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(57) ABSTRACT

Systems and methods that use probabilistic grammatical
inference and statistical data analysis techniques to charac-
terize the behavior of systems 1n terms of a low dimensional
set of summary variables and, on the basis of these models,
detect anomalous behaviors are disclosed. The disclosed
information-theoretic system and method exploit the proper-
ties of information to deduce a structure for information tlow
and management. The properties of information can provide
a fundamental basis for the decomposition of systems and
hence a structure for the transmission and combination of
observations at the desired levels of resolution (e.g., compo-
nent, subsystem, system).
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CYBER SECURITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of, and claims
priority to the pending U.S. patent application Ser. No.
14/211,909 entitled Cyber Security and filed Mar. 14, 2014
which claims the benefit of U.S. Provisional Patent applica-
tion Ser. No. 61/789,728 entitled Cyber Secunity filed Mar.
15, 2013. The entirety of the above-noted applications are
incorporated by reference herein.

BACKGROUND

[0002] The development of successiul cyber security sys-
tems for itrusion and malicious activity detection involves
the ability to fuse information from many disparate sources at
multiple levels of a system, potentially from deep packet
analysis to traific analysis within and between networks.
While the large volume of transactions to be considered pro-
vides a vast amount of data for the inference of models and the
collection of statistically significant samples, 1t also offers
substantial cover for bad actors making the identification of
intrusions and malicious activity akin to finding the prover-
bial needle 1n a haystack.

[0003] Problems associated with the detection of cyber
attacks are compounded when 1t comes to cyber-physical
systems that integrate computational, networking, and physi-
cal processes. Cyber-physical systems are engineered sys-
tems that are built from and depend upon the synergy of
computational and physical components. Computers and net-
works monitor and control the physical processes, with feed-
back loops where physical processes atfect computations and
vice versa. Examples of the many CPS application areas
include the smart electric grid, smart transportation, smart
buildings, smart medical technologies, next-generation air

e

traific management, and advanced manufacturing

[0004] The physical dynamics of cyber-physical systems
may be exploited to either mount or obscure an attack. Our
nation’s critical infrastructure includes many large-scale,
complex cyber-physical systems. For example, the modem-
1zation of electric power transmission systems has included
the implementation of new sensors, control actuators and a
communications network overlay on legacy power systems
for monitoring and control.

[0005] Compound cyber-physical electric power genera-
tion and transmission systems are susceptible to both physical
and cyber attacks. For mstance synchrophasors, phase mea-
surement units synchronized using GPS time to monitor volt-
age angles at points separated by large distances, are suscep-
tible to GPS time spoofing. The communication network
transmissions of the synchrophasor observations can also be
maliciously corrupted. Thus, data can be corrupted at the
source, or in ftransmission, to induce dangerous control
actions potentially resulting 1n the destabilization of power
generation and distribution systems.

[0006] A related issue 1s that the power generation and
distribution systems are also needed to power the monitoring
and control systems. Thus, the effects of local disturbances
are tremendously amplified when the monitoring and control
resources for larger areas are taken off-line.

[0007] Cyber physical systems typically comprise a large
number of disparate components, where the number of inter-
actions between components can increase exponentially with
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the number of components. The intentional corruption of
phase measurement data, as well as other forms of deliberate
exploitation, often cannot be identified by conventional
analysis of network traflic or condition monitoring of sensors.
In many cases, cyber and/or physical attacks are indistin-
guishable from expected behavior when viewed using tradi-
tional observation approaches and processes which typically
have a very local scope based on limited sensing. However,
malicious attacks, particularly cyber attacks focused on cor-
rupting data do not, in general, do so 1n a way that 1s physi-
cally consistent with other, non-corrupted sources of infor-
mation. Cyber and/or physical attacks can become
distinguishable from naturally occurring behavior when
observations are iterpreted 1n a broader context embedding
the physical constraints inherent 1n system dynamics consid-
ered over a larger (potentially global) spatiotemporal domain.
[0008] Traditional analysistools are unable to cope with the
tull complexity of cyber-physical systems or adequately pre-
dict system behavior. The present electric power grid has
experienced blackouts over large regions, tripped by minor
events that escalate with surprising speed into widespread
power lfailures. Even minor changes to consumer devices,
such as air conditioners, have been shown to affect behavior
of the power grid. For example, a recent event was caused by
a low-cost relay that took longer to close 1n conditions that
stalled the air conditioning unit’s compressor pump motor.
The aggregate effect of multiple air conditioning units having
stalled motors caused an inductive load, causing voltage sag,
that in turn stalled more pump motors leading to a voltage
collapse. This 1llustrates the limitations of the current tech-
nology.

SUMMARY

[0009] The following presents a simplified summary 1n
order to provide a basic understanding of some aspects of the
innovation. This summary 1s not an extensive overview of the
innovation. It 1s not intended to 1dentify key/critical elements
or to delineate the scope of the innovation. Its sole purpose 1s
to present some concepts of the mnovation in a simplified
form as a prelude to the more detailed description that 1s
presented later.

[0010] Systems and methods that use probabilistic gram-
matical inference and statistical data analysis techniques to
characterize the behavior of systems in terms of a low dimen-
sional set of summary variables and, on the basis of these
models, detect abnormal behaviors are discussed.

[0011] The disclosed information-theoretic system and
method exploit the properties of information to deduce a
structure for information tlow within the system and to man-
age the process of information extraction. The properties of
information can provide a fundamental basis for the decom-
position of systems and hence a structure for the transmission
and combination of observations at the desired levels of reso-
lution (e.g., component, subsystem, system). The generaliza-
tion of information theory to n-dimensions (an arbitrary num-
ber of dimensions) can be viewed as a statistical analysis tool
for understanding systems 1n terms of the information geom-
etry of its variables. Information measures can be interpreted
as a statistical analysis tool. The generalization to n dimen-
sions provides the wherewithal to apply these techniques to
multivariable systems of arbitrary dimension.

[0012] Major advantages of the information theoretic
approach over traditional statistical analysis techniques
include 1) the measurement and analysis of rates of con-
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straints, or correntropic functions (i.e., conditioned on his-
tory), 2) robustness to nonlinearity and 3) a robust means for
system decomposition follows from the decomposition of
constraints provided by the axiomatic properties of informa-
tion (1.e., additivity and branching).

[0013] Information theory provides much of the math-
ematical underpinnings for the tools, techniques, and algo-
rithms used 1n the disclosed system and method, for example,
to model and monitor complex cyber-physical systems. A
unifying mathematical framework has been developed, using,
information theory (classical and algorithmic) and thermo-
dynamic formalism, that enables disparate elements of a
cyber-physical system to be modeled jointly 1n a manner that
captures their interaction and engenders a deeper understand-
ing of cyber-physical system at multiple spatio-temporal lev-
els.

[0014] Fuzzy measure theory may be used to embed mul-
tiple theories of uncertainty, in addition probability theory
provides intrinsic mechanisms for capturing both epistemic
and aleatoric uncertainty including that associated with sys-
tem parameterization, emergent endogenous behaviors, and
exogenous environmental disturbances.

[0015] In an embodiment, mechanisms for metrizing the
transactional dynamics associated with many communica-
tion systems (e.g., Ethernet) can be provided utilizing, for
example, probabilistic measures and differential geometry to
construct a metrization. In turther embodiments, the proper-
ties of fuzzy measures 1including non-probabilistic measures
and probability measures (e.g. graded possibility measures)
can be used to construct a de facto metrization.

[0016] Daiffusion map techniques for manifold learning use
the fact that observations will be dense on the true manifold
on which dynamics evolve. By extension, a bijjective mapping
ol non-metric variables into a metric space will then be ame-
nable to a similar analysis, where the “true” manifold based
on density of the observations captures nearness, thus the
combination of the diffusion map technique and byective
maps may be used for metrization.

[0017] In conjunction with the techmiques of symbolic
dynamics used to discretize continuous dynamics, metriza-
tion can enable various types of cyber-physical system
dynamics, continuous, discrete, and transactional, to be
addressed within a common topological space. The applica-
tion of the thermodynamic formalism enables the develop-
ment of summary variables and associated models that are
analogous to natural thermodynamic variables such as tem-
perature and pressure and thus can convey a visceral interpre-
tation that facilitates human/cyber-physical system interac-
tions, as well as provide a meaningtul collection of summary
variables that capture the system’s behavior 1n a low dimen-
s1onal space.

[0018] In an embodiment, an information theoretic sensing
and control framework that encompasses distributed software
agents and computational methods to maximize the collec-
tion, transmission, aggregation, and conversion ol data to
actionable information for monitoring, diagnosis, prognosis
and control of power plants 1s disclosed.

[0019] While for purposes of illustration, the disclosed
method and system are described in terms of applicability to
cyber-physicals systems, for example a power grid, the dis-
closed method and system can be useful for detecting abnor-
mal behaviors 1n most any system where the properties of
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information can be exploited to deduce a structure for infor-
mation flow within the system and to manage the process of
information extraction.

[0020] Inanembodiment, the disclosed method and system
can be used for the prediction and detection of Improvised
Explosive Devices (IEDs). In both peacekeeping and minor
conilict operations, securing a sale environment for both an
indigenous population and security protection forces 1is
increasingly challenged by irregular terrorist tactics. In par-
ticular, 1improvised explosive devices (IEDs) as roadside
bombs, vehicle borne i1mprovised explosive devices
(VBIEDs), and suicide bombers (IED vests) have become
popular insurgent weapons. IEDs are a powerful terrorist
weapon because of the effective local psychological impact,
media attention, ease of construction, and difficulty 1n detect-
ing IED operations.

[0021] Datacan be collected from, for example, observable
quantities, field measurements, road sensors, detection of
radio frequency (RF) signatures, airborne imaging, roadside
camera, tracking, and other i1dentification systems. Data can
be collected from local acoustic, seismic or RF sensors and
remote nuclear, chemical and biological sensors.

[0022] The disclosed system and method can be used to
predict and/or detect signatures of IEDs, e.g. explosives, elec-
tronics, 1nitiators, tactics, etc., and provide actionable infor-
mation to operational forces to neutralize the devices and
terrorists cells using the devices. The disclosed system and
method can provide real-time intelligence and 1dentification
of anomalous behavior for the prediction of IED 1ntent as well
as detection of the devices from a safe distance.

