separation of
concerns between the application and platform specification.
One goal 1s to enable the user to design application algo-
rithms without any assumption about platform characteris-
tics. The performance and resource characterization step
then determines the execution properties of the tasks and
communications 1n the application on the processing and
networking elements 1n the platform description. For
example, execution time and memory footprint are repre-
sentative characteristics for a task on an struction set
processor. The analysis and mapping component may sub-
sequently use this characterization to select suitable process-
ing components and network topologies, and determine a
viable distribution of the application components on the
platiorm.

[0069] Given an application, platform, and performance
and resource characteristics, there are still many possible
ways 1n which the application can be mapped and deployed.
Constraint specification allows the user to specily con-
straints like throughput, latency, power, cost, or any other
requirement that should be satisfied or optimized in a
successiul deployment. These constraints guide analysis and
mapping to explore the design space and determine a system
configuration that satisfies all requirements. Additional
implementation constraints include athinities or bindings
between parts of the application or I/O and specific hardware
clements, groupings of specific application tasks, and
explicit precedences or exclusions between tasks.

[0070] The analysis and mapping step 230 may include a
check that an application model 1s valid with respect to the
underlying model of computation. The analysis and map-
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ping step 230 may then determine a mapping of the appli-
cation onto a platform selected by the user or from a
platform configuration assembled from the processing and
networking elements 1n the platform description. In some
embodiments, the mapping 1s displayed visually; making 1t
clear to the user as to which parts of their application goes
on which hardware component. The mapping respects the
constraints such as throughput, latency, cost, and other
implementation constraints. Thus, 1n one embodiment, the
result of the mapping 1s an allocation of application tasks to
processing elements and communications to network links
so that system deployment 1s viable.

[0071] In some embodiments, once a mapping is created
the framework provides a simulation and visualization envi-
ronment that the user can use to check the correctness of his
application. From development to deployment, simulation
may be available at different points to help the user check the
functional and timing correctness of their application. The
teedback may be important in enabling the user to explore
the design space by revising the application model, platform
description, and constraints. Additionally, this may allow the
user to verily that the generated mapping functions correctly
and meets performance goals and specifications.

[0072] For purposes of system-level simulation we con-
sider the canonical cyber-physical system (CPS) shown 1n
FIG. 2B, where the cyber-part A100 1s composed of a
network of heterogeneous computing elements on which an
application program executes, and that i1s connected via
input/output ports to a physical plant A110, which 1itself can
be distributed 1n nature.

[0073] In the more general sense, a simulation of the CPS
can be viewed at three levels. A first level, as shown 1n B100
of FIG. 2C, considers only the application’s functional
behavior, independent of the cyber part implementation. The
10 only provides a connection mechanism to 1dentity what
parts of the application are connected to what logical parts
of the plant. No timing information can be extracted from
this level of simulation, and only possible order of opera-
tions may be inferred.

[0074] A second level of simulation, as shown 1n B110, 1s
one where the application 10 nodes have specific timing
specification configurations. Even though the application 1s
not running on a specific cyber part with corresponding
execution time, the system can extract timing information
from the simulation because the 10 1nteraction 1s assumed to
take place at the specified times. As 1n the first level, the
computation 1s taken to happen 1 zero time. From this
simulation, the user i1s only able to extract information about
the application interacting with the plant at specified times,
but the user 1s not able to understand 1f the application would
be able to run on a given cyber part at the speed necessary
to satisty the specified 10 rate.

[0075] A third level of simulation 1s shown 1n B120, where
the application 1s considered mapped to a cyber part, and can
be simulated based on known execution models for that
cyber part. With this level the simulation can produce
precise timing not only at the application logical timing
level, but actually would help identify if the application can
run at speed to satisty the 10 rate requirements.

[0076] For the second and third levels of simulation, the
model of the plant can be simulated 1n a timed manner as
well, and 1s typically described using continuous time
semantics, which provide very detailed accurate behavior of
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the plant. The simulation of the cyber part and plant may be
done separately, but 1n a coupled manner, 1.¢. co-simulation.
[0077] Finally, when the user 1s satisfied with the platform
configuration and mapping generated by the framework and
has checked the correctness of these generated results using
simulation, the framework may provide tools to deploy the
application on to the platform. The deployment step may
synthesize the software and hardware components for the
distributed heterogeneous targets in the platform, the com-
munication links between these targets, and any 1nitializa-
tions needed to successtully run the application.

Exemplary Hardware Systems

[0078] FIG. 3A 1s a block diagram illustrating an exem-
plary target system. A target system may include only a
portion of the 1llustrated elements and/or may include other
clements not shown, in various embodiments. Speaking
generally, the diagrams included herein (including the
appendices) are shown for exemplary purposes and are not
intended to limit the scope of the present disclosure.
[0079] In the illustrated embodiment, the target system
includes one or more field-programmable gate arrays (FP-
GAs) 310 (referred to generally as programmable hardware
clements), one or more computing devices with central
processing units (CPUs) 320, fixed function circuitry 330
(e.g., application-specific integrated circuits (ASICS)), sen-
sor(s) 340, and device(s) under test 350. In the illustrated
embodiment, the various different types of hardware pro-
cessing elements are coupled via communication hardware
360. Communication hardware 360 may include an of
various appropriate communication channels using various
different protocols. Communications hardware may include
hierarchical switching arrangements, peer-to-peer commu-
nications, buses, multiplexers, fabrics, etc. Each of the
different types of hardware may further include heteroge-
neous elements, e.g., FPGA(s) 310 may include multiple
different types of FPGAs with different capabilities. In other
embodiments any of various elements may be coupled to I/O
nodes of the system, and communications with these ele-
ments may be referred to as “side-eflects.”

[0080] FIG. 3B 1s a block diagram 1llustrating a particular
system that includes multiple hierarchically-arranged
Peripheral Component Interconnect Express (PCle)
switches 370A-M and multiple FPGAs 380A-N. Attributes
for the communications portion of this system may include
bandwidth on each link and the number of separate channels
that each link can support. FPGAs 380 may include multiple
different types of FPGAs which may have diflerent attri-
butes such as number of slices, number of registers, avail-
able random access memory (RAM), etc. The illustrated
system may have a particular bandwidth model for unidi-
rectional and/or bidirectional tratlic and bandwidth may be
shared (linearly 1n some implementations) between compet-
ing streams. For exemplary purposes, consider a system with
838 MB/s bandwidth for unidirectional tratlic and 761 MB/s
bandwidth for bidirectional traflic (using 128-byte packets).
The attributes discussed above may be taken into consider-
ation when mapping program functions to the illustrated
hardware.

