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SYSTEM AND METHODS FOR ADAPTIVE
MODEL GENERATION FOR DETECTING
INTRUSION IN COMPUTER SYSTEMS

CLAIM FOR PRIORITY TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 14/509,208, filed Oct. 8, 2014, which 1s
a continuation of U.S. patent application Ser. No. 13/3573,
314 filed Sep. 10, 2012, now U.S. Pat. No. 8,887,281 1ssued
on Nov. 11, 2014, which 1s a continuation of U.S. patent
application Ser. No. 11/805,946 filed May 25, 2007, now
U.S. Pat. No. 8,893,273 1ssued on Nov. 18, 2014, which 1s
a continuation of U.S. patent application Ser. No. 10/352,
342 filed Jan. 27, 2003, now U.S. Pat. No. 7,225,343, 1ssued
on May 29, 2007, which claims the benefit of U.S. Provi-
sional Patent Application Ser. No. 60/351,913, filed on Jan.
25, 2002, all of which are hereby incorporated by reference
in their entirety herein.

STATEMENT OF GOVERNMENT RIGHT

[0002] The present invention was made 1n part with sup-

port from United States Defense Advanced Research Proj-
ects Agency (DARPA), grant nos. FAS-526617, SRTSC-

CUO019-7950-1, and F30602-00-1-0603. Accordingly, the
United States Government may have certain rights to this
invention.

COMPUTER PROGRAM LISTING

[0003] A computer program listing 1s submitted 1n dupli-

cate on CD. Each CD contains a routines described in the
Appendix, which CD was created on Jan. 24, 2003, and
which 1s 406 kB 1n size. The files on this CD are incorpo-

rated by reference in their entirety herein.

COPYRIGHT NOTICE

[0004] A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent disclosure, as 1t
appears 1n the Patent and Trademark Oflice patent files or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

[0005] Field of the Invention

[0006] This invention relates to systems and methods for
detecting anomalies 1n a computer system, and more par-
ticularly to an architecture and data format for using a
central data warehouse and heterogeneous data sources.

[0007] Background

[0008] As sensitive information 1s 1ncreasingly being
stored and manipulated on networked systems, the security
of these networks and systems has become an extremely
important 1ssue. Intrusion detection systems (IDSs) are an
integral part of any complete security package of a modem,
well managed network system. An IDS detects intrusions by
monitoring a network or system and analyzing an audit
stream collected from the network or system to look for
clues of malicious behavior.

[0009] Many widely used and commercially available
IDSs are signature-based systems. As 1s known in the art, a

Feb. 2, 2017

signature-based system matches features observed from the
audit stream to a set of signatures hand crafted by experts
and stored 1n a signature database. Signature-based methods
have some inherent limitations. For example, a signature-
based method 1s designed to only detect attacks for which 1t
contains a signature 1n the database. Therefore, the signa-
ture-based methods cannot detect unknown attacks since
there 1s no signature in the database for them. Such unknown
attacks can be dangerous because the system 1s completely
vulnerable to them. In addition to the expense in time and
human expertise of manually encoding a signature for each
and every known attack

[0010] Data mining-based methods are another paradigm
for building intrusion detection systems. The main advan-
tage of these methods 1s that they leverage the generalization
ability of data mining methods and in order to detect new
and unknown attacks. Data mining IDSs collect data from
sensors which monitor some aspect of a system. Sensors
may monitor network activity, system calls used by user
processes, or lile system access. They extract predictive
features from the raw data stream being monitored to
produce formatted data that can be used for detection.
Machine learning and data mining algorithms are used on a
large set of such data (e.g., “training data’) to build detection
models. New data (e.g., “sensor data™) gathered by sensors
1s evaluated by a detector using the detection model. This
model determines whether or not the sensor data 1s intrusive.
These models have been proven to be very ellective. (See,
W. Lee, S. 1. Stolio, and K. Mok, “Data Mining 1n Work
Flow Environments: Experiences in Intrusion Detection,”
Proceedings of the 1999 Conference on Knowledge Discov-
ery and Data Mining (KDD-99), 1999.; and Christina War-
render, Stephanie Forrest, and Barak Pearlmutter, “Detect-
ing Intrusions Using System Calls: Alternative Data
Models,” Proceedings of the 1999 IELEE Symposium on
Security and Privacy, pages 133-145. IEEE Computer Soci-
ety, 1999).

[0011] These algorithms are generally classified as either
misuse detection or anomaly detection. Misuse detection
algorithms model known attack behavior. They compare
sensor data to attack patterns learned from the training data.
If the sensor data matches the pattern of some known attack
data, the observed data 1s considered intrusive. Misuse
models are typically obtained by training on a large set of
data 1n which the attacks have been manually labeled (See,
W. Lee, S. J. Stolio, and K. Mok. Data mining in work tlow
environments: Experiences 1n intrusion detection. In Pro-
ceedings of the 1999 Conference on Knowledge Discovery
and Data Mining (KDD-99), 1999.) This data 1s very expen-
sive to produce because each piece of data must be labeled
as either normal or some particular attack.

[0012] Anomaly detection algorithms learn a model of
normal activity by training on a set of normal data. Anomaly
detection models compare sensor data to normal patterns
learned from the training data. Anomaly detection algo-
rithms then classity as an attack activity that diverges from
this normal pattern based on the assumption that attacks
have much different patterns than do normal activity. In this
way new unknown attacks can be detected. (See, e.g., D. E.
Denning, “An Intrusion Detection Model,” IEEE Transac-
tions on Software Engineering, SE-13:222-232, 1987; T.
Lane and C. E. Brodley, “Sequence Matching and Learning
in Anomaly Detection for Computer Security,” Proceedings
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US 2017/0034187 Al

Detection and Risk Management, pages 43-19. Menlo Park,
Calif.: AAAI Press, 1997; Christina Warrender, Stephanie
Forrest, and Barak Pearlmutter, “Detecting Intrusions Using
System Calls: Alternative Data Models,” Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages
133-145. IEEE Computer Society, 1999; and T. Lane and C.
E. Brodley, ““Temporal Sequence Learning and Data Reduc-
tion for Anomaly Detection,” Proceedings of the Fifth ACM
Conference on Computer and Communications Security,
pages 150-158, 1998.) Anomaly detection models are popu-
lar because they are seen as a possible approach to detecting
unknown or new attacks. Most of these algorithms require
that the data used for traiming 1s purely normal and does not
contain any attacks. This data can be very expensive because
the process of manually cleaning the data i1s quite time
consuming. Also, some algorithms require a very large
amount of normal data which increases the cost.

[0013] As discussed above, data mining-based IDSs have
theirr own disadvantages. Data to train the models 1s costly
to generate. The data must be collected from a raw audit
stream and translated into a form suitable for training. In
addition, for misuse detection, each instance of data must be
labeled either normal or attack. In the case of anomaly
detection, each 1instance of data must be verified to be
normal network activity.

[0014] Since data-mining based IDSs in general do not
perform well when trained 1n one environment and deployed
in another, this process of preparing the data must be
repeated at every deployment of data mining-based IDS
system. Furthermore, for each type of audit data that 1s to be
examined (network packets, host event logs, process traces,
etc.) the process of preparing the data needs to be repeated
as well. Because of the large volumes of data that needs to
be prepared, the deployment of a data mining-based IDS
system 1nvolves a tremendous amount of manual effort.

[0015] Many of parts of these manual proms can be
automated, including the collection and aggregation of the
data and translating it into a form appropriate for training the
data mining-based detection models. In addition, many of
these processes are the same across types of audit data.
Some of the processes still require some manual intervention
such as labeling the data, but even these can be semi-
automated.

[0016] The work most similar to adaptive model genera-
tion 1s a technique developed at SRI in the Emerald system.
(See, e.g., H. S. Javitz and A. Valdes, “The NIDES Statistical
Component: Description and Justification,” ZTechrical
Report, SRI International, 1993.) Emerald uses historical
records to build normal detection models and compares
distributions of new instances to historical distributions.
Discrepancies between the distributions signify an intrusion.
One problem with this approach 1s that intrusions present 1n
the historical distributions may cause the system to not
detect similar 1ntrusions in unseen data.

[0017] Related to automatic model generation 1s adaptive
intrusion detection, Teng et al. perform adaptive real time
anomaly detection by using inductively generated sequential
patterns. (See, H. S. Teng, K. Chen and S. C. Lu, “Adaptive
Real-Time Anomaly Detection Using Inductively Generated
Sequential Patterns,” Proceedings of the IEEL Symposium
on Research in Security and Privacy, pages 278-284, Oak-
land, Calif., May 1990.) Also relevant 1s Sobirey’s work on
adaptive intrusion detection using an expert system to col-
lect data from audit sources. (See, M. Sobirey, B. Richter
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and M. Honig, “The Intrusion Detection System Aid, Archi-
tecture and Experiences In Automated Audit Analysis,”

Proc. of the IFIP TC6/TC11 International Conference on

Communications and Multimedia Security, pages 278-290,
Essen, Germany, 1996.)

[0018] Many different approaches to building anomaly
detection models have been proposed. A survey and com-
parison of anomaly detection techniques 1s given 1n Chris-
tina Warrender, Stephanie Forrest and Barak Pearlmutter,
“Detecting Intrusions Using System Calls: Alternative Data

Models,” Proceedings of the 1999 IEEE Symposium on

[

Security and Privacy, pp. 133-145, IEEE Computer Society,
1999. Stephanie Forrest presents an approach for modeling

normal sequences using look ahead pairs (See, Stephanie
Forrest, S. A. Holmeyr, A. Somayaji, and T. A. Longstaf, “A
Sense of Self For UNIX Processes,” Proceedings of the 1996
[EEE Symposium on Security and Privacy, pp. 120-128,
IEEE Computer Society, 1996) and contiguous sequences
(See, S. A. Hofmeyr, Stephanie Forrest, and A. Somayaii,
“Intrusion Detection Using Sequences of System Calls,”
Journal of Computer Security, 6:151-180, 1998). Helman
and Bhangoo present a statistical method to determine
sequences which occur more frequently in intrusion data as
opposed to normal data. (See, P. Helman and J. Bhangoo, “A
Statistically Base System {for Prioritizing Information
Exploration Under Uncertainty,”IEEE Transactions on Sys-
tems, Man and Cybernetics. Part A: Systems and Humans,
2'7:449-466, 1997.) Lee et al. uses a prediction model trained
by a decision tree applied over the normal data. (See, W. Lee
and S. J. Stolfo, “Data Mining Approaches For Intrusion
Detection,” Proceedings of the Seventh USENIX Security
Symposium, 1998; and W. Lee, S. J. Stolfo, and P. K. Chan,
“Learning Patterns From UNIX Processes Execution Traces
For Intrusion Detection,” Proceedings of the AAAI-97 Work-
shop on Al Approaches to Fraud Detection and Risk Man-
agement, pages 50-356. Menlo Park, Calif.: AAAI Press,
1997.) Ghosh and Schwartzbard use neural networks to
model normal data. (See, Anup Ghosh and Aaron Schwartz-
bard, “A Study in Using Neural Networks for Anomaly and
Misuse Detection,” Proceedings of the Eighth USENIX
Security Svmposium, 1999.) Lane and Brodley examine
unlabeled data for anomaly detection by looking at user
profiles and comparing the activity during an intrusion to the
activity under normal use. (See, e.g., T. Lane and C. E.

Brodley, “Sequence Matching and Learning in Anomaly
Detection for Computer Security,” Proceedings of the AAAI-
97 Workshop on Al Approaches to Fraud Detection and Risk
Management, pages 43-19. Menlo Park, Calif.: AAAI Press,
1997; T. Lane and C. E. Brodley, “Temporal Sequence
Learning and Data Reduction for Anomaly Detection,”
Proceedings of the Fifth ACM Conference on Computer and
Communications Security, pages 150-138, 1998; and T.
Lane and C. E. Brodley, “Temporal Sequence Learning and
Data Reduction for Anomaly Detection,” ACM Transactions
on Information and System Security, 2:295-331, 1999.)

