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SHARING AN ACCELERATOR CONTEXT
ACROSS MULTIPLE PROCESSES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of co-pending
U.S. patent application Ser. No. 14/923,885 filed Oct. 27,
2015. The aforementioned related patent application 1is
herein incorporated by reference in its entirety.

BACKGROUND

[0002] The present invention relates to coherent hardware
accelerators, and more specifically to sharing a single con-
text on a coherent hardware accelerator among multiple
pProcesses.

[0003] In some computer systems, accelerators may be
installed to accelerate various specialized operations, such
as graphics processing, encryption and decryption, compres-
s1on and decompression, massively parallel processing (e.g.,
big data processing, fluid dynamic simulations, and so on),
and other computationally expensive tasks. Traditional hard-
ware accelerator systems may be designed as an add-on
board that interfaces with a processor via a physical bus
(e.g., PCI Express). As processes run on these accelerator
systems, the accelerator interfaces with system memory
using direct memory access 1n which the accelerator directly
accesses regions ol memory using real, rather than virtual,
addresses. By accessing memory using direct memory
access, an accelerator can bypass the memory management
systems built into CPUs 1nstalled 1n a system.

[0004] Some hardware accelerators may be designed to
interface with system memory using a virtual memory space
established by a CPU. A process can attach to the accelerator
and create a context, which includes information about the
virtual memory space allocated to the process, as well as
other information. While the process executes on the accel-
erator, the accelerator can read from and write to system
memory using virtual addresses associated with the virtual
memory space 1n lieu of direct memory access using physi-
cal memory addresses.

[0005] Accelerators may support a fixed number of hard-
ware contexts. For example, for applications with a parent
process and no or few child processes that also use the
accelerator, the parent process and each of the child pro-
cesses can attach to separate accelerator hardware contexts
while leaving a pool of unused accelerator hardware con-
texts available for use by other processes. Some large
applications may spawn a large number of separate child
processes, which may exceed the number of hardware
contexts available at the accelerator.

SUMMARY

[0006] One embodiment includes a computer-readable
storage medium having instructions, which, when executed
on a processor, performs an operation for multiple processes
to share a hardware context established on a coherent
accelerator. The method generally includes using a {first
process, creating a shared memory space, creating a shared
hardware context on the coherent hardware accelerator,
attaching the shared memory space to the shared hardware
context, and binding the first process to the shared hardware
context. In response to the first process spawning one or
more second processes, the system binds the one or more
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second processes to the shared memory space and the
hardware context. Subsequently, the system performs one or
more operations 1nitiated by the first process or one of the
one or more second processes on the coherent hardware
accelerator according to the bound hardware context.
[0007] Still another embodiment 1includes a processor and
a memory storing a program, which, when executed on the
processor, performs an operation for multiple processes to
share a hardware context established on a coherent accel-
crator. The method generally includes using a first process,
creating a shared memory space, creating a shared hardware
context on the coherent hardware accelerator, attaching the
shared memory space to the shared hardware context, and
binding the first process to the shared hardware context. In
response to the first process spawning one or more second
processes, the system binds the one or more second pro-
cesses to the shared memory space and the hardware con-
text. Subsequently, the system performs one or more opera-
tions 1mtiated by the first process or one of the one or more
second processes on the coherent hardware accelerator
according to the bound hardware context.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0008] FIG. 11llustrates an example system architecture in
which an accelerator in which a processor and accelerator
share a virtual memory space, according to one embodiment.
[0009] FIG. 2 illustrates an example process architecture
for interfacing with an accelerator that uses a processor
virtual memory space, according to one embodiment.
[0010] FIG. 3 illustrates an example layout of an effective
address, according to one embodiment.

[0011] FIG. 4 1llustrates an example tlow of translating an
cllective address to a real address, according to one embodi-
ment.

[0012] FIG. § illustrates an example memory system
architecture 1n which a processor and accelerator can read
from or write to memory using virtual addresses, according
to one embodiment.

[0013] FIG. 6 illustrates an example memory system
architecture 1 which multiple processes share a virtual
address space, according to one embodiment.

[0014] FIG. 7 illustrates example operations that may be
performed by a first process to attach to an accelerator
hardware context and spawn child processes that can attach
to the same accelerator hardware context, according to one
embodiment.