Exemplary Mappings based on Bandwidth and Area Con-
straints

[0081] FIG. 4A shows a multi-rate data flow representa-
tion of a software program with program functions A-I. In
the illustrated embodiment, the number to the right of each
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function indicates its production characteristics while the [0088] FEnforce bandwidth constraint on link (S1-F1)

number to the left of each function indicates 1ts consumption
characteristics. For example, function E, i the illustrated
embodiment, fires after 1t receives 180 units at each 1nput
and generates 30 unmits of output. This data flow program 1s
“multi-rate” because the production and consumption values
on a given link can be different.

[0082] The program shown 1n FIG. 4A may be mapped to
hardware (e.g., the hardware shown in FIG. 3B) 1n various
ways. Some of the mappings, however, may not be accept-
able given hardware attributes. For example, FI1G. 4B shows
a mapping where functions A and B are mapped to the same
hardware element 460, functions C and D are mapped to the
same hardware element 470, functions E, F, and G are
mapped to the same hardware element 480 and functions H
and I are mapped to the same hardware element 490.

[0083] Now consider an exemplary situation where the
hardware elements 460-490 are FPGAs of FIG. 3B and the

functions A-D generate 750 MB/s of data. In the mapping of
FIG. 4B, the communications between functions A-D and

tunctions E-F require 3000 MB/s of P2P bandwidth, which
may not be feasible using the switches of FIG. 3B.

[0084] In FIG. 4C, on the other hand, a different mapping
1s used. In this mapping, the communications between
hardware elements 410, 420, and 430 require 250 MB/s of
P2P bandwidth and the communications between hardware
clements 430 and 440 require 500 MB/s of P2P bandwidth
using the exemplary situation above, which may be achiev-
able using the system of FIG. 3B. Thus, in some embodi-
ments, an OOMO system 1s configured to determine mul-
tiple mappings and select a mapping that satisfies user
constraints based on the attributes of available hardware
resources. For example, an OOMO system may generate the
mapping of FIG. 4C rather than the mapping of FIG. 4B for
the exemplary situation described above.

[0085] FIG. 5 1s a block diagram illustrating another
exemplary data flow program while FIG. 6 illustrates a
particular implementation of FIG. 3B. The following equa-
tions provide examples for how to determine mappings of
functions to hardware to satisty bandwidth and area attri-
butes. In various embodiments, similar techniques may be
used for various other attributes.

[0086] In the examples below, 1t 1s assumed that the
throughput out of function vO 1s Y4 samples a cycle. This
means that the output channels from v1 are each at 3
samples per cycle and that the throughput on the output of
v2 and v3 1s Vaooo samples per cycle. Given particular
production and consumption counts and required through-
put, an OOMO system may be configured to determine how
to partition the functions so that the combined throughputs
of all the channels going through each link on the hardware
1s within the available bandwidth.

[0087] For example, for the link between FPGA F1 and
switch S1, the following equation describes how the max
bandwidth on this link for a given mapping must be less than
or equal to the available bandwidth k samples per cycle.
Each link 1s stmilarly evaluated below.

((vO on F1,v1 not on F1)?V4:0)+
((vl on F1,v2 not on F1)7V8:0)+
((vl on F1,v3 not on F1)?45:0)+
((v2 on F1,v4 not on F1)7V4000:0)+

((v3 on F1,v4 not on F1)?Vac00:0)<=k

((vO not on F1,vl on F1)?%4:0)+
(vl not on F1,v2 on F1)?7Y%:0)+
((v1 not on F1,v3 on F1)718:0)+
((v2 not on ¥1,v4 on F1)7Va000:0)+

((v3 not on F1,v4 on F1)?Ya000:0)<=k

[0089] Enforce bandwidth constraint on link (F2-S1)

((vO on F2,v1 not on F2)?7V4:0)+
((vl on F2,v2 not on F2)745:0)+
((vl on F2,v3 not on F2)714:0)+
((v2 on F2,v4 not on F2)?V4000:0)+

((v3 on F2,v4 not on F2)?Vao00:0)<=k

[0090] Enforce bandwidth constraint on link (S1-F2)

((vO not on F2,v1 on F2)7V4:0)+
((v1 not on F2,v2 on F2)7Y%:0)+
((v1 not on F2,v3 on F2)7Y%:0)+
((v2 not on F2,v4 on F2)?%a000:0)+

((v3 not on F2,v4 on F2)?Va000:0)<=k

[0091] Enforce bandwidth constraint on link (F4-S2)

((vO on F4,v1l not on F4)7V4:0)+
((vl on F4,v2 not on F4)?15:0)+
((vl on F4,v3 not on F4)745:0)+
((v2 on F4,v4 not on F4)?V4000:0)+

((v3 on F4,v4 not on F4)?Y4000:0)<=k

[0092] Eniforce bandwidth constraint on link (S2-F4)

((vO not on F4,v1 on F4)7V4:0)+
((v1 not on F4,v2 on F4)714:0)+
((v1 not on F4,v3 on F4)7Y%:0)+
((v2 not on 4,v4 on F4)?Ya000:0)+

((v3 not on F4,v4 on F4)?Vao00:0)<=k

[0093] Eniforce bandwidth constraint on link (F3-S2)

((vO on F3,vl not on F3)7V4:0)+
((vl on F3,v2 not on F3)71%:0)+
((vl on F3,v3 not on F3)714:0)+
((v2 on F3,v4 not on F3)7V4000:0)+

((v3 on F3, v4 not on £3)7Va000:0)<=k

[0094] Eniforce bandwidth constraint on link (S2-F3)

((vO not on #3,vl on £3)7V4:0)+

((vl not on £3,v2 on F3)7Y:0)+
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((v1 not on F3,v3 on F3)746:0)+
((v2 not on F3,v4 on F3)7Va000:0)+

v3 not on £3,v4 on F3)?Vao000:0)<=k
(¢

[0095] Similarly enforce bandwidth constraints on the
links between switches:

Enforce bandwidth constraint on link (S1-S0)

((vO on F'1 or F2,vl not on F1 and F2)?V4:0)+
((vl on F1 or F2,v2 not on F1 and F2)?1%:0)+
((vl on F'1 or F2,v3 not on F1 and F2)?%%:0)+
((v2 on F1 or F2,v4 not on F1 and F2)?%4000:0)+

((v3 on F'1 or F2,v4 not on F1 and F2)?V4000:0)<=k

[0096] Eniforce bandwidth constraint on link (S0-S1)

((vO on F3 or F4,vl not on F3 and F4)?V4:0)+
((vl on I3 or F4,v2 not on I3 and F4)?15:0)+
((vl on F3 or F4,v3 not on 3 and F4)7%%:0)+
((v2 on F3 or F4,1v4 not on F3 and F4)?%4000:0)+

((v3 on F3 or F4,v4 not on F3 and F4)?Va000:0)<=k

[0097] Enforce bandwidth constraint on link (S0-S2)

((vO on F'1 or F2,vl not on F1 and F2)?%4:0)+
((vl on F1 or F2,v2 not on F1 and F2)?v5:0)+
((vl on F'1 or F2,v3 not on F1 and F2)?v%:0)+
((v2 on F1 or F2,v4 not on F1 and F2)?%4000:0)+

((v3 on F'1 or F2,v4 not on F1 and F2)?V4000:0)<=k

[0098] Enforce bandwidth constraint on link (S2-S0)

((vO on F3 or F4,vl not on F3 and F4)?%4:0)+
((vl on F3 or F4,v2 not on F3 and F4)71%:0)+
((vl on F3 or F4,v3 not on F3 and F4)?v5:0)+
((v2 on F3 or /4,14 not on F3 and F4)?Va000:0)+

((v3 on F3 or F4,v4 not on F3 and F4)?Va000:0)<=k

[0099] An OOMO system may perform similar calcula-
tions for each proposed mapping to determine whether the
mappings are feasible.