[0023] In other embodiments, the disclosed system and
method can be used to improve tratfic management and for
forecasting future vehicle tratfic flow conditions. Data can be
collected from traditional road sensors, e.g. inductive loops,
pneumatic road tubes, piezoelectric sensors and magnetic
loops, as well as manual counts. Vehicle and traific informa-
tion can be collected from variety of sensors, for example,
infrared, magnetic, microwave radar and ultrasonic sensors,
acoustic devices, video 1mage detection devices, mobile
phones and global positioning system (GPS) devices. Traiffic
data can be indicative of, for example, volume count, speed,
weight, vehicle classification, occupancy, presence, location,
direction of travel.

[0024] The disclosed system and method can be used to
generate traffic forecasts, reports and analysis useful for
safety evaluation, pavement design, funding decisions and
such. The disclosed system and method can provide, for
example, calculations of infrastructure capacity, estimations
of financial and social viability of projects and calculations of
environmental impacts.

[0025] In further embodiments, the disclosed system and
method can be used to predict and prevent financial services
fraud 1n real-time by 1dentifying anomalous activity. Data can
be collected from, for example, credit card and banking trans-
actions, mobile devices, social media, point of sale transac-
tions, customer databases and external sources from data
vendors.

[0026] In further embodiments, the disclosed system and
method are broadly applicable to most any of the nation’s
critical infrastructure systems. For example, the U.S. Depart-
ment of Homeland Security has identified at least sixteen
critical infrastructure sectors including energy, transporta-
tion, communications, and financial services, as well as water
and wastewater systems, chemical, critical manufacturing,
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food and agricultural, health care and public health, emer-
gency services, nuclear reactors and materials. In still further
embodiments, the disclosed system and method are appli-
cable to various interdependent combinations of these critical
infrastructure sectors.

[0027] To accomplish the foregoing and related ends, cer-
tain 1llustrative aspects of the innovation are described herein
in connection with the following description and the annexed
drawings. These aspects are indicative, however, of but a few
of the various ways in which the principles of the innovation
can be employed and the subject innovation 1s intended to
include all such aspects and their equivalents. Other advan-
tages and novel features of the innovation will become appar-
ent from the following detailed description of the innovation
when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1 illustrates an example information theoretic
framework applied to a system 1n accordance with an embodi-
ment of the disclosure.

[0029] FIG. 21satlow chart diagram 1n accordance with an
embodiment of the disclosure.

[0030] FIG. 31satlow chart diagram 1n accordance with an
embodiment of the disclosure.

[0031] FIG. 4A is a graph illustrating an example Poincaré
section 1 accordance with an embodiment of the disclosure.
[0032] FIG. 4B is a graph illustrating an example Poincaré
section 1n accordance with an embodiment of the disclosure.
[0033] FIG. 5A 1s a graph 1llustrating example test data 1n
accordance with an embodiment of the disclosure.

[0034] FIG. 5B 1s a graph illustrating example test data 1n
accordance with an embodiment of the disclosure.

[0035] FIG. 6 15 an 1llustration of an example computing
environment where one or more of the provisions set forth

herein are implemented, according to one or more embodi-
ments.

DETAILED DESCRIPTION

[0036] The disclosure 1s now described with reference to
the drawing, wherein like reference numerals are used to refer
to like elements throughout. In the following description, for
purposes ol explanation, numerous specific details are set
forth 1n order to provide a thorough understanding of the
subject mnnovation. It may be evident, however, that the 1nno-
vation can be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form in order to facilitate describing the 1nno-
vation.

[0037] Physical processes can be viewed as information
processors. A significant extension to thermodynamic for-
malism 1s made by mtroducing generalized information
theory, algorithmic information theory and complexity
theory. The machinery of the thermodynamic formalism can
be augmented by probabilistic models of computation (e.g.,
Nondeterministic Fimite State Automata) and probabilistic
computational methods (e.g., statistical machine learning)
that may be used to capture both system dynamics and the
stochastic nature of endogenous dynamics and exogenous
disturbances 1n terms of summary variables that describe
relevant behaviors at the spatiotemporal scales necessary for
real-time monitoring, decision-making, and operational con-
trol tasks. The information-theoretic basis and 1ts extensions,
Generalized Information Theory for fuzzy measure theoretic
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models of uncertainty and algorithmic information theory
(including complexity theory), provide a computational
framework for integrating data across diverse time-scales,
domains (1.¢., physical (continuous and discrete) and cyber
(computational and transactional)) delivering a unique view
into the dynamic behavior of cyber-physical systems. The
incorporation of probabilistic computational methods pro-
vides computational machinery that both scales to the size
needed for large-scale systems and provides a rigorous alter-
native to assumptions of the thermodynamic limat.

[0038] The mformation-centric framework of the disclo-
sure focuses on “information”, or the amount of surprise
obtained from a new observation or measurement. Observa-
tions that tell you what you already know are not informative.
Conversely, those that surprise you, or tell you something new
are informative. For example, a “u” following a “q” 1s not
surprising, and 1t can be said that the “u” contains no infor-
mation. While not definite, an “h” following a “t” 1s not a
complete surprise and we say that the “h” does not contain full
information. A “g” following a “q” would be very surprising,
and thus it can be said that the “g” contains full information.
[0039] The purpose 1s to transmit information rather than
data, that 1s, to transmit data which 1s informative.

[0040] The basic measure of information 1s Shannon
entropy which may quantify the unpredictability of a random
variable-average number of bits required to describe a ran-

dom variable X:

H(x) == ) p(x)log,(p(x))

x= X

[0041] Extensions of entropy characterize relationships
between multiple variables and distributions. Further exten-
s10ns such as Hartley Entropy for possibility measures (contra
Shannon Entropy for probability measures) permit the mea-
surement ol information under more general notions of
uncertainty (1.e. fuzzy measure theory). Joint entropy 1s a
measure of the uncertainty associated with a set of variables.
Conditional entropy quantifies the amount of information
needed to describe the outcome of a random variable Y given
that the value of another random variable X 1s known. Rela-
tive entropy 1s a non-symmetric measure of the difference
between two probability distributions. The mutual informa-
tion of two random variables 1s a quantity that measures the
mutual dependence of the two random variables.

[0042] While, for purposes of simplicity of explanation, the
one or more methodologies shown herein, e.g., 1n the form of
a flow chart, are shown and described as a series of acts, 1t 1s
to be understood and appreciated that the subject innovation
1s not limited by the order of acts, as some acts may, 1n
accordance with the innovation, occur in a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled 1n the art will
understand and appreciate that a methodology could alterna-
tively be represented as a series of interrelated states or
events, such as 1n a state diagram. Moreover, not all 1llustrated
acts may be required to implement a methodology 1n accor-
dance with the mnovation.

[0043] As used in this application, the terms “component™
and “system” are intended to refer to a computer-related
entity, either hardware, a combination of hardware and sofit-
ware, software, or soltware 1 execution. For example, a
component can be, but 1s not limited to being, a process
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running on a processor, a processor, an object, an executable,
a thread of execution, a program, and/or a computer. By way
of 1llustration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and/or thread of execution, and a
component can be localized on one computer and/or distrib-
uted between two or more computers.

[0044] Further, within the context of cyber-physical sys-
tems, the terms “component” and “system” may refer to
processes or equipment pertaining to the “physical” system
that 1s 1nteracting with the “cyber” system. For example, a
component or subsystem may refer to a power line, recloser,
or phase measurement unit 1n a power system.

[0045] As used herein, the term to “infer” or “inference™
refer generally to the process of reasoning (e.g., inductive
reasoning, abductive reasoning) about or inferring states of
the system, environment, and/or user from a set ol observa-
tions as captured via events and/or data. Inference can be
employed to identily a specific context or action, or can
generate a probability distribution over states, for example.
The inference can be probabilistic—that 1s, the computation
ol a probability distribution over states of interest based on a
consideration of data and events. Inference can also refer to
techniques employed for composing higher-level events from
a set of events and/or data. Such inference results in the
construction of new events or actions from a set of observed
events and/or stored event data, whether or not the events are
correlated 1n close temporal proximity, and whether the
events and data come from one or several event and data
sources.

[0046] With reference to FIG. 1, 1n an example complex
cyber-physical system the sensing, communication, and con-
trol infrastructures as well as the system being monitored
and/or controlled are viewed as a single communication sys-
tem where disparate elements of the system can be interpreted
as a collection of “information processors” or communication
channels communicating with one another. Communication
between system elements can occur through both classic
communication channels and through physical phenomena,
as well as through mediating physics of the environment. The
intrinsic communication topology thus described does not
necessarily reflect the physical or logical organization of sys-
tem elements.

[0047] In accordance with an embodiment of the disclo-
sure, many system states can be observed indirectly through
the measurement of physical phenomena related to the state
ol the system and the mediating dynamics of the environment
and/or sensors may possess their own dynamics. There may
be mediating dynamics of the system 1tself 1f the phenomena
cannot be directly sensed. Also, 1t may be the case that the
dynamics of interest are observed via the measured dynamics
of another system connected to the first. This 1s the basis of the
eponymous Luenberger Observer and by extension, the Kal-
man Filter.

[0048] However, generally only the extended system 1'(x',
u',t) may be observed directly, and control mputs are subject
to their own distortions, directly affecting observation.
Within the context of information theory, these systematic
challenges are considered as a process of information encod-
ng.

[0049] Physical mediation, measurement and communica-
tion processes, and operational logic can be considered as
communication channels that may have their own nondeter-
minmistic dynamics. Still referring to FIG. 1, System compo-
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nent 102 encodes information of interest 1n terms of the states
of the system and their distorted reflection observable via the
available observation processes. System component 102 is
the system under observation. In general, 1t 1s not possible to
obtain pure, perfectly accurate, infinitely precise observa-
tions from a system. The system under observation itself,
environmental effects, changes wrought by the addition of
sensors (added mass for instance), the limitations of sensors
(e.g., cross talk), their conversion from analog to digital, efc.
implicitly encode the information obtained from the system
under observation. Also, the measurements available are gen-
erally connected to observable phenomena not to the desired
information. The hope (in most cases) 1s that the observed
phenomena retlect, 1.e. are an encoded form of, the desired
information. All that observations can provide are an encoded
version of the desired information at best. Encoding of system
information 1s unavoidable and it 1s likely that an encoding of
part of the information that 1s also corrupted by other effects
1s obtained.