[0015] FIG. 8 illustrates example operations that may be
performed by a second process to attach to an accelerator
hardware context created by a first process, according to one
embodiment.

[0016] FIG. 9 illustrates example operations that may be
performed by a process sharing an accelerator hardware
context with other processes to resolve a page fault, accord-
ing to one embodiment.

[0017] FIG. 10 illustrates an example system in which
multiple processes can share a single accelerator hardware
context, according to one embodiment.

DETAILED DESCRIPTION

[0018] Embodiments presented herein describe techniques
for sharing a coherent accelerator hardware context among
multiple processes. By sharing a single coherent accelerator
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hardware context among multiple related processes, a single
coherent accelerator hardware context can provide services
to applications with large numbers of related processes or to
applications launched by the same user. For example, a
single coherent accelerator hardware context can be gener-
ated for a database system with hundreds or thousands of
related processes. Doing so may leave a large pool of unused
hardware contexts available for use by other applications
and allows such applications to also use a single, rather than
multiple, coherent accelerator devices.

[0019] In one embodiment, a hardware context includes a
page table and a number of segment tables. The page table
and segment tables allow the coherent accelerator to 1dentily
a location 1n virtual address space 1 which memory of a
mapped process 1s located. The page table 1s a global table
that maps memory pages to a given process. Further, seg-
ment tables specily which memory pages belong to which
segment of a given process. Each process may include a
distinct segment table 1n the context. In contrast to tradi-
tional PCI accelerators, applications can execute instructions
that directly intertace with a coherent accelerator.

[0020] Typically, the amount of hardware contexts used by
the coherent accelerator 1s limited. For example, a coherent
accelerator may include a few hundred contexts available to
processes executing in the computing system. By sharing a
single coherent accelerator hardware context among mul-
tiple processes, a greater number of processes may use the
coherent accelerator.

[0021] FIG. 1 illustrates an example architecture of a
system 100 1n which an accelerator and a CPU use the same
virtual memory space (1.e., memory coherency), according,
to one embodiment. As 1llustrated, system 100 includes a
CPU 110, a peripheral host bridge 120, and an accelerator
device 130.

[0022] CPU 110 generally includes a number of processor
cores 112, a page table bufler 113, a segment table buller
114, and an accelerator proxy unit 116. When an accelerator-
ecnabled application begins execution, the application gen-
erally requests a memory allocation from system memory
(not pictured). CPU 110 generates a virtual memory space
that points to a physical memory space 1n system memory,
and the application performs operations by reading data
from and/or writing data to system memory using addresses
in the virtual memory space. In some CPU architectures,
such as the POWER architecture, the virtual memory space
may be divided into two separate spaces: a page table and a
segment table. Segment tables may be created for each
application or process and provide for memory address
translation from an application or process-specific virtual
address to a global virtual address. A single page table may
be used to translate a global virtual address to a real memory
address.

[0023] Page table builer 113 and segment table builer 114
1s generally accessed by a processor core 112 for address
translation between a virtual address and a real memory
address, as discussed above. To provide for memory coher-
ency, an accelerator device 130 accesses the same page table
bufler 113 and segment table bufler 114 and performs
memory accesses (1.e., read and/or write operations) using,
virtual, rather than physical, addresses. At CPU 110, accel-
erator proxy unit 116 provides an interface for an accelerator
device 130 to coherently access page tables and segment
tables (and the associated page table bufler 113 and segment
table buller 114). To ensure memory coherency between a
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CPU 110 and accelerator 130, accelerator proxy unit 116
maintains a directory of cache lines held by the accelerator
device 130. As entries 1n page table builer 113 and segment
table builer 114 are invalidated, accelerator proxy unit 116
may also mvalidate the page table and segment table entries
used by an accelerator device 130.

[0024] Pernipheral host bridge 120 provides an interface
between CPU 110 and accelerator device 130 that accelera-
tor device 130 uses for coherent memory accesses (1.e., read
and/or write operations). In some cases, an accelerator
device 130 may physically be keyed to a standard input/
output interface, such as a PCI Express interface. Peripheral
host bridge 120 generally includes logic that allows a
coherent accelerator device 130 to commumnicate with a CPU
110 via an accelerator proxy unit 116, as described above.