[0100] Similarly, for a given mapping, an OOMO system
may enforce area constraints. For example, consider a
situation 1n with vO requires 100 units of area (e.g., slices,
gates, etc.), vl requires 1000 units, v2 requires 2000 units,
v3 requires 1500 units, and v4 requires 100 units. In this
example, to determine whether a particular mapping falls
within area constraints for F1 (which has 3000 units of area),
an OOMO system may use the following equation.

((vO on £1)?7100:0+
(vl on £1)71000:0+

(v2 on £1)72000:0+
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(v3 on £1)71500:0+

(v4 on F1)7100:0))<=3000

[0101] For example, 1n a mapping in which v1 and v2 are
both mapped to F1, this may use the entire area of F1,
meaning that other functions cannot be mapped to F1 1n such
a mapping.

[0102] In the example above, 1t 1s assumed the data
production and consumption counts of program functions
are known, which helps determine relative throughputs of all
channels between program functions in the application.
Nevertheless, the analysis to determine feasible mappings
can be extended to general multi-rate datatlow programs
where data production and consumption counts of some or
all program functions are unknown. In this situation, the
relative throughputs of channels can be determined by
simulating the program functions based on a representative
input test bench, possibly provided by the user. The data
rates on all channels can be monitored during the simulated
execution. This method provides an estimate of relative
throughputs of channels, which can be subsequently used in
the analysis to determine feasible mappings.

Wireless Transmitter Example

[0103] FIG. 7 1s a block diagram illustrating an exemplary
mapping of functionality for a multi-input multi-output
(MIMOQO) wireless transmitter to particular hardware ele-
ments. The wireless transmitter may be comprised 1n a user
equipment (UE) device. In the 1llustrated embodiment, hard-
ware element 720 includes one or more traditional CPUs and
1s configured to generate carrier data, configure hardware,
and perform application control. In the 1llustrated embodi-
ment, hardware element 730 and 750 are programmable
hardware elements (FPGAs) that are configured to perform
MIMO encoding, generate reference and synchronization
signals, map resource elements, perform mverse fast Fourier
transforms (IFFTs) and perform upconversion. In the illus-
trated embodiment, DAC and front-end hardware elements
740A-D are fixed function circuitry coupled to antennas for
transmission. In some embodiments, an OOMO system 1s
configured to generate the illustrated mapping.

[0104] In some embodiments, hardware element 720
includes graphical data flow program code (e.g., LabVIEW
code) running on a CPU machine such as a PXle-8133

device. In some embodiments, hardware elements 730 and
750 are PXIe-7965 FlexRIO devices. In some embodiments,

circuitry 740 includes 5791 DACs and PXle-5611 upcon-
verters. In other embodiments, any of various particular
hardware elements may be implemented. In some embodi-
ments, a given programmable hardware element (e.g.,
FPGA) may be programmed with IP from multiple different
entities.

[0105] The 1illustrated mapping may be based on band-
width constraints between elements, area constraints, timing,
constraints, groupings or exclusions of program functions,
ctc. Based on these constraints and attributes of available
hardware, the illustrated mapping may be one mapping that
achieves desired functionality. If there are multiple possible
mappings, an OOMO system may be configured to select a
mapping to maximize a particular desired characteristic such
as hardware cost, power consumption, number of hardware
elements, etc.

[0106] In addition to partitioning and mapping, an OOMO
system may also perform scheduling of program functions
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given time specifications and latency constraints. This may
be particularly relevant for real time control applications
with strict timing requirements.

[0107] In some embodiments, an OOMO system may
select appropriate IP for deployment on a particular hard-
ware target from among IP from multiple different vendors,
for example.

[0108] In some embodiments, OOMO systems are con-
figured to determine mappings for a provided set of hard-
ware. In some embodiments, OOMO also provides guided
teedback during design time and in turn enables design
space exploration. For example, an OOMO system may
explore and suggest platform configurations given an appli-
cation model, without user specification of particular hard-
ware targets.

[0109] In various embodiments, the disclosed mapping
techniques may be performed automatically by a computing,
device. In various embodiments, user mput may be utilized
at various iterations of the mapping process, €.g., to refine
constraints or specifications, discard certain proposed map-
pings, select particular hardware etc. However, the mapping,
itself may be carried out by a computer system without
additional user 1mnput upon defining the various constraints,
specification, functions, and so forth.

[0110] Turning now to FIG. 8, a flow diagram illustrating
one embodiment of a method for automatically mapping
program functions to distributed heterogeneous hardware
platforms 1s shown. Method 800 as shown here may be
performed for the various exemplary program and hardware
embodiment discussed herein, as well as for numerous other
embodiments of the same. The embodiment of the method-
ology carried out 1n FIG. 8 may be performed by a wide
variety of computer systems. It 1s further noted that the
embodiment of method 800 shown herein 1s but one possible
embodiment of a method for automatically mapping pro-
gram functions to hardware elements, and other embodi-
ments are possible and contemplated. Finally, 1t 1s noted the
order of the steps of the illustrated embodiment of method
800 1s exemplary, and that the various method steps may be
performed 1n a different order 1n other embodiments.

[0111] Method 800 begins with the enumerating of hard-
ware elements connected to a system and the adding of
hardware nodes (block 805). The hardware nodes 1n this
example are computation as well as communication ele-
ments. The method allows specification of a complete plat-
form configuration based on cost and performance require-
ments. Alternatively, the method can suggest a platform that
1s best suited for the application after analyzing the appli-
cation and 1ts requirements and constraints. The method
turther includes drawing a program application 1n an editor
(block 810). Programming may be performed using a
graphical program language (e.g., LabVIEW), and thus
drawing of the application may include laying out graphical
representations of various program functions in the editor.
Additionally, the language can support itegration of pre-
existing functional blocks and IP into the application. The
language captures the tasks, data dependencies, memory and
I/O 1nteractions, and relevant performance and resource
constraints in the application. Upon completion of the mitial
programming, simulation of the resulting application 1s
performed (block 815). During and after the performing of
the stimulation, the eflectiveness of the program 1n carrying,
out 1ts imtended functions may be evaluated. This helps
determine performance and resource characteristics of the
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application, such as the execution properties of the tasks and
communications 1n the application on the processing and
networking elements in the platform. This 1n turn may lead
to further defining the program algorithm and adding con-
straints (block 820). The constraints may include various
requirements for proper execution of the program, including
timing, throughput, latency, power, cost, or any other
requirement that must be satisfied or optimized 1n a suc-
cessiul deployment. These constraints guide analysis and
mapping to explore the design space and determine a system
configuration that satisfies all requirements. The determin-
ing of various program restraints, including timing con-
straints, 1s discussed 1n further detail below. The application
may again be simulated, including simulation for timing
correctness (block 825). Although the steps of editing,
further defimng, and simulating are not shown as a loop 1n
this diagram, it 1s to be understood that these steps may be
performed 1 a loop as many times as desired to obtain
satisfactory program operation.