[0050] Data collection component 104 can include sensors
and their associated signal conditioning systems, communi-
cations equipment (TCP/IP-based networks including both
wired and wireless networking equipment such as UTP, rout-
ers, and switches, CAN bus, SCADA networks), computer
interface hardware such as A/D boards or data acquisition
systems, interface soltware such as Labview, intermediate
storage, and servers. In aspects, data collection component
104 can include sensors, for example, image sensors such as
stereo cameras, depth cameras, charge-coupled devices,
complementary metal oxide semiconductor active pixel sen-
sors, infrared and/or thermal sensors, sensors associated with
an 1mage 1ntensifier and others sensors.

[0051] The data assimilation component 106 can provide
information decoding and can include, for example, data
structuring component 108, information mapping component
110 and characterization component 112. Data assimilation
component 106 can provide a decoding function including
the extraction of useful information from the data gathered at
data collection component 104. The assimilation layer can be
thought of as providing a decoding for manipulation/analysis
in an abstract space.

[0052] The data assimilation component 106 can provide
the functionality associated with most any of the steps
described below 1n connection with FIGS. 2 and 3 including,
but not limited to, Data Structuring 204, Symbolic Encoding
218, e-Machine Reconstruction 220, Model Analysis 222,

Thermodynamic Variable Construction 312, Thermodynamic
Model Construction 304 and Thermodynamic Analysis 308.

[0053] Data structuring component 108 1s concerned with
cliciting the basic organization of data. Manifold learning, a
principal tool of dimension reduction, can be used to discover
a low dimensional manifold 1n a higher dimensional space
that data are constrained to lie on and this 1dentify the essen-
tial structure of the data. Diffusion mapping 1s a particular
technique for manifold learning that can be used for accom-
plishing this structuring. In an embodiment, pairwise analysis
of mutual informations, for instance, can also be used to
identify the data structure. Data structuring concerns the
information content, 1.¢., the amount of surprise. Data Struc-
turing component 108 includes manifold learning and can
perform, for example, correlation of data, and, 1n conjunction
with information measures, identification of mutual informa-
tion.




US 2016/0253495 Al

[0054] Information measures can be used 1n manifold
learning, for example, Shannon entropy 1s a measure of the
amount of surprise. Shannon imnformation has usetful proper-
ties for a basis of an 1ntrinsic communications topology, e.g.
branching, sensitivity to nonlinear connections etc., lacking,
in other measures and can provide a basis for manifold leamn-
ing. Classical (1.e. Shannon) information theory concerns
itself’ with the “surprise” content of data and provides its
fundamental measure, Shannon entropy. Information theory
also provides the fundamental laws that information obeys
and thus provides a mathematical structure for information
analysis.

[0055] Algorithmic information theory provides similar
metrics and structure to examine the “value” of information,
¢.g., Kolmogorov-Chaitin Complexity, as well as the costs
associated with extracting and using the imformation. The
value of iformation can be related to a particular goal or
objective and thus this complexity measure 1s useful for 1den-
tifying different types of information that map to different
objectives (1.e. information that has evidentiary value for a
particular application.

[0056] Information mapping component 110 concerns the
“value” of information and can provide, for example, data
selection, data fusion, data partitioning, clustering, feature
discovery, and can include a prior1 knowledge. The value of a
bit of information 1s directly proportional to the minimum
description length of some object of interest. For example, if
one 1s interested 1n the health of some component and 5 bits of
information are the smallest quantity of information that will
suifice for determining the component’s health, the (relative)
value of each bit of information 1s 5. If the value of the
objective 1s known, the absolute value of each bit may be
determined. For instance, 11 knowing that a component will
fail 1n 2 hours 1s worth $500, the value of each bit of infor-
mation 1s $100. In other words, the value of information can
be directly connected to a particular goal or objective, the
purpose ol the mapping 1s to map bits of information to the
various objectives/goals. Intrinsic to this mapping 1s the com-
paction of available information to the minimal portion
needed for each particular objective/goal.

[0057] Feature discovery can be seen as a search for a
compact set of descriptors, or summary variables, that effi-
ciently encode relevant information. Information extraction,
coding, constructing/discovering embedding manifolds for
dimension reduction, constructing sparse representations for
compressive sensing, sampling, and the like can be processes
of 1dentitying or metrizing features of a system. The central
challenge underlying these application specific challenges
can be stated 1n a general, abstract form as the problem of
determining the true, typically low dimension, manifold on
which the data points are constrained to lie.

[0058] Characterization component 112 concerns the
“cost” of information and can perform, for example, the func-
tions of model selection, statistical inference, feature extrac-
tion, representation hierarchy and measures. The costs asso-
ciated with extracting and using information, €.g., memory
required, number of operations required, accuracy, precision,
can serve as a usetul metric for determining the computa-
tional costs associated with a particular method for explicitly
mapping mformation to a particular goal or objective. The
various costs associated with extracting and using the infor-
mation provide a trade space 1n which different approaches
may be examined. For example, an approximate solution may
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provide suilicient accuracy and precision while requiring sig-
nificantly less memory or operations than an exact solution.

[0059] Sull referring to FI1G. 1, Operational component 114
provides an encoding function and can include decision aids
116, a user interface 118 and command and control compo-
nent 120. The Operational component 114 can provide an
encoding of the products of the manipulation/analysis 1n the
abstract space mnto a form amenable to assimilation and 1nter-
pretation by human operators. In an embodiment, Opera-
tional component 114 can provide an output indicating a
baseline system behavior and/or an anomalous system behav-
10T.

[0060] User Interface 118 can allow the user to interact with
the system by sending information to the other components of
system or by presenting information to the user about the
system. User Interface 118 can be used, for example, to 1ssue
direct commands to the system and/or to obtain feedback
from the system. In an embodiment, User Interface 118 sends
information to Automation/Regulation component 128
which 1n turn can interact with System component 102. User
interface 118 can include, for example, summary variables,
metrics, alarms, alarm management, user representation and
human factors.

[0061] Decision aids 116 include, for example, information
mampulation, probing, sensitivity analysis, optimization,
diagnosis and prognosis. Command and control component
120 includes operator commands, control law selection and
tuning, policy objectives and scripting.

[0062] Archival component 122 can function both as a stor-
age system and a mechanism that can be used to locate and
retrieve information for the system. Archival component 122
can mclude an information archive 124 and data archive 126.
Information archive 124 comprises, for example, system
measures, metrics, features, patterns and symmetry. Data
archive 126 can include, for example, raw data, time series
data structures and metatagging.

[0063] Control component 132 can include Automation/
Regulation component 128 and Actuation component 130
which are viewed as communication channels from Opera-
tional Component 114 to System component 102. Actuation
component 130 can be configured to provide control of the
system under observation. Actuation component 130 can
include, for example 1n the context of a power grid cyber
physical system, protection relays, intelligent switches,
reclosers, and sectionalizers. In aspects, service between a
fault and the substations that serve a feeder can be restored by
automatically manipulating the {feeders’ reclosers and
switches. In an embodiment, Actuation component 130 can
be utilized to contain a power outage to the area between an
accident site and the nearest recloser 1n the direction of each
substation, and repair crews can be automatically dispatched
to clear the fault and make repairs.

[0064] Automation component 128 contains the logic
directing the behaviors of the elements of the Actuation com-
ponent 130 and may be embodied 1n software, hard-wired
circuitry, programmable logic controllers (PLC), and similar.

[0065] A principal role of cyber elements of many CPS 1s to
elfect control, optimization, or management of a base system
(e.g. power grid). The Automation/Regulation component
128 and Actuation component 130 can be used to supply
“probing” mputs to the base system. Automation/Regulation
component 128 can supply the logic behind the probing while
Actuation component 130 supplies the cyber-physical appli-
cation of the probing input. Identifying dynamics from avail-
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able observations assumes that the dynamics are active. The
role of probing inputs 1s to ensure that the dynamics of interest
are excited so that, given an appropriate observation process,
they may be captured via the collected information, e.g. sys-
tem component 102.

[0066] FIG. 2 1llustrates a computer implemented method
200 that utilizes probabilistic grammatical inference and sta-
tistical data analysis techniques to characterize the behavior
of systems 1n terms of a low dimensional set of summary
variables and, on the basis of the models, classifies known or
baseline system behaviors, as well as abnormal or anomalous
system behaviors, 1n accordance with aspects of the disclo-
sure.

[0067] In addition to recognizing an anomalous condition,
classification can recognize system behaviors pertaining to
specific conditions (e.g., operating condition, equipment
health, environmental effects, etc.) that may have previously
been observed and thus can be used to classity which condi-
tion exists. Classification can be used to 1dentity operational
and health and condition classes that are useful for planning,
detection of specific faults, prediction and prognosis of faults,
isolating faults, reconfiguring automation and control to
accommodate changing operational or health conditions and
such. Classification of system behaviors can be useful for
system monitoring.

[0068] While, for purposes of simplicity of explanation, the
one or more methodologies shown herein, e.g., in the form of
a flow chart, are shown and described as a series of acts, 1t 1s
to be understood and appreciated that the disclosure 1s not
limited by the order of acts, as one or more acts may, 1n
accordance with the disclosure, occur 1n a different order
and/or concurrently with other acts from that shown and
described herein. For example, those skilled 1n the art will
understand and appreciate that a methodology could alterna-
tively be represented as a series of interrelated states or
events, such as 1n a state diagram. One or more acts described
in connection with an embodiment may be combined with
acts described 1n connection with other embodiments. More-
over, not all illustrated acts may be required to implement a
methodology 1n accordance with the disclosure.

[0069] AsshowninFIG. 2, an example framework includes
complementary approaches for constructing models of cyber
networks and/or cyber-physical systems. The stages can
include: 1) identify the information topology associated with
the system dynamics via diffusion mapping techniques or
similar spectral graph analysis methods, 2) partition the sys-
tem model on the basis of the 1dentified information topology
and construct sets of summary variables corresponding to the
partitioned subsystems wvia the appropriate modeling
approach, 3) construct mesoscopic models of system/sub-
system dynamics for the corresponding variable sets and
modeling approach, and 4) perform further analysis on the
resultant models.

