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SYSTEMS AND METHODS FOR PROVIDING
REINFORCEMENT LEARNING IN A DEEP
LEARNING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The current application 1s a Continuation-In-Part
Application of U.S. patent application Ser. No. 15/201,284
filed Jul. 1, 2016 that 1n turn claims priority to U.S. Provi-
sional Application No. 62/187,681, filed Jul. 1, 2015, the

disclosures of which are incorporated herein by reference as
i set forth herewaith.

FIELD OF THE INVENTION

[0002] This invention relates to deep learning networks
including, but not limited to, artificial neural networks. More
particularly, this invention relates to systems and methods
for training deep learning networks from a set of training
data using reimnforcement learning.

BACKGROUND OF THE INVENTION

[0003] Deep learning networks including, but not limited
to, artificial neural networks are machine learning systems
that receive data, extract statistics and classity results. These
systems use a tramning set of data to generate a model 1n
order to make data driven decisions to provide a desired
output.

[0004] Deep learning networks are often used to solve
problems in an unknown environment where the traiming
dataset 1s used to ascertain the extent of the environment.
One manner of training a deep learning network 1s referred
to as remnforcement learning in which the system takes a
sequence of actions in order to maximize cumulative
rewards. In reinforcement learning, the system begins with
an 1mperfect knowledge of the environment and learns
through experience. As such, there 1s a fundamental trade-oil
between exploration and exploitation in that the system may
improve 1ts future rewards by exploring poorly understood
states and actions and sacrificing immediate rewards.

[0005] Many approaches to reinforcement learning have
been put forth. Most of the proposed approaches are
designed based upon Markov Decision Processes (MDPs)
with small finite state spaces. Some other approaches require
solving computationally intractable planning tasks. These
approaches are not practical in complex environments that
require the system to generalize in order to operate properly.
Thus, these reinforcement learning approaches in large-scale
application have relied upon either statistically ineflicient
exploration strategies or include no exploration at all.

[0006] Some other common exploration approaches are
dithering strategies. An example of a dithering strategy 1s a
e-greedy. In common dithering strategies, the approximated
value of an action 1s a single value and the system picks the
action with the highest value. In some strategies, the system
may also choose some actions at random. Another common
exploration strategy 1s mspired by Thompson sampling. In a
Thompson sampling strategy there 1s some notion of uncer-
tainty. However, a distribution of the maintained over the
possible values from the dataset and the system 1s explored
by randomly selecting a policy according to the probability
that the selected policy 1s the optimal policy.

Feb. 2, 2017

SUMMARY

[0007] The above and other problems are solved and an
advance 1n the art 1s made by systems and methods for
providing reinforcement learning 1in deep learning networks
in accordance with some embodiments of the invention.
Reinforcement learming with deep exploration 1s provided 1n
the following manner 1n accordance with some embodi-
ments of the invention. A deep neural network 1s maintained.
A reinforcement learning process 1s applied to the deep
neural network.

[0008] The reinforcement learning process 1s performed 1n
the following manner 1n accordance with some embodi-
ments. A set ol observed data and a set artificial data 1s
received. For each of a number of episodes, the process
samples a set of data that 1s a union of the set of observed
data and the set of artificial data to generate set of training
data. A state-action value function 1s then determined for the
set of training data using a bootstrap process and an approxi-
mator. The approximator estimates a state-action function
for a dataset. For each time step 1n each of the one or more
episodes, the process determines a state of the system for a
current time step from the set of traiming data. An action
based on the determined state of the system and a policy
mapping actions to the state of the system 1s selected by the
process and results for the action including a reward and a
transition state that result from the selected action are
determined. Result data from the current time step that
includes the state, the action, the transition state are stored.
The set of the observed data 1s then updated with the result
data from at least one time step of an episode at the
conclusion of an episode.

[0009] In accordance with some embodiments, the rein-
forcement learning process generates the set of artificial data
from the set of observed data. In accordance with many of
these embodiments the artificial data 1s generated by sam-
pling the set of observed data with replacement to generate
the set of artificial data. In accordance with a number of
other embodiments, the artificial data 1s generated by sam-
pling state-action pairs from a diffusely mixed generative
model and assigning each the sampled state-action pairs
stochastically optimistic rewards and random state transi-
tions.

[0010] In accordance with some embodiments, the rein-
forcement learning process maintains a training mask that
indicates the result data from each of the time period in each
episode to be used 1n training and updates the set of observed
data by adding the result data from each time period of an
episode indicated in the training mask.

[0011] In accordance with some embodiments, the
approximator received as an input. In accordance with many
embodiments, the approximator 1s read from memory. In
accordance with a number of embodiments, the approxima-
tor 1s a neural network trained to fit a state-action value
function to the data set via a least squared iteration.

[0012] In accordance with some embodiments, one or
more reinforcement learming processes are applied to the
deep neural network. In accordance with many of these
embodiments, each of the reinforcement learning processes
independently maintains a set of observed data. In accor-
dance with some other embodiments, the reinforcement
learning processes cooperatively maintain the set of
observed data. In accordance with some of these embodi-
ments, a bootstrap mask that indicates each element 1n the




US 2017/0032245 Al

set of observed data that 1s available to each of the rein-
forcement learning processes 1s maintained.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates various devices 1n a network that
perform processes that systems and methods for providing
reinforcement learning in a deep learning network 1n accor-
dance with various embodiments of the invention.

[0014] FIG. 2 illustrates a processing system in a device
that performs processes that provide systems and methods
for providing reinforcement learning in a deep learning
network 1n accordance with various embodiments of the
invention.

[0015] FIG. 3 illustrates a deep neural network that uses
processes providing reinforcement learning 1in deep learning,
networks 1n accordance with some embodiments of the
ivention.

[0016] FIG. 4 1llustrates a state diagram of a deterministic
chain representing an environment.

[0017] FIG. S illustrates planning and look ahead trees for
exploring the deterministic chain shown in FIG. 4 1n accor-
dance with various approaches.

[0018] FIG. 6 illustrates a process for providing reinforce-

ment learning 1n a deep learning network 1n accordance with
an embodiment of the invention.

[0019] FIG. 7 illustrates an incremental process for pro-
viding reinforcement learning in a deep learning network in
accordance with an embodiment of the invention.

[0020] FIG. 8 illustrates a deterministic chain of states 1n
an environment of a problem.

[0021] FIG. 9 illustrates the results of application of
various remforcement learning approaches.

[0022] FIG. 10 1llustrates results of a deep learning net-

work using processes that provide reinforcement learning in
accordance with an embodiment of the invention and results

from a DQN network.

[0023] FIG. 11 1illustrates a graph showing results of a
deep learning network using processes that provide rein-
forcement learning 1n accordance with an embodiment of the
invention learning various Atari games compared to a
human player playing the games.

[0024] FIG. 12 1llustrates graphs showing improvements
to policies and rewards of various Atar1 games by deep
learning network using systems and methods for providing

reinforcement learning in accordance with an embodiment
of the mvention.

[0025] FIG. 13 illustrates a table of results for various
deep learning networks including a deep learning network
that uses process providing reinforcement learning pro-
cesses 1n accordance with an embodiment of the invention.