[0025] Accelerator device 130 may include a processor
service layer 132 and an accelerator 134. As described
above, accelerator device 130 may be connected to a CPU
110 via a physical interface, such as PCI Express interface,
and may commumnicate with a CPU via an accelerator proxy
unit 116 to ensure memory coherency between the CPU 110
and accelerator device 130.

[0026] Processor service layer 132 and accelerator 134
may be constructed on a single field programmable gate
array (FPGA). Processor service layer 132 generally pro-
vides a memory management unit that accelerator 134 uses
to translate virtual addresses to real addresses, using the
page tables and/or segment tables shared with CPU 110.
After translating virtual addresses to real addresses, proces-
sor service layer 132 performs memory read/write opera-
tions and provides read data to accelerator 134 for further
processing. In some cases, processor service layer 132 may
additionally 1include a data cache that an accelerator can use
to store cacheable data for faster access to such data.
Processor service layer 132 may be implemented on a small
portion of an FPGA, leaving the bulk of the FPGA available
for the core functionality of accelerator 134 (1.e., the spe-
cialized logic programmed on an FPGA for specialized
tasks).

[0027] FIG. 2 illustrates an example process architecture
200 for mnterfacing with a coherent accelerator that uses the
same virtual memory space as a CPU, according to one
embodiment. As illustrated, process architecture 200 may be
divided 1nto a user space, a kernel space, and a hypervisor
space.

[0028] Applications with varying degrees of accelerator
awareness may execute 1n the user space. A native accel-
erator application 202 may contain a full user-mode accel-
erator driver 206 inside the native accelerator application
202 and use its own context on an accelerator 130. Accel-
crator-enabled applications 203, which can optionally use an
accelerator 130, and legacy applications 204, which may be
unaware of accelerator functionality, can communicate with
an accelerator using a user-mode library 208. Accelerator
functionality may be encapsulated within user mode library
208. For accelerator-enabled applications 203, each appli-
cation may share an accelerator hardware context or use 1ts
own accelerator hardware context. For legacy applications
204, a small number of kernel contexts may be established
on the accelerator, and the legacy applications 204 may
share these kernel contexts. The number of legacy applica-
tions 204 that can share a kernel context may be a fixed
number defined by the operating system on which the legacy
applications 204 execute.
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[0029] In the kernel space, a kernel mode accelerator
driver 210 provides 1/O control 212, an interrupt handler
214, a kernel context 216, and error handling routines 218 to
a native accelerator application 202 or to a user mode library
208 through which accelerator-enabled applications 203 and
legacy applications 204 interact with a memory-coherent
accelerator 130. I/O control 212, mterrupt handler 214,
kernel context 216, and error handling routines can transmit
messages to an accelerator bus driver 220 to communicate
with an accelerator 130. For example, I/O control 212 and
interrupt handler can transmit enhanced error handling mes-
sages to accelerator bus driver 220 to obtain data about the
error handling capabilities of an accelerator 130. Interrupt
handler 214 can additionally raise error interrupts and trans-
mit the error interrupts to the hypervisor space for further
handling.

[0030] FError handling routines 218 can transmit and
receive enhanced error handling messages from accelerator
bus driver 220. Error handling routines 218 can pass the
received error handling messages to accelerator kernel ser-
vice 224 for further processing (e.g., error recovery). As part
of processing the received error handling messages, accel-
erator kernel service can perform hypervisor calls and 1nject
non-error interrupts nto the system.

[0031] Accelerator bus driver 220 generally includes a
kernel services module 222. Kernel services module 222
may provide enhanced error handling services to kernel
mode accelerator driver 210, as discussed above. Addition-
ally, kernel services module 222 may provide direct memory
access Tunctionality to kernel mode accelerator driver 210.

[0032] FIG. 3 illustrates an example layout of an eflective
address 300, according to one embodiment. As shown, the
ellective address 300 includes an effective segment 1dentifier
(ESID) 305, a page number (pno) 310, and a byte offset 315.
The ESID 303 specifies a segment 1in a process ellective
address space that the effective address 300 belongs to. A
given segment may include a range of addresses. For
example, 1n a 32-bit effective address space, an ESID 305 of
0x0 may include a range of addresses 0x0000_0000 to
OxOFFF_FFFF, an ESID 305 of Ox1 may include a range of
addresses 0x1000_0000 to Ox1FFF_FFFF, and so on.