[0070] Method 200 can begin at step 202 where data 1s
collected. In an embodiment, heterogenous sensor data can be
collected. In aspects, phasor measurement umt (PMU) data
can be sampled from dispersed locations in a power system
network and synchronized from a common time source, for
example, a global positioning system (GPS) clock.

[0071] In an embodiment, data includes sensor data
obtained from phasor measurement units (PMUs) which
monitor an electrical power system and can be located at
various locations on the electrical power grid. PMUs may
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monitor and record variables or characteristics, such as the
orid frequency, voltage, current, and phase angles at high time
resolution.

[0072] As used herein, the term “sensor’” refers to most any
component capable of measuring a phenomena or event of
interest. In aspects, for example, a sensor may refer to a
computational process whereby transactions of interest are
recorded. In an embodiment, a sensor may refer to most any
combination of hardware and/or software systems for captur-
ing communications network transactions, for example,
source and destination IP address pairs, tlags, fragment ofiset,
header checksum, packet size, port pairs, packet headers,
encryption, protocol type, deep packet analysis or packet
content.

[0073] In other aspects, sensor data can include data asso-
ciated with, for example, 1mage sensors such as stereo cam-
eras, depth cameras, charge-coupled devices, complementary
metal oxide semiconductor active pixel sensors, infrared and/
or thermal sensors, sensors associated with an 1image intensi-
fier, and most any other sensor.

[0074] Data collected at step 202 proceeds to Data Struc-
turing 204. Data Structuring can be utilized to identity the
implicit structure of a system by discovering the structure of
the data associated with the system. That 1s, the structure of
the data will reflect the structure of the system. Data Struc-
turing 204 can be used to discover the intrinsic structure
including coherency between observations of the system
separated temporally and/or spatially and at different spa-
tiotemporal scales.

[0075] In accordance with an embodiment of the disclo-
sure, the system and method utilize a manifold learning tech-
nique wherein the lower order manifold on which the sys-
tem’s dynamics are constrained to evolve (within a much
higher dimensional space) are discovered through inferential
and differential geometric processes. In aspects, a kernalized
spectral graph-theoretic method, known as diffusion maps,
can be used to discover the structure of this mamifold. The
specific kernel used 1s not necessarily known a priori but can
be determined via empirical testing. The most commonly
used kernel, however, 1s the diffusion kernel (or heat kernel)
that describes diffusion processes 1n continuous media (e.g.,
heat diflusion in a plate). It 1s noteworthy that this has a
well-known connection to statistical thermodynamics and
thus to information. Furthermore, the “diffusion distance™
used for this implementation are information measures such
as Kulback-Leibler divergence. The extension to entropic
measures for fuzzy measures afforded by Generalized Infor-
mation Theory permits retention of fuzzy measure-theoretic
bases for models and relations

[0076] The spectral graph theoretic treatment can provide
an informative basis for inference about a complex system
and about 1ts substructures. Connection matrices and graph
Laplacians quantity the system wide influence of the system
objects, and Laplacian eigenvalues quantily the system sig-
nificance of the association between interacting system
objects relative to most all associations 1n the network and
provides the basis for identifying system invariants and, via
modal truncation approaches, constructing lower order mani-
folds upon which the observations are dense. These objects
can be used, 1n conjunction with different post processing
methods, for the discovery of coherent groups, classification,
time series analysis and pathway analysis.

[0077] This mechanism for discovering densely populated
submanifolds provides the wherewithal to construct a metri-
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zation for transactional data that does not possess an inherent
notion of nearness (and 1s thus 1ll-suited for statistical infer-
ence techmques which rely on notions of distance between
observations. By constructing an arbitrary bijective (one-to-
one and onto) mapping (necessary for uniqueness) from the
transaction space to a metric space, a useful metrization of
transactional data may be obtained by 1dentifying the appro-
priate submanifold within this arbitrary metric space via the
Diffusion Map Technique. Thus, the Diffusion Map Tech-
nique provides a useful representation and analyses of cyber-
physical systems with transactional dynamics, that do not
possess an intrinsic notion of nearness required by Bayesian
and classical statistical inference approaches or other data
driven or graph theoretic approaches.

[0078] A significant problem 1n cyber networks and large-
scale CPS systems 1s related to operational security and reli-
ability. In this context, various operating modes (normal,
alert, emergency, in extremes, and restorative) have been
identified. Using pattern discovery approaches to assess the
transitional dynamics from normal to alert to emergency pro-
vides a significant advancement to Intrusion Detection Sys-
tems, for example in the cyber network context, situational
awareness and to improving system operation. Output 1 208
of Data Structuring 204 1s a minimal representation of the
system 1n the form of microvariables and can be provided as
an mmput to Ensemble Available step 206 and the Model
Analysis step 222 (discussed inira).

[0079] Themethod 200 continues to an Ensemble Available
206 check. An ensemble may be identified based on the
microvariables and intrinsic properties associated with the
system and obtained as an output of Data Structuring 204. In
aspects, microvariables associated with a system can be
analogized to thermodynamic microstates, for example, posi-
tion and momentum of an atom. If an appropriate ensemble
(probability distribution) 1s not available via the intrinsic
properties of the system (e.g., Grand Cannonical Ensemble
for open thermodynamic systems, Halting Probability for
computer programs), it may be determined empirically. The
techniques of symbolic dynamics provides a mechanism
wherein the system dynamics of cyber networks and cyber-
physical systems, continuous, discrete, and transactional, can
be lifted to a discrete covering space from which appropnate
ensembles can be estimated. System trajectories can be
described by a string of symbols and system dynamics can be
described by the shift dynamics of the string.

[0080] Established techniques in statistical mechanics can
be used to construct the ensemble (distribution) once micro-
variables are available. Natural vanables may i1dentified
through inspection of the system and can be used 11 available.
I1 natural variables are not available, feature discovery tech-
niques are used to identily variables and techniques for con-
struction of ensembles are brought to bear.

[0081] Natural variables may exist for some systems (tem-
perature, pressure, concentration for thermodynamic sys-

tems) and may be discoverable using first principles
approaches. If natural variables are not readily available, then

the feature 1dentification machinery 1s brought into play to
determine appropriate variables. Once the variables are deter-
mined, the associated ensembles can be determined empiri-
cally.

[0082] If an ensemble 1s available 206 YES, the method
proceeds to Natural Variable Selection and Organization 302,
via connector B 210.
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[0083] The thermodynamic formalism utilizes two key fac-
ets of this theory to provide analysis and synthesis tools for a
broader class of problems; 1) thermodynamic techniques can
be formulated such that they are not restricted to physical
thermodynamics but can be applicable to general statistics
such as algorithm measures with a generalization of Chaitin’s
halting probability, and 2) the traditional thermodynamic
analysis can be mverted so that thermodynamic quantities
(e.g., temperature, pressure, iree energy) can be deduced
from observed distributions. The combination of these two
aspects can provide a rigorous basis for the elicitation of
natural variables, or summary variables, for large-scale com-
plex systems that possess clear analogs 1n physical systems.

[0084] The method 200 proceeds from Natural Variable
Selection and Organization 302 to Thermodynamic Model
Construction 304. Natural vaniables, identified through
ispection or identified via feature discovery, are used to
construct the ensemble from which, via Gibbs fundamental
equations, thermodynamic models can be directly con-
structed. The Natural Variables 1dentified at step 302 and/or
the Thermodynamic Variables identified at step 312 serve as
inputs to Thermodynamic Model Construction step 304.

[0085] The Thermodynamic Model Construction step 304
1s based on the thermodynamic formalism. As discussed
above, the thermodynamic formalism utilizes two aspects to
provide analysis and synthesis tools for a broader class of
problems; 1) thermodynamic techniques can be formulated to
apply to general statistics, and 2) traditional thermodynamic
analysis can be inverted so that thermodynamic quantities can
be deduced from observed distributions.

[0086] The thermodynamic formalism has 1ts roots in tra-
ditional thermodynamics. In thermodynamics of physical
systems, a probability distribution, known as the canonical
ensemble, of microstates that describe the system’s thermo-
dynamic equilibrium state 1s sought on the basis of incom-
plete information, specifically, knowledge of only the sys-
tem’s mean temperature. If additional information such as
pressure or chemical potential 1s available, more detailed
distributions, known as generalized canonical ensemble, are
sought.

[0087] The first of the above facets concerns the fact that,
stated 1n terms of abstract variables instead of the usual ther-
modynamic variables, the probability distributions, known as
Gibbs distributions, do not privilege any particular type of
variable. That 1s, the Gibbs distribution P,=2(¥-[,,M.”)
holds for most any appropriately selected ensemble of
microstates 1=1,2, . . . , n and known mean values M,” for
several random quantities M,°. These random quantities are
typically extensities, thermodynamic variables related to a
systems extent such as energy. The remaining variables are
merely Lagrange multipliers with W known as a generalized
free energy and the coefficients {3 , called intensities. Thus 1f
an appropriate ensemble, such as the ensemble of programs
that halt, can be found, the fundamental thermodynamuic rela-
tions will hold for most any set of appropriately chosen ran-
dom quantities and the system’s state may be specified 1n
terms of summary variables consisting of the set of extensities
or 1ntensities or a combination.

[0088] Particular sets of thermodynamic variables can be
connected to each of the free energies via Legendre transior-
mations. Moreover, the free energies are thermodynamic
potentials 1n that they behave as ordinary mechanical func-
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tions. This means that, if the variables M.® and T, called
natural variables of W, are chosen as independent variables,
we obtain:

[0089] In a manner analogous to the relationship between
forces and mechanical potentials, a set of thermodynamic
variables can be obtained by forming derivatives of W with
respect to the natural vanables. This 1s exploited 1n the second
of the above facets. A thermodynamic potential can be com-
puted in the form of Rény1 Information

1 H
Ip(p) = A1 lﬂgz; (pi ),

[0090] {from an estimated distribution obtained from obser-
vations from extant CPS or from numerical experiments on
models of CPS can be used to compute thermodynamic
potentials and summary variables via equation. These poten-
tials and variables obey the fundamental thermodynamic rela-
tions. This approach can be particularly valuable 1n cases
where an appropriate ensemble cannot be 1dentified a priori.