[0019] In intrusion data representation, related work 1s the
IETF Intrusion Detection Exchange Format project (“Inter-
net Engineering Task Force: Intrusion Detection Exchange
Format,”  http://www.ietl.org/html.charters/idwg-charter.
html, 2000) and the CIDF eflort (S. Staniford-Chen, B. Tung
and D. Schnackenberg. “The Common Intrusion Detection
Framework (CIDF)”, Proceedings of the Information Sur-
vivability Workshop, October 1998).
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[0020] The challenge 1n automating these processes 1s the
need to support diflerent types of data and different types of
detection models. In a typical network environment there are
many different audit streams that are useful for detecting
intrusions.

[0021] What 1s needed 1s an architecture to automate the
processes of data collection, model generation and data
analysis, and to solve many of the practical problems
associated with the deployment of data mining-based IDSs.

SUMMARY OF THE INVENTION

[0022] It 1s an object of the 1invention to provide a system
and method for detecting intrusions 1n a computer system.
[0023] It 1s another object of the imvention to provide
support for audit data received from a plurality of data
sources.

[0024] It 1s a further object of the invention to provide a
technique for performing intrusion detecting in real time and
forensics ofl-line.

[0025] It s a still further object of the invention to provide
an architecture which 1s extensible and scalable.

[0026] These and other objects of the immvention, which
will become apparent with reference to the disclosure herein,
are accomplished by a system and methods for detecting
intrusions in the operation of a computer system comprising
a sensor configured to gather information regarding the
operation of the computer system, to format the information
in a data record having a predetermined format, and to
transmit the data in the predetermined data format. A data
warehouse 1s configured to receive the data record from the
sensor 1n the predetermined data format and to store the data
in a database, such as a SQL database. A detection model
generator 1s configured to request data records from the data
warchouse 1n the predetermined data format, to generate an
intrusion detection model based on said data records, and to
transmit the mtrusion detection model to the data warechouse
according to the predetermined data format. A detector is
configured to recerve a data record 1n the predetermined data
format from the sensor and to classity the data record in
real-time as one of normal operation and an attack based on
said 1ntrusion detection model. A data analysis engine 1s
configured to request data records from the data warehouse
according to the predetermined data format and to perform
a data processing function on the data records.

[0027] According to a preferred embodiment, the prede-
termined data format 1s XML markup language. The data
record may comprises information regarding a source of the
information, as “meta-data.” The detection model generator
1s configured to periodically generate the detection model. A
detection model distributor 1s configured to receive the
detection model from the data warehouse and to transmit the
detection model to the detector. The sensor may be a
network sensor. Alternatively, the sensor may be a host
SENnsor.

[0028] According to one embodiment, the detection model
1s a probabilistic model. Accordingly, the detection model
generator may be configured to generate a parameterization
of the probabilistic model. The detector 1s configured to
compute a probability associated with the data record.
According to another embodiment, the detection model 1s a
set of support vectors which correspond to a decision
boundary in a feature space. The detection model generator
may be configured to generate a set of support vectors. The
detector may be configured to map a data record to the
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feature space and determine the location of the data record
in the feature space with respect to the decision boundary.
[0029] According to one embodiment, the data analysis
engine, €.g., a visualization analysis engine, may be config-
ured to display the data 1n the data warehouse as selected by
a request 1n the predetermined data format. Another data
analysis engine, e.g., a data labeling tool, may be configured
to label a data record as one of normal operation and an
attack. According to another embodiment, the data analysis
engine 1s further configured to append the label data to the
data records 1n the SQL database. Yet another embodiment
of the data analysis engine 1s a feature extractor configured
to extract a feature from a single data record or a plurality
data records. This data analysis engine may be configured to
append the feature data to the data records in the database.
[0030] A system for detecting intrusions in the operation
ol a computer system 1s disclosed herein which comprises a
plurality of sensors configured to gather information regard-
ing the operation of the computer system, to format the
information into data records having a predetermined for-
mat, and to transmit the data in the predetermined data
format. A plurality of detection model generators may be
configured to request data records from the data warehouse
in the predetermined data format. Each detection model
generator 1s configured to generate a respective intrusion
detection model based on said data records, and to transmait
the respective intrusion detection model to the data ware-
house according to the predetermined data format.

[0031] The invention provides a number of advantages,
including the support of heterogeneous data, a central stor-
age of data at the data warehouse, and a common data format
enables the system to combine data from different sources
very easily. The distributed architecture of the adaptive
model generation system allows machine learning algo-
rithms use data from multiple sources just as easily as data
from one source. This allows correlation algorithms to be
integrated into the adaptive model generation framework
which could potentially increase the performance of an
intrusion detection system. Accordingly, multiple different
types of data sources, and alert streams, can be algorithmi-
cally combined to detect a wider range of attacks, or even
coordinate attacks targeting multiple sites.

[0032] In accordance with the invention, the objects
described above have been met, and the need in the art for
an eflective intrusion detection architecture has been satis-

fied.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Further objects, features, and advantages of the
invention will become apparent from the following detailed
description taken in conjunction with the accompanying
figures showing illustrative embodiments of the invention,
in which:

[0034] FIG. 1 1s a block diagram 1llustrating the architec-
ture of the system 1n accordance with the present invention.
[0035] FIG. 2 1s an exemplary user interface 1in accordance
with the present invention.

[0036] FIG. 3 i1s another exemplary user interface 1in
accordance with the present invention.

[0037] Throughout the figures, the same reference numer-
als and characters, unless otherwise stated, are used to
denote like features, elements, components, or portions of
the illustrated embodiments. Moreover, while the subject
invention will now be described 1n detail with reference to
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the figures, it 1s done so in connection with the illustrative
embodiments without departing from the true scope and
spirit of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0038] The system 1n accordance with the present inven-
tion (also referred to as “Adaptive Model Generation” or
AMG) 1s an architecture which provides and automates
many of the critical processes 1n the deployment and opera-
tion of real time data mining-based intrusion detection
systems. The system abstracts various parts of the data
mimng-based IDS process and formalizes the automation of
this process. This includes abstracting the processes of data
collection, data aggregation, detection model evaluation,
detection model generation, and model distribution. The
system uses a general XML-based data and model repre-
sentation scheme that facilitates the translation of data from
what 1s collected at the audit stream to the form necessary
for generation of detection models.

[0039] The system architecture consists of several difler-
ent types ol component sub-systems. Real time components
such as sensors and detectors collect information from the
monitored system and detect intrusions in real time. A
component of the data management capabilities of the
system 1s a data warchouse which stores the data collected
by all of the sensors 1n a network. Model generators access
this data and train data mining-based detection models using
this data. Model distributors transfer the models to the
detectors. Finally analysis engines provide data analysis
capabilities such as visualization and forensic analysis.
[0040] More specifically, the system has the following
major capabilities: Automated data collection 1s provided, in
which data 1s collected by sensors and automatically sent to
detectors for classification and to the data warehouse for
aggregation and use 1n traimng models. Data warehousing
capabilities 1s provided by a data warehouse component that
stores data from all sensors. This data 1s used for training
detection models, but also may be used to support various
types of data analysis such as forensic analysis. Automated
model generation trains detection models from data stored in
the data warehouse. The process for converting the data into
the appropriate form for training 1s fully automated. Het-
erogeneous data support permits the handling of data from
different types of audit sources. This capability 1s allowed
since any form of data can be represented using a general
XML-based language.

[0041] Automated model distribution 1s provided. Once a
new model 1s generated, 1t may be deployed to all of the
detectors that subscribe to the particular detection models
that have been generated. The system enables evaluation of
archival records stored within the data warehouse to search
for intrusions. The system includes generic visualization
components that allow in a consistent fashion the visualiza-
tion of data from different sources. The system also provides
correlation support. Since data from multiple sensors 1is
stored 1n the data warehouse, the system can perform
analysis over the data from multiple sources and to train
detection models which examine audit streams from mul-
tiple sensors.

[0042] The system 1s designed to be extensible and scal-
able, and hence any audit source, any supervised learning
module, any unsupervised (anomaly detection) learming
model may be easily inserted into the architecture. In
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addition, any correlation function or algorithm may be easily
inserted to combine immformation from multiple sources to
provide better coverage of attacks, be they coordinated
distributed attacks, or clever new attacks against multiple
targets within the protected LAN. Moreover, the architecture
design also allows for scalability in large networks, and high
bandwidth environments. The system architecture can easily
be distributed to multiple processors to increase the speed of
operation, and 1t can utilize a high capacity data warehouse

(c.g., a parallel or distributed Relational Database Manage-
ment System (RDBMS)).

[0043] An exemplary embodiment of the adaptive model
generation system 10 1s illustrated i FIG. 1. System 10
automates the processes of data collection, data manage-
ment, detection model generation and distribution, and pro-
vides various capabilities for data analysis. In a typical
network environment, there are many different audit streams
that are useful for detecting intrusions. For example, such
data includes the packets passing over the network (e.g.,
header values, payload features, or combinations thereot),
the system logs on the hosts 1n the network, and the system
calls of processes on these machines. These types of data
have fundamentally different properties. In addition, detec-
tion models can also vary greatly. The challenge 1n auto-
mating these processes 1s the need to support these diflerent
types of data and different types of detection models. The
methods for building these detection models as well as
executing them 1n real time vary greatly for each type of
detection model.

[0044] The system 10 1s a system framework and archi-
tecture that can handle virtually any data type and detection
model. The system 10 consists of four types of components:
(1) real time components which include sensors and detec-
tors, (2) a data warchouse component, (2) detection model
management components which include adaptive model
generators and detection model distributors, and (4) data
analysis components which includes components for visu-
alization, forensics, labeling data, correlation and extracting
information from multiple records.

[0045] Sensors 12 gather immformation from an environ-
ment and send that data to the data warehouse 14. The data
in the data warehouse 14 1s accessed by the detection model
generators 16 which generate models that classily activity as
either malicious or normal. Once a model 1s created, it 1s
stored 1in the data warehouse 14. A model distributor 18
deploys that model to a real-time detector 20. The detector
20 recerves the detection model from the detection model
distributor 18 and also receives the audit data from the
sensor 12. Detector 20 then uses the model to evaluate the
audit data from the sensor 12 to detect intrusions.

[0046] The data analysis engines 22, 24, 26, and 28
retrieve data from the data warehouse 14. The use of the data
varies depending on the particular data analysis engine. The
results of an analysis are either stored 1n the data warehouse
14, or displayed directly to the user. Data analysis engines
22, 24, 26, and 28 allow the system 10 to implement many
systems that are helpful 1n the deployment of an ntrusion
detection system. New types of data analysis engines can
casily be incorporated into the system.

[0047] The system uses a distributed architecture that
consists of autonomous components. By making these com-
ponents independent, and linking them only with a commu-
nication protocol with very loose format restrictions, any
component conforming to that protocol may interface with
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the system. The communication protocol uses an XML
markup language which i1s substantially identical to the
IDMEF specification 1n the IETF (See, “Internet Engineer-
ing Task Force. Intrusion Detection Exchange Format,” as
published on http://www.ietl.org/html.charters/idwg-char-
ter.html, 2000). The system can easily be adapted to the
IDMEF format or any other language format, such as, e.g.,
CIDF (See, S. Staniford-Chen, B. Tung, and D. Schnack-
enberg. “The Common Intrusion Detection Framework
(CIDF),” Proceedings of the Information Survivability
Workshop, October 1998.)

[0048] The system 10 uses two basic components to
provide real time detection capabilities: sensors 12 and
detectors 20. A sensor 12 1s a system that collects data from
an audit stream and formats the data into the approprate
form using the XML markup language. This data 1s then sent
to a detector 20 which uses a detection model to determine
whether or not the data corresponds to an attack. If the data
corresponds to an attack, the detector 20 generates an alert.

[0049] In this framework, a traditional IDS system con-
s1sts of a sensor 12 and a detector 20 which 1n most cases are
integrated together. For example, 1n an exemplary embodi-
ment, the Snort system contains a sensor which monitors
packets and a detector which evaluates signatures over the
features extracted from the packets. (Snort 1s described in M.
Roesch, “Snort-Lightweight Intrusion Detection For Net-
works,” Proceedings of Lisa ’99, 1999 and 1n U.S. applica-
tion No. [not yet known] filed Dec. 19, 2002 claiming
priority to U.S. Provisional Application 60/342,872, filed
Dec. 20, 2001, entitled, “System and Methods For Detecting
A Denial-of-Service Attack On A Computer System,” which
1s 1ncorporated by reference herein.) The system 10 sepa-
rates these two components, thereby providing a means of
managing the overall computation of IDS 1n reconfigurable
architectures. For example, 11 the detection model evaluation
for a particular audit stream 1s a computational bottleneck,
it can be easily distributed to multiple machines.