[0033] Further, the pno 310 specifies an index of a page
within that segment. The byte offset 315 specifies an oflset
of a byte within that page. In practice, for a 32-bit effective
address, an ESID 305 of 4 bits, a pno 310 of 16 bits, and a
byte ofiset 315 of 12 bits have shown to be effective. For a
64-bit eflective address, an ESID 305 of 36 bits, a page
number of 16 bits, and a byte offset of 12 bits has shown to
be effective.

[0034] FIG. 4 1llustrates an example flow of translating an
eflective address to a real address 1n a shared kernel context,
according to one embodiment. The kernel device driver may
receive a request, e.g., from a process configured to 1ssue bus
commands, to perform I/O on a given storage device
attached to the kernel device driver. The request may specily
an effective address, as depicted by the effective address 401
of OxOF1000A8D0189008. Illustratively, the portion
‘OF1000A8D’ represents the ESID of the effective address

401. The portion ‘0189 represents the pno of the effective

address 401, and the ‘008 portion represents the page oflset
ol the eflective address 401.

[0035] In one embodiment, the kernel device driver trans-
lates the ESID of the effective address to a corresponding
VSID. To do so, the kernel device driver determines a
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mapping of the eflective address of the process to an
cllective address in the shared kernel context. Doing so
allows the kernel device driver to determine the correspond-
ing VSID from the global segment table using the effective
address of the shared kernel context. As stated, the global
segment table of the kernel may include mappings between
ESIDs and VSIDs. The coherent accelerator determines a
corresponding VSID based on the mappings 1n the global
segment table. Once the VSID 1s i1dentified, the coherent
accelerator then performs a lookup in the page table using
the VSID and pno combination. The coherent accelerator
then applies the byte oflset 1n the page resulting from the
lookup. As aresult, the coherent accelerator can obtain a real
address of the application memory of a specific process.

[0036] In one embodiment, in addition to remapping the
eflective address to a real address, the kernel device driver
may build a proper command based on the I/0 request and
queue the command to a command and response queue.
Similar to a traditional I/O stack, the application may block
other I/0 until the queued command completes. The kernel
device driver may determine whether to release the 1/0
before recovering the storage device and then restarting or
redriving the 1/0.

[0037] FIG. 5 illustrates an example memory structure 1n
which a CPU 110 and accelerator device 130 can use virtual
addresses 1n segment and page tables to read from and write
to physical memory, according to one embodiment. As
illustrated, each process (and the kernel, which 1s not
illustrated) may have its own unique eflective address space
510. An address generated by a process 1s an eflective
address. An effective address may be mapped to an address
in a system wide virtual address space 520, which then may
be mapped to a real address 1n physical memory 530.

[0038] As illustrated, to obtain a system virtual address
from an effective address, a CPU or accelerator can access
an application segment table 515 specific to the process that
owns an ellective address space. The application segment
table 515 generally contains a mapping from an effective
segment 1D to a virtual segment ID. For example, with a
32-bit address as i1llustrated 1n FIG. 5, the first four bits of an
address may represent a segment 1n an eflective address
space 510 and may be mapped to a virtual segment in system
virtual address space 520. As illustrated, eflective segment
ID 2 for the process that owns eflective address space 510,
may be mapped to virtual segment 1D ABCD, while the
same elfective segment ID for the process that owns eflec-

tive address space 510, may be mapped to virtual segment
ID 7890.

[0039] In the system virtual address space 520, the eflec-
tive segment 1dentifier from eflective address space 510 may
be replaced with the virtual segment identifier based on the
mapping in application page table 515. For example, eflec-
tive memory address 0x20031000 for the process that owns
cllective address space 510, may map to system virtual
memory address OxABCDO0031000, while the same effective
memory address for the process that owns eflective address
space 510, may map to system virtual memory address

0x’738900031000.