[0091] Returning to the alternate case for Ensemble Avail-
able step 206 NO, when no ensemble 1s available, that 1s, the
(G1bbs distribution noted above does not hold for the selected
ensemble, method 200 proceeds to step 212 where a decision
1s made concerning the availability of natural vanables. If
Natural Variables 212 are available, the method 200 proceeds,
via connector C 216, to Reny1 Information Computation 314
as shown in FIG. 3. Renyi entropies (informations) can be
shown to possess the requisite structure of a thermodynamic
potential and thus furnish the analyst with the basis of a
thermodynamic model.

[0092] Differentiating Rényi Information of order § with
respect to 3 produces

di R P,
L Jog, —
dp " —/3)2; e,

where the probabilities

are known as escort distributions. It can be shown that an
escort distribution 1s formally a Helmholtz distribution (up to
a factor u ). Rewriting the escort distribution as

P =2=ho0

[0093] where b=-log, p, 1s the bit number associated with
p,. The normalization
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yields

WY=-log, Z

where 7 1s the so-called partition function

7 — 2 Q—ﬁa-MF-

[0094] where M.” are the mean values of measured vari-
ables. Rewriting the escort distribution 1n terms of the sys-
tem’s mean energy E produces the canonical ensemble

pizzﬁ(F—E)
[0095] where F 15 the Helmholtz Free Energy
F(p) = 11 Z(B) = 1‘1‘(/3)
= )8 DgZ = )8 .

[0096] This is directly connected with the Rényi Informa-
tion of order 3 of the original distribution:

1
p—1

< 1
_ p_
lg(p) = log, ;E:ll Pi==5 B,

[0097] Thus, the Renyi Informations of order 3 collectively
provide a thermodynamic potential and hence a basis for the
construction of thermodynamic models. Further, as the Renyi
Informations of order p may be directly calculated from
empirical distributions, the thermodynamic variables and
thermodynamic relationships can provide an immediate
model of equilibrium behavior.

[0098] The method 200 proceeds from Renyi Information
Computation step 314 to Thermodynamic Variable Construc-
tion step 312. A challenge 1n applying the thermodynamic
formalism described above, e.g. in connection with Thermo-
dynamic Model Construction 304, 1s identifying the appro-
priate variables for use in the construction of the Rényi Infor-
mations of order 3. While an empirical distribution can be
constructed for most any observable, identifying those which
adequately characterize the system 1s often a less than
straight-forward task. Further, those varniables whose mean
values M.,® characterize the constraints on the system can be
even more challenging. For example, 1n a large scale power
system, 1dentifying a particular system variable (voltage, cur-
rent, phase angle, or collection thereot) 1s not straightforward.
For simpler systems, a brute force approach treating all vari-
able may be viable but for large scale complex systems the
number of variables may be, for all itents and purposes,
innumerable and impossible to observe directly.

[0099] In these mstances, a low dimensional model 1s use-
tul. Further, an approach specifically designed to find the
corresponding summary variables associated with the evolu-
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tion of a low dimensional model 1s well suited for use with the
thermodynamic formalism. To this end, the Diffusion Map
Technique may be applied.

[0100] Theunderlying notion for Diffusion Map Technique

and 1ts kindred dimension reduction techniques 1s that, while
the space a system lives 1n may possess a high number of
dimensions, the implicit constraints enforced by the system
dynamics ensures that not all points of this space will be
visited by this system and 1n fact the system trajectory within
this high dimensional space actually lie on a much lower
dimensional mamifold within the larger space. Finding this
manifold and the appropriate system representation on that
manifold can produce a much lower dimensional model. The
discovery of these manifolds 1s known as manifold learning.

[0101] The variables that describe the system on these low
order manifolds are abstract objects but may be interpreted as
summary variables and used for thermodynamic analysis. As
an exemplar approach, the Diffusion Mapping Technique 1s a
kernalized spectral graph method that relies on the connec-
tion between the Laplace-Beltrami operator and the random
walk graph Laplacian. Stmply put, under this connection, a
random walk on a graph can be treated as a continuous dii-
fusion process on a manifold and thus differential geometric
methods may be used to construct this manifold.

[0102] In particular, heat kernels that describe local difiu-
s10n processes as diffusion in the plane can be used to con-
struct the appropriate diffusion process 1n a (differentially)
piecewise fashion. Specifically, the first few Laplacian eigen-
values/eigenvectors of a graph are a discrete approximation of
the Laplace-Beltrami operator and thus capture the local
structure of the manifold. A model truncation approach thus
provides a reduced order model where the eigenvector pro-
vide the local coordinate axes and the associated eigenvalues
the coordinates. These modal coordinates provide the desired
summary variables and the modal coordinate axes can be
interpreted as analogous to energy shells 1n statistical ther-
modynamics.

[0103] The method 200 proceeds from Thermodynamic
Variable Construction 312 to Thermodynamic Model Con-
struction 304. The Natural Variables identified at step 302 and
the Thermodynamic Variables identified at step 312 serve as
inputs to Thermodynamic Model Construction step 304. At
step 306 a Coherent Interpretation check 1s done. For
example, an analysis of whether or not the particular set of
thermodynamic variables chosen offers a coherent interpre-
tation as analogs to more commonly known thermodynamic
variables (temperature, pressure), and thus provide a usetul
summary to operators/analysts. If not, another set of variables
can be examined as the selection of variables can be a free
choice under this paradigm.

[0104] Turnming to Thermodynamic Analysis 308, the
change from small systems to large systems 1s described by
the thermodynamic limit wherein the number of components
and system extent become extremely large while densities
and intensities remain constant. In the thermodynamic limiut,
the relations between the macroscopic thermal variables
comncide for the different ensembles. This means that the
different ensembles are directly comparable and the connec-
tion between the free energies associated with the various
ensembles can be formulated;

G=F+I1V=0Q+uN.

[0105] Considering the imformation gain (1.e. KL diver-
gence) from a generalized canonical distribution P, 1.e. Gibbs
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distribution to neighboring distribution P+06P, which 1s
obtained by a variation o3, of the intensities p,:

D(P+0oP||P) = Z (P+oP)[log,(P+06P)—log, P;]

= —85 — Z SP;log, P;

= —a5 -|-]80-(5Mﬂ- > ().

[0106] Ifthe vanations of 0P, are infinitesimally small then
the inequality

oMY SM" <0,

( N ]m“ 1 9%S
ane P PM s e

1s obtained. As the infinitesimal variations oM are arbitrary
and take on both signs, the inequality given above provides
two important relations. The first 1s that the term linear in 6M
must be 1dentically O, that 1s

S

Tagc ~ P

Thus, the general relationship between the thermal variables
can be formulated;

dS=p_dM®©,

where S=-I (p) 1s the Shannon entropy.

[0107] For the grand canonical ensemble, the general rela-
tionship between thermodynamic variables can take the form

dE=TdS-T1dV+udN

[0108] and 1s known as Gibb’s fundamental equation. The

quantities S, V, and N are extensive parameters and the quan-
tities T, 11, and p are intensive parameters. The equilibrium
state of a system can be described alternatively by the com-
plete set of extensities or by the complete set of intensities, or
by a set of mixed variables. In this context, these variables are
called thermal variables.

[0109] Particular sets of thermodynamic variables can be
connected to each of the free energies via Legendre transior-
mations. Applying the definition of Shannon entropy to the
generalized canonical distribution yields

S=—W+B_M".

For the canonical ensemble, the Shannon entropy takes the
form

S=B(E-F).
Thus, the Helmholtz free energy can be defined

F=E-185.

This corresponds to a Legendre transformation from E(S,V,
N) to F(T,V,N) and therefore, using the definition of Helm-
holtz Free Energy above, Gibbs Fundamental Equation takes
on the form

dF=—T1dV+udN-SdT.

This means that, i1 the variables V, N, and T are chosen as
independent variables, we obtain
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[0110] The quantities V, N, and T are called the natural
variables of F and they represent a complete set of thermal
variables. By forming dervatives of F with respect to the
natural variables, we obtain another complete set of thermal
variables. The connection between F and 1ts natural variables
1s similar to forces and potentials 1n a mechanical system,
hence, F as a function of i1ts natural variables 1s called a
thermodynamic potential.

[0111] The disclosed method can proceed to other thermo-
dynamic potentials via a Legendre transformation. For
instance, Gibb’s free energy 1s connected with F by a Leg-
endre transformation from the variable V to the variable 11
and Gibbs fundamental equation takes the form

dG=Vdll+udN-SdT.

Theretore, T, I1, and N are the natural variables of G and

oll ’
dG
IN Hs
A
o7 '
[0112] The analogy between thermodynamic and mechani-

cal potentials can extend beyond the similarity between the
above relationship between natural variables and Gibbs ree
energy and the relationship between potentials and forces.
Just as mechanical equilibria are determined by the minima of
potentials, thermodynamic potentials also possess extrema.
The different thermodynamic potential can be interpreted as
different Legendre transformation of entropy. Note that this
implies that entropy 1s itsell a thermodynamic potential.
Theretore, through the thermodynamic formalism, the avail-
able information can be exploited to develop “natural vari-
ables” and thermodynamic potentials that summarize the
state of the system 1n a meaningiul way and can be used to
model an expected, or baseline, system behavior. Anomalous
system behavior can be identified as a deviation from the
system baseline behavior. The summary quantities come with
a “built-in” interpretation that simplifies the job of system
operators and analysts and provides an intrinsic structure for
correlating observed behaviors for improved event detection,
situational awareness, fusion, and alarm management.

[0113] Consistency step 310 1s a straight-forward check as
to whether the thermodynamic relations described above are
satisiied by the set of variables obtained. Connector F 214 can
be an output of the Thermodynamic Analysis 308 and Con-
sistency 310. The output of the Thermodynamic Analysis 308
and Consistency 310 can be provided as an input to Symbolic

Encoding 218 and the Model Analysis step 222.