[0050] The advantage of the system 10 over traditional
system architectures 1s the integration of the sensors 12 and
detectors 20 with other analysis and distribution sub-sys-
tems. In addition to sending the data to a detector 20, the
sensor 12 also sends the data to a data warehouse 14 which
aggregates and stores the data. The detector 20 retrieves 1ts
detection models from the model distributors 18. These
detection models are created by other components of the
system 10. Sensors 12 may be lightweight processes that
gather information from a real-time audit stream, format the
information mnto an XML representation, and then send the
formatted data to the detectors 20 for real time intrusion
detection and to the data warehouse 14 for aggregation of
data and storage. The sensors 12 can gather information
from any source. For every different audit stream of data, a
sensor 12 can be implemented to monitor and collect the
data.

[0051] Typically, there are two major classes of sensors
12, network sensors and host sensors. Network sensors
monitor the packets moving through the network. In the
exemplary embodiment, a network sensor such as HAUNT

(See, Paolo De Dios, Raka El-Khalil, Kyri Sarantakos,
Matthew Miller, Eleazar Eskin, Wenke Lee, and Salvatore
Stolfo, “Heuristic Audit of Network Traflic: A Data Mining-
Based Approach to Network Intrusion Detection,” Technical
report, CUCS Technical Report, 2001) 1s implemented, and
which 1s used to monitor network activity. The system 10

Feb. 2, 2017

listens to network traflic and reassembles the packets 1n
order to create data records which summarize connections.
A network sensor in the system 10 can be created from
existing network IDS systems such as, e.g., Snort and Bro
(See, V. Paxson, “Bro: A System for Detecting Network
Intruders 1 Real Time,” 7th Arnual USENIX Security
Symposium, 1998) by wrapping the component in the XML-
based form required for the system. (As 1s known 1n the art,
“wrapping” refers to the process of taking input and output
ol database, and adding meta information to. For example,
wrapping 1s performed by adding soitware which receives
an XML command, translates i1t to be understood by a
MY SQL database, and also operates 1n the opposite direc-
tion, e.g., both mput and output from the database.)

[0052] In the exemplary embodiment, there are multiple
sensors 12 for each host. This configuration may be imple-
mented because there are several different streams of 1nfor-
mation that are useful for detecting intrusions. The system
has been implemented with a variety of sensors for both
Windows™ and Linux systems. For a Windows™ system,
there are Windows™ event log sensors, software wrappers,
netatat sensors, and registry sensors. There are Windows™
event log sensors which take information from the applica-
tion, security, and event logs on the Windows™ system
respectively. Software wrappers are sensors that gather
information about system calls. Netatat sensors use the
netatat tool that gathers information about network connec-
tions on the host. data. Registry sensors monitor the activity
of the windows registry when applications are run on the
host.

[0053] The Linux sensors built into the system include
process sensors, network connection sensors, resource sen-
sors, and software wrappers. Process sensors use the /proc
virtual file-system to gather information about each runming
process. Network connection sensors collect mformation
about network connections being made to and from the host
machine. Resource sensors gather mformation about CPU
and memory usage on a machine. The software wrappers for
Linux systems are the same as for Windows™, monitoring
system calls made by a process. Details of all the host based

sensors can be found 1n Shlomo Hershkop, Frank Apap, Eli
(Glanz, Tania D’albert1, Eleazar Eskin, Sal Stolfo, and Johnee

Lee, “Hobids: A Data Mining Approach To Host Based

Intrusion Detection,” ZTechnical report, CUCS Technical
Report, 2001.

[0054] The sensors 12 themselves are constructed from
two major components, the basic auditing module (BAM)
and the communication engine. The BAM 1is the component
that extracts the information from the audited source. The
communication engine encodes the data and sends 1t to the
data warehouse for storage.

[0055] The BAM needs a mechanism to gather the data.

This may be performed differently for streams of difierent
types of data. Therefore, a separate BAM may be needed for
cach source of data that the system monitors. Packet sniflers
and Win32 hooks, as known 1n the art, are two examples of
ways to tap into the data stream and gather data. The BAM
can be seen as an interface to the system being monitored.
It hooks into the data stream and has the ability to transfer
the information from that data stream to the communication
engine. Therefore this system can function without any
knowledge of how the sensor works. This makes the system
very flexible with respect to sensors.




US 2017/0034187 Al

[0056] The communication engine takes the data from the
BAM, encodes the data into the system XML format and
then sends that data to the data warehouse 14. Along with the
data 1tself, the BAM sends the meta data, such as variable
types, to the communication engine. This 1s the information
that the communication engine needs to encode the infor-
mation. The communication engine also needs to know the
type of sensor 1n order to send the data to the right place in
the data warehouse. This 1s specified when the connection 1s
made to the communication engine. An example of a record
being generated from the RAD sensor, a sensor that monitors
accesses 1o the Windows™ registry, can be seen below. The
following 1s the raw data being read by sensor

Process: IEXPLORE

Key: HKCRApplications\notepad.exe'shell
Query: Openkey

Result: Success

Response: OxE22FC4C0

The sensor 12 sends the following Data sent to Communi-
cation Engine:

Process: IMPLORE

Key: HKCRApplications‘notepad.exe'shell
Query: Openkey

Result: Success

Response: OxE22FC4C0

Time: Tue Jul 31 14:43:20 EDT 2001
ProcQuery: 1263.4353

KevyProc: 6784.9363

QuervKey: 6621.3521

KevResponse: 4510.2431

KeyResVal: 8743.3245

[0057] In the exemplary embodiment, the combination
features are stored as hashes, not the actual values. This 1s
done for ethiciency and convenience purposes and imple-
mented 1 the sensor. The communication engine then
encodes the record as the following.

<rec> <process> [EXPLORE </process> <key>
HKCR\Applications‘\notepad.exe'shell </key> <query> Openkey </query>
<result> Success </result> <response> OxE22FC4C0 </response>
<procQuery> 1263.43353 </procQuery> <keyProc> 6784.9363 <keyProc>
<queryKey> 6621.3521 </queryKey> <keyResponse> 4510.2431

</keyResponse>
<keyResVal> 8743.3245 </keyResVal>

[0058] Detectors 20 analyze audit stream data collected
from a sensor and detect intrusions by using a detection
model. A detector 20 performs model evaluation over each
record from the sensor. The way a specific detector works
depends on the type of model being evaluated. Each difler-
ent model type may have a different detector that imple-
ments model evaluation for that model type.

[0059] The detector 20 may be viewed as a function that
takes as mput a data record and outputs an alert 11 the data
1s determined to correspond to an intrusion. An example of
a detection model type 1s a signature-based model, which 1s
the algorithm most widely used in commercial intrusion
detection systems. A signature-based detection model sim-
ply contains a set of “signatures” which correspond to
known attack types. Model evaluation consists of matching,
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cach signature in the model to a data record. If any of the
signatures match, the detector generates an alert.

[0060] In the exemplary embodiment, more sophisticated
model types can be used as well, including data mining-
based models that use decision trees, probabilistic models
and support vector machines. In the case of a decision tree,
the detection model would contain an encoding of a decision
tree. The detector would take this model and evaluate the
detection model on a record by following the relevant
branches of the tree. (Further details of a decision-tree
detection model are given i U.S. application Ser. No.
10/208,402 filed Jul. 30, 2002, entitled “System and Meth-
ods For Intrusion Detection With Dynamic Window Sizes”,
which 1s mcorporated by reference in its entirety herein.) In
the case of a probabilistic model, the detection model would
contain a parameterization of the probabilistic model and the
detector would compute a probability associated with each
record. (Further details of a probabilistic model are given 1n
U.S. application Ser. No. 10/208,432, filed Jul. 30, 2002,
entitled “System and Methods For Detection of New Mali-
cious Executables,” which 1s incorporated by reference 1n 1ts
entirety herein.) In the case of a support vector machine, the
model would contain a set of support vectors which corre-
spond to a decision boundary 1n a high dimensional feature
space. The detector would eflectively map a record to this
high dimensional feature space and computes which side of
the decision boundary the record falls on to determine
whether or not to generate an alert. Further details on the

support vector machine model generation and detection are
provided below and 1n U.S. application Ser. No. 10/320,259,

filed Dec. 16, 2002, entitled “Methods of Unsupervised
Anomaly Detection Using a Geometric Framework,” which
1s 1ncorporated by reference 1n 1ts entirety herein.

[0061] Detectors 20 receive detection models from model
distributors 18, which distribute models stored in the data
warchouse originally created by model generators. The
detectors 20 receirve real time updates from the model
distributors 18. This process keeps the detection models
updated as soon as new models are available. Below 1s an
example of the a model that the detector 20 for the RAD
system (described below and 1n U.S. application No. [not yet
known] concurrently filed, entitled “System and Methods
for Detecting Intrusions in a Computer System by Monitor-
ing Windows Registry Accesses,” uses to make a classifi-
cation.

<model> <type> RAD <type> <target> registrydb </target> <version>
2.11 </version> <encode>

<feature> <name> process </name> <n> 52000 </n> <r> 31 </r>
<values>

iexplore.exe, aim.exe, explore.exe, msaccess.exe, pinball.exe, .

..... <fvalues>

</feature>

<feature> <name> keyval </name> <n> 52000 </n> <r> 1800 </r>

<values>

HKLM, HKLM\Applications, . . . . .. </values> </feature>
</encode> </model>

The encoding of this model 1s explained 1n greater detail
herein. The evaluation of the record shown above with this
model would result 1n a normal label for the record.

[0062] The data warehouse 14 1s described herein. It

serves as the central storage repository for all of the data
collected by the sensors 12. The model generators 16 access
the data in the data warehouse 14 and create detection
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models using this data. The data warehouse 14 also stores
these detection models. The analysis engines 22, 24, 26, and
28 also access the data stored in the data warehouse 14.
These components give the system visualization and foren-
s1cs capabilities, as described below.

[0063] The core of the data warehouse 14 1s a Structured
Query Language (SQL) database. This allows for easy
manipulation of the data, which allows for the creation of
training data sets to build data mining-based detection
models. Since arbitrary subset of data can be retrieved using,
an SQL query, the data warehouse automates the process of
manually creating these data sets. This flexibility 1s very
important 1n practical deployments of the system 10.
[0064] For example, if there are 40 Windows™ hosts 1n a
network, 1n order to create an anomaly detection model over
the Application Event logs for each of the hosts in the system
framework, the following steps must be performed. A sensor
12 1s installed on each of the hosts. This sensor collects the
data and stores 1t 1n the data warechouse 14. If each host 1s
typically used in the same way, a large data set may be
created containing the combined event logs from each of the
hosts. Alternatively, 11 each host 1s used differently, a sepa-
rate training set may be created for each individual host.
Since the data warehouse uses a SQL database, different data
sets may be created by 1ssuing diflerent queries.

[0065] Storing the data in a single repository has several
other advantages for correlating sensor outputs. For
example, since the data 1s stored in a SQL database, “jo1n™
statements may be used to facilitate the linking of records
from diflerent sensors into single records. In addition, data
may be obtained from two sensors relatively easily because
all of the data 1s stored 1n the same database.

[0066] The data warehouse 14 uses an XML markup
language for communication with all of the modules. The
communication 1s specified i a specific XML markup
language defined for this purpose. This markup language
was intluenced by the IDMEF specification, and 1s described
in greater detail in the Appendix. The format for an insert
transaction 1s displayed below.

<command>

<tablename>

<begin™> <rec> <vari varitype> valueA </vari> <var2 var2type> valueA
<fvar2> <var3 var3type> valueA </var3>............ <varN
varNtype> valueA </varN>

</rec>

<rec> <varl varitype> valueB </vari> <var2 var2type> valueB </var2>
<var3dvardtype> valueB </var3> .. .......... <varN varNtype>
valueB </varN> </rec>

<end>

[0067] The transaction begins with a <command> to direct
the data warechouse operation appropnately. The name of the
table to be operated upon 1s then provided via <tablename=>,
where the pertinent information 1s stored. Then the infor-
mation 1s sent in XML format. The data starts with a
<begin> tag. Each record 1s started with a <rec> tag. Within
cach record all of the data is sent for that record, variable by
variable. The vaniable name 1s sent along with its type as the
tag, and between the tag 1s the value for that vanable. Any
number of records can be sent at a given time using this
protocol. This technique greatly reduces the cost 1n many
cases when there are many records being sent to the database
14 by a sensor. When the data warechouse 14 decodes the
XML format, 1t checks to see 1f each variable has a column
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in the table where the data 1s being inserted. I that column
does not exist, then 1t 1s created on the tly.