DETAILED DISCUSSION

[0026] Turning now to the drawings, systems and methods
for providing reinforcement learning to a deep learning
network in accordance with various embodiment of the
invention are disclosed. For purposes of this discussion,
deep learning networks are machine learning systems that
use a dataset of observed data to learn how to solve a
problem 1n a system where all of the states of the system,
actions based upon states, and/or the resulting transitions are
not fully known. Examples of deep learning networks
include, but are not limited to, deep neural networks.
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[0027] System and methods in accordance with some
embodiments of this mvention that provide reinforcement
learning do so by providing an exploration process for a
deep learning network to solve a problem 1n an environment.
In reinforcement learning, actions taken by a system may
impose delayed consequences. Thus, the design of explora-
tion strategies 1s more diflicult than systems that are action-
response systems where there are no delayed consequences
such as multi-armed bandit problems because the system
must establish a context. An example of a system that has
delayed consequences 1s a system that interacts with an
environment over repeated episodes, 1, of length t. In each
time step, t=1, . . . , T, of an episode, the system observes a
state of the environment, s,, and selects an action, a,,
according to a policy @ which maps the states to actions. A
reward, r,, and a state transition to state, s, ,, are realized in
response to the action. The goal of the system during
exploration 1s to maximize the long-term sum of the
expected rewards even though the system 1s unsure of the
dynamics of the environment and the reward structure.

Deep Learning

[0028] To understand a system that may have delayed
consequences, a deep learning network needs to explore as
many states of the system to understand the state-action
policy and the rewards associated with actions. Uncertainty
estimates allow a system to direct an exploration process at
potentially informative states and actions. In multi-arm
bandit problems, directed exploration of the system rather
than a dithering exploration generally categorizes eflicient
algorithms. However, directed exploration 1s not enough to
guarantee efliciency 1n more complex systems with delayed
consequences. Instead, the exploration must also be deep.
Deep exploration means exploration that 1s directed over
multiple time steps. Deep exploration can also be called
“planning to learn” or “far-sighted” exploration. Unlike
exploration of multi-arm bandit problems, deep exploration
require planning over several time steps instead of the
balancing of actions which are immediately rewarding or
immediately informative 1n a directed exploration. For deep
learning exploitation, an etlicient agent should consider the
future rewards over several time steps and not simply the
myopic rewards. In exactly the same way, ellicient explo-
ration may require taking actions which are neither imme-
diately rewarding, nor immediately informative.

[0029] To illustrate this distinction, consider a simple
deterministic chain {s_s, . . ., s, 5} with three step horizon
starting from state s, 1s shown in FIG. 4. The Markov
Decision Processes (MDP) of the chain 1s known to a system
a priori, with deterministic actions “left” and “right”. All
states have zero reward, except for the leftmost state s_,
which has known reward of €>0 and the rightmost state s,
which 1s unknown. In order to reach either a rewarding state
or an mformative state within three steps from s, a system
needs to plan a consistent strategy over several time steps.
[0030] Planning and look-ahead trees for several algorith-
mic exploration approaches to the MDP of this deterministic
chain are shown 1n FIG. 5. In FIG. 5, tree 501 represents the
possible decisions of a bandit algorithm, tree 502 represents
the possible decisions of a dithering algorithm, tree 503
represents the possible decisions of a shallow exploration
algorithm, and tree 504 represents the possible decisions of
a deep exploration algorithm. In all of the trees 501-504,
Actions, including action “left”, and action “right” are solid
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lines; rewarding states are at the left and right most bottom
nodes; and dashed lines indicate that the agent can plan
ahead for either rewards or information. As can be seen from
trees 501-504 only a system that employs a deep exploration
strategy such as reinforcement learning Unlike bandit algo-
rithms, an reinforcement learning agent can plan to exploit
tuture rewards. The strategies that use direct exploration
cannot plan ahead.

Reinforcement Learning

[0031] Remforcement learning 1s a deep Ilearning
approach that differs from standard supervised learning 1n
that correct input/output pairs are never presented, nor
sub-optimal actions explicitly corrected. Further, there 1s a
focus on on-line performance, which involves finding a
balance between exploration (of uncharted territory) and
exploitation (of current knowledge). A common approach to
reinforcement learming mnvolves learning a state-action value
function, QQ, which for time, t, state, s, and action, a, provides
an estimate, Q (s, a), of expected rewards over the remainder
of the episode: r; 41, ,+ ... +r;. Given a state-action value
function, ), the system selects an action that maximizes
Q.(s, a) when at state s and time t. Most reinforcement
learning systems provide an exploration strategy that bal-
ances exploration with exploitation. However, the wvast
majority of these processes operate 1n a “tabula rasa” setting,
which does not allow for generalization between state-action
pairs which 1s needed 1n systems having a large number of
states and actions.

[0032] A bootstrap principle 1s commonly used to approxi-
mate a population distribution be a sample distribution. A
common bootstrap takes as mput a data set D and an
estimator, v. The bootstrap generates a sample data set from
the bootstrapped distribution that has a cardinality equal to
D and 1s sampled uniformly with replacement from data set
D. The bootstrap sample estimate 1s then taken to by v (D).
A network that 1s an eflicient and scalable system for
generating bootstrap samples from a large and deep neural
network 1ncludes a shared architecture with K bootstrapped
head (or exploration processes) branching ofl independently.
Each head 1s trained only on a separate unique sub-sample
of data that represents a single bootstrap sample v (D"). The
shared network learns via a joint feature representation
across all of the data, which can provide significant com-
putational advantages at the cost of lower diversity between
heads. This type of bootstrap can be trained efliciently 1n a
single forward/backward pass and can be thought of as
data-dependent dropout, where the dropout mask for each
head 1s fixed for each data point.

[0033] For a policy m, the value of an action a 1n state s
may be expressed as Q7(s, a):=E _ _[X,_,“yr,], where
ve(0,1) 1s a discount factor that balances immediate versus
tuture rewards r,. This expectation indicates that the mitial
state 1s s, the action 1s a, and thereafter actions are selected
by the policy m. The optimal value 1s Q*(s, a):=max_Q™(s,
a). To scale to large problems, a parameterized estimate of
the Q-value function Q(s, a; 0) 1s used rather than a tabular
encoding. To estimate the parameterized value, a separate
neural network 1s used as an approximator function to
estimate the parameterized value.

[0034] In a deep Q learning network, a Q-learming update
from state s,, action a,, reward r, and new state s,_; 1s given

by
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ef+l{_ef-l-{l(}}fg_Q(Sﬂﬂf;ef))VBQ(Sﬂ ﬂf;ef) (1)

[0035] Where « is the scalar learning rate and v 2 is the
target value r+y max_Q(s,. ,, a; 07). 6~ are target network
parameters fixed 07=0..