[0114] When natural variables 212 NO are not available via
inspection or simple brute force search methods, the method
200 proceeds to Symbolic Encoding 218. The process for

10

Sep. 1, 2016

determining a usetul symbolic encoding 218 can be decom-
posed 1nto two parts; first the determination of an appropnate
embedding followed by construction of a partition of the
embedding.

[0115] The processes for refining the embedding of interest
and for determining a generating partition of this embedding
can be performed using the known methods of False Nearest
Neighbors and Symbolic False Nearest Neighbors, respec-
tively. However, because these traditional methods require
the enumeration of all neighbor distances, they suffer from
polynomial growth 1n time complexity with increasing num-
bers of points. The disclosed system and method provides an
alternative that improves efliciency as the clustering
approaches provide a less computationally expensive alterna-
tive.

[0116] When an Ensemble 1s Available 206 (YES) and
Natural Variables 212 (YES) are available, the analysis 1s
complete. IT an Ensemble 1s Available 206 (YES) but Natural
Variables 212 (NO) are not, then summary variables can be
identified by forming dervatives with respect to the natural
variables, as discussed above. When no Fnsemble 1s Avail-
able 206 (NO) and Natural Variables 212 (YES) are available,
appropriate ensembles can be computed utilizing Renyi
Information and by forming derivatives. When neither of an
appropriate Ensemble 1s Available 206 (NO) nor Natural Vari-
ables 212 (NO) are available, Symbolic Encoding 218, Rényi
Information and dertvatives can be utilized to provide mputs
to 0-Machine Reconstruction step 220.

[0117] Symbolic dynamics can be used to 1dentify natural
variables by applying techniques to the microvariables. Sym-
bolic dynamics can also be applied to thermodynamic vari-
ables, preparatory to performing [3-Machine Reconstruction
step 220 (1.e. Connector F 214). When neither of these con-
ditions obtain natural variables, the symbolic encoding pro-
vides entry into the thermodynamic formalism that leads to
the computation of the Renyi informations and on to the
construction of thermodynamic variables. In aspects, the ther-
modynamic models are not dependent on e-Machine Recon-
struction. e-Machine Reconstruction 1s a technique used to
develop models (using microvariables) 1n parallel to thermo-
dynamic models or 1n addition to (using thermodynamic vari-

ables).

[0118] The method proceedsto step 220 e-Machine Recon-
struction. The disclosed system and method include innova-
tive e-Machine Reconstruction techniques including discov-
ery ol common subtrees of the string parse tree via 1)
nonparametric Bayesian clustering methods 1ncluding

Dirichlet Process based and Beta Process-based methods, and
2) Diffusion map techmques.

[0119] A formal language can be associated with a discrete
automaton that 1s able to accept all legal words of L when
acting on a signal S. Formal languages can then be classified
according to the size of memory utilized by the corresponding
automata. The process for constructing minimally complex
automata that yield a description of an observed signal S 1s
known as e-Machine Reconstruction, where the “€”” indicates
the dependence of the model on the observation process.
e-Machine Reconstruction 220 is a statistical machine leamn-
ing technique for inferring automata models of mput data
streams can be. This technique bootstraps from the simplest
possible machine, adding complexity as needed, to deduce
the minimal machine that accepts the observed sequence of
data.
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[0120] e-Machine Reconstruction 220 can include proba-
bilistic grammatical inference techniques which infer the
grammar or rules that a string of symbols obeys. Different
languages possess different characteristics which may be
exploited to deduce their grammars. In particular, the prop-
erties of languages exploited can be those given by the pump-
ing lemmas. In lieu of periodicity, the pumping lemmas guar-
antee the existence of cycles 1n strings exceeding some
mimmum length. This leads directly to inspecting substrings
ol increasing lengths for the existence of these cycles.

[0121] Legal symbol strings can be seen as a restriction to a
subset of all possible strings much like system dynamics can
be seen as a restriction of a system’s states to a subset (mani-
told) of all possible points 1n 1ts associated state space. This
subset 1s a language and, thus, the modeling problem can be
cast as inferring the rules of inclusion or grammar of this
language. The symbolic encoding permits access to the
machinery of information theory and formal language theory
and linguistic inference techniques can be applied to deduc-
ing relevant models to provide an alternative to the empirical
approach described above for cases in which neither an
ensemble or a set of natural variables are available or to
augment the thermodynamic relations with a dynamical
model of system evolution.

[0122] The construction of automata imvolves the construc-
tion of histograms of substrings of the mput string. The his-
tograms can be represented as a tree T={n,a.} consisting of
nodes n={n,} and directed, labeled arcs

v =A{a;: (1 - n;),

n,, n,€n,s €A} connecting them in a hierarchical structure.
An L-level subtree T,” is a tree that starts at node n and
contains all nodes that can be reached within L arcs. The tree,
thus constructed, can be a prefix tree as every node n in the
tree can be associated with the preceding sequence or D-cyl-
inder w,. The ensemble associated with the sequences 1is
approximated by recording the relative frequency of each
observed m, .

[0123] FEach level L of this tree represents the observed
L-length symbol subsequences. Shannon entropy thus pro-
vides a metric on the relative frequencies of the leafl nodes.
The average branching rate in the tree 1s equivalent to the
growth rate of the number of new sequences of increasing
length. As such, it 1s directly related to the growth rate of
Shannon entropy as a periodic process will, at some point,
cease to generate new cylinders and a random one will not.
The growth rate of Shannon entropy can thus be determined.

[0124] Iftheentropy growth rate does not vanish, the recon-
struction process continues to the next level in representations
and constructs a finite state automaton. The Myhill-Nerode
Theorem provides the existence of an equivalence relation R ,
that divides the set of all finite strings from a regular language
into equivalence classes. Furthermore, the Myhill-Nerode
Theorem states that the number of states in the smallest deter-
mimistic finite automaton that accepts L 1s equal to the number
of equivalence classes in R;. Therefore, 11 any two strings x
and y drive the automaton to the same state, they are 1n the
same equivalence class. Consequently, 1f a partition 1nto
equivalence classes can be constructed, automaton can be
constructed that uses 1ts state to keep track of the equivalence
class associated with the current substring.
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[0125] To construct a finite state automata representation, 1t
1s assumed that repeated subtree structures are instances of
the same state and merged 1nto an equivalence class that is in
turn associated with a state of the automata. Once the equiva-
lence classes have been i1dentified, the associated state and
transition probabilities can be extracted from the prefix tree
and the associated subtrees in a straight-forward manner.
These state transition probabilities form the basis of the state
transition functions, usually presented 1n matrix form.

[0126] Identifying disjoint sets of subtrees can be viewed as
a clustering problem. As the number of states 1s not known a
priori, non-parametric Bayesian identification of equivalence
classes may be used for partitioning the tree into equivalence
classes. Dirichlet Process-based clustering may provide a
suitable mechanism for the inference of an arbitrary number
of equivalence classes. As the potential scale of cyber-physi-
cal systems such as the electric power transmission and dis-
tribution system 1s enormous, and the inference may be
executed 1 a distributed fashion, information-sharing
attributes of these techniques provides additional utility for
fusing mformation across concurrent inference processes. A
hierarchical Dirichlet Process approach may be used.

[0127] Theconceptof Shannon entropy may be extended to
characterize the information storage of higher order machines
and 1ts rate of increase with increasing tree depth, a charac-
terization of the representation’s suitability can be con-
structed that 1s analogous to the use of source entropy to
evaluate the suitability of a tree representation.

[0128] For a Fimite State Automata, the source entropy 1s
given by the finitary complexity: C =2  _ ,p log, p., where
the probabilities p,, can be defined on the e-machine’s vertices
v € V. A recursive algorithm for the computation of the
growth rate of finitary complexity provides the analogous
convergence criterion for a finite state automata representa-
tion.

[0129] A Beta Process may be used 1n place of, or 1n addi-
tion to, a Dirichlet process to associate to each sampled clique
a set of latent Bernoulli variables to provide “featural”
descriptions of cliques (i.e., terminal substrings). The above
process of clustering on cliques (subgraphs) of the graph that
results from the above clustering operation may be repeated
via Beta Processes (Hierarchical Beta Processes) as the Bar-
Hillel and Ogden Lemmas supply Pumping Lemmas for Con-
text Free grammars and the Myhill-Nerode theorem can then
be used to deduce these grammars in conjunction with the
Chomsky-Schiitzenberger theorem. Alternatively, diffusion
map techniques can be used to efiect the clustering.

[0130] The method 200 proceeds from e-Machine recon-
struction 220 to Model Analysis 222. In general, the Model
Analysis step 222 1s a process of mapping model behaviors to
observed phenomena within a system. The Model Analysis
step 222 can be domain specific and can include an analysis of
the connection matrices for detection of invariant dynamics
and the 1dentification of anomalous system behavior.

[0131] Themethod 200 proceeds from Model Analysis 222
to Application Development 228. Application Development
228 15 a process ol mapping model behaviors to observed
phenomena within a system. Application Development 228
can take the form of, for example, software development or
the development of command and control systems that use the
mappings developed 1n Model Analysis step 222. Application
Development 228 can be the instantiation of those maps 1n an
operationally useful manner.
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[0132] In an embodiment, the Application Development
step 228 need not be a fixed process as a substantial aspect can
be domain specific. Application Development 228 can
include analyses of the connection matrices which can be
used for detection of invariant dynamics and the identification
of anomalous system behavior utilizing, for example, behav-

10r classification algorithms or anomaly detection algorithms.
The method 200 concludes at act 230.

[0133] As the models can be constructed within a thermo-
dynamics framework, model approach selection may be
dependent upon, for example, the class that a system belongs
to, where class membership may be based upon availability of
components ol a natural thermodynamic description.

[0134] Moreover, multiple model construction approaches
may be applied and the techniques may be applied serially, or
in parallel, to extract information on the model structure, to
construct a more detailed model, and/or to combine multiple
models. Thermodynamic models are appropriate for captur-
ing equilibrium and quasi-equilibrium phenomenal and
detecting phase transitions. Dynamical models are best
handled via approaches such as the epsilon-machine recon-
struction approach. The process of applying multiple model-
ing approaches is indicated 1n the fourth stage of the process
and may be augmented by additional statistical analyses and
Or user 1nspection.