[0112] Upon completion of the programming, and 1n light
of the enumeration of the various hardware elements con-
nected to the system, automatic generation of a mapping of
program functions to selected hardware elements 1s per-
tformed (block 833). The mapping can be visualized to make
it clear as to which parts of their application goes on which
hardware component. The mapping respects the constraints
such as throughput, latency, cost, and other implementation
constraints. After the mitial mapping 1s complete, the opera-
tion of the program with its constituent functions mapped to
the selected hardware elements may be simulated (block
840). Upon completing the simulation, a determination may
be made as to whether the operation of the program func-
tions on their assigned hardware elements 1s correct. It for
one or more reasons the operation 1s determined not to be
correct (block 845, no), an indication may be given that the
mapping 1s unsatisfactory and that a new mapping 1s desired
(block 850). Factors causing determination of an unsatis-
factory mapping may include a failure to meet timing
requirements or other constraints, or the inability of a
particular program function to execute properly on a hard-
ware element to which 1t 1s mapped. Thereafter, a new
mapping may be regenerated (block 835), and the simulation
performed once again (block 840). I, on a particular itera-
tion, the operation 1s considered to be correct and satisfac-
tory (block 845, yes), the method 1s complete.

[0113] FIGS. 9 and 10 are diagrams illustrating one
embodiment of an exemplary hardware configuration to
which automatic mapping ol program functions may be
performed. In the embodiment shown 1n FIG. 9, hardware
system 880 includes a number of PCle switches 881-884,
and a pair of PCle/PCI bridges 885 and 886. The slots
909—928 can be configured to include multiple different
types of FPGAs with varying speeds and capacities, timing
modules, and I/O modules. The slots are interconnected by
a hierarchy of switches that supports sharing of the high-
bandwidth backplane between communication streams aris-
ing from different slots. In one embodiment, the example of
FIG. 9 may be a PXIe-1075 system, although the disclosure
1s not limited to such embodiments.

[0114] FIG. 10 1s a more generic version of FIG. 9, and
includes a hierarchy of switches and a number of slots
configured to receive, e.g., FPGAs (although the ability to
accommodate other types of components are possible and
contemplated. While the switches may be PCle switches, as
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in the embodiment of FIG. 9, the use of other types of
switches 1s also possible and contemplated. Attributes for
the communications portion of this system may include
bandwidth on each link and the number of separate channels
that each link can support. The components implemented in
the various slots may be of different types may have different
attributes such as number of slices, number of registers,
available random access memory (RAM), etc. The 1llus-
trated system may have a particular bandwidth model for
unidirectional and/or bidirectional traflic and bandwidth
may be shared (linearly 1n some implementations) between
competing streams. These attributes may be taken into
consideration when mapping program functions to the 1llus-
trated hardware

[0115] FIG. 11 1s a diagram 1llustrating a multi-rate data
flow representation of another embodiment of a software
program having multiple program functions and mapped to
a specific hardware configuration. In particular, FIG. 11 1s
similar to FIG. 4A, 1n that 1s shows a multi-rate data flow
representation of a software program with program func-
tions A-I. In the embodiment shown, each of Functions A-D
1s an 1nput function that produces 1 data token per firing or
execution. Functions E and F may each consume 180 data
tokens on each of i1ts iputs and produce 30 data tokens per
firing or execution. Function G may for example consume
30 data tokens on each of 1ts inputs and output 60 data tokens
on two separate signal paths. Functions H and I are output
functions that consume 1 data token per firing. These
consumption and production rates for each program function
may be considered to be constraints. Accordingly, mapping,
of these functions to particular hardware elements may thus
be based at least in part on the consumption and production
rates of the particular program functions. Thus, for a given
program function, its mapping to a particular hardware
clements may be predicated on that element being able to
produce and consume data in accordance with the specified
data rates. Hardware elements incapable of producing or
consuming data at the specified rates may be excluded as
target candidates for particular program functions. Consider
an exemplary situation where functions A to D each produce
750 MB/s of data. Functions E and F act as downsamplers
that scales down the throughput by 6. Hence the throughput
of the streams at the outputs of E and F would be 125 MB;/s.
Function G acts as an upsampler that scales up the through-
put by a factor of 2 on each of its outputs. Hence the
throughput of the streams at the outputs of G would be 250
MB/s. The data rates 1n the multi-rate datatlow representa-
tion statically determine the throughputs of all communica-
tion channels 1n the application. If, say, function G consumes
30 data tokens per firing on each of i1ts input channels and
produces 120 data tokens on each of 1ts output channels,
then the throughputs of the two streams at the outputs of G
would each be 500 MB/s. Thus the data rates of functions
influence the throughputs on the communication channels 1n
the application. When the application 1s mapped to a hard-
ware system, the mapping must ensure that these through-
puts can be sustained by the processing and commumnication
clements 1n the hardware.

[0116] FIG. 12 1s a diagram illustrating an exemplary
mapping of various functions of the program of FIG. 11 to
various hardware elements. In this example, program func-
tions A, B, and E are mapped to a hardware device (e.g.,
FPGA) 1n Slot 2, while functions C D and F are mapped to

a device 1n Slot 3. Function G 1s mapped to a device 1 Slot
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4, while functions H and I are mapped to a device 1n Slot 5.
The aggregate throughput of the communications between
functions E and F 1n the devices of Slots 2 and 3, respec-
tively, and G 1n the device 1 Slot 4 would be 250 MB/s,
which can be sustained by the PXI backplane. Similarly, the
aggregate throughput of the communications between func-
tion G 1n the device of Slot 4 and functions H and I 1n the
device of Slot 35, would be 1000 MB/s, which 1s within the
bandwidth of 838 MB/s than an exemplary PXle system can
sustain. However, 1f function G 1s altered to produce 120
data tokens on each of 1ts output channels, then the aggre-
gate throughput of the communications between function G
in the device of Slot 4 and functions H and I 1n the device
of slot 5, would be 1000 MB/s, which 1s greater the
bandwidth of 838 MB/s than an exemplary PXle system can
sustain. Such a mapping then would be determined to be
infeasible as it violates the communication bandwidth limaits
of the hardware components.