[0036] Several important modifications to the updating
process 1n Q-learning improve stability for a deep learning
network using reinforcement learning provided in accor-
dance with some embodiments of the invention. First, the
system learns from sampled transitions from an experience
bufler, rather than learning fully online. Second, the system
uses a target network with parameters 0~ that are copied
from the learning network 0~ <0, only every T time steps and
then kept fixed 1n between updates. A Double DQN system
modifies the target v, and may help further as shown in
Equation (2):

+12

y,2e—ry max Ofs,, |, arg max, (s, 1,,;0,);07). (2)

[0037] A modifies the learning process to approximate a
distribution over QQ-values via the bootstrap. At the start of
cach episode, a deep learning network that uses reinforce-
ment learning as provided 1n accordance with some embodi-
ments of the mvention samples a single Q-value function
from an approximate posterior maintained by the system. An
exploration process then follows the policy which 1s optimal
for that sample for the duration of the episode. This 1s a
natural adaptation of the Thompson sampling heuristic to
reinforcement learning that allows for temporally extended
(or deep) exploration.

[0038] An exploration process for a deep learning network
that uses reinforcement learning as provided in accordance
with some embodiments of the invention may efliciently
implemented by building up KeN bootstrapped estimates of
the QQ-value function 1n parallel. Each one of these value
function heads Q,(s, a; 0) 1s trained against a separate target
network Q. (s, a; 07) such that each Q,, . . ., Qr provides a
temporally extended (and consistent) estimate of the value
uncertainty via Thompson sampling distribution estimates.
In order to keep track of which data belongs to which
bootstrap head, flags w,, . . ., w€{0,1} that indicate which
heads are privy to which data may be used are maintained.
A bootstrap sample is made by selecting ke{l, . . ., K}
uniformly at random and following Q, for the duration of
that episode.

[0039] The observation that temporally extended explora-
tion 1s necessary for eflicient reinforcement learning 1s not
new. For any prior distribution of MDPs, the optimal explo-
ration strategy 1s available through dynamic programming in
the Bayesian belief state space. However, the exact solution
1s 1ntractable even for very simple systems. Many successiul
reinforcement learning applications focus on generalization
and planning but address exploration only via an nethicient
exploration strategy or not at all. However, such exploration
strategies can be highly meflicient.

[0040] Many exploration strategies are guided by the
principle of “optimism 1n the face of uncertainty” (OFU).
These algorithms add an exploration bonus to values of
state-action pairs that may lead to useful learning and select
actions to maximize these adjusted values. This approach
was first proposed for finite-armed bandits, but the principle
has been extended successiully across various multi-armed
bandits with generalization and/or tabular reinforcement
learning. Except for particular deterministic contexts, OFU
methods that lead to eflicient reinforcement learning in
complex domains have been computationally intractable. A
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particular OFU system aims to add an eflective bonus
through a vanation of a Deep Q-learning Network (DQN).
The resulting system relies on a large number of hand-tuned
parameters and 1s only suitable for application to determin-
istic problems.

[0041] Perhaps the oldest heuristic for balancing explora-
tion with exploitation 1s given by Thompson sampling.
Thompson sampling 1s often referred to a bandit algorithm
and takes a single sample from the posterior at every time
step and chooses the action which 1s optimal for that time
step. To apply the Thompson sampling principle to rein-
forcement learning, a system samples a value function from
its posterior. Naive applications of Thompson sampling to
reinforcement learning resample every time step can be
extremely ineflicient. Such a system agent would have to
commit to a sample for several time steps 1n order to achieve
deep exploration. One proposed system, PSRL does commut
to a sample for several steps and provides state of the art
guarantees. However, PSRL still requires solving a single
known MDP, which will usually be intractable for large
systems.

[0042] A deep learming network that use reimnforcement
learning provided 1n accordance with some embodiments of
the invention approximates commits to a sample for several
steps exploration via randomized value functions sampled
from an approximate posterior. A deep learning network that
use remforcement learning provided in accordance with
some embodiments of the mvention recovers state of the art
guarantees in the setting with tabular basis functions, but the
performance of these systems 1s crucially dependent upon a
suitable linear representation of the value function. A deep
learning network that use reinforcement learning provided 1n
accordance with some embodiments of the invention
extends these 1deas to produce a system that can simulta-
neously perform generalization and exploration with a flex-
ible nonlinear value function representation. Our method 1s
simple, general and compatible with almost all advances 1n
deep exploration via reinforcement learning at low compu-
tational cost and with few tuning parameters.

[0043] A remnforcement learning system in accordance
with embodiments of this invention overcomes these prob-
lems by providing an exploration strategy that combines
cllicient generalization and exploration via leveraging a
bootstrap process and artificial data. In accordance with
some embodiments of the invention, the system receives a
set of training data that includes observed data and artificial
data. In accordance with some embodiments, the artificial
data 1s generated by sample state-action pairs from a dii-
tusely mixed generative model and assign each state-action
pair stochastically optimistic rewards and random state
transitions. In accordance with some other embodiments, the
artificial data 1s generated by sampling a set of observed data
with replacement to obtain a set of data having a number of
clements that 1s approximately equal to or greater than the
number of elements as the set of observed data.

[0044] The observed and artificial data are sampled to
obtain a training sample set of data. In accordance with some
of these embodiments, the training sample dataset includes
M samples of data. In accordance with a number of these
embodiments, M 1s equal to or greater than a number of
episodes to observe during an exploration process. In accor-
dance with some embodiments, the sampling 1s performed 1n
accordance with a known and/or a provided distribution. A
bootstrap process 1s applied to the union of the observed data
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and the artificial data to obtain a new distribution for the
sample of data. An approximator function is applied to the
new distribution to generate a randomized state-value func-
tion.

[0045] For each episode, the process observes a state of
the system, s,,, for a particular time period from the training
sample dataset and selects an action to perform based upon
policy m. The results including a reward, r,, realized and a
resulting transition state, s,._, resulting from the action are
observed. The state, action, reward and transition state are
stored as result data for the episode. This 1s repeated for each
time step 1n the episode. After the episode 1s completed, the
observed dataset 1s updated with the result data stored during
the episode. In accordance with some embodiments, a
training mask may be maintained that includes flags indi-
cating the result data from particular time steps 1s to be used
for training. The training mask 1s then read to determine the
result data to add to the observed data.

[0046] In accordance with many embodiments, multiple
exploration processes may be performed concurrently. In
accordance with a number of these embodiments, the result
data observed from each exploration process 1s shared with
other exploration processes. In accordance with a number of
embodiments, the observed dataset for each process 1is
updated independently. In accordance with some of these
embodiments, a boot strap mask 1s maintained that indicates
which elements of the observed dataset are available to each
pProcess.

[0047] In accordance with some embodiments, a replay
bufler may be maintained and playback to update parameters
of the value function network Q.

[0048] Systems and method for providing reinforcement
learning 1n a deep learning network 1n accordance with some
embodiments of the invention are set forth below with

reference to the Figures.