[0135] Diffusion maps provide a powertul framework for
cliciting the multi-scale structure and geometry of graphs and
subsets of R . In particular, diffusion mapping has demon-
strated great utility as a technique for dimension reduction
that 1s robust to nonlinearity and as a basis for partitioning,
large, high-dimensional data sets. Moreover, an extension,
vector diffusion maps, permits direct treatment of vector
fields. The essential notion underlying diffusion maps 1s that
spectral embedding and clustering methods that are com-
monly used for non-linear dimensionality reduction can be
probabilistically interpreted as a diffusion process and that
the ordinary Euclidean distances in the embedding space
measure intrinsic diffusion metrics on the data. This 1s enor-
mously valuable as tools from harmonic analysis such as
Fourier and wavelet decompositions and spectral analysis of
pseudo-differential operators have been tremendously suc-
cessiul in the continuous Euclidean setting for many applica-
tions including compression, de-noising, and density estima-
tion.

[0136] As noted above, from an information-theoretic per-
spective, the principle objective of machine learming, infer-
ence, and estimation tasks 1s to extract “actionable” informa-
tion from available data sources. The key notions being that
information 1s fundamentally different than data and that the
value of mformation 1s a function of 1its relevance to the
problem at hand. This 1s intimately related 11 not 1dentical to
the need to reduce dimensionality 1n high dimensional feature
space. While the motives may be different, extracting relevant
information versus addressing the curse of dimensionality,
the rationales underlying approaches to these problems,
determining the portion of the data contains relevant infor-
mation versus 1dentifying the lower dimensional manifold on
which the data lie, are essentially 1identical. That 1s, the prob-
lem of finding a lower dimensional manifold on which the
data lie 1s inherently identical to finding an efficient coding
that maximizes the information content of the data.

[0137] More generally, these problems can be seen as a
search for features, a compact set of descriptors that effi-
ciently encode relevant information. Thus the problems asso-
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ciated with information extraction, coding, constructing/dis-
covering embedding mamifolds for dimension reduction,
constructing sparse representations for compressive sensing,
sampling, and so on are processes of identifying features,
albeit 1 slightly different contexts. The central problem
underlying these application specific challenges can be stated
in a general, abstract form as the problem of determining the
true, typically low dimension, manifold on which the data
points are constrained to lie.

[0138] By virtue of the centrality of this problem, tech-
niques for manifold discovery are thus central to the repre-
sentation of data and to their manipulation. For this reason, it
has long been an active area of research. Recent work has had
a particular focus on kemnel methods as their local support
supplies a locality preserving property and their inherent
nonlinearity provides robustness superior to that of classical
methods such as PCA. Manifold learning has also produced
several other dimension reduction techniques imncluding local
linear embedding, Laplacian eigenmaps, Hessian eigenmaps,
and local tangent space alignment based on mimimization of
quadratic distortion measures. These methods lead to the
application of eigen functions of Laplace-type operators as
minimizers and provide the basis for their extension in the
diffusion map technique.

[0139] As noted above, the essence of the diffusion map
technique 1s based upon a probabilistic interpretation of spec-
tral clustering methods as diflusion processes. That 1s, spec-
tral methods can be interpreted as eliciting the behavior of
random walks on adjacency matrices capturing the similarity
between data points. Thus diffusion maps accomplish dimen-
sion reduction by “reorganizing” data according to its intrin-
S1C geometry.

[0140] Consider a collection of N normalized data points
fx } _ "~ whereeachx, €ER?. The adjacency matrix captures
the “similarity” between the disparate points. For example,
the similarity may described as a quantized correlation
matrix, C={c,}, between data points where c,=1 if (x,'x,)
0.95 and ¢,;=0 otherwise. A more general notion of this simi-
larity can be used to describe the connectivity of the data by
measuring with a local similarity measure to create a time
dependent diffusion process. Specifically, a more continuous
kernel version of this correlation-based similarity can be
defined using a Gaussian kernel of width € as L,=k(x,,
X, J=exp (—uxl.—xsz/ 2€). By virtue of this similarity measure’s
relationship to diffusion processes and 1ts local support, 1t
integrates local geometry to elucidate geometric structure at
different scales. Measures of this type thus provides a more
meaningiul notion of similarity than the usual principal com-
ponents as 1t produces a measure of the similarity between
two points at a particular scale (or time) based upon the
revealed geometry.

[0141] It follows from the above that the data points can be
thought of as nodes on a graph with a weight function k(x,y)
that satisfies the following properties:

.

[0142] Kk 1s symmetric: k(X,y)=k(y,x),
[0143] Kk is positivity preserving: Vx,y € X k(x,y)=0
[0144] Kk positive semi-definite: for all real-valued bounded

functions 1 defined on X,
Ik (x ) fy)duix)dn(y)=0

where | 15 a probability measure on X.

[0145] The random walk normalized Laplacian is given by
M=D"'L where D is a diagonal normalization matrix

defined D=Diag([D,, D,, . . . D.J]) where DI.:ZFINLI.}.
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Spectral methods devolve from the associated eigenvalue
problem M ¢=A¢ or Lo=AD¢ where the first few eigenvec-
tors of M are used for low dimensional representation of
data or clustering coordinates.

[0146] As noted above, spectral methods have demon-
strated great utility for performing nonlinear dimension
reduction. Geometrically, suppose that there exists a mani-
fold X upon which the data points are uniformly distrib-
uted. It has been shown that the first few eigenvalues first
few eigenvectors of M=D™'L, are a discrete approximation
of the Laplace-Beltrami operator on the manifold and thus
captures the local structure of the manifold.

[0147] The normalized Laplacian M can be viewed as a
stochastic matrix representing a random walk on the graph:

k(xi, x;) (0.1)
t+1 ot — N — RS J
pxT =x; | X =x)=M; = Y :

2. K(x, x;)

i=1

Under this interpretation, the entries of M can be viewed as
transition probabilities between the graph nodes associated
with the data points. The connectivity between data points 1s
the probability that random walk at one point will transition to
another, 1.e. the more similar or related two points are, the
greater the transition probability between them and con-
versely. The Gaussian kernel used to construct L can thus be
seen as a non-normalized likelithood function known as the
diffusion kernel. Powers of the matrix M are equivalent to
iterating the random walk where M” denotes the r” iteration of
the walk and, equivalently, the entries of {m,,"} are the prob-
abilities of transitioning from x; to X; in r time steps:

plt=revlx,)=p(x'=ylx’=x)=e M (0.2)
where e, is a row vector with all zeroes except for a 1 in the i
position. Note also that the kernel width € has a dual interpre-
tation here as a time step, hence t=re. As the probabilities
{m,;"} are calculated for increasing values of, the structure of
the data set 1s observed at different time scales. With
increased values of r, 1.e. running the diffusion process for-
ward, the probability of following a path along the underlying
geometric structure increases as the data points are densely
connected along the structure. Short, high probability transi-
tions will compose a more likely path then one with a few
long, low-probability transitions.

[0148] Note that high probabilities are associated with
nearness and low probabilities with large distances between
points. This association provides the basis for a distance
measure 1 the embedding space. A symmetric matrix M_ can
be derived from M as M_=D'*MD~"2. Both M and M_ have
the same N eigenvalues M =2, _""'A.¢.¢.”. The left and
right eigenvalues of M_ are ¢,=¢,D"? and W,=¢ D',
respectively, and (¢,,\,.)=0,,.. Furthermore, for large values
of €, all points 1n the graph are connected and A =1zA =. ..
>Mh._;20. From equations (0.1) and (0.2), one can show that

lim p(z, y|x;) = lime;M” = ¢o(y) (U.3)

f—o0 00

where
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-continued

1s the left eigenvalue of M with A,=1. The eigenvector ¢,(x)
has the dual representation:

[0149] The stationary probability distribution on the curve,
1.€., the probability of landing at location x after taking infi-
nite steps of random walk (independent of initial position).
[0150] The density estimate at location Xx.

[0151] From equations (0.1) and (0.3) we have, for any
finite time r :

p(t, Y1x)=po )+ 1V 0 ()

where 1), and ¢, are the right and left eigenvalues of the graph
Laplacian M, respectively, and A,” is the k” eigenvalue (in
descending order) of M. Under the interpretation of entries of
the graph Laplacian as transition probabilities and the defini-
tion of a random walk, diffusion distance 1s defined as a
distance measure at time t between two probability mass
functions:

(0.4)

drz (xf:xj):|w(riy|xi)_p(r:y|xj)‘|w2:2Fxfo(p(I:y|xi)_p(r:
y))y wy)

where 1s empirically chosen as w(y)=1/¢,(y).

[0152] A mapping between the original space and the
embedding space can then be defined 1n terms of the first k
cigenvalues:

W )=(hy Py (%), A (X, - .y A pr(x)).

The connection between the diffusion distance (0.5) and the
diffusion map (0.6) 1s provided by the 1dentity

|‘Tf(xf)_wf(xjﬂ‘EZZFGN_I}“jzr(lpj(xf)_wj(xj))z:drz(xf:%‘)-

(0.5)

(0.6)

(0.7)

Consequently, the diffusion map W embeds the data into a
Euclidean space in which the natural inner product 1s equal to
the diffusion distance d.. Furthermore, the diffusion distance
can be approximated by retaining those terms for which the
eigenvalues ?\.f"” remain numerically significant.

[0153] The extraction of immformation that has value, or
summary variables, within the context of a particular scope of
operational objectives involves diflerentiating between infor-
mation that 1s of no interest and that which has value to
achieving an operational goal such as improving situational
awareness or operational control.

[0154] In practice, the construction or identification of a
model relating the information to the operational goal 1s
advantageous. Conventional microscopic models that resolve
every state variable are often of little practical use as the
quantity of, largely irrelevant, information obscures the use-
tul operational information while existing macroscopic mod-
¢ls often lack the detail important to detect behaviors impor-
tant to operational decisions. A model in terms of summary
variables at a level of resolution between these two poles, a
mesoscopic model, 1s disclosed. Thermodynamics 1s an
example of the development and use of summary variables.

[0155] The approach extends to CPS with transactional
dynamics, can handle large-scale data sets, and can provide
an important contribution to the application of subspace
embedding 1n real-world applications to CPS.