[0068] Below 1s a sample transaction. It 1s a single record
being 1nserted nto the nirl database by a HAUNT network
SEeNsor.

<insert>

<nir>

<begin>

<rec> <ID 1> 96 </ID> <dst-bytes 1> 490 </dst-bytes> <rerror-rate {>
0.18786 </rerror-rate> <sensor-rate f> 0.09760 </sensor-rate> <src-
bytes 1> 1381 </src-bytes> <src-count 1> 151 </src-count> <src-serror-
rate £> 0.16265 </src-serror-rate> <label str> normal </label> <src
str> 128.59.22.66 </src> <dst str> 12.59.22.87 </dst> <ip-overlap str>
0 </ip-overlap> </rec>

<end>

[0069] The HAUNT sensor connects to the data ware-

house 14 to transier a record. It begins by sending an insert
command to let the data warehouse know that 1t wants to
insert data. Then 1t specifies the table ninn where the data 1s
to be stored. Then it opens 1ts first record with an opening
<rec> tag. HEach variable 1s sent 1n order to the data ware-
house. First the ID of the transaction which 1s an integer 1s
sent over and that 1s 96. Next, the destination numbers of
bytes, dst-bytes, also an integer 490, 1s sent. Then each
variable 1s sent sequentially until the entire record 1s sent to
the data warechouse. For convemence, the types of data
integer, tloat, and string are abbreviated with 1, 1, and str
respectively. The exemplary coding of the data warehouse
14 1s provided 1n routines dw.cig, classl.java, DBAaccess.
java, and wrapper threadX.java, which are appended hereto,
as discussed 1n the Appendix.

[0070] The system 10 manages the creation and distribu-
tion of detection models. The detection models are generated
by the detection model generators 16 using data collected
stored 1n the data warehouse 14. They are distributed to the
detectors 20 by the model distributors 18, as described
herein.

[0071] The system 10 1s designed to work with any model
generation algorithm. Thus, the model generator compo-
nents 16 can be viewed as modular components that are
“plugged” into the architecture. These components take the
training set of data as mput and output a model of malicious
activity. Different types of model building algorithms
require different types of data. In the architecture of system
10, the model generators 16 may select any data through the
use of general or specific queries. Accordingly, the archi-
tecture 1s robust enough to handle any type of model
generation algorithm.

[0072] The model generation modules 16 request the data
from the data warehouse 14 when they want to create a
model. They form their request based on the information that
the model needs to train on. The generator 16 then runs and
creates a model. This model 1s then encoded mto XML and
sent to the data warehouse 14. Model generators 16 also
signal the model distributor 18 to let 1t know that a new
model 1s available. A sample XML encoding of a model
generated by the RAD system 1s shown below.

<model> <type> RAD <type> <target> registrydb </target> <version>
2.11

</version> <encode>

<feature> <name> process </name> <n> 52000 </n> <r> 31 </r>
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-continued

<values>

iexplore.exe, aim.exe, explore.exe, msaccess.exe, pinball.exe, . . . .
. </values>

</feature>

<feature> <name> keyval </name> <n> 52000 </n> <r> 1800 </r>
<values>

HKLM, HKLM\Applications, . . . . .. </values> </feature> . . . .
</encode> </model>

[0073] The model encoding begins with some meta-data
about the model itself. The type field 1s used to notify the
detector how to decode the rest of the model. The target
specifies which table 1n the database this model applies to.
The version information 1s used to coordinate with the
model distributor 1n order to ensure that detectors have the
most recent detection model. The model specifies informa-
tion for evaluating the model which follows the version
information. The exemplary algorithm requires information
and statistics about each feature 1n the data, and the values
observed for that feature. This information i1s sent over one
feature at a time. The encoding 1s specific to the type of
model. All of the data between the <encode> and </encode>
1s specific to the model type, and needs to be defined for each
new detection model generation algorithm. This flexibility 1s
what allows the adaptive model generation system to work
with any types ol models.

[0074] Many model generation algorithms can be used 1n
real-time environments. This creates the need for model
distribution ensuring that all detectors have the most recent
models. In the exemplary embodiment, detectors 20 may not
continuously check for updates in the data warchouse 14,
because this may be ieflicient, and the real-time require-
ments of the system 10 as a whole depend on the detectors
20 being lightweight components. The model distributors 18
are used to automatically send model updates to the detec-
tors 20 whenever the model generators 16 create them. The
exemplary coding of the detection model distributor 18 1s
provided i routines constants.java, DWclient.java, and
MDcommunicator.java, which are appended hereto, as dis-
cussed 1n the Appendix.

[0075] An analysis engine 1s any component that takes as
its mput a set of data from the database 14 and performs
analysis over this data. The analysis engines have the
capability of iserting the results of the analysis into the
database. In the exemplary embodiment, the analysis
engines 22, 24, 26 and 28 query the data warehouse 14 for
a set of data, and then insert new information into the data
warechouse 14 using the SQL interface. This can be usetul for
several purposes. For example, the data analysis engines use
the same XML format that the rest of the system uses, with
some specific tags designed specifically for data analysis. In
the exemplary embodiment, four types ol analysis engines
have been implemented: a visualization client 22, a forensics
tool 24, a data labeling tool 26, and a feature extractor 28.

[0076] The visualization analysis engine 22 provides a
system administrator with a mechanism to view all of the
data 1 the data warchouse 14. An example of a user
interface 30 provided by visualization agent implemented by
the adaptive model generation system 1s displayed in FIG. 2,
which indicates the date 52, user 54, computer 36, the
operating system action which 1s being logged 38 (e.g., 592
a new process has been created; 528 successtul logon; or 529
logon failure, unknown user name or bad password), cat-
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cgory 60 (a code indicative of ‘success’ or “failure’), type 62,
and strings of data 64, 66, and 68. Action 58, category 60 and
type 62 are defined by the Microsoit™ logger which writes
to the registry.

[0077] The visualization analysis engine 22 1s integrated
with the database 14 which allows the use of SQL queries to
filter the data to be viewed. An example of this interface and
a SQL query 1s shown in FIG. 3, which illustrates an
interface to the underlying database and asks how many
different values of ‘keys’ accessing the registry during the
first 1000 records.

[0078] The visualization tool can also provide an admin-
istrator or researcher with imnformation about the strengths
and weaknesses of a particular intrusion detection system. If
an administrator recognizes activity as an attack but the
system does not, she can act and the system can be protected
even though the system missed the attack. In addition, by
seeing the activity during an intrusion, this can provide
insight into the vulnerabilities of the host as well, and better
explain how attacks work. This will help to more accurate
detection models 1n the future and provide security experts
with the knowledge they need to improve security systems.
[0079] For example, ellicient sensor networks for detect-
ing tasks may be designed. The correlation and visualization
capability might find, for example, that certain types of
attacks are best detected by one source of data (e.g., a
host-based detector) while another set of attacks are best
detected by another (e.g., a network based sensor/detector).
Hence, this architecture also provides the means of analyz-
ing the overall detection task to architect a detection system
combining components (sensors/detectors) in a manner that
1s both eflicient and eflective.

[0080] Another type of data analysis 1s forensic analysis.
A forensic system 24 retrieves a set of historical data from
the data warchouse 14. Typically, the data of interest 1s a set
of data which 1s suspected to contain intrusions. The tool
must retrieve a specilic set of data appropriate to the
algorithm 1n question. Once the data set 1s retrieved, the
forensics analysis engine 24 may apply a detection algo-
rithm to find suspicious activity in the data set. The suspi-
cious activity 1s then labeled (either anomalous or normal)
using SQL statements to mark the approprnate data. Note that
this requires that a column be added to the table in the
database 1n order to store the label. The data warehouse 14
has the capability to do this on the fly.

[0081] A sample mput and output of a forensics analysis
tool being used on RAD data can be seen below. Input data
from the data warehouse:

<rec> <ID 1> 96 </ID> <dst-bytes 1> 490 </dst-bytes> <rerror-rate >
0.18786 </rerror-rate> <sensor-rate f> 0.09760 </sensor-rate> <src-
bytes 1> 1381 </src-bytes> <src-count 1> 151 </src-count™> <src-serror-
rate > 0.16265 </src-serror-rate> <src str> 128.59.22.66 </src> <dst
str> 12.59.22.87 </dst> <ip-overlap str> 0 </ip-overlap> </rec>
<rec><ID 1> 99 </ID> <dst-bytes 1> 420 </dst-bytes> <rerror-rate 1>
0.12786 </rerror-rate> <sensor-rate > 0.16760 </sensor-rate> <src-
bytes 1> 1281 </src-bytes> <src-count 1> 132 </src-count™> <src-serror-
rate > 0.19325</src-serror-rate> <arc str> 128.59.22.69 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> </rec>

The output sent back to the data warehouse 14 contains the
same data with a label appended to the end. In this example,
the first record was labeled as an attack and the second
record was labeled as normal.
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<rec> <ID 1> 96 </ID> <dst-bytes 1> 490 </dst-bytes> <rerror-rate >
0.18786 </rerror-rate> <sensor-rate > 0.09760 </sensor-rate> <src-
bytes 1> 1381 </src-bytes> <src-count 1> 151 </src-count> <src-serror-
rate £> 0.16265 </src-serror-rate> <arc str> 128.59.22.66 </src> <dst
str> 12.59.22.87 </dst> <ip-overlap str> 0 </ip-overlap> <label str>
attack </label> </rec>

<rec> <D 1> 99 </[D> <dst-bytes 1> 420 </dst-bytes> <rerror-rate >
0.12786 </rerror-rate> <sensor-rate f> 0.16760 </sensor-rate> <src-
bytes 1> 1281 </src-bytes> <src-count 1> 132 </src-count™> <src-serror-
rate > 0.19325 </src-serror-rate> <arc str> 128.59.22.69 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> <label str>

normal </label> </rec>

[0082] Forensics can be done with misuse detection mod-
ecls 1f there 1s a learned detection model for that data. If a
learned detection model exists, 1t can be run over the data to
find the intrusions 1n the data after the data has already been
collected. The method can be applied with signature-based
models which are used by commercial systems today. We
can also use anomaly detection models if there exists a
normal model for the data set. In some cases, there 1s no
appropriate model to perform forensics. In these cases, an
unsupervised anomaly detection algorithm may be used over
the data. Unsupervised anomaly detection algorithms can be
used to perform forensic analysis on unlabeled data. The
adaptive model generation framework enables this process.
Unsupervised anomaly detection algorithms detect intru-
sions buried within an unlabeled data set. Unsupervised
anomaly detection algorithms are described in greater detail
below.

[0083] Another data analysis engine 1s the data labeling
tool 26. The data labeling tool 26 takes the list of known
attacks and uses that information to label all of the records
in the database 14 which corresponds to these attacks. The
labeling tool 26 1s used to create labeled training data. The
list of known attacks could be, e.g., process names, time
stamps, or anything else that 1s also contained in the data
records and can be matched to the known attacks. The
labeling tool 26 1s a significant improvement over the
difficult manual labeling of records in a database. The
manual labeling of data 1s a significant cost for deploying a
data mining-based intrusion detection system. This cost 1s
cut significantly through the use of this data labeling tool 26.