Systems that Provide Deep Learning Networks

[0049] A system that provides a deep learning system that
uses systems and methods that provide reinforcement learn-
ing 1n accordance with some embodiments of the invention
1s shown 1n FIG. 1. Network 100 includes a communications
network 160. The communications network 160 1s a network
such as the Internet that allows devices connected to the
network 160 to communicate with other connected devices.
Server systems 110, 140, and 170 are connected to the
network 160. Each of the server system 110, 140, and 170
1s a group of one or more servers communicatively con-
nected to one another via internal networks that execute
processes that provide cloud services to users over the
network 160. For purposes of this discussion, cloud services
are one or more applications that are executed by one or
more server systems to provide data and/or executable
applications to devices over a network. The server systems
110, 140, and 170 are shown each having three servers in the
internal network. However, the server systems 110, 140 and
170 may include any number of servers and any additional
number of server systems may be connected to the network
160 to provide cloud services. In accordance with various
embodiments of this invention, a deep learning network that
uses systems and methods that provide reimnforcement learn-
ing in accordance with an embodiment of the invention may
be provided by process being executed on a single server
system and/or a group of server systems communicating,
over network 160.
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[0050] Users may use personal devices 180 and 120 that
connect to the network 160 to perform processes for pro-
viding and/or interaction with a deep learning network that
uses systems and methods that provide reimnforcement learn-
ing in accordance with various embodiments of the mmven-
tion. In the shown embodiment, the personal devices 180 are
shown as desktop computers that are connected via a con-
ventional “wired” connection to the network 160. However,
the personal device 180 may be a desktop computer, a laptop
computer, a smart television, an entertainment gaming con-
sole, or any other device that connects to the network 160 via
a “wired” connection. The mobile device 120 connects to
network 160 using a wireless connection. A wireless con-
nection 1s a connection that uses Radio Frequency (RF)
signals, Infrared signals, or any other form of wireless
signaling to connect to the network 160. In FIG. 1, the
mobile device 120 1s a mobile telephone. However, mobile
device 120 may be a mobile phone, Personal Digital Assis-
tant (PDA), a tablet, a smartphone, or any other type of
device that connects to network 160 via wireless connection
without departing from this 1invention.

Example of a Processing System

[0051] An example of a processing system 1n a device that
executes 1nstructions to perform processes that provide
interact with other devices connected to the network as
shown 1n FIG. 1 to provide a deep learning network that uses

systems and methods that provide reinforcement learning 1n
accordance with various embodiments of the imvention 1n
accordance with various embodiments of this invention is
shown 1n FIG. 2. One skilled 1n the art will recognize that a
particular processing system may include other components
that are omitted for brevity without departing from this
invention. The processing device 200 includes a processor
205, a non-volatile memory 210, and a volatile memory 215.
The processor 205 1s a processor, microprocessor, controller,
or a combination of processors, microprocessor, and/or
controllers that performs instructions stored in the volatile
215 or the non-volatile memory 210 to manipulate data
stored 1n the memory. The non-volatile memory 210 can
store the processor instructions utilized to configure the
processing system 200 to perform processes including pro-
cesses 1n accordance with embodiments of the invention
and/or data for the processes being utilized. In other embodi-
ments, the processing system soltware and/or firmware can
be stored in any of a variety of non-transient computer
readable media appropriate to a specific application. A
network interface 1s a device that allows processing system
200 to transmit and receive data over a network based upon
the instructions performed by processor 205. Although a
processing system 200 1s illustrated in FIG. 2, any of a
variety of processing system in the various devices can
configured to provide the methods and systems 1n accor-
dance with embodiments of the invention can be utilized.

System that Provides Tramning by Multiple Concurrently
Running Exploration Processes

[0052] In accordance with some embodiments of the
invention, a deep learning network may currently run mul-
tiple exploration processes to achieve greater exploration of
an environment. A conceptual diagram of a deep learning
network that has multiple concurrently running exploration
processes 1n accordance with an embodiment of this inven-
tion 1s shown 1n FIG. 3. Deep learning network 300 operates
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on a frame 305. K number of heads or exploration processes
interact with network 300 to explore the environment.
[0053] The bootstrap principle 1s used to approximate a
population distribution be a sample distribution. A common
bootstrap takes as input a data set D and an estimator, v. The
bootstrap generates a sample data set from the bootstrapped
distribution that has a cardinality equal to D and 1s sampled
uniformly with replacement from data set D. The bootstrap
sample estimate 1s then taken to by y(D). System 300 1s an
cilicient and scalable system for generating bootstrap
samples from a large and deep neural network. The network
300 includes a shared architecture with K bootstrapped
heads (or exploration processes) branching off indepen-
dently. Each head 1s trained only on a separate unique
sub-sample of data that represents a single bootstrap sample
v (D"). The shared network learns via a joint feature repre-
sentation across all of the data, which can provide significant
computational advantages at the cost of lower diversity
between heads. This type of bootstrap can be trained efli-
ciently 1n a single forward/backward pass and can be
thought of as data-dependent dropout, where the dropout
mask for each head i1s fixed for each data point.

[0054] For a policy m, the value of an action a in state s
may be expressed as Q™(s, a)y:=[E _,  [Z,_,"Yyr,], where
ve(0,1) 1s a discount factor that balances immediate versus
future rewards r,. This expectation indicates that the initial
state 1s s, the action 1s a, and thereafter actions are selected
by the policy . The optimal value 1s Q*(s, a):=max_Q™(s,
a). To scale to large problems, a parameterized estimate of
the Q-value function Q(s, a; 0) 1s used rather than a tabular
encoding. In accordance with some embodiments, a neural
network 1s used to estimate the parameterized value.
[0055] The Q-learning update from state s, action a,

reward r, and new state s, _, 1s given by

er+l':_er'Fa(yrQ_Q(Spﬂr;er))VBQ(Sp ﬂr;er) (1)

[0056] Where o is the scalar learning rate and y € is the
target value r4+y max _Q(s,.,, a; 07). 07 are target network
parameters fixed 07=0..

[0057] Several important modifications to the updating
process 1 Q-learning improve stability for a deep learning
network using remnforcement learning provided in accor-
dance with some embodiments of the invention. First the
algorithm learns from sampled transitions from an experi-
ence buller, rather than learning fully online, Second the
algorithm uses a target network with parameters 0~ that are
copied from the learning network 07 <0, only every T time
steps and then kept fixed 1n between updates. Double DOQN
modifies the target v ¥ and helps further:

y 1Ay max, 0.y, arg max,0(s,,,a,6,);67). (2)

[0058] A deep learming network that use reinforcement
learning as provided 1n accordance with embodiments of this
invention modifies DOQN to approximate a distribution over
(Q-values via the bootstrap. At the start of each episode, A
deep learning network that use reinforcement learning as
provided in accordance with embodiments of this invention
samples a single Q-value function from 1ts approximate
posterior. The system follows the policy which 1s optimal for
that sample for the duration of the episode.

[0059] An exploration process 1s efliciently implemented
by building up KeN bootstrapped estimates of the Q-value
function in parallel as 1n FIG. 3. Importantly, each one of
these value function heads Q, (s, a; 0) 1s trained against its
own target network Q,.(s, a; 07). This means that each Q,, .
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., Q provide a temporally extended (and consistent)
estimate of the value uncertainty via TD Estimates. In order
to keep track of which data belongs to which bootstrap head
we store flags w,, . .., w,.€{0,1} indicating which heads are
privy to which data. We approximate a bootstrap sample by
selecting ke{l, . .., K} uniformly at random and following
Q. for the duration of that episode.