[0040] Using system page table 325, the system virtual
memory address may be translated to a real memory address
in physical memory 530. For example, a virtual memory
address may be separated into three components: a segment
ID, a page number within the 1dentified segment, and a byte
oflset within the page. A CPU or accelerator can look up the
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virtual segment ID and page number 1n system page table
525 to obtain the real or logical address of a page and add
the page oflset to the page address to obtain the real or
logical address for a particular system virtual address.

[0041] During context switches (e.g., from a first applica-
tion with eflective address space 510, to a second applica-
tion with eflective address space 510, ), segment tables may
need to be updated to reflect the appropriate mappings
between ellective and system wide virtual addresses. Seg-
ment table updates may be performed at the kemel level
during a context switch.

[0042] As illustrated 1n FIG. 6, an accelerator context can
have a shared eflective address space 610. Multiple pro-
cesses, each owning an individual eflective address space
310, may be mapped to the same portion of the shared
ellective address space 610. Shared eflective address space
610 may be associated, for example, with a single accelera-
tor hardware context, and processes using the shared eflec-
tive address space 610 may share the single accelerator
hardware context. For example, as illustrated, an effective
address 0x20031000 1n effective address space 510, owned
by a first process and the same eflective address 1n effective
address space 510, may be mapped to a memory address (as
illustrated, also 0x20031000) in the shared effective address
space 610. A context segment table 620 contains mappings
between the eflective segment IDs from the shared effective
address space 610 and the virtual segment IDs used 1n
system virtual address space 520.

[0043] As discussed, some applications may spawn hun-
dreds or thousands of related processes (child processes).
For example, a database application that works with large
quantities of data and 1s required to concurrently serve a
large number of clients may spawn a large number of related
processes while servicing each client. Because an accelera-
tor may only support a limited number of hardware contexts,
assigning a hardware context to each process spawned by an
application may result 1n a single application using all of the
available hardware contexts on an accelerator system even
though the processes are related and may generally access
related data 1n system memory. Additionally, a single appli-
cation that spawns a large number of child processes may
use substantially all of the available accelerator hardware
contexts, leaving a small number or no contexts available for
other applications that may also benefit from accelerator
acceleration.

[0044] To allow related processes to share a single accel-
erator hardware context, a parent process may establish a
shared accelerator hardware context with a memory alloca-
tion. The memory allocation may be mapped by the parent
process and reside 1n an eflective address space associated
with the shared accelerator hardware context (and parent
process). As the parent process spawns and ends child
processes and as memory requirements change, additional
memory regions can be added to or removed from the
cllective address space. When the parent process 1s termi-
nated, the child processes associated with the parent process
may also be terminated, the shared accelerator hardware
context may be released and made available for reuse, and
the memory regions used by the parent process and child
processes may be released.

[0045] FIG. 7 illustrates example operations that may be
performed by a parent process to establish a shared accel-
erator hardware context for use by the parent process and

Apr. 27,2017

one or more child processes spawned by the parent process
at a later time, according to one embodiment.

[0046] Operations 700 begin at step 710, where the parent
process creates a shared memory space for a group of
associated processes. In one case, the process may create a
shared memory space by using the shmget (shared memory
get/create) method, which creates a shared memory space
based on a key value and an imitial size for the shared
memory space. If a memory space associated with the key
does not exist (which would be expected for the parent
process), the process creates a shared memory space asso-
ciated with the provided key and having a size of the
provided 1mtial size. Once the shared memory space 1s
created using shmget, the parent process may use the shmat
method to map the shared memory region into the address
space ol the parent process.

[0047] At step 720, the parent process creates a shared
hardware context on an accelerator for the group of associ-
ated processes. To create the shared hardware context, the
parent process can use the shc_create method, which takes
a key to 1identily the context and authenticate to the shared
hardware context. If a context associated with the key does
not exist, the shc create method creates the shared hardware
context. The shc_create method may increment a counter
that indicates the number of processes that are currently
attached to the shared hardware context. The shared hard-
ware context may not be deleted, using shc_delete, until the
last process using the shared context (e.g., the counter
indicates that a single process 1s using the shared context)
calls shc delete.