[0084] The data labeling tool 26 1s implemented using
SQL joins with the sensor data 1n the data warehouse 14 and
the attack list. For example, given a table full of Windows™
host-based information from the application log, all actions
in the application log are stored 1n the data warchouse 14
with all available information from the log, including pro-
cess name. Given an attack list of all process names corre-
sponding to attacks, the labeling tool 26 can automatically
insert that attack list into the data warehouse 14 in a
temporary table. This temporary table could then be joined
with the table of sensor data, and the resulting table would
be the sensor data labeled with its attack classification. This
1s a labeled set of training data that was created automati-
cally from an attack list and a large set of sensor data.
Labeling collected data 1s necessary to create training data
for data mining-based detection models. An example of the
data labeling tool being used on the RAD data 1s seen below.
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[0085] Input from the two tables in the data warehouse:
Raw data:

<rec> <process> l1explore.exe </process> <query> queryKey </query> ...
</rec>
<rec> <process> happy99. exe </process> </query> createKey </query>

</rec>
<rec> <process> outlook. exe </process> </query> openKey </query> ...
</rec>

Attack List of process name:

<process> happy99.exe </process>
<process> bo2k.exe </process>

[.abeled Data:
[0086]

<rec> <process> l1explore.exe </process> <query> queryKay </query> ...
<label> normal </label> </rec>
<rec> <process> happy99. exe </process> </query> createKey </query>

<label> attack </label> </rec>
<rec> <process> outlook.exe </process> </query> openKey </query> ...
<label> normal </label> </rec>

[0087] Features are important discriminating attributes
derived from raw audit data that are employed in detection
models. A feature extractor 28 i1s any module that takes as
input raw audit data and outputs additional pieces of infor-
mation that were computed from the raw data. These new
teatures are augmented to the original record. This 1s a more
general version of the forensic analysis engine.

[0088] Many features may be computed by using infor-
mation that spans several individual records. Frequently,
records by themselves are not meaningful, but in combina-
tion with other records they could represent an attack. The
data warechouse 14 has the capability to provide the feature
extractor 28 with any subset of data necessary. This could be
the past n records for use with algorithms based on
sequences, or those that compute temporal statistical fea-
tures ol connections or sessions. The flexibility of this

system allows any group of record to be used to create a
feature.

[0089] Features can also be created from a single record.
In this case the feature extractor needs only to retrieve a
single record and perform any calculations necessary to
compute the feature.

[0090] Once the feature or features have been calculated
they must be appended to the data 1in the data warchouse 14.
A column may be added to the table using the SQL interface
to store the values of the new feature. An example of
extracting some features gathered from the HAUNT sensor
1s shown below.

[0091] This example shows features extracted from three
records. Features could also be extracted from any number
of records. This example shows the calculation of the
number of http connections seen by the sensor thus far:
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<rec> <I[D 1> 99 </ID> <dst-bytes 1> 420 </dst-bytes> <rerror-rate >
0.12786 </rerror-rate> <sensor-rate f> 0.16760 </sensor-rate> <src-
bytes 1> 1281 </src-bytes> <src-count 1> 132 </src-count> <src-serror-
rate > 0.19325</src-serror-rate> <src str> 128.59.22.69 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> </rec>
<rec> <D 1> 100 </ID> <dst-bytes 1> 325 </dst-bytes> <rerror-rate >
0.13426 </rerror-rate> <sensor-rate > 0.12450 </sensor-rate> <src-
bytes 1> 1341 </src-bytes> <src-count 1> 242 </src-count> <src-serror-
rate 1> 0.12435</src-serror-rate> <src str> 128.59.22.63 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> </rec>
<rec> <ID 1> 101 </ID> <dst-bytes 1> 425 </dst-bytes> <rerror-rate >
0.12456 </rerror-rate> <sensor-rate f> 0.12654 </sensor-rate> <src-
bytes 1> 1311 </src-bytes> <src-count 1> 102 </src-count> <src-serror-
rate > 0.21325</src-serror-rate> <src str> 128.59.22.63 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> </rec>

The updated records contain a new feature num http which
stores the new information.

<rec> <ID 1> 99 </ID> <dst-bytes 1> 420 </dst-bytes> <rerror-rate
£>0.12786 </rerror-rate> <sensor-rate > 0.16760 </sensor-rate> <src-
bytes 1> 1281 </src-bytes> <src-count 1> 132 </src-count> <src-serror-
rate > 0.19325 </src-serror-rate> <arc str> 128.59.22.69 <Varc> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> <num__ http> 1
</mum__http> </rec>

<rec> <ID 1> 100 </ID> <dst-bytes 1> 325 </dst-bytes> <rerror-rate >
0.13426 </rerror-rate> <sensor-rate f> 0.12450 </sensor-rate> <src-
bytes 1> 1341 </src-bytes> <src-count 1> 242 </src-count™> <src-serror-
rate > 0.12435 </src-serror-rate> <src str> 128.59.22.63 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> <num__http> 2
</mum__http> </rec>

<rec> <ID 1> 101 </ID> <dst-bytes 1> 425 </dst-bytes> <rerror-rate >
0.12456 </rerror-rate> <sensor-rate f> 0.12654 </sensor-rate> <src-
bytes 1> 1311 </src-bytes> <src-count 1> 102 </src-count> <src-serror-
rate > 0.21325 </src-serror-rate> <src str> 128.59.22.63 </src> <dst
str> 12.59.22.121 </dst> <ip-overlap str> 0 </ip-overlap> <num__http> 3
</num__http> </rec>

[0092] Feature extractors are components that transform
the basic features gathered by the sensors into more mean-
ingiul ones, often referred to as advanced features. For
example the time stamp on a packet 1s not a very important
feature when considered alone. However, using the time
stamp to compute the number of packets within the last two
seconds can be a crucial piece of information 1n determining
certain types ol network attacks. Models learned over well-
computed features are generally far superior to those com-
puted over raw pieces of mformation.

[0093] Feature extractors 28 can be seen as data analysis
engines by the system. They retrieve data from the data
warchouse 14 and then perform computations on that data.
Once these computations are completed the new data 1s sent
back to the warechouse 14 and appended with the new
information.

[0094] In many cases the feature extractors are built into
the sensors. This makes the number of components smaller
and easier to manage. However, this configuration requires
that a specialized feature extractor must be made for each
sensor. Another concern with combining the feature extrac-
tion with the sensor 1s that many feature extraction algo-
rithms can be very computationally expensive. The sensor 1s
the only component that must be run on the system 1t 1s
protecting. It 1s therefore crucial that the sensor i1s very
lightweight. Separate feature extraction modules can be
extremely helpiul 1n keeping the sensors lightweight.

[0095] Another important consideration when designing
an 1ntrusion detection system 1s efliciency. A real-time
system must be able to respond to intrusions 1n a timely
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manner so that action can be taken, without utilizing too
many ol the resources of the system it 1s intended to protect.
This 1s especially important 1n the case of host-based sys-
tems. The adaptive model generation framework emphasizes
light components and a distributed architecture. Resource-
heavy components can be separate from the system that the
IDS 1s trying to protect. The only component that needs to
be run on the system being protected 1s the lightweight
sensor. This greatly minimizes the amount of computational
resources taken by the 1DS.

[0096] An example of where this advantage 1s usetul 1s 1n
the HAUNT system which 1s a network intrusion detection
system. The deployment of the HAUNT system in the
system framework 1s described 1n greater detail below.
[0097] The system 10 described above has a distributed
architecture to allow for the automation of the data collec-
tion and data warehousing. In the system framework, simply
deploying a sensor will automatically collect and aggregate
that sensors data in the data warehouse. This 1s desirable 1n
order to aggregate the data. For example, the data analysis
may include performing forensic analysis of archival data. It
may also be useful to look back at errors made by the
intrusion detection system in order to improve performance
and study weaknesses.

[0098] The distributed architecture of system 10 allows
the system to gather data from heterogeneous systems. A set
of standard guidelines m a flexible format are placed on
sensor data, as described 1n the Appendix. There are many
different types of information that IDSs use, such as e.g.,
network packets, application logs, Windows™ registry
accesses, etc. The ability to accommodate these different
sources ol mnformation 1n a consistent way 1s a large advan-
tage of the adaptive model generation system.

[0099] This 1s easily accomplished 1n system 10 because
all of the data gathered by the system 1s transmitted to the
data warchouse 14 using the XML mark up language. The
system 1s flexible enough to store all types of information.

[0100] In a typical network environment, the system per-
mits the deployment of many models throughout the net-
work. These models can also become out of data. Accord-
ingly, the system has a mechanism for the creation and the
management of detection models. The models are created
using the detection model generators 16, described above.
The detection models are then stored 1n the data warehouse
14. The data warchouse 14 1s robust enough to handle any
types of models, and therefore the system can be used with
any types of models. The data warehouse 14 1s also stable
enough that failure of model storage 1s not a concern while
the protected machine 1s under attack. The use of model
distributor 18 allows the system 10 to update and alter
models on the fly with a minimal computational overhead.
This 1s very advantageous because it allows the system 10 to
be deployed for a long period of time without the need for
maintenance by an administrator.

[0101] The flexibility of XML 1s used here for the man-
agement functions. All data (models, sources, etc.) are
described easily 1n the XML framework by “meta-data™ that
describes the source and 1ts relationship to other sources and
components. This framework 1s used to provide manage-
ment functionality. This coupled with a visualization tool,

¢.g. visualization analysis engine 22, greatly aids the analy-
s1s of data.

[0102] Distributed models are models that are trained and
evaluated over multiple sets of data from multiple sources.
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Traditional intrusion detection systems would have difliculty
combining data from multiple different sources, especially
across different networks. By eliminating dependencies
between sensors, model generators, and detectors, the sys-
tem has enabled correlation algorithms to be constructed the
same as any other algorithm. The distributed architecture
and the data warechouse allow implementation of correlation
algorithms with no additional implementation overhead. The
data warehouse allows for the retrieval any subset of the data
in the database with a single query. This means that data
from multiple sources can be retrieved just as easily as data
from a single source. This data can be aggregated and used
more efliciently than 11 1t was stored individually

[0103] For example, a correlation algorithm operates 1n
the following manner: given a training set of labeled data,
cach of detection models 1s run over the data. A probability
table can be created to show which detection model has a
probability of being correct given the outputs of the other
models. For example, an exemplary system uses ten detec-
tion models, which are looking for an attack A 1n a given
operation or process. In this case, models 19 of the detection
models may label the operation or process as an attack, but
model 10 does not label the operation or process as an attack.
Accordingly, 1t 1s possible to calculate the probability that
model 10 1s correct. As a result, when model 10 1s used to
predict an attack, there 1s a statistic to predict the degree to
which the model 1s believed to be accurate.

[0104] There are three exemplary types of model genera-
tion algorithms that the system 10 supports. The first 1s
misuse detection, which trains on labeled normal and attack
data. The second 1s supervised (traditional) anomaly detec-
tion which trains on normal data. The third 1s unsupervised
anomaly detection which trains on unlabeled data.

[0105] Misuse detection algorithms train over normal and
attack data. Using this data, these algorithms build a model
that can discriminate between attack records and normal
records. These models can then classily new records as
either attack or normal. The only major disadvantage of this
type of system 1s that 1t requires labeled training data that
contains labeled normal activity and labeled attacks. This
data 1s very expensive to obtain, and 1t may not be portable
from one system to another or from one network to another.
Misuse detection algorithms can be used as model genera-
tion algorithms 1n the adaptive model generation framework.
The training data for misuse detection algorithms must
consist of labeled normal and attack data, often making the
training data for this algorithm very expensive.

[0106] Using the system, the cost of labeling the data can
be minimized. Once the sensors are deployed 1nto a network,
simulated attacks can be run and the time stamps and other
information about the attack recorded. Since the sensors will
be automatically sending the data to the data warehouse, the
data for labeling 1s already aggregated into one location.
Using the data labeling tool, the attack data can be labeled.
This labeled data 1s now stored in the data warehouse and
can be retrieved by the model generators. These models can
also be distributed into the detectors using the model dis-
tributors.

[0107] Anomaly detection algorithms train over normal
data to create a model of normal activity. These algorithms
need to train over data that contains no intrusions. The
training data needed for these algorithms i1s expensive
because 1t 1s diflicult to ensure that the data contains no
intrusions. This can be done by either having an expert
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manually clean the data, or by somehow ensuring that the
data contains no intrusions to begin with. In general this 1s
not as expensive as the training data necessary for misuse
detection algorithm. However many anomaly detection
algorithms require a very large amount of training data
which can increase the cost. Once an anomaly detection
model 1s trained, 1t can then classify new data as normal or
anomalous. These algorithms operate on the principle that
attacks are behavior that 1s different from normal.