Reinforcement Learning Exploration Process

[0060] In accordance with some embodiments of the
invention, systems and methods provide reinforcement
learning by providing a deep exploration process. The deep
exploration process {its a state-action value function to a
sample of data from set of data that includes artificial data
and observed data. In accordance with some embodiments
of the mvention, the system receives a set of training data
that includes observed data and artificial data. In accordance
with some these embodiments, the artificial data 1s generated
by sampling state-action pairs from a diffusely mixed gen-
erative model and assign each state-action pair stochastically
optimistic rewards and random state transitions. In accor-
dance with some other embodiments, the artificial set of data
1s generated by sampling the observed set of data with
replacement. In accordance with a number of embodiments,
the artificial data includes M elements where M 1s approxi-
mately greater than or equal to the number of elements 1n the
observed dataset. The use of the combination of observed
and historical data provides randomness 1n the samples to
induce deep learning. An exploration process for providing
reinforcement learning to a deep learning network 1n accor-
dance with an embodiment of this invention 1s shown 1n

FIG. 6.

[0061] Process 600 performs exploration in M distinct
episodes. In accordance with some embodiments, the num-
ber of episodes 1s received as an input and 1n accordance
with some other embodiments the number of episodes may
set or selected by the process based on the size of the deep
learning network. A set of data including historical and
artificial data 1s obtained (603). In accordance with some
embodiments, the observed data 1s read from a memory. In
accordance with some other embodiments, the observed data
1s recerved from another system.

[0062] In accordance with some embodiments, the artifi-
cial data 1s generated by sampling the observed data with
replacement. In accordance with some other embodiments,
the artificial data 1s generated from the observed data based
on a known distribution of the original data. In accordance
with some other embodiments, the artificial data 1s generated
independent of the observed data. In accordance with some
of these embodiments, the artificial data 1s generated by
sampling state-action pairs from a diffusely mixed genera-
tive model; and assigning each state-action pair stochasti-
cally optimistic rewards and random state transitions. In
accordance with some embodiments, the artificial dataset
includes M elements of data where M 1s approximately
equal to or greater than the number of elements in the
observed dataset.

[0063] An approximator function 1s also recerved as iput
(610). In accordance with some embodiments, the approxi-
mator function may be set for process 600 and stored in
memory for use. The approximator estimates a state-action
value function for a data set. In accordance with some
embodiments, the approximator function may be a neural
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network trained to fit a state-action value tunction to the data
set via a least squared 1teration.

[0064d] The observed and artificial data are sampled to
obtain a training set of data (613). In accordance with some
of these embodiments, the training data includes M samples
of data. In accordance with a number of these embodiments,
M 1s equal to or greater than a number of episodes to
observe. In accordance with some embodiments, the sam-
pling 1s performed 1n accordance with a known and/or a
provided distribution. A bootstrap process 1s applied to the
union of the observed data and the training data to obtain a
new distribution and the approximator function is applied to
the distribution to generate a randomized state-value func-
tion (620). For each time step, a state, s, 1s observed based
on the training data and an action, a, 1s selected based on the
state of the system from the sample of data and the policy &
(630). The reward, r,, realized and resulting transition state,
s,..; are observed (635). The state, s, the action, a, and the
resulting transition state, s,,_, are stored as resulting data in
memory. The selecting (630) and observing of the results are
repeated until the time period ends (640). The observed set
of data 1s then updated with the results (650). In accordance
with some embodiments, a training mask 1s maintained that
indicates the result data from particular time steps of each
episode to add to the observed set of data and the mask 1s
read to determine which elements of the resulting data to add
to the observed data. This 1s then repeated for each of the M
episodes (645) and process 600 ends.

[0065] Although one process for providing reinforcement
learning for a deep learning network in accordance with an
embodiment of the mvention 1s described with respect to
FIG. 6. Other methods that add, removed, and/or combine
steps 1n process 600 may be performed without departing
from the various embodiments of this invention.

[0066] Fitting a model like a deep neural network 1s a
computationally expensive task. As such, 1t 1s desirable to
use incremental methods to incorporate new data sample
into the fitting process as the data 1s generated. To do so,
parallel computing may be used. A process that performs
multiple concurrent explorations i1n accordance with an
embodiment of the invention 1s shown 1n FIG. 7.

[0067] Process 700 performs exploration in M distinct
episodes for K separate exploration process. In accordance
with some embodiments, the number of episodes 1s recerved
as an mput and 1n accordance with some other embodiments
the number of episodes may set or selected by the process
based on the size of the deep learning network. A set of data
including historical and artificial data i1s obtained (703). In
accordance with some embodiments, the observed data 1s
read from a memory. In accordance with some other
embodiments, the observed data 1s received from another
system.

[0068] In accordance with some embodiments, the artifi-
cial data for one or more exploration processes 1s generated
by sampling the observed data with replacement. In accor-
dance with some other embodiments, the artificial data for
one or more exploration processes 1s generated from the
observed data based on a known distribution of the original
data. In accordance with some other embodiments, the
artificial data for one or more of the exploration processes 1s
generated independent of the observed data. In accordance
with some of these embodiments, the artificial data 1is
generated by sampling state-action pairs from a diffusely
mixed generative model; and assigning each state-action
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pair stochastically optimistic rewards and random state
transitions. In accordance with some embodiments, the
artificial dataset includes M elements of data where M 1s
approximately equal to or greater than the number of ele-
ments 1n the observed dataset.

[0069] An approximator function 1s also received as input
(705). In accordance with some embodiments, the approxi-
mator function may be set for process 700 and stored in
memory for use. The approximator estimates a state-action
value function for a data set. In accordance with some
embodiments, the approximator function may be a neural
network trained to {it a state-action value function to the data
set via a least squared iteration. In accordance with some
embodiments, 1 to K number of approximators may be used
where each of the 1 to K approximators 1s applied to the
training set data of one or more of the K exploration
Processes.

[0070] The observed and artificial data are sampled to
obtain a training set of data for each of the K independent
processes (715). In accordance with some of these embodi-
ments, the tramning data for each exploration process
includes M samples of data. In accordance with a number of
these embodiments, M 1s equal to or greater than a number
ol episodes to observe. In accordance with some embodi-
ments, the sampling for one or exploration processes 1s
performed in accordance with a known and/or a provided
distribution. In accordance with some embodiments, one or
more of the exploration process may have the same set of
artificial data.

[0071] For each of the K exploration processes, a boot-
strap process 1s applied to the union of the observed data and
the artificial data to obtain a new distribution and the
approximator function 1s applied to the distribution to gen-
erate a randomized state-value function (720). For each
exploration process, exploration 1s performed in the follow-
ing manner. For each time step, a state, s, 1s observed and an
action, a, 1s selected based on the state of the system from
the sample of data and the policy m (730). The reward, r,,
realized and resulting transition state, s, , are observed
(735). The state, s, the action, a, and the resulting transition
state, s, ., are stored as resulting data in memory. The
selecting (730) and observing of the results are repeated
until the time period for the episode ends (740). The
observed set of data 1s mndividually updated for each explo-
ration process with the results (750). To do so, a bootstrap
mask may be maintained to indicate the observed data that
1s available to each exploration process. In accordance with
some other embodiments, the observed data 1s updated with
the data from all of the different K exploration processes. In
accordance with some embodiments, a training mask 1is
maintained that indicates the result data from particular time
steps of each episode for each exploration process to add to
the observed set of data and the mask 1s read to determine
which elements of the resulting data to add to the observed
data. This 1s then repeated for each of the M episodes (745)
and process 700 ends.