[0117] The mapping 1s performed automatically based on
various factors. Given factors include a system data flow
model, which includes data production and consumption
rates, the imitiation interval (II) and execution time (ET)
characteristics of actors (which essentially measure how
much time they take to compute), and the area of the actors
(e.g., on a hard hardware target). Another given factor 1s the
platform model, which includes the type of platform, the
architecture of the platform, the commumnications topology
(e.g., P2P, or peer-to-peer), area bounds, and clock frequen-
cies of the various hardware elements.

[0118] Based on the given factors above, the mapper may
compute a mapping, allocating various functions of the
program to various hardware elements. In performing the
allocation, consideration 1s given to bandwidth limitations
and area limits on targets. There may also be bounds on a
number of P2P links for some targets. The mapping may also
be performed i1n light of constraints on grouping (e.g., a
desired grouping of program functions on particular hard-
ware elements as input by a user), exclusions (e.g., exclusion
ol particular program functions from hardware elements on
which specified other function mapped to a partlcular hard-
ware element), and a mlty During the mapping, the mapper
engine may perform various optimizations, such as through-
put maximization, minimization ol the number of targets,
and alternate multi-objective functions that may combine
performance, area, and cost.

[0119] FIG. 13 1s a diagram illustrating an OOMO frame-
work for one embodiment. In the embodiment shown, the
mapper has four main nputs: the application (1.e. the pro-
gram), performance and resource characterization, con-
straints, and the platform (1.e. available hardware and ele-
ments thereof). Based on these mputs, the mapper may
determine a mapping of different functions of the program to
the available hardware elements. Outputs from the mapper
may include simulation of a mapping, exploration of alter-
nate mappings, and implementation of a particular mapping.

This framework 1s now discussed in further detail with
reference to FIG. 14.

[0120] FIG. 14 1s a diagram illustrating further details of
one embodiment of an OOMO framework. The mapper 1n
the embodiment shown may include a number of diflerent
clements. The application graph may include information
regarding the application itself, as well as performance and
resource information from the characterization element.
This information may include factors such as production and
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consumption rates (from the perspectives of both the per-
formance and resource elements) as well as actors such as
availability of registers, RAM, and so on. The constraints
file may include information regarding the various con-
straints received from the constraints element, with the
information being presented in textual form, graphical form,
or a combination thereof. The information in the constraints
file may be input manually by a user, or may be generated
based on other information. For example, I/O-to-target atlin-
ity and actor-to-target aflinity may be based on information
from potential hardware target elements for the program
functions that may be automatically obtained from these
clements. On the other hand, actor exclusion (i.e. pre-
emptively excluding some portions of the program from
some hardware elements) may be manually mput into the
constraints file by a user. Information regarding the hard-
ware platform may include the number of targets and
characteristics thereof (slices, registers, etc.), hardware
topology, communications link, and so forth.

[0121] Information from the application graph, the con-
straints file, and the platform graph may be provided to the
mapper engine. Based on this information, the mapper
engine may automatically generate a mapping of program
functions to hardware elements. The mapping engine may
provide an output indicative of the mapping that includes
teedback 1n both textual and pictonial form.

[0122] Once an mitial mapping has been performed, simu-
lation may be conducted to determine whether or not the
generated mapping operate both correctly and satisfactorily.
The framework may also allow for the exploration of
alternative mappings. When a mapping 1s deemed satisiac-
tory, the framework also allows for implementation of the
program functions on the selected hardware elements.

Timing Constraints and Generation of Timeline Dependency
Graphs

[0123] As noted above, the various program function
constraints include timing constraints. These timing con-
straints may be included within the constraints considered 1n
the mapping of program functions to various hardware
clements.

[0124] A program as discussed herein may be described by
a datatflow model, which may include timing configurations
for nodes of the program. These nodes may facilitate con-
struction of a determinmistic dataflow model with precise
timing. The nodes each represent functions that consume
input data and product output data. A given node may begin
execution upon recerving sullicient input data. If there are
insuilicient mputs available at the time the program function
(represented by the node) 1s to execute, a timing violation
OCCUrs.

[0125] For a particular node, a timing configuration asso-
ciated therewith may specily the time at which the node
needs to execute. Timing configurations may specily various
timing related parameters associated with a node, e.g., time
stamps, periodic execution times, event triggers, and so
torth. For inputs to and output from a node, timing configu-
rations can specily I/O timing behavior independent of node
internals. A datatlow model based on the various timing
constraints may be used to conduct an analysis to thereby
ensure that a specific platform can properly execute the
program.

[0126] In some embodiments, timing specifications are
specified for timed multi-rate data tlow (TMRD) programs.
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In some embodiments, a TMRD 1ncludes: multi-rate data
flow nodes and source nodes (also referred to as I/O nodes)
which read from or write to the environment. These inter-
actions are also referred to as side eflects. In some embodi-
ments, a TMRD also includes timing configuration nodes
and two types of connections for (1) data tlow between
nodes and (2) connecting timing configuration nodes and
data tflow nodes.

[0127] The timing of I/O node side effects may be speci-
fied using timing configuration nodes. The timing may be
specified using (a) absolute time, (b) periodic timing with a
period and an oflset within the period, and/or (c¢) event
triggered where the exact time 1s not known but certain
property of event occurrence may be known.

[0128] As 1s further discussed herein, timing and func-
tionality may be presented to the user in a more ntuitive
manner using a timeline dependency graph (1TDG). In some
embodiments, a TDG shows: a timeline depicting a con-
tinuous time frame, every execution of an I/O node during
the time frame that 1s depicted by the time line (where 1/O
node executions are visually connected to the timeline), and
every execution of other nodes (non-1/O nodes) during the
time frame that 1s depicted by the time line (non-1/0O node
executions may be connected to other nodes in order of the
data tflow dependencies).

[0129] In some embodiments, there 1s a one-to-one map-
ping between a TMRD and a TDG. In some embodiments,
the TDG representation may allow the user to identily what
components communicate at what times. A TMRD execu-
tion may be valid if the I/O nodes execute at the time
specified by the timing constraints. TMRD’s may be mapped
to different platforms. A TMRD and/or TDG may allow an
OOMO system to perform an analysis of consistency, dead-
lock, latency on paths, the period of any node, etc. for
various mappings. In some embodiments, an OOMO system
1s configured to determine whether a given data flow pro-
gram 1S schedulable/executable on a given target hardware
platform based on worst-case execution time information
and a known scheduling policy.

[0130] In some embodiments, all TMRD nodes are syn-
chronized. In some embodiments, timing analysis may be
performed based on a threshold acceptable synchromization
CITOr.