[0108] The adaptive model generation framework sup-
ports the creation of anomaly detection models. Since sen-
sors send data to the data warehouse, 1t 1s easy to aggregate
the data for collection. Using the forensics analysis engine,
it 1s possible to see 1f the data 1s clean and contains no
intrusions. This can greatly decrease the cost of creating the
training set since 1t speeds the process of verifying that the
data 1s clean. The model generators can automatically gen-
erate anomaly detection models using the data from the data
warchouse and deploy the detection models using the model
distributor.

[0109] Unsupervised anomaly detection algorithms exam-
ine unlabeled data and attempt to detect intrusions buried
within the unlabeled data. Unsupervised anomaly detection
algorithms operate under the principle that intrusions are
very rare compared to the normal data and they are also
quantitatively different. Because of this, intrusions are out-
liers 1n the data and can be detected.

[0110] Since unsupervised anomaly detection can detect
intrusions in an unlabeled data set, they are used inside the
forensics analysis engines. Data from the data warchouse 1s
sent to a forensics analysis engine where an unsupervised
anomaly detection algorithm 1s applied. The forensics analy-
s1s engine can label the data which it determines to be an
outlier. Unsupervised anomaly detection algorithms can also
be used to help label data that 1s collected by the system.
This labeled data can then be used to train a misuse or
anomaly detection model.

[0111] One specific type of model generation algorithm
used by the system 1s Support Vector Machines (SVMs).
This algorithm can be used for both Unsupervised Anomaly
Detection and normal Anomaly Detection, and 1s described
in greater detail in U.S. application No. [not yet known],
filed Dec. 16, 2002, entitled “Methods of Unsupervised
Anomaly Detection Using a Geometric Framework,” which
1s 1ncorporated by reference above. The SVM algorithm 1s a
binary classifier. The operating principle for an SVM
approach to intrusion detection 1s that data 1s mapped to a
feature space. Inside this feature space, the SVM and a set
of labeled training data are used to determine a linear
decision surface (hyperplane). This surface i1s then used to
classily future instances of data. Data 1s classified based
upon which side of the decision surface it falls.

[0112] Given a training set S consisting of m vectors and
their labels (X,, y,) where x,e R ” and y,e{x1}, the algorithm
generates a decision surface. The decision surface 1s a
hyperplane of the form { w,x} +b=0 where w is normal to the
hyperplane and b scalar that shifts the hyperplane. The
decision surface that is chosen 1s determined by solving an
optimization problem that determines the “best” hyperplane
under a set of criteria which 1s known 1n the art (See, e.g.,
N. Cristianimi and J. Shawe-Taylor. An Introduction to
Support Vector Machines. Cambridge University Press,

Cambridge, UK, 2000.)
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[0113] The classification of a future instance xe®R” is
made by the function

fix)=sgn({ wx) +b)

[0114] Solving the following optimization problem results
in a solution the solution to the SVM optimization.

maximize E

I

1
a; — EZ a;a;y;yjXi, Xj)
i J

subject to: 0 < a;, Z.ﬂ;y; =

i

[0115] Setting b=0, the solution 1s then:

w = E lﬂf}ffxf
i

[0116] All x, with a0 are called the support vectors.
These are the vectors on the border of each class that
determine the unique solution. If a support vector were
removed, it would change the resulting hyperplane. How-
ever, all non-support vectors are irrelevant to the solution.
They can all be removed and the solution would not change.
[0117] This algorithm performs best when the data 1is
linearly separable data. However, 1n order to work for the
non-linearly separable case, data must be mapped into a
higher dimension feature space where 1t does become lin-
carly separable. In addition, often intrusion detection data
are not all vectors in R ” so there is no natural definition of
the dot products between the data elements.

[0118] Since the SVM algorithm 1s defined 1n terms of dot
products, kernel functions may be used to define both the
mappings of the elements to the feature space and the dot
product within these space simultaneously. This fact can be
exploited and a kernel function can be used in place of the
dot product.

[0119] Let @ be a feature map ®©: X—F. ® maps the input
space X 1nto a dot product space called the feature space F.
A kernel function K implicitly maps data into this feature
space and takes the dot product in that space.

K(x,x)={ D(x,).0(x))

An example of a kernel function 1s the Gaussian kernel.

|12 f2
K(x;, x;) = e il /2

Now the support vector machine optimization equation and
classification equation can be rewritten in terms of kernels.

maximize E

i

1
a; — EZ a;ia;y;yi(Xi, Xj)
L4

subject to: 0 < a;, Zﬂfyj =0

i

Substituting the formula for w 1nto the classifier equation we
get another dot product that can be converted to a kernel.
Setting b=0 the solution 1s then:

12
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[ Nj )

> aiyiKisi, x)+b

Li=12 )

f(x) =sgn

where N, is the number of support vectors and s, is the i”
support vector.

[0120] The standard support vector machine algorithm 1s
used for misuse detection by the system. Data in the form of
vectors of real numbers are sent from the sensors 12 to
detectors 20. The detectors 20 use a SVM model to differ-

entiate between normal data and intrusion data.

[0121] To implement this in the system, training data must
first be generated. A system 1s monitored by sensors 12 that
send their observations to the data warehouse 14 1n the form
of XML tagged data. Sporadically, different attacks are
launched against the system. After enough training data has
been generated, data 1s labeled 1n the data warehouse 14 as
either normal or attack. This labeled data 1s then sent via
XML to the model generator 16. The model generator 16
uses the SVM algorithm to create a model for misuse
detection. A model, 1n this case, 1s the set of support vectors
and their weights. This model 1s automatically sent to the
data warchouse 14 for storage and to all of the detectors 20
that use this kind of model. Once the model 1s 1 place,
sensors 12 send data that they are monitoring to the detector
20 for classification by the SVM classification rule.

[0122] The standard SVM algorithm 1s a supervised learmn-
ing algorithm. It requires labeled training data to create 1ts
classification rule. An unsupervised variant does not require
its training set to be labeled to determine a decision surface
(See, e.g., B. Scholkopt, J. Platt, J. Shawe-Taylor, A. .
Smola, and R. C. Williamson. “Estimating the Support of a

High-Dimensional Distribution,” Technical Report 99-87,
Microsoft Research, 1999.

[0123] The algorithm 1s similar to the standard SVM
algorithm 1n that 1t uses kernel functions to perform implicit
mappings and dot products. It also uses the same kind of
hyperplane for the decision surface. The solution 1s only
dependent on the support vectors as well. However, the
support vectors are determined i a different way. This
algorithm attempts to find a small region where most of the
data lives and label it as class +1. Everywhere else 1s labeled
as class —1. This 1s accomplished by finding the hyperplane
that maximizes the distance from the origin while still
capturing the majority of the data. The support vectors
define that hyperplane.

10124]
9:{3

(Given a tramning set S consisting of m vectors X.e

|
MINIMIZE zz a;a;K(xix;)
L4

1

, =1
vi jﬂ

subject to: 0 < g; <

where O<v<1 1s a parameter that controls the trade ofl
between maximizing the distance from the origin and con-
tamning most of the data in the region created by the
hyperplane.
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[0125] The classification equation 1s:

[ Nj )

Z a; K(s;, x)—b

\ =1 y

f(x) =sgn

where N, is the number of support vectors and s, is the i”
support vector. For this algorithm b cannot be set to 0, it
must be found explicitly.

[0126] The unsupervised SVM variant proposed by
Scholkopt can be used for unsupervised anomaly detection.
This approach was described 1n U.S. application Ser. No.
10/320,259, filed Dec. 16, 2002, entitled “Methods of Unsu-
pervised Anomaly Detection Using a Geometric Frame-
work,” incorporated by reference above, perform unsuper-
vised anomaly detection using the system framework. The
algorithm differentiates between normal data and anomalous
data. Anomalous data is thought to be intrusion data because
intrusions are much different than normal system use.
[0127] Like the misuse detection algorithm, unsupervised
anomaly detection requires traiming data. During a training
period, a system 1s run normally with no attacks. Sensors 12
monitoring the system send their observations via XML to
the data warchouse 14. Although no attacks are intentionally
run, 1f some unknown attacks were to occur, there would be
no problem. The algorithm can tolerate some noise (un-
known attacks) and still generalize well. Once enough
training data has been accumulated 1t 1s sent from the data
warchouse 14 to the model generator 16 via XML. There 1s
no need to label data. The model generator 16 then uses the
unsupervised SVM algorithm to generate a model of normal
activity. This model 1s made up of the set of support vectors
and their associated weights. The model 1s then sent to the
data warechouse 14 for storage and to the appropriate detec-
tors 20. Once the detection model 1s 1 place, sensors 12
send data to the detector 20 for classification.

[0128] The system framework can support a variety of
different intrusion detection systems. One example of an
IDS system that 1s integrated into the system 1s the Registry
Anomaly Detection (RAD) system, which 1s described in
greater detaill 1n U.S. application No. [not yet known]
concurrently filed, entitled “System and Methods for Detect-
ing Intrusions 1n a Computer System by Monitoring Win-
dows Registry Accesses,” incorporated by reference above.
The RAD system 1s a host-based IDS system which runs on
the Microsoft™ Windows™ platform. RAD monitors the
accesses to the Windows™ registry on a host and detects
anomalous registry accesses that correspond to attacks. It
uses an anomaly detection algorithm to make models of
normal registry accesses and compares 1n real time, moni-
tored accesses to that model.

[0129] The RAD system uses several features to charac-
terize each registry access. Five of these are basic features
that come directly from the registry accesses, and five are
composite features which are made from the combination of
two of the basic features. The basic features are Key,
Process, Query, Response, and ResultValue. The advanced
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features are Process/Query, Key/Process, Query/Key,
Response/Key, and ResultValue/Key. The first five features
are dertved directly from the registry accesses.

[0130] The registry 1s stored 1n a tree structure, and all
information 1s stored in a data structure called a key. The
name of the location where the information 1s stored 1s the
Key basic feature. The Process feature 1s the name of the
process that 1s performing the registry access. The Query
feature represents the type of access being made, such as
QueryValue, CreateKey, SetValue, etc. The Response fea-
ture 1s the outcome of the query, such as success, not found,
access denied, etc. The Result feature 1s the value of the key
being accessed. These five features provide all the necessary
information about any single registry access.

[0131] The RAD sensor consists of two parts. The first
part connects to the Windows™ operating system and moni-
tors the accesses to the registry. This part 1s implemented as
a basic auditing module (BAM). The BAM includes a hook
into the audit stream which 1s the Windows™ registry. The
architecture of the system 1s taken from the commercial
soltware Regmon produced by SysInternals (as described 1n
“SysInternals. Regmon for Windows N'1/9x,” Online pub-
lication, http://www.sysinternals.com/ntw 2Kk/source/reg-
mon.shtml, 2000). The BAM uses Win32 hooks to listen for

all reads and writes to registry.

[0132] The second part of the RAD sensor 1s the commu-
nication component which translates this data into the XML
format and sends 1t to the data warechouse 14. The commu-
nication module can support multiple BAMs at the same
time. This 1s done so that all sensors runming on a host can
be sent through a single source. Then the communication
engine can send the data from all these sources to the data
warchouse for storage.

[0133] The five composite features that are used by the
RAD system are examples of feature extraction. The RAD
system uses composite features in order to better classily
activity. This 1s an example of the feature extraction capa-
bilities of the adaptive model generation system. This 1s one
of the cases where the feature extractor 1s very lightweight
and therefore a part of the sensor.

[0134] These ten features are used to classily each registry
access as either normal or anomalous. In order to do this we
implemented an anomaly detection algorithm as described 1n
U.S. application No. [not yet known] concurrently filed,
entitled “System and Methods for Detecting Intrusions 1n a
Computer System by Monitoring Windows Registry
Accesses.”

[0135] FEach feature 1s individually evaluated to be either
normal or anomalous. Then the statistics we gathered are
used to score these anomalies. This score 1s based on how
likely 1t 1s that the value of this feature will be diflerent than
values seen 1n the past. These scores are then added together
and 1f they are over a threshold then the access 1s considered
to be malicious, otherwise 1t 1s classified as normal. Any
algorithm could be used without changing the overall archi-
tecture. Also from the point of view of the classification
algorithm the sensor 1s not important. This algorithm could
have been used on any data without any changes 1n archi-
tecture. Accordingly, the above 1s provided as an exemplary
embodiment of the present invention.