[0072] Although one process for providing reinforcement
learning for a deep learming network using multiple explo-
ration processes 1 accordance with an embodiment of the
invention 1s described with respect to FIG. 7. Other methods
that add, removed, and/or combine steps in process 700 may
be performed without departing from the various embodi-
ments of this mnvention.
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Testing for Deep Exploration

[0073] The following 1s an explanation of a series of
didactic computational experiments designed to highlight
the need for deep exploration. These environments can be
described by chains of length N>3 as shown in FIG. 8. Each
episode of interaction lasts N+9 steps after which point an
exploration process resets to the mnitial state, s,. These are
toy problems intended to be expository rather than entirely
realistic. Balancing a well known and mildly successtul
strategy versus an unknown, but potentially more rewarding,
approach can emerge in many practical applications.
[0074] The environments in these problems may be
described by a finite tabular MDP. However, processes
tested only interact with the MDP through raw pixel fea-
tures. The two feature mappings of the tests are ¢, _[(S,):=
(1{x=s,}) and ¢, (s,):=(1{x=s,}) in {0, 1}*". The results
for ¢, .. were better for all Deep Q-learning Network
(DQN) varniants due to better generalization, but the differ-
ence was relatively small. A Thompson Sampling DQN 1s
the same as a bootstrapped DOQN (a deep learning network
that uses reinforcement learning provided in accordance
with an embodiment of the invention), but resamples every
time step. Ensemble DQN uses the same architecture as
bootstrapped DOQN, but with an ensemble policy.

[0075] For purposes of this discussion, a process has
successiully learned the optimal policy when the process has
successiully completed one hundred episodes with optimal
reward of 10. For each chain length, each learning system
was executed for 2000 episodes across three seeds. The
median time to learn for each system 1s shown in FIG. 9,
together with a conservative lower bound of 99+2""'* on the
expected time to learn for any shallow exploration strategy.
As seen 1n graphs 901-904, only bootstrapped DOQN (a deep
learning network that uses reinforcement learning as pro-
vided 1n accordance with an embodiment of the invention)
demonstrates a gracetul scaling to long chains which require
deep exploration.

[0076] Bootstrapped DQN (a deep learning network that
uses reinforcement learning as provided 1n accordance with
an embodiment of the invention) explores n a manner
similar to the provably-eflicient algorithm PSRL but boot-
strap DOQN uses a bootstrapped neural network to approxi-
mate a posterior sample for the value. Unlike PSRL, boot-
strapped DOQN directly samples a value function and does
not require further planning steps. The bootstrap DON (a
deep learning network that uses reinforcement learning as
provided 1n accordance with an embodiment of the mven-
tion) 1s sumilar to RLSVI, which 1s also provably-eflicient,
but with a neural network instead of linear value function
and bootstrap mstead of Gaussian sampling. The analysis for
the linear setting suggests that this nonlinear approach will
work well as long as the distribution {Q", . . ., Q®} remains
stochastically optimistic, or at least as spread out as the
“correct” posterior.

[0077] Bootstrapped DQN (a deep learning network that
uses reinforcement learning as provided 1n accordance with
an embodiment of the mvention) relies upon random ini-
tialization of the network weights as a prior to induce
diversity. The iitial diversity 1s enough to maintain diverse
generalization to new and unseen states for large and deep
neural networks. The initial diversity 1s eflective for this
experimental setting, but will not work 1n all situations. In
general, a deep learning network that uses reinforcement
learning as provided in accordance with an embodiment of
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the invention may be necessary to maintain some more
rigorous notion of “prior”’, potentially through the use of
artificial prior data to maintaimn diversity. One potential
explanation for the eflicacy of simple random 1nmitialization
1s that unlike supervised learming or bandits, where all
networks fit the same data, each of Q* heads has a unique
target network. This, together with stochastic minibatch and
flexible nonlinear representations, means that even small
differences at initialization may become bigger as the heads
refit to unique TD errors.

Atar1 Evaluation

[0078] A deep learning network that uses reinforcement
learning as provided in accordance with an embodiment of
the mvention was evaluated across 49 Atarnn games on the
Arcade Learning Environment. The domains of these games
are not specifically designed to showcase the tested deep
learning network. In fact, many Atarn games are structured
so that small rewards always indicate part of an optimal
policy that may be crucial for the strong performance
observed by dithering strategies. The evaluations show that
exploration via bootstrapped DOQN (a deep learning network
that uses reinforcement learning as provided in accordance
with an embodiment of the invention) produces significant
gains versus e-greedy in this setting. Bootstrapped DQN
reaches peak performance roughly similar to DQN. How-
ever, the improved exploration of the bootstrapped DQN
reaches human performance on average 30% faster across
all games. This translates to sigmificantly improved cumu-
lative rewards through learning.

Deep Learning Network Set-Up for Atari Evaluation

[0079] The bootstrapped DOQN (a deep learning network
that uses remforcement learning as provided in accordance
with an embodiment of the invention) evaluated had a
network structure 1s 1dentical to the convolutional structure
of a DOQN except the bootstrapped DQN split 10 separate
bootstrap heads after the convolutional layer.

[0080] 49 Atann games were used as for our experiments.
Each step of the process corresponds to four steps of the
emulator, where the same action 1s repeated, the reward
values of the process are clipped between —1 and 1 for
stability. The processes are evaluated and reported perfor-
mance based upon the raw scores.

[0081] The convolutional part of the network (a deep
learning network that uses reinforcement learning as pro-
vided 1n accordance with an embodiment of the invention)
used 1s 1dentical to the one used 1n other systems. The input
to the network 1s 4x84x84 tensor with a rescaled, grayscale
version of the last four observations. The first convolutional
(cony) layer has 32 filters of size 8 with a stride of 4. The
second cony layer has 64 filters of size 4 with stride 2. The
las cony layer has 64 filters of size 3. We split the network
beyond the final layer into K=10 distinct heads, each one 1s
tully connected and identical to the single head of a DQN
that includes a fully connected layer to 512 units followed by
another fully connected layer to the Q-Values for each
action. The fully connected layers all use Rectified Linear
Units (ReLU) as a non-linearity. Gradients 1/K that flow
from each head are normalized.

[0082] Each of the networks tested were trained with
RMSProp with a momentum of 0.95 and a learning rate of
0.00025. The discount was set to y=0.99, the number of steps
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between target updates was set to t=10000 steps. The
processes were trained for a total of 50 m steps per game,
which corresponds to 200 m frames. The processes were
stopped every 1 m frames for evaluation. Furthermore, the
bootstrapped DQN used an ensemble voting policy. The
experience replay contains the 1 m most recent transitions.
The network was updated every 4 steps by randomly sam-
pling a minibatch of 32 transitions from the replay buller to
use the exact same mimbatch schedule as DQN. For train-
ing, a e-greedy policy with € being annealed linearly from 1
to 0.01 over the first 1 m timesteps.