[0048] Once the shared hardware context 1s created, at step
730, the process attaches the shared memory space to the
shared hardware context. For example, to attach the shared
memory space to the shared hardware context, the shc_insert
(shared hardware context insert) method may be used. The
shc_insert method inserts an address range into an 1dentified
context to attach the shared memory segment to the address
space of the hardware context. In attaching the shared
memory space to the shared hardware context, the shc_insert
method generally takes the address space created using
shmat and 1nserts the esids and vsids for the address space
into the segment table for the shared hardware context.
When the shc_insert method attaches the shared memory
segment to the shared hardware context, the shc_insert
method may track the processes that have performed the
shc insert method for each esid in the shared hardware
context. Once 1nserted into a shared hardware context, the
shared memory space mapped to an esid may not be
detached (e.g., using shmdt [the shared memory detach
method]) by a process until the process removes its mapping
of the shared memory from the shared hardware context
(e.g., using shc_remove).

[0049] At step 740, the parent process spawns one or more
chuld processes. When the parent process spawns a child
process (e.g., using the fork method), the spawning opera-
tion automatically binds the child process to the shared
memory space and hardware context created by the parent
process at steps 710-730. In spawning the child processes,
the child processes use the same context ID associated with
the context created by the parent process using shc_create
and the same shared memory space created by the parent
process using shmget. As discussed above, the parent pro-
cess may continually spawn and terminate child processes as
needed to accommodate changes 1 system usage. For
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example, for a database system that uses a coherent accel-
erator, the parent process may spawn additional processes as
demand for data from the database increases. As demand for
data decreases, some of the excess processes may be termi-
nated.

[0050] At step 750, the parent process performs operations
on the accelerator using the shared memory space. As
discussed above, because the accelerator and CPU are
coherently attached, read and write operations performed
using the accelerator use the same memory space. For
example, processes executing on an accelerator installed 1n
a POWER architecture system can use a process-specific
cllective virtual address to perform operations on system
memory. As discussed above, the accelerator can use the
same segment and page tables as the CPU to determine the
real (physical) memory address associated with an effective
virtual address and perform read and/or write operations on
the location identified by the eflective virtual address.

[0051] FIG. 8 illustrates example operations 800 that may
be performed by a second process to attach to an accelerator
hardware context created by a first process, according to one
embodiment. In some cases, the first and second processes
may be unrelated apart from having been launched by the
same user. Operations 800 begin at step 810, where the
second process attempts to create a shared memory space
using information (e.g., a unmique key associated with a
memory space) provided by a first process. Like the opera-
tions performed at the first process, the second process can,
for example, use the shmget method to attempt to create a
shared memory space using a key provided by the first
process.

[0052] At step 820, the second process determines
whether the shared memory space already exists. The second
process can determine whether the shared memory space
exists, for example, based on iformation returned by the
shmget method. If the shmget method returns information
about the shared memory space associated with the provided
key, the second process can determine that the shared
memory space exists (1.e., has already been created by the
first process), and at step 830, the second process binds 1tself
to the shared memory space and shared hardware context
associated with the shared memory space. To bind to the
shared hardware context, the second process attempts to
create a hardware context using the shc_create method and
a key i1dentitying the context created by the first process.
Because the hardware context identified by the key should
already exist, shc_create does not create a new hardware
context, but returns the hardware context created by the first
process. After finding the shared memory space and hard-
ware context, the second process can insert the memory
space mto the hardware context using shc_insert. Because
the shared memory space has already been mserted into the
shared context, shc_insert tracks that the second process has
also 1nserted a set of esids associated with the shared
memory space into the shared hardware context. Subse-
quently, at step 840, the second process performs operations
on the accelerator using the shared memory space and
shared hardware context. Because the second process uses
the same shared memory space and shared hardware context
as the first process, only one hardware context 1s used across
the first and second processes.

[0053] If, at step 820, the second process determines that
the shared memory space does not exist, at step 830, the
second process creates a memory space (as a result of the

Apr. 27,2017

shmget method) and a hardware context associated with the
memory space on an accelerator (using the shc create
method). As discussed above, the second process can create
the memory space and hardware context using the shmget
and shmat methods. At step 840, the second process binds
itself to the created memory space and hardware context (as
discussed above, using shc_insert), and at step 830, the
second process performs operations on the accelerator using,
the created memory space and hardware context.