[0136] In order to detect anomalies 1n real time, a detector
20 was implemented for the RAD system. Although this
detector was implemented specifically for the RAD system,
it could be used to evaluate any model that was created by
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the classification algorithm described above. The first
requirement of the detector 1s that it must receive data from
the sensor 1n real time. This 1s necessary to evaluate models
in real time. The detector must also decode the model and
have the capability to receive real time updates to this
model. The RAD detector would retrieve the model from the
data warehouse 14, decode 1t, and then evaluate each record
that 1t was sent from the sensor. This 1s all done 1n real time
and consequently the system 1s successful 1n detecting
malicious activity in real time.

[0137] The multiplicity of this system can easily be
increased with the novel system described herein. With no
changes 1n architecture, the system can support any number
of host machines and sensors. With a conventional system
architecture, increasing the multiplicity would require major
changes in the structure of a system. According to the
invention, the central data collection 1s automated in the
system. This means that data from multiple machines 1s
gathered 1n the same place and can be analyzed from that
central location.

[0138] Another exemplary implementation of the system
1s the Heuristic Audit of Network Traflic (HAUNT) system,
which 1s a network based intrusion detection system that
classifies network data as either normal or attack. Previous
research has shown that network packet information can be
useiul 1 detecting intrusions. The majority of commercial
intrusion detection systems use network data to detect
attacks. This 1s because many attacks are remote attacks and
they can be seen in the network data. However these
commercial systems are signature-based due to the high cost
of deploying a data mining based network intrusion detec-
tion system.

[0139] The HAUNT sensor 1s designed to gather informa-
tion from a network stream. It listens to all network data,
formats it, and sends that data directly to the data warehouse
14. The network sensor does not use a communication
engine because 1t does not run on a host, so there 1s no need
to aggregate information before 1t 1s sent to the data ware-
house. The HAUNT sensor 1s implemented by utilizing the
commercial products NFR, Network Flight Recorder Inc.
Network flight recorder, 1997, described at http://www.nfr.
com, and Snort, described above. They use an abstract
teature definition structure and a feature exchange protocol
to extract information from the NFR and Snort systems. The
HAUNT system only uses packet header information to
extract features. This 1s done for efliciency purposes and
because the system can be eflective and inexpensive using,
just this information.

[0140] The HAUNT system uses a multiple model cost-
sensitive approach to improve etliciency. The system 1s
designed to minimize the computational cost of an 1ntrusion
detection system. The system first attempts to make a
classification based on a simple rule and the basic data
gathered from the sensor. If the system cannot confidently
make a classification, the system will perform more calcu-
lations in order to make a better decision. The system
accomplishes this by implementing multiple models to clas-
s11y the data. The difference between the models 1s that some
are more accurate at the price of being more computationally
expensive. The system does not evaluate the more expensive
models unless 1t has to in order to make a classification. The
more expensive models are more expensive 1n large part due
to the fact that they require more data. These expensive
models require derived features from the packet informa-
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tion. Some of these features are very expensive to calculate
and therefore they are only calculated when needed by the
more expensive models.

[0141] The HAUNT system uses a special type of detector
called JUDGE that implements multiple model evaluation.
The JUDGE system was implemented as a part of the
HAUNT system 1n order to accomplish the evaluation of the

multiple models. The JUDGE system 1s the system that
decides whether to calculate more expensive features and
evaluate more expensive models. The JUDGE models are
models generated from the RIPPER model generation pro-
gram, as 1s known 1n the art. RIPPER generates rule sets for
evaluation by the JUDGE system. These rule sets come 1n
one of two different types. The first type 1s ordered rule sets.
When evaluating ordered rule sets, JUDGE goes through
cach rule, one by one, until one of the rules can make a
classification and then that rule makes the decision. The
second type of rule set 1s unordered rule sets. When evalu-
ating unordered rule sets each rule 1n the set 1s evaluated and
the rule with the most precise ruling makes the ruling. The
unordered rule sets are more precise because they are always
labeled by most precise classifying rule. However ordered
rule sets are faster because 1n many cases JUDGE does not
have to evaluate every rule in the rule set.

[0142] The HAUNT system uses a feature extractor to
discover features that are useful for detecting attacks. The
algorithms for performing this feature discovery are
described in [14]. The HAUNT system uses a feature
descriptor 1 order to define the features that it uses for
classification. These features are defined using arithmetic
and logic expressions to combine primitive features. The
logic expressions 1implemented by this system are SUM,
AND, and UNIQUE. These features can be used to create a
wide variety of important features. The SUM 1feature could
be used to calculate the total number of times something has
happened. For example, to calculate the total number of tcp
connections, the following command could be used:

[0143] num_tcp_connections=SUM(protocol==tcp)

[0144] The SUM(protocol==tcp) returns the total of num-
ber of records of which the condition service==http 1s true.

To calculate the total number of tcp connections going to
port 2301, the following command 1s used:

num__tcp_ connections_ to_ port. 2301 = SUM({ protocol==tcp) AND
destination__port==2301))

[0145] The AND operator 1s used to take the AND of two
conditional expressions the same way 1t 1s normal used. The
final logical operator 1s the UNIQUE operator. The
UNIQUE operations takes 1in two parameters, a conditional,
and a feature. The operator will return the number of unique
values that feature has had when the condition 1s true. For
example, to get the number of different ports accessed by tcp
protocol, the following command could be used:

[0146] num_top_ports=UNIQUE(protocol=—=tcp, destina-
tion_port)
[0147] These logical functions along with arithmetic func-

tions such as multiplication and addition are all the HAUNT
system needs to define all of the features 1t uses. The feature
extraction provided by these tools can be seen as a data
analysis engine by the system. Feature extraction 1s an
important part of many intrusion detection systems. The
HAUNT system 1s an example of the feature extraction




US 2017/0034187 Al

capabilities of the adaptive model generation system can be
extremely useful in enabling an intrusion detection system.
[0148] It will be understood that the foregoing is only
illustrative of the principles of the invention, and that
various modifications can be made by those skilled in the art
without departing from the scope and spirit of the invention.

Appendix

[0149] The software listed herein 1s provided n an
attached CD-Rom. The contents of the CD-Rom are incor-
porated by reference in their entirety herein.

A portion of the disclosure of this patent document contains
material which 1s subject to copyright protection. The copy-
right owner has no objection to the facsimile reproduction
by any one of the patent disclosure, as 1t appears in the
Patent and Trademark Oflice patent files or records, but
otherwise reserves all copyright rights whatsoever.

[0150] Data Warehouse communication protocol.

[0151] How to run the server: If the server 1s not running:
[0152] java Classl

[0153] How to connect to the server:

[0154] telnet hostname 3000

NOTE: hostname 1s the name of the machine the DW 1s
installed on and 3000 1s the port that the server 1s listening
on. You will get the following:

Trying IP address...
Connected to hostname.

Escape character 1s © |’ .
WrapperThread running version: ..Ver 2.00 Enter: password

1d
Next type:
[0155] password table_name

where table_name can be any name from the dw.cig file.
Next you get the input prompt where you can type com-
mands:

[0156] type input>

[0157] The following commands are used to insert and
obtain data form the database in the datawarehouse:
[0158] INSERT: This command 1s used to insert a table
into the database specified by ID. The ID must be a valid
table 1n the dw.cig file. The records to be entered follow a
specific tag convention, described below. Insert commands
use the following format:

[0159] 1insert\n 1d\n <begin>\n tagged data <end>\n

[T the msertion 1s successiul 1t returns “DBAccess: insert]:
Successtul insertion.” If there 1s a problem 1t returns
“DBAccess: msertl:”+the exception. The tags <begin> and
<end> are case sensitive and cannot have white space. If a
column name 1s not recognized, a new column will be
created. IT a record has an mvalid endtag, 1t 1s dropped. If a
column tag 1s empty or i1s not specified, a NULL will be
inserted for that column. Records are inserted as they are
received, on the fly.

[0160] Example: This example iserts two records into

registrydb. All the columns not specified will contain
NULL:
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insert\n registrydb'n <begin>'n

<rec><hostname str>Namel </hostname><query hs>Long
Queryl</query><queryCode u>27654</queryCode>

<rec><hostname str>Name2-</hostname><query hs>Long
Query2</query><queryCode u>98456</queryCode>

<end>'\n

[0161] QUICKINSERT: This command works 1n substan-
tially the same manner as the msert command. It uses the
same syntax and tag convention. It was created as a faster
method of 1serting records. Accordingly, 1t should be used
instead of 1nsert in most cases. Quickinsert commands have
the following format:

10162]

quickinsert\n 1d\n <begin>\n tagged data <end>\n

If the 1insertion 1s successiul, 1t returns “DBAccess: mnsertl:
Successtul 1nsertion.” If there 1s a problem, it returns
“DBAccess: isert]l:”+the exception. One difference from
insert 1s that the records are not sent to the database until
<end> 1s read. The tags <begin> and <end> are case
sensitive and cannot have whitespace. If a column name 1s
not recognized, a new column will be created. I a record has
an mvalid endtag, it 1s dropped. If a column tag 1s empty or
1s not specified, a NULL will be inserted for that column.

[0163] Example: quickinsert uses the same syntax as
insert. Accordingly, the same example 1s valid. This example
iserts two records into registrydb. All the columns not
specified will contain NULL.

quickinsert\n registrydb'n <begin>'n

<rec><hostname str>Namel </hostname><query hs>Long
Queryl</query><queryCode u>27654</queryCode>

<rec><hostname str>Name2-</hostname><query hs>Long
Query2</query><queryCode u>98456</queryCode>

<end>n

[0164] INSERTXML: This command takes records in
XML format and inserts them in the table specified by ID.
An 1msertxml command has the following format:

[0165]
<end>\n

insertxmlin - 1dwn <begin>\n xml_tagged data

If successtul, i1t returns “Successtul Insert”’+time 1n ms. If
there 1s an error, 1t returns: “Error 1in insertXMUL’+error. This
1s faster than either insert or quickinsert. XML tags are not
case sensitive and can have ignorable white space. Records
are not sent to the database until <end> 1s read. All records
are assumed to be 1n the same order and same form 1n the
same batch. If a column tag 1s empty or 1s not specified a
NULL will be inserted for that column. The tags for insert
are slightly different then the tags that are returned waith
getxml, described below.

[0166] Example: This example from earlier inserts two
records 1nto registrydb.

insertxmlin registrydb'n <begin>\n
<Table><TableSchema><Field><Name>hostname</Name><Type>str</

Type></Field>

<Field><Name>query</Name><Type>hs</Type></Field>
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-continued

<Field><Name>queryCode</Name><Type>u</Type></Field>
<TableData><rec><DataField>Namel</DataField><DataField>Long

Queryl</DataField><DataF1eld>27654</DatakField>
<rec><DataField>Name2</DataField><DatalField>Long

Query2</DataField><DatalF1eld>98456</DataField></TableData></Table>
<end>\n

[0167] GETALL: This command returns all records from
the table specified by 1d. A getall command uses the fol-
lowing format:

[0168] getall\n 1d\n
This command returns all records 1n the form:

(column_ namel, column__name?2...., column__nameN)
(recl__datal,recl_ data2,...,recl__dataN)

(recN__datal,recN_ data2,...,recN__dataN)

It queries the database for 5000 records at a time and returns
them. This will work for any size table.

[0169] Example: getall\n registrydbin

[0170] GETSQL: This command returns all records que-

ried by the sql_statement. A getsql command has the fol-
lowing format:

[0171]
Returns the result of sql_statement 1n the format:

getsglin 1d\n sql_statement\n

(column_ namel, column__name?2...., column__nameN)
(recl__datal,recl_ data?2,...,recl__dataN)

(recN__datal,recN_ data2,...,recN__dataN)

Only use SELECT statements with this command.
[0172] Example: getsqlin registrydb\n SELECT * FROM
registrydb WHERE ukey>1000\n

[0173] GETXML: This command returns all the records
from the table specified by ID i XML format. A getxml
command uses the following format:

[0174] getxmlin 1d\n
[0175] Example: getxmlin registrydbin
[0176] GETXMLSQL: This command returns all records

queried by sql_statement from the table specified by 1d 1n
XML format. A getxmlsqgl command has the following
format:

[0177] getxmlsglin 1d\n sql_statementin
It returns, as a result, the sql_statement 1n XML format.