Gradient Normalization in Bootstrap Heads

[0083] Most literature 1n deep reinforcement learning for
Atar1 focuses on learning the best single evaluation policy,
with particular attention to whether this above or below
human performance. This 1s unusual for the reinforcement
learning literature, which typically focuses upon cumulative
or final performance.

[0084] Based on the results, bootstrapped DQN (a deep
learning network that uses reinforcement learning as pro-
vided 1n accordance with an embodiment of the invention)
makes significant improvements to the cumulative rewards
of DOQN on Atari, while the peak performance 1s much more.
Furthermore, using bootstrapped DQN without gradient
normalization on each head typically learned even {faster
than our implementation with rescaling 1/K, but the network
was somewhat prone to premature and suboptimal conver-
gence.

[0085] In order to better the benchmark “best” policies
reported by DQN, bootstrapped DQN should use the gradi-
ent normalization. However, it 1s not entirely clear whether
gradient normalization represents an improvement for all
settings.

[0086] Where areinforcement learning system 1s deployed
to learn with real interactions, cumulative rewards present a
better measure for performance. In these settings, the ben-
efits of gradient normalization are less clear. However, even
with normalization 1/K bootstrapped DQN significantly
outperforms DQN 1n terms of cumulative rewards.

Sharing Data 1n Bootstrap Heads

[0087] In the Atan tests, all network heads (exploration
processes) of the bootstrapped DQN share all the data, so the
bootstrapped are not actually a traditional bootstrap at all.
This 1s different from the regression task, where boot-
strapped data was essential to obtain meaningful uncertainty
estimates. There are several theories for why the networks
maintain significant diversity even without data bootstrap-
ping 1n this setting.

[0088] First, the network heads all train on diflerent target
networks. As such, when facing the same (s, a, r, s) dat-
apoint, the various heads can reach drastically difierent
(Q-value updates. Second, Atar1 1s a deterministic environ-
ment and any transition observation 1s the unique correct
datapoint for this type of setting. Third, the networks are
deep and the heads are mitialized from different random
values so the heads will likely find quite diverse general-
ization even when the heads agree on given data. Finally,
since all variants of DOQN take many frames to update policy,
it 1s likely that even using p=0.5 the heads would still
populate their replay memory with identical datapoints.
Thus, using p=1 to save on minibatch passes seems like a
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reasonable compromise and the use of p=1 doesn’t seem to
negatively aflect performance too much 1n this setting. More
research 1s needed to examine exactly where/when this data
sharing 1s 1mportant.

Results Tables

[0089] In Table 1, shown in FIG. 13, the average score
achieved by the various systems are shown during the most
successiul evaluation period and compared to human per-
formance and a uniformly random policy. DQN 1s an imple-
mentation of DQN with the hyperparameters specified
above, using the double Q-Learming update. The peak final
performance of DQN 1s similar under bootstrapped DQN to
previous benchmarks.

[0090] To compare the benefits of exploration via boot-
strapped DQN, the results of bootstrapped DOQN are bench-
marked our performance against the most similar prior work
on incentivizing exploration in Atari. To do so, the boot-
strapped DOQN 1s compared to AUC-100. Based on the
results, bootstrapped DOQN out performs this prior work
significantly.

Implementing Bootstrapped DQN at Scale

[0091] In the evaluations, the number of heads needed to
generate online bootstrap samples for DOQN 1in computation-
ally etlicient manner was evaluated. The following three key
questions need to be answered to determine the optimal
number of heads: how many heads needed, how should
gradients be passed to the shared network and how should
data be bootstrapped online? To do so, significant compro-
mises were made in order to maintain computational cost
comparable to DOQN.

[0092] More heads leads to faster learning, but even a
small number of heads captures most of the benefits of
bootstrapped DQN. For the evaluations, K=10 was used.
[0093] The shared network architecture allows traiming of
this combined network via backpropagation. Feeding K
network heads to the shared convolutional network eflec-
tively increases the learning rate for this portion of the
network. In some games, the increased learning rate leads to
premature and sub-optimal convergence. The best final
scores were achieved by normalizing the gradients by 1/K,
but the normalizing of the gradients also leads to early
learning.

[0094] To implement an online bootstrap, an independent
Bernoulli mask w, . . ., w.~Ber(p) was used for each head
in each episode. These flags are stored 1n the memory replay
bufler and i1dentily which heads are trained on which data.
However, when trained using a shared minibatch the net-
work will also require an eflective 1/p more iterations; this
1s undesirable computationally. Surprisingly, the boot-
strapped DQN performed similarly 1rrespective of p and all
outperformed DQN. In light of empirical observation for
Atar1, p=1 to 1s used save on mimbatch passes. As a result,
bootstrapped DQN runs at a similar computational speed to
vanilla DQN on 1dentical hardware.

Eficient Exploration in Atari

[0095] In the evaluations, bootstrapped DOQN drives efli-
cient exploration in several Atar1 games. For the same
amount ol game experience, bootstrapped DOQN generally
outperforms DQN with e-greedy exploration. FIG. 10 dem-
onstrates this eflect for a diverse section of games.
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[0096] On games where DQN performs well, bootstrapped
DON typically performs better. Bootstrapped DQN does not
reach human performance on Amidar (DQN does) but does
on Beam Rider and Battle Zone (DQN does not). To
summarize this improvement 1n learming time, the number of
frames required to reach human performance 1s considered.
It bootstrapped DOQN reaches human performance in 1/x
frames of DQN, bootstrapped DQN has improved by x. FIG.
11 shows that Bootstrapped DQN typically reaches human
performance significantly faster.

[0097] On most games where DQN does not reach human
performance, bootstrapped DQN does not solve problem by
itself. On some challenging Atar1 games where deep explo-
ration 1s conjectured to be important, the results for boot-
strapped DQN are not entirely successtul, but sill promising.
In Frostbite, bootstrapped DQN reaches the second level
much faster than DQN but network instabilities cause the
performance to crash. In Montezuma’s Revenge, boot-
strapped DQN reaches the first key after 20 m frames (DQN
never observes a reward even after 200 m frames) but does
not properly learn from this experience. Our results suggest
that improved exploration may help to solve these remaining
games, but also highlight the importance of other problems
like network instability, reward clipping and temporally
extended rewards.

Overall Performance

[0098] Bootstrapped DOQN 1s able to learn much faster
than DQN. Graph 1201 of FIG. 12 shows that bootstrapped
DQON also improves upon the final score across most games.
However, the real benefits to eflicient exploration mean that
bootstrapped DOQN outperforms DOQN by orders of magni-
tude 1n terms of the cumulative rewards through learming
(shown 1n graph 1202 of FIG. 12. In both graphs, perfor-
mance 1s normalized relative to a fully random policy. The
most similar work to bootstrapped DQN presents several
other approaches to improved exploration in Atari. For
example, AUC-20 1s optimized for a normalized version of
the cumulative returns aiter 20 m frames. According to this
metric, averaged across the 14 games considered, boot-
strapped DQN 1mprove upon both base DQN (0.29) and the
AUC-20 best method (0.37) to obtain 0.62. These results

together with results tables across all 49 games are provided
in the table shown 1n FIG. 13.