[0131] Turning now, to FIG. 15, an exemplary timing
diagram for one embodiment of a TMRD program. One
popular pattern 1n control systems 1s cascaded control loops
in which inner loops react to short term changes 1n an
environment while outer loops react to longer term changes
to the environment. In order for such a system to properly
function, the sum of the computations in the mner loop are
performed {faster than those of the outer loop. FIG. 135
illustrates one embodiment of a cascaded control loop, 1n the
form of TMRD program 975. The various blocks shown 1n
the diagram are representative of nodes, or program func-
tions, within the TMRD program.

[0132] In the example shown, the mputs sensed from the
environment are represented by blocks A and B. Block F
represents the faster computation of the mner loop, while
block S represents the slower computation of the outer loop.
The mput represented by block A 1s configured to be
sampled every 5 time units with O offset within the period.
Thus, block A 1s executed and produces a token (i.e. output)
every 5 time units, e.g., at time 0, time 5, time 10, and so
forth. The mput represented by block B on the other hand 1s
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sampled every 20 time units. Block O produces an output
every S time units, with an oflset of 5 within the period. This
means that a first output 1s written at time 5, a second output
1s written at time 10, and so forth. The time specification on
block A and O indicate that block F 1s to execute between
time O and time 5 1n order to compute a new token for block
O to write.

[0133] Inaccordance with synchronous datatlow rules that
apply to this program, each node 1s able to execute with at
least one input. The node represented by Block F 1n this
example 1mcludes two inputs, with the second mput coming
from Block B at a slower rate than the first input that is
coming ifrom Block A. Accordingly, an upsampling node, u,
1s 1mplemented, to produce 4 tokens for each 1 token
received. In some possible implementations, the upsampling,
node could produce 4 tokens with the same value, predict
values of future tokens, or implement some other type of
application specific logic.

[0134] Since the computations performed in the slow
branch may take a longer time, tokens for block F coming
from the slow branch may not be available 1n time for Block
F to produce a new token for Block O. Thus, delays or initial
tokens, represented by the solid black circle 1n the connec-
tion between Block u and Block F, may be introduced in
order to enable Block F to perform 1ts computations.

[0135] In order to produce a TDG for the program repre-
sented by the dataflow model shown in FIG. 15, various
inputs may be provided. In particular, these mputs may be
provided to a TDG generation program.

[0136] FIG. 16 illustrates the various inputs and outputs
for one embodiment of a TDG program that can be executed
on a computer system. In the embodiment shown, various
inputs are provided to TDG program 978. Using this infor-
mation, TDG program 978 may produce a TDG graph, the
output of which provides various information, such as the
validity of the model based on timing constraints and data
rates, latency bounds, and possible interleavings between
time triggered and event triggered nodes.

[0137] On the mput side, node information describing
cach node (and thus, corresponding program function) is
provided. Additionally, for each node consumption rates (1.¢.
the rate at which the node consumes data) and production
rates (1.e. rates at which the node produces data). Informa-
tion regarding side eflects, if any, for each of the nodes may
also be provided. Side eflects as defined herein may be
interaction with the external/physical environment through a
given node (e.g., inputs recerved from the physical environ-
ment, outputs provided to the physical environment). Infor-
mation regarding imtial tokens or delays on any of the
connections between nodes may be provided. Dependency
information may also be provided to indicate which nodes
are dependent on other nodes that have side eflects, and
which nodes are not dependent on others having side effects.
More generally, couplings between the various nodes are
also provided for purposes of modeling program flow and
determining interactions between the nodes.

[0138] For each node, timing constraint information may
be provided. Timing constraints may include absolute time
(c.g., a time at which an event should occur or when a
program function should process data), period and oflset
information (e.g., the program function 1s to execute at or
within a certain period, with an offset time, 1f any), and

event-triggered timing information (e.g., when the exact

Oct. 5, 2017

time of execution 1s not known, but one or more properties
ol an occurrence that triggers execution 1s known).

[0139] The various mputs provide to the TDG program
978 are exemplary and are not intended to be all-inclusive.
Other timing constraints are also possible and contemplate,

and may thus be used 1n generation of a TDG for a particular
1TMRD program.

[0140] Using the various received mputs, TDG program
978 may generate a TDG having (or in conjunction with)
additional information describing program operation over
time. Such information may include validity of the program
for the given timing constraints (e.g., whether the program
can properly execute given the provided constraints on
timing). Information regarding consistency (e.g., consistent
sample rates) and deadlocks (e.g., inconsistent delays that
can lead to undesired halting of program execution) may
also be provided. Latency and latency bound information
may be provided to indicate latency through particular
nodes, overall program latency, and the bounds of latency
through various nodes that enable desired program opera-
tion. Information regarding all of the various possible inter-
leaving’s of the program between event-triggered and time-
triggered nodes may also be inferred.

[0141] FIG. 17 1s a diagram 1illustrating an exemplary
TDG for one embodiment of a TMRD program. In particu-
lar, the example shown in FIG. 17 provides information

regarding the program 1illustrated by the TMRD diagram of
FIG. 15.

[0142] TDG 980 in the embodiment shown illustrates the

timeline and data dependency of the first 40 time units of
execution ol the program of FIG. 15. As noted in the
discussion of FIG. 135, the program includes a faster inner
loop and a slower outer loop. The inner loop receives an
input on node A, while the outer loop recetves an mput on
node B. The numerals accompanying the letters in each
block (e.g., Al, A2, F1, F2, etc.) refer to the nth execution
of a node. Thus, Al refers to the first execution of node A,
F3 refers to the third execution of node F, etc. The various
instances of nodes shown 1n TDG 980 that are connected to
the timeline are done so at points 1n time where they are to
execute. Those nodes that are not connected to the timeline
(e.g., F1, F2) may execute when possible, although these
nodes may provide output to enable nodes coupled to the
timeline to execute at the desired time. For example, each
node O may execute after recerving output from node F.
Furthermore, as shown in this particular example, each
execution of node 0 1s to occur at or prior to intervals of 5
time units, e.g., node O1 is to execute by the 5 time unit,
node O2 is to execute by the 10” time unit, and so forth.
Each node F on the other hand, may execute at any time after
receiving suilicient inputs. Thus, for example, node F1 may
execute at any time between the 0" and 5” time interval after
receiving output from node Al, node F2 may execute at any
time between the 57 and 107 time interval after receiving
output from node A2, and so on. Each node A 1n this example
should execute 1n time to enable node O to execute on time.
As shown 1n TDG 980, nodes A, F, and O execute four times
for each single execution of nodes B and S. As previously
noted, node u provides an upsampling to node F.

[0143] From the exemplary TDG 980 shown in FIG. 17,
information about execution of the program may be derived.
First, between sensing a new 1nput on node B and influenc-
ing the output on node O, it takes between 20 and 35 time
units. Second, the total execution time of nodes A, F, and O
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combined should be completed within 5 time units. Third,
the total execution time of nodes B, S, u, F, and O should be
completed within 20 time umits. Fourth, TDG 980 also
indicates that the first three outputs use initial values, and
thereafter execution 1s repeated periodically. Fifth, the over-
all 1teration length of this particular datatflow model 1s 20
time units.