[0178] Example: getxmlsql\n registrydb\n SELECT *
FROM registrydb WHERE ukey>1000\n

[0179] GETARFF: This command returns all records from
the table specified by 1d in ARFF format. A getartl command
has the following format:

[0180] getariln 1d\n

[0181] STATUS: This command shows mfo about the
connection and database. It returns the version number,
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current database, and 1info about all connections. Status uses
the following format:

[0182] status\n

[0183] HELP: This command lists all available com-
mands, and returns a list of available commands. Help uses
the following format:

[0184] helpn

[0185] QUIT: This command logs off the server Quit uses
the following format:

[0186] quitin

[0187] ADMINKILL: This command shuts down the

server. Adminkill uses the following format:
[0188] adminkill\n

[0189] The ID 1s the name of the table to be used. All
commands are 1n lower case. In the discussion above, “\ n”
means endline character, which the line to be read 1in. In
order to 1nsert “V’, the escape character must be used (i.e.,
type “V V). A column named key 1s not allowed by sql. A log
file dware.log keeps track of errors

[0190] A Sample Session appears below:

password ntsecurity

help
status
getall ntsecurity

quut

[0191] Tag Rules: These tag rules are to be used with the
insert command and the quickinsert command. A record 1s
defined as a text string between <rec> . . . </rec>. Each item
in the tag 1s tagged as follows: the tag name 1s the column
name within the table it resides in. The table name 1s
obtained from an api1 function. Also, each tag has a type
associated with it, such as int, char25, etc. So an 1item 1n a
record will look like: <compname s> . . . </compname>. The
end tag only has the name of tag. In the above example, the
tag means 1t goes nto column “compname”™ and 1s of type
“s” (e.g., a string of 25 characters).

10192]

The following tags are supported:

1 = int unsigned

| = long unsigned

u = mt unsigned (11 digits)

float = floating poimnt number (20 digits)
vchar25,vchr25 = variable length string max length 25
str = variable length string max length 40
s = variable length string max length 45

Is = variable length string max length 120
hs = variable length string max length 250
¢ = character

char25,chr25 = string length 25

t1 = time (hh:mm:ss)

t = time (hh:mm:ss)
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-continued

d = date (yyyy-dd-mm)
model = a variable length string that can store up to 16 MB
used for storing models

[0193] Insert XML Tag Rules. These tag rules are to be
used with the insertxml command. To use 1nsert using the
isertxml command, an XML Table object must be created.
The table has two parts: Part 1 1s the Table Schema which
contains the column names and their associated type. Part 2
1s the Table Data which contains the list of records to be
inserted 1n the table. Each column of a particular record must
be 1n the same order as the columns 1n the Table Schema.
Table has the following format:

<Table>

<TableSchema>
<Field>
<Name> user </Name>
<Type> str </Type>
</Field>
<Field>
<Name> program </Name>
<Type> str </Type>
</Field>

</TableSchema>

<TableData>
<Rec>
<DataField> gnikcah </DataField>
<DataField> getadmin.exe </Datalield>
</Rec>
<Rec>
<DataField> foo </DataField>
<DataField> foo.exe </DataField>
</Rec>

</ TableData>

</Table>

[0194] The following column types are supported:

1 = int unsigned

| = long unsigned

u = it unsigned (11 digits)

float = floating poimnt number (20 digits)
vchar25,vchr25 = variable length string max length 23
str = variable length string max length 40

s = variable length string max length 45

Is = variable length string max length 120

hs = variable length string max length 250

¢ = character

char25,chr25 = string length 25

t1 = time (hh:mm:ss)

t = time (hh:mm:ss)

d = date (yyyy-dd-mm)

model = a variable length string that can store up to 16 MB
used for storing models

[0195] IDS Data Formats: The IDS components exchange
data (including sensor records and models) in XML-based
formats. The XML format was chosen for the following
reasons: (1) Metadata—XML provides a clean and straight-
forward way to mark up sections of data with useful meta-
data. e.g., ‘normal’/‘attack.” In addition, such information
can be added at a later time to enable additional function-
ality, without breaking existing soitware that operate on the
data (provided the software follows XML parsing require-
ments). (2) Linking—The linking capabilities of (or associ-
ated with) XML ofler some capability, such as links among
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models and the data sets used to generate them. (3) Tools—
Several XML parsing tools are available for free non-
commercial use. There are bindings in C, Java, Tcl, and
others. Generating XML fragments from the data should 1s
straightforward, and requires little extra processing 1n addi-
tion to what 1s already needed for text encoding and trans-
mission.

[0196] Sensor Data: The sensor data format 1s designed to
facilitate data exchange 1n a system that contains a variety of
Sensors, Detectors, Model Generators, a Data Warehouse,
and other potential components. While sensors are the
primary producers of sensor data, other components can not
only read and analyze, but also annotate a piece of data after
it’s 1mitially gathered.

[0197] From the intended use of the sensor data format,
the following desirable properties were required: (1) Gen-
erality: sensors and the data they produce evolve with the
systems that they monitor as well as with sensor techniques
and analysis needs. Consequently, the format should have
enough generality so that the system can accommodate these
changes and remain useful. (2) Encoding useful information:
Even though some components, particularly the Data Ware-
house, may not understand the precise semantics of a piece
ol data, some usetul operations need to be performed on it.
In particular, Model Generators should be able to present to
the Data Warechouse query criteria that include actual data
attributes as well as meta data.

[0198] Format: This version of the format 1s mainly used
to encode tabular data (i1.e., list of records with a fixed
schema) which 1s very common. It provides tags for three
types of mnformation about each table: the records, the table
schema, and meta data for the table. In addition, 1t supports
annotation at the record (1.e., row) level.

10199]

An example:

<SensorData>
<Meta>
<Source> fruit.cake.food.org </source>
<SensorlD> NT42 </SensorlD>
<SensorType> HOSTBASED_ NT </SensorType>
<Time> 11/22/2001, 12:25:40 GMT </Time>
</Meta>
<Table>
<TableSchema>
<Fleld>
<Name> user </Name>
<Type> string </Type>
</F1eld>
<Fleld>
<Name> program </Name>
<Type> string </Type>
</F1eld>
</TableSchema>
<TableData>
<Rec>
<DataField name="user”> gnikcah </DataField>
<Datalield name="program™> getadmin.exe
</DataField>
<Annotation>
an attack!
</Annotation>
</Rec>
</TableData>
</Table>
</SensorData>
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[0200] The Formal DTD:

<IELEMENT SensorData (Meta, Table)>
<IELEMENT Meta (MetaVal)*>
<IELEMENT MetaVal (#PCDATA)>
<IATTLIST MetaVal

name CDATA #REQUIRED>
<IELEMENT Table (TableSchema, TableData)>
<IELEMENT TableSchema (Field)+>
<IELEMENT Field (Name, Type)>
<!ELEMENT Name (#PCDATA)>
<IELEMENT Type (#PCDATA)>
<IELEMENT TableData (Row)*>
<IELEMENT Row (DataField+, Annotation?)>
<IELEMENT DataField (#PCDATA)>
<IATTLIST DataField
name CDATA #REQUIRED>
<!ELEMENT Annotation (#PCDATA)>

[0201] The format described above emphasizes (human)
readability over space efliciency. It 1s contemplated abbre-
viations (e.g., “DataField”->“DF”) may be introduced to
save space as well as parsing time.

We claim:

1. A system for detecting intrusions in the operation of a

computer system comprising:

(a) a plurality of sensors, each sensor configured to gather
information regarding the operation of the computer
system, to format the information 1n a data record, and
to transmit the data record;

(b) one or more databases configured to receive the data
record from the sensor, to store the data record, and to
store an intrusion detection model;

(c) a detection model generator configured to request
training data from a plurality of data records from the
one or more databases, said training data comprising
data from at least two sensors, to generate the intrusion
detection model based on said training data from a
plurality of data records, and to transmit the intrusion
detection model to the one or more databases:;

(d) a data analysis engine configured to request data
records from the one or more databases and to perform
a data processing function on the data records;

(¢) the detection model generator further configured to
update the intrusion detection model 1n real-time;

(1) a detection model distributor configured to receive said
intrusion detection model from the one or more data-
bases and to transmit the detection model to at least one
detector; and

(g) one or more detectors configured to receirve a data
record from the sensor and to determine in real-time
whether said data record corresponds to an attack based
on said intrusion detection model.

2. The system according to claim 1, wherein the data
record 1s modified prior to storage in the one or more
databases.

3. The system according to claim 1, wherein the sensor 1s
a network sensor.

4. The system according to claim 1, wherein the sensor 1s
a host sensor.

5. The system according to claim 1, wherein the data
record comprises information regarding a source of the
information.

6. The system according to claim 1, wherein the detection
model 1s a probabilistic model.
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7. The system according to claim 6, wherein the detection
model generator 1s configured to generate a parameterization
of the probabilistic model.

8. The system according to claim 7, wherein the detector
1s configured to compute a probability associated with the
data record.

9. The system according to claim 1, wherein the detection
model 1s a set of support vectors which correspond to a
decision boundary 1n a feature space.

10. The system according to claim 9, wherein the detec-
tion model generator 1s configured to generate a set of
support vectors.

11. The system according to claim 10, wherein the detec-
tor 1s configured to map a data record to the feature space
and determine the location of the data record 1n the feature
space with respect to the decision boundary.

12. The system according to claim 1, wherein the sensor
1s configured to format the information 1n the data record 1n
one or more predetermined formats.

13. The system according to claim 1, wherein the data
analysis engine 1s further configured to append label data to
the data records in the one or more databases.

14. The system according to claam 1, wherein the data
analysis engine 1s configured to extract a feature from a
plurality data records.

15. The system according to claim 14, wherein the data
analysis engine 1s configured to append the feature data to
the data records.

16. A method for detecting intrusions 1n the operation of
a computer system comprising:

(a) gathering information regarding the operation of the
computer system at a plurality of sensors and format-
ting the information from each sensor ito a data
record;

(b) transmitting the data record to one or more databases,
and storing the data record in the one or more data-
bases;

(¢c) generating an 1ntrusion detection model comprising
requesting training data from a plurality of data records
from the one or more databases, said training data
comprising data collected from at least two sensors,
transmitting the intrusion detection model to the one or
more databases, and storing the intrusion detection
model at the one or more databases;

(d) requesting a data record from the one or more data-
bases and performing a data processing function on the
data record; and

(¢) updating the intrusion detection model 1n real-time;

(1) transmitting the infrusion detection model from a
detection model distributor to at least one detector.

(d) determining 1n real-time whether a data record corre-
sponds to an attack based on the intrusion detection
model comprising receiving the data record from the
SeNsor.

17. The method according to claim 16, further comprising
modifying the data record prior to storing the data record in
the one or more databases.

18. The method according to claim 16, wherein the
gathering information regarding the operation of the com-
puter system at a sensor comprises providing a network
SENSOr.

19. The method according to claim 16, wherein the
gathering information regarding the operation of the com-
puter system at a sensor comprises providing a host sensor.
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20. The method according to claim 16, wherein the
gathering iformation regarding the operation of the com-
puter system at a sensor comprises formatting the data
record with information relating to a source of the informa-
tion.

21. The method according to claim 16, wherein the
generating an intrusion detection model comprises generat-
ing a probabilistic model.

22. The method according to claim 21, wherein the
determining in real-time whether a data record corresponds
to an attack comprises computing a probability associated
with the data record.

23. The method according to claim 16, wherein the
generating an intrusion detection model comprises generat-
ing a set of support vectors which correspond to a decision
boundary 1n a feature space.

24. The method according to claim 23, wherein the
determining in real-time whether a data record corresponds
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to an attack comprises mapping a data record to the feature
space and determining the location of the data record with
respect to the decision boundary.

25. The method according to claim 16, wherein the
formatting the information into a data record comprises
formatting the information into the data record in one or
more predetermined formats.

26. The method according to claim 16, further comprising,
appending a label to the data records in the one or more
databases.

27. The method according to claim 16, wherein the
requesting data from the one or more databases comprises
extracting a feature from a plurality data records.

28. The method according to claim 27, further comprising
generating feature data based on the feature and appending
the feature data to the data records in the one or more
databases.
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