Visualizing Bootstrapped DOQN

[0099] The following 1s some more insight to how boot-
strapped DOQN drives deep exploration in Atari. In each
game, although each head Q', . . ., Q'° learns a high scoring
policy, the policies found by each head are quite distinct.
Although each head performs well, each follows a unique
policy. By contrast, e-greedy strategies are almost indistin-
guishable for small values of € and totally ineflectual for
larger values. Deep exploration 1s key to improved learning,
since diverse experiences allow for better generalization.

[0100] Disregarding exploration, bootstrapped DQN may
be beneficial as a purely exploitative policy. In the evalua-
tions, all of the heads are combined into a single ensemble
policy, for example by choosing the action with the most
votes across heads. This approach might have several ben-
efits. First, the ensemble policy can often outperform any
individual policy. Second, the distribution of votes across
heads to give a measure of the uncertainty in the optimal
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policy. Unlike a conventional DOQN, bootstrapped DOQN can
know what 1t doesn’t know. In an application where execut-
ing a poorly-understood action 1s dangerous this could be
crucial, the uncertainty in this policy 1s surprisingly inter-
pretable: all heads agree at clearly crucial decision points,
but remain diverse at other less important steps.

[0101] Although the present mnvention has been described
in certain specific aspects, many additional modifications
and variations would be apparent to those skilled in the art.
It 1s therefore to be understood that the present invention can
be practiced otherwise than specifically described without
departing from the scope and spirit of the present invention.
Thus, embodiments of the present invention should be
considered 1n all respects as illustrative and not restrictive.

Accordingly, the scope of the invention should be deter-
mined not by the embodiments illustrated, but by the

appended claims and their equivalents.

What 1s claimed 1s:
1. A deep learning system comprising:
at least one processor;
memory accessible by each at least one processor;
instructions that when read by the at least one processor
direct the at least one processor to:
maintain a deep neural network; and
apply a remnforcement learning process to the deep
neural network where the reinforcement learning
process includes:
rece1ve a set of observed data and a set artificial data,

for each of one or more episodes:
sample from a set of data that 1s a union of the set
ol observed data and the set of artificial data to
generate set of training data;
determine a state-action value function for the set of
training data using a bootstrap process and an
approximator where the approximator that esti-
mates a state-action function for a dataset;
for each time step in each one or more episode:

determine a state of the system for a current time
step from the set of training data;

select an action based on the determined state of
the system and a policy mapping actions to the
state of the system;

determine results for the action including a reward
and a transition state that result from the
selected action; and

store result data for the current time step that
includes the state, the action, the transition
state, and

update the set of the observed data with the result
data from at least one time step for each of the one
or more the episodes.

2. The deep learning system of claim 1 wherein the

instructions further direct the at least one processor to
generate the set of artificial data from the set of observed

data.

3. The deep learning system of claim 2 wheremn the
instructions to generate the artificial data include instruction
that direct the at least one processor:

sample the set of observed data with replacement to
generate the set of artificial data.

4. The deep learning system of claim 2 wheremn the
instructions to generate the artificial data include nstruc-
tions that direct the at least one processor to:
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sample a plurality state-action pairs from a diffusely

mixed generative model; and

assign each of the plurality of sampled state-action pairs

stochastically optimistic rewards and random state
transitions.

5. The deep learning system of claim 1 wherein the
instructions further direct the at least one processor to:

maintain a tramning mask that indicates the result data

from each of the time period 1n each episode to be used
in training; and

wherein the updating of the set of observed data includes

adding the result data from each time period of an
episode indicated in the training mask.

6. The deep learming network of claim 1 where the
istructions further direct the processor to:

recerve the approximator as an 1nput.

7. The deep learning network of claim 1 wherein the
istructions further direct the processor to:

read the approximator from memory.

8. The deep learning network of claim 1 wherein the
approximator 1s a neural network trained to {it a state-action
value Tunction to the data set via a least squared iteration.

9. The deep learming network of claim 1 wherein a
plurality of reinforcement learning processes are applied to
the deep neural network.

10. The deep learming network of claim 9 wherein each of
the plurality of reinforcement learning processes indepen-
dently maintain the set of observed data.

11. The deep learning network of claim 9 wherein the
plurality of reinforcement learning processes cooperatively
maintain the set of observed data.

12. The deep learning process of claim 9 wherein the
instruction further direct the processor to:

maintain a bootstrap mask that indicates each element 1n

the set of observed data that 1s available to each of the
plurality of reinforcement learning process.

13. A method performed by at least one processor execut-
ing instructions stored in memory to perform the method to
provide reinforcement learning 1n a deep learning network,
the method comprising:

recerving a set of observed data and a set artificial data;

for each of one or more episodes:

sampling from a set of data that 1s a union of the set
of observed data and the set of artificial data to
generate set of training data,
determining a state-action value function for the set
of training data using a bootstrap process and an
approximator where the approximator that esti-
mates a state-action function for a dataset,
for each time step 1n each one or more episode:

determining a state of the system for a current time
step from the set of tramning data;

selecting an action based on the determined state of
the system and a policy mapping actions to the
state of the system;

determining results for the action including a reward
and a transition state that result from the selected
action; and

storing result data for the current time step that
includes the state, the action, the transition state,
and

updating the set of the observed data with the result
data from at least one time step of each of the one or
more episodes.
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14. The method of claim 13 further comprising generating 19. The method of claim 13 further comprising:
the set of artificial data from the set of observed data. read the approximator from memory.

15. The method of claim 14 further comprising: 20. The method of claim 13 wherein the approximator is

sampling the set of observed data with replacement to a neural network trained to fit a state-action value function
generate the set of artificial data. to the data set via a least squared iteration.

16. The method of claim 14 further comprising: 21. The method of claim 13 wheremn a plurality of

sampling a plurality state-action pairs from a diffusely  reinforcement learning methods are applied to the deep
mixed generative model; and neural network.

assigning each of the plurality of sampled state-action 22. The method of claim 21 wherein each of the plurality
pairs stochastically optimistic rewards and random ¢ reipforcement learning methods independently maintain
state transitions. N the set of observed data.

17. The method of claim 13 further comprising: 23. The method of claim 21 wherein the plurality of

maintaiming a training mask that indicates the result data
from each of the time period 1n each episode to be used
in training; and

wherein the updating of the set of observed data includes
adding the result data from each time period of an
episode indicated in the training mask.

18. The method of claim 13 further comprising:

receiving the approximator as an input. I I

reinforcement learning methods cooperatively maintain the
set ol observed data.

24. The method of claim 21 further comprising:
maintaining a bootstrap mask that indicates each element

in the set of observed data that 1s available to each of
the plurality of remnforcement learning process.
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