[0054] Because coherent accelerators use address transla-
tion hardware to translate virtual addresses to physical
addresses, these accelerators may incur page faults when a
memory page mapped to a virtual address space 1s not
loaded 1nto system memory. Typically, a page fault handler
executes 1n the context of the process that generated the page
fault. However, to resolve a page fault generated by an
accelerator, the accelerator may need to mterrupt a CPU to
resolve the page fault. To resolve page faults at the accel-
crator level, page faults are processed by kernel process
created when the process creates a shared context.

[0055] FIG. 9 illustrates example operations 900 that may
be performed by a process to resolve page faults generated
while a process executes 1 a shared context on an accel-
erator, according to one embodiment. As 1llustrated, opera-
tions 900 begin at step 910, where the coherent hardware
accelerator generates a page fault. The page fault may be
generated, for example, when a process bound to a shared
hardware context associated with the coherent hardware
accelerator attempts to access a location 1n a virtual memory
space (e.g., an esid or vsid) that has not been loaded 1into
physical memory.

[0056] At step 920, the coherent hardware accelerator
triggers an interrupt and routes the page fault interrupt to a
kernel process associated with the shared hardware context.
At step 930, the kernel process resolves the page fault. In
resolving the page fault, the kernel process can load the
memory page associated with the requested virtual address
(e.g., ellective virtual address or systemwide virtual address)
into main memory. After the kernel process resolves the
page fault, the kernel process restarts the shared hardware
context that generated the page fault.

[0057] In some cases, a kernel process may be multi-
threaded. As different processes trigger page faults from
performing operations on various virtual memory addresses
that are not loaded into physical memory, individual threads
in the kernel processes can be used to resolve a page fault
generated by one of the one or more processes mapped to the
accelerator hardware context. In this way, a kernel process
associated with an accelerator hardware context can resolve
multiple page faults concurrently.

[0058] FIG. 10 1illustrates an example computing system
1000 that shares a single accelerator hardware context
among multiple related processes, according to an embodi-
ment. As shown, the server includes, without limitation, a
central processing unit 1002, one or more I/O device inter-
taces 1004, which may allow for the connection of various
I/O devices 1014 (e.g., keyboards, displays, mouse devices,
pen 1nput, etc.) to the computing system 1000, network
interface 1006, a memory 1008, storage 1010, accelerator
interface 1014, accelerator 1016, and an interconnect 1012.

[0059] CPU 1002 may retrieve and execute programming
instructions stored 1n the memory 1008. Similarly, the CPU
1002 may retrieve and store application residing in the
memory 1008. The interconnect 1012 transmits program-
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ming instructions and application data among the CPU
1002, I/O device interface 1004, network intertace 1006,

memory 1008, and storage 1010. CPU 1002 1s included to be
representative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. Additionally,
the memory 1008 1s included to be representative of a
random access memory. Furthermore, the storage 1010 may
be a disk drive. Although shown as a single unit, the storage
1010 may be a combination of fixed and/or removable
storage devices, such as fixed disc drives, removable
memory cards or optical storage, network attached storage

(NAS), or a storage area-network (SAN).

[0060] Accelerator interface 1014 generally allows one or
more accelerators 1016 installed 1n computing system 1000
to coherently access and perform operations on system
memory 1008. As discussed above, an accelerator interface
1014 may provide an interface to a coherent processor proxy
unit at CPU 1002 to allow the accelerator to share the
segment and page tables established by CPU 1002 for
operations on system memory. As processes execute on a
CPU 1002 or an accelerator 1016 and change the state of the
segment and/or page tables, changes made by one of the
CPU 1002 or accelerator 1016 may be propagated to the
other of CPU 1002 or accelerator 1016.

[0061] As shown, memory 1008 includes one or more
applications 1020 and a shared memory space 1030. Shared
memory space 1030 may be a virtual address space common
to both the CPU 1002 and accelerator 1016 so as to provide
for memory coherence between the CPU 1002 and accel-
erator 1016. As discussed above, applications may use an
accelerator 1016 through accelerator interface 1014 by
establishing a shared memory space 1030 and binding
processes associated with the application to the shared
memory space 1030 and a single accelerator hardware
context. By binding a multiple processes to a single shared
memory space 1030 and a single accelerator hardware
context, applications that spawn multiple related processes
and use the same memory space need not use all or most of
the available contexts available on an accelerator 1016. A
relatively large pool of available contexts may thus be
available for use by other applications 1030 to take advan-
tage of specialized processing power provided by an accel-
erator 1016.