[0144] Thus, as illustrated above, TDG 980 clearly 1llus-
trates the various timing dependencies of TMRD program
975 of FIG. 15. Nodes including side effects 1n this particu-
lar example include nodes A, B, and O. Accordingly, these
nodes may be subject to relatively strict timing require-
ments. Nodes that do not include side effects in this example
are nodes F, S, and u. These nodes that do not have side
cllects may have looser timing requirements that are
bounded only by the nodes having side eflects upon which
they have a dependency.

[0145] Generally speaking, TDG program 978 of FIG. 16
may generate TDGs such as the exemplary one shown in
FIG. 17 for a wide variety of TMRD programs. Each TDG
may retlect the various timing dependencies, constraints,
execution time bounds, and so forth that are unique to 1ts
corresponding TMRD program. Accordingly, the exemplary
TDG shown 1n FIG. 17 1s not intended to be limiting 1n any
way, but 1s instead but one possible TDG that corresponds to
a given TMRD program. The exact form and information
conveyed by TDGs 1s at least as varied as the possible forms
a TMRD program may take. Using a TDG such as that
shown 1 FIG. 17, a computer system may factor the
information contained therein when mapping program func-
tions to hardware processing elements, as previously dis-
cussed.

[0146] FIG. 18 1s a flow diagram of one embodiment of a
method for generating a TDG. Method 900 as shown 1n FIG.
18 may be performed by a computer system having a
corresponding TDG generation program 1mplemented
therein and having received at least some of the various
timing constraint mputs discussed above. It 1s noted that the
order of steps shown 1in method 900 1s not intended to be
limiting, and thus the various orders of at least some steps
can be rearranged relative to others.

[0147] Method 900 begins with the providing of node
information, including couplings between nodes, to a TDG
program (block 902). Additionally, timing constraint infor-
mation, both for individual nodes and the program as a
whole 1s also provided in the embodiment shown (block
904). As noted above, the node information may specily
parameters of a node such as data consumption and produc-
tion rates, side ellects, dependencies, and so on. Timing
constraint information may indicate the constraints on tim-
ing for the given nodes and the program as a whole.

[0148] Using the input information, a TDG may be gen-
erated (block 906). After generation of the TDG, the validity
of program operation may be determined. If the program
operation 1s determined to be mvalid (e.g., it cannot execute
based on the mput information; block 908, no), the program
may be reconfigured (block 910) and the process may be
repeated. Reconfiguring the program can take many forms,
such as altering the timing constraints for various nodes,
altering interconnection there between, and so forth.

[0149] If the program operation 1s determined to be valid
and satistfactory (block 908, yes), the program may be
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mapped and deployed to hardware 1n accordance with the
various embodiments of a mapping methodology discussed

above (block 912).

[0150] FIG. 19 1s a block diagram of one embodiment of
a computer system that may carry out the various method-
ologies discussed above. In the embodiment shown, com-
puter system 950 includes a processor 956, a memory 952,
and a storage unit 954. Computer system 950 may receive
inputs through e.g., a portable storage medium 962, or from
other devices via a network input. Additionally, a hardware
platform 9635 to which a program 1s to be mapped may be
coupled to computer system 950, and may provide nputs
regarding hardware processing element attributes, although
in other embodiments these attributes may be provided from
another source (e.g., portable storage medium 962).

[0151] Portable storage medium 962 may be any type of
non-transitory storage medium, such as a USB dnive, a
CD-ROM, or Blu-Ray disk. Programs and data may be input
into computer system 930 from portable storage medium
962, and stored 1n storage unit 954. Storage unit 954 may
also be a non-transitory storage medium, such as a hard disk
drive or flash drive, and may provide non-volatile storage.
Memory 952 may be a non-transitory memory such as
Random Access Memory (RAM) that provides general
purpose memory for operations carried out by processor 956
on computer system 950.

[0152] The programs that may be imput into computer
system 950 from either portable storage medium 962 or
from the network nput include various embodiments of the
program to perform the automatic mapping of various
program functions to various hardware processing elements
of a hardware processing program. The program for per-
forming automatic mapping may carry out the mapping
function without any user input beyond providing the 1nitial
data (e.g., from portable storage medium 962, a database
stored 1n storage unit 954, etc.). In additional to executing
instructions to perform the automatic mapping described
herein, processor 956 may also execute mstructions to
simulate operation of the mapped program functions on the
various hardware elements. The results of the mapping may
be provided to output device(s) 960, which may include a
display, a printer, or other device. Additionally, 11 a hardware
plattorm 965 including the selected hardware processing
clements 1s coupled thereto, computer system 950 may
deploy the program functions to the selected hardware
processing elements 1 accordance with the mapping.

[0153] Computer system 950 may also perform generation
of TDGs as discussed above. The programs and data used 1n
TDG generation may be provided through the network
input, from portable storage medium 962, or may be stored
in storage unit 954. A TDG generated on computer system
950 may be output to one or more output devices 960,
including a display or a hardcopy printed by a printer. A
TDG and the mformation contained therein may also be
stored 1n, e.g., storage unit 934, for later use 1n generating a
mapping of program functions to hardware processing ele-
ments.

[0154] FEmbodiments described in this disclosure may be
realized 1 any of various forms. For example, some
embodiments may be realized as a computer-implemented
method, a computer-readable memory medium, or a com-
puter system. Other embodiments may be realized using one
or more custom-designed hardware devices such as ASICs.
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Other embodiments may be realized using one or more
programmable hardware elements such as FPGAs.

[0155] In some embodiments, a non-transitory computer-
readable memory medium may be configured so that 1t
stores program 1instructions and/or data, where the program
istructions, 1f executed by a computer system, cause the
computer system to perform a method, e.g., any of a method
embodiments described herein, or, any combination of the
method embodiments described herein, or, any subset of any
of the method embodiments described herein, or, any com-
bination of such subsets.

[0156] In some embodiments, a device may be configured
to include a processor (or a set of processors) and a memory
medium, where the memory medium stores program nstruc-
tions, where the processor 1s configured to read and execute
the program instructions from the memory medium, where
the program 1nstructions are executable to implement any of
the various method embodiments described herein (or, any
combination of the method embodiments described herein,
or, any subset of any of the method embodiments described
herein, or, any combination of such subsets). The device
may be realized 1n any of various forms.

[0157] Although specific embodiments have been
described above, these embodiments are not intended to
limit the scope of the present disclosure, even where only a
single embodiment 1s described with respect to a particular
feature. Examples of features provided in the disclosure are
intended to be 1llustrative rather than restrictive unless stated
otherwise. The above description 1s mtended to cover such
alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.

[0158] The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or mmplicitly), or any generalization thereof,
whether or not it mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu-
lated during prosecution of this application (or an applica-
tion claiming priority thereto) to any such combination of
features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of the independent claims and features from
respective 1ndependent claims may be combined in any
appropriate manner and not merely 1n the specific combi-
nations enumerated in the appended claims.

What 1s claimed 1s:

1. A method, comprising:

creating a program diagram 1n response to user nput,
wherein the program diagram comprises a plurality of
interconnected icons that visually 1llustrate Tunctional-
ity ol a program;

creating a system diagram in response to user input,
wherein the system diagram comprises a plurality of
interconnected icons that visually illustrate a target
system, wherein the target system comprises a plurality
ol heterogeneous hardware elements;

determining, by the computer system, attributes of the
plurality of heterogenecous hardware elements, wherein
particular ones of the plurality of the heterogeneous
hardware elements have diflerent attributes with

respect to other ones of the plurality of heterogeneous
hardware elements;

storing constraint information in a constraints file,
wherein the constraint information includes informa-
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tion specitying constraints associated with particular
ones of a plurality of program functions and further
includes constraints associated with particular ones of
the plurality of the heterogeneous hardware processing
elements; and

automatically generating a mapping, using a computer
system, of selected portions of the program diagram for
execution on correspondingly selected ones of the
plurality of heterogeneous hardware elements, wherein

the mapping 1s based on the constraint information and
the attributes.

2. The method as recited 1n claim 1, automatically gen-
erating a mapping comprises a mapper engine reading
information from an application graph comprising informa-
tion pertaining to the program diagram, information from
the constraints file, and mformation from a platform graph
pertaining to a hardware platform 1n which the plurality of
heterogeneous hardware elements are implemented.

3. The method as recited 1n claim 1, further comprising:

the computer system simulating execution of behavior of
the plurality of program functions independent of any
hardware bindings;

the computer system simulating execution of the selected
ones of the plurality of program functions on the
correspondingly selected ones of the plurality of het-
crogencous hardware elements; and

the computer system verilying correctness of operation of
the selected ones of the plurality of program functions
on the correspondingly selected ones of the plurality of
hardware processing elements.

4. The method as recited 1n claim 1, further comprising
the computer system automatically deploying the selected
ones of the plurality of program functions for execution on
the selected ones of the plurality of hardware processing
clements, responsive to said mapping.

5. The method as recited 1n claim 1, further comprising
the computer system providing feedback on the quality,
performance, power, and other characteristics, from the
deployed execution or simulated execution of the said
mapping, and subsequently guiding design exploration by
suggesting alternate mappings.

6. The method as recited 1n claim 1, further comprising
the computer system enabling debugging of the behavior of
program functions, from the deployed execution or simu-
lated execution of said mapping.

7. The method as recited 1n claim 1, wherein the attributes
of various ones of the plurality of hardware processing
clements 1include one or more of the following: number of
slices, number of processing elements, number of registers,
amount ol memory, available bandwidth, number of com-
munication channels, parallel processing capability, or clock
frequency, and wherein the plurality of hardware processing
clements 1include one or more interconnects between com-
puting devices.

8. The method as recited 1n claim 1, wherein constraint
information associated various ones of the plurality of
program functions include one or more of the following: a
throughput constraint, frequency constraint, a timing con-
straint, an area constraint, an execution time constraint, or a
memory requirement constraint.

9. The method as recited in claim 1, wherein the constraint
information for at least first and second program functions of
the plurality of functions includes exclusion information
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indicating that the first and second program functions are to
be mapped to different hardware processing elements with
respect to one another.

10. The method as recited 1in claim 1, wherein the con-
straint information for at least first and second program
functions of the plurality of functions includes grouping
information indicating that the first and second program
functions are to be mapped to the same hardware processing
clement.

11. The method as recited 1n claim 1, wherein the con-
straint information includes afhinity information indicating
that a program function 1s to be mapped to a particular type
ol hardware processing element.

12. The method as recited in claim 1, wherein the plurality
of program functions comprise a general multi-rate data tlow
program.

13. A system comprising:

a plurality of hardware processing clements;

at least one processor; and

a storage device storing a plurality of program functions,
information pertaining to the plurality of hardware
clements, and 1nstructions that, when executed by the at
least one processor, cause the at least one processor to:
determine constraint information associated with the
plurality of program functions;

determine attributes of the plurality of hardware pro-
cessing elements, wherein particular ones of the
plurality of hardware processing elements have dii-
ferent attributes with respect to other ones of the
plurality of hardware processing elements; and

automatically generate a mapping of selected ones of
the plurality of program functions for execution on
correspondingly selected ones of the plurality of
hardware processing elements, wherein the mapping
1s based on the constraint information and the attri-

putes.

14. The system as recited 1mn claim 13, wherein the
computer system 1s further configured to simulate execution
ol the selected ones of the plurality of program functions on
the correspondingly selected ones of the plurality of hard-
ware processing elements.

15. The system as recited i claim 13, wherein the
computer system 1s further configured to verily correctness
of operation of the selected ones of the plurality of program
functions on the correspondingly selected ones of the plu-
rality of hardware processing elements.
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16. The system as recited i claim 13, wherein the
attributes of various ones of the plurality of hardware
processing elements include one or more of the following;:
number of slices, number of processing elements, number of
registers, amount of memory, available bandwidth, number
of communication channels, parallel processing capability,
or clock frequency.

17. The system as recited 1n claim 13, wherein constraint
information associated various ones of the plurality of
program functions include one or more of the following: a
throughput constraint, frequency constraint, a timing con-
straint, an area constraint, an execution time constraint, or a
memory requirement constraint

18. The system as recited in claim 13, wherein the
constraint information includes:

exclusion information 1mdicative of particular ones of the

plurality of program functions that are to be mapped to
different hardware processing elements with respect to
one or more other ones of the plurality of program
functions;

grouping information mndicative of particular ones of the

plurality of program functions that are to be mapped to
a same hardware processing element as one or more
other ones of the plurality of program functions; and
alfinity information indicative of a particular type of
hardware processing element to which a particular one
of the plurality of program functions 1s to be mapped.

19. The system as recited in claim 13, wherein the
computer system 1s configured to automatically generate the
mapping without prompting a user for additional input.

20. A non-transitory computer readable medium storing
instructions that, when executed by a computer system,
cause the computer system to perform the following:

determine constraint information associated with the plu-

rality of program functions;

determine attributes of the plurality of hardware process-

ing elements, wherein particular ones of the plurality of
hardware processing elements have different attributes
with respect to other ones of the plurality of hardware
processing elements; and

automatically generate a mapping, using a computer

system, of selected ones of the plurality of program
functions for execution on correspondingly selected
ones of the plurality of hardware processing elements,
wherein the mapping i1s based on the constraint infor-
mation and the attributes.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