[0062] The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

[0063] As will be appreciated by one skilled in the art,
aspects ol the present mvention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
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present invention may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0064d] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
clectronic, magnetic, optical, electromagnetic, inirared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or 1n connection with an instruction execution system,
apparatus, or device.

[0065] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
ol a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0066] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, efc., or any suitable combination of the foregoing.

[0067] Computer program code for carrying out opera-
tions for aspects of the present mnvention may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

[0068] Aspects of the present invention are described
below with reference to flowchart 1llustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the mven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
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can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks.

[0069] These computer program instructions may also be
stored 1n a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including istructions which
implement the function/act specified 1n the flowchart and/or
block diagram block or blocks.

[0070] Embodiments of the invention may be provided to
end users through a cloud computing infrastructure. Cloud
computing generally refers to the provision of scalable
computing resources as a service over a network. More
formally, cloud computing may be defined as a computing
capability that provides an abstraction between the comput-
ing resource and 1ts underlying technical architecture (e.g.,
servers, storage, networks), enabling convenient, on-de-
mand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and
released with minimal management eflort or service pro-
vider interaction. Thus, cloud computing allows a user to
access virtual computing resources (e.g., storage, data,
applications, and even complete virtualized computing sys-
tems) 1n “the cloud,” without regard for the underlying
physical systems (or locations of those systems) used to
provide the computing resources.

[0071] Typically, cloud computing resources are provided
to a user on a pay-per-use basis, where users are charged
only for the computing resources actually used (e.g. an
amount of storage space consumed by a user or a number of
virtualized systems instantiated by the user). A user can
access any of the resources that reside in the cloud at any
time, and from anywhere across the Internet. In context of
the present invention, a user may access applications (e.g.,
the entity analytics system) or related data available 1n the
cloud. For example, the entity analytics system could
execute on a computing system 1n the cloud and determine
relationships between different entities stored in the entity
analytics system, for example, based on determining rela-
tionships between sub-entities. In such a case, the entity
analytics system could receive an input specilying param-
cters for the enftity analytics system to search for and
determine relationships between entities and store informa-
tion about the determined relationships at a storage location
in the cloud. Doing so allows a user to access this informa-
tion from any computing system attached to a network
connected to the cloud (e.g., the Internet).

[0072] The present mnvention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

[0073] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
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storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0074] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface 1n each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program 1nstructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0075] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1nstructions by utilizing state information
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of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

[0076] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0077] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

[0078] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0079] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present mvention. In this regard, each block 1n the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable mnstructions for implementing the specified
logical function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
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grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0080] While the foregoing 1s directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereofl 1s determined by the
claims that follow.

What 1s claimed 1s:

1. A method for multiple processes to share a hardware
context established on a coherent hardware accelerator,
comprising:

using a first process:

creating a shared memory space,

creating a shared hardware context on the coherent
hardware accelerator,

attaching the shared memory space to the shared hard-
ware context, and

binding the first process to the shared hardware context;

in response to the first process spawning one or more

second processes, binding the one or more second

processes to the hardware context; and

performing one or more operations initiated by the first

process or one of the one or more second processes on
the coherent hardware accelerator according to the
bound hardware context.

2. The method of claim 1, wherein creating the shared
hardware context comprises:

generating a key identitying the shared hardware context;

and providing the key to the first process.

3. The method of claim 2, wherein binding the one or
more second processes to the shared hardware context
comprises allowing the one or more second processes to
access the shared memory space attached to the shared
hardware context.

4. The method of claim 1, wherein creating the shared
hardware context comprises launching a kernel process
associated with the shared hardware context to resolve faults
generated while performing operations on the coherent
hardware accelerator.

5. The method of claim 1, further comprising:
detecting a page fault generated by an operation executed
on the coherent accelerator by one of the first process
or one or more second processes; and
resolving the page fault using a kernel process.
6. The method of claim 5, wherein resolving the page fault
COmprises:
loading a memory page associated with an address that
caused the page fault into the shared memory space.
7. The method of claim 5, wherein the kernel process 1s
configured to process multiple page faults simultaneously.
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