[0156] Thefundamental difficulty associated with applying
the techniques of symbolic dynamics to characterizing the
dynamics of large scale complex systems 1s determining an
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appropriate partition of the phase space from which to extract
the symbolic dynamics. This can be a nontrivial exercise for
even low order systems and analytical solutions are known for
only a handful of systems.

[0157] Traditionally, an experimental approach 1s used as
the partitions for higher dimensional spaces often have a
complicated structure, e.g., fractal boundaries. For large scale
systems 1n particular, the process of determining an appropri-
ate partition can be extremely computationally expensive.
However, at least two things can mitigate the potential com-
putational difficulties: 1) alower dimensional space can often
be considered, e.g., via a delay embedding, and 2) a usetul
encoding can typically be generated using a simple partition
structure, e.g. a grid of cubic boxes of 1dentical size.

[0158] The mesoscopic modeling approach can be 1llus-
trated using a simulated power system with four (4) machines
and two (2) areas and using the small signal stability and
transient stability test cases discussed supra. At an initial
symbolic encoding step, information utilized to characterize
the behaviors of the system can be embedded within the
behavior of constituent subsystems and thus examining a
subsystem 1s suill

icient, €.g., a power system’s behavior may
be characterized using, for example, phasor measurement
unit (PMU) data from a subset of measurement nodes.

[0159] Bechaviors of a system can be resolved using mea-
surements restricted to a subset of the machines. FIGS. 4A
and 4B 1llustrate partitions obtained via the method of sym-
bolic false nearest neighbors and the associated symbol
strings are shown, embedded 1n the unit square. Inter-genera-
tor power angle measurements were obtained at buses G1,
G2, and G3. The Poincaresections, or partitions, illustrated in
FIGS. 4A and 4B were obtained by sampling the phase angles
of G1 and G2 using zero crossings of the dervative of the
phase angle of G3 as a strobe. FIG. 4A 1s an 1llustration of
normal, steady state behavior. FIG. 4B 1s an illustration of
abnormal, transient behavior.

[0160] Thesymbolstrings were then examined via an e-Re-
construction process 1n order to construct probabilistic finite

state automata (FSA) models of the symbolic dynamics,
shown 1n FIGS. SA and 5B. The probabilistic structure of the

automata 1s described 1n the edge labels. In FIG. 5A, the FSA
model has one vertex and a single loopback edge. The sym-
bols that can be emitted on this transition are listed by the

edge along with their probabilities of being emitted 1n paren-
theses.

[0161] In the small signal case shown 1n FIG. SA, the sys-
tem trajectory continuously loops back to a stable state while
emitting random symbols. This 1s expected as the system 1s
behaving normally about a stable equilibrium. The random-
ness of the emitted symbols 1s a direct consequence of the
load perturbations.

[0162] A large signal case 1s shown 1n FIG. 5B where the
resulting FSA displays the relevant characteristics possessing,
a state (1) with characteristic similar to that in the small signal
case but with an additional state that captures the transient
behavior induced by a fault. Note that the transitions between
states (1) and (2) retlect the nature of the perturbation where
the fault occurs once and 1s cleared well within a defined
clearing time.

[0163] Referring now to FIG. 6, there 1s 1llustrated a block
diagram ol a computer operable to execute the disclosed
architecture. In order to provide additional context for various
aspects of the subject innovation, FIG. 6 and the following
discussion are intended to provide a brief, general description
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of a suitable computing environment 600 1n which the various
aspects of the innovation can be implemented. While the
innovation has been described above 1in the general context of
computer-executable instructions that may run on one or
more computers, those skilled 1n the art will recognize that the
innovation also can be implemented 1n combination with
other program modules or components and/or as a combina-
tion of hardware and software.

[0164] Generally, program modules include routines, pro-
grams, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types.
Moreover, the inventive methods can be practiced with other
computer system configurations, including single-processor
or multiprocessor computer systems, minicomputers, main-
frame computers, as well as personal computers, hand-held
computing devices, microprocessor-based or programmable
consumer electronics, and the like, each of which can be
operatively coupled to one or more associated devices.

[0165] Theillustrated aspects of the innovation may also be
practiced 1n distributed computing environments where cer-
tain tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules can be located 1n
both local and remote memory storage devices.

[0166] A computer typically includes a variety of com-
puter-readable media. Computer-readable media can be most
any available media that can be accessed by the computer and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer-readable media can comprise computer stor-
age media and communication media. Computer storage
media 1includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology
for storage of information such as computer-readable mstruc-
tions, data structures, program modules or other data. Com-
puter storage media includes, but 1s not limited to, RAM,
ROM, EEPROM, tflash memory or other memory technology,
CD-ROM, digital versatile disk (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by the computer.

[0167] Communication media typically embodies com-
puter-readable instructions, data structures, program modules
or other data in a modulated data signal such as a carrier wave
or other transport mechanism, and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of 1ts characteristics set or changed
in such a manner as to encode information 1n the signal. By
way of example, and not limitation, communication media
includes wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of the any of the
above should also be included within the scope of computer-
readable media.

[0168] Withreference again to FIG. 6, the exemplary envi-
ronment 600 for implementing various aspects of the innova-
tion includes a computer 602, the computer 602 including a
processing unit 604, a system memory 606 and a system bus
608. The system bus 608 couples system components 1nclud-
ing, but not limited to, the system memory 606 to the pro-
cessing unit 604. The processing unit 604 can be any of
various commercially available processors. Dual micropro-
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cessors and other multi-processor architectures may also be
employed as the processing unit 604.

[0169] The system bus 608 can be any of several types of
bus structure that may further interconnect to a memory bus
(with or without a memory controller), a peripheral bus, and
a local bus using any of a variety of commercially available
bus architectures. The system memory 606 includes read-
only memory (ROM) 610 and random access memory
(RAM) 612. A basic input/output system (BIOS) 1s stored 1n
a non-volatile memory 610 such as ROM, EPROM,
EEPROM, which BIOS contains the basic routines that help
to transier information between elements within the com-
puter 602, such as during start-up. The RAM 612 can also
include a high-speed RAM such as static RAM for caching
data.

[0170] The computer 602 further includes an internal hard
disk drive (HDD) 614 (e.g., EIDE, SATA), which internal
hard disk drive 614 may also be configured for external use in
a suitable chassis (not shown), a magnetic floppy disk drive
(FDD) 616, (¢.g., to read from or write to a removable diskette
618) and an optical disk drive 620, (e.g., reading a CD-ROM
disk 622 or, to read from or write to other high capacity optical
media such as the DVD). The hard disk drive 614, magnetic
disk drive 616 and optical disk drive 620 can be connected to
the system bus 608 by a hard disk drive mterface 624, a
magnetic disk drive interface 626 and an optical drive inter-
face 628, respectively. The interface 624 for external drive
implementations includes at least one or both of Universal
Serial Bus (USB) and IEEE 1394 iterface technologies.
Other external drive connection technologies are within con-
templation of the subject innovation.

[0171] The drnives and their associated computer-readable
media provide nonvolatile storage of data, data structures,
computer-executable instructions, and so forth. For the com-
puter 602, the drives and media accommodate the storage of
any data 1n a suitable digital format. Although the description
of computer-readable media above refers to a HDD), a remov-
able magnetic diskette, and aremovable optical media such as
a CD or DVD, other types of media which are readable by a
computer, such as zip drives, magnetic cassettes, flash
memory cards, cartridges, and the like, may also be used in
the exemplary operating environment, and further, that any
such media may contain computer-executable instructions
for performing the methods of the innovation.

[0172] A number of program modules can be stored in the
drives and RAM 612, including an operating system 630, one
or more application programs 632, other program modules
634 and program data 636. All or portions of the operating
system, applications, modules, and/or data can also be cached
in the RAM 612. The mnovation can be implemented with
various commercially available operating systems or combi-
nations ol operating systems.

[0173] A usercanenter commands and mnformation into the
computer 602 through one or more wired/wireless 1nput
devices, €.g., a keyboard 638 and a pointing device, such as a
mouse 640. Other mput devices (not shown) may 1nclude a
microphone, an IR remote control, a joystick, a game pad, a
stylus pen, touch screen, or the like. These and other 1nput
devices are often connected to the processing unit 604
through an 1nput device interface 642 that 1s coupled to the
system bus 608, but can be connected by other interfaces,
such as a parallel port, an IEEE 1394 serial port, a game port,
a USB port, an IR interface, etc.
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[0174] A monitor 644 or other type of display device1s also
connected to the system bus 608 via an 1nterface, such as a
video adapter 646. In addition to the monitor 644, a computer
typically includes other peripheral output devices (not
shown), such as speakers, printers, etc.

[0175] The computer 602 may operate 1n a networked envi-
ronment using logical connections via wired and/or wireless
communications to one or more remote computers, such as a
remote computer(s) 648. The remote computer(s) 648 can be
a workstation, a server computer, a router, a personal com-
puter, portable computer, microprocessor-based entertain-
ment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 602, although, for purposes
of brevity, only a memory/storage device 650 1s 1llustrated.
Thelogical connections depicted include wired/wireless con-
nectivity to a local area network (LAN) 6352 and/or larger
networks, e.g., a wide area network (WAN) 654. Such LAN
and WAN networking environments are commonplace 1n
olfices and companies, and facilitate enterprise-wide com-
puter networks, such as intranets, all of which may connect to
a global communications network, e.g., the Internet.

[0176] When used 1n a LAN networking environment, the
computer 602 1s connected to the local network 652 through
a wired and/or wireless communication network interface or
adapter 656. The adapter 656 may facilitate wired or wireless
communication to the LAN 652, which may also include a
wireless access point disposed thereon for communicating
with the wireless adapter 656.

[0177] When used in a WAN networking environment, the
computer 602 can include a modem 658, or 1s connected to a
communications server on the WAN 654, or has other means
for establishing communications over the WAN 654, such as
by way of the Internet. The modem 638, which can be internal
or external and a wired or wireless device, 1s connected to the
system bus 608 via the senial port mterface 642. In a net-
worked environment, program modules or components
depicted relative to the computer 602, or portions thereof, can
be stored 1n the remote memory/storage device 630. The
network connections shown are exemplary and other means
of establishing a communications link between the computers
can be used.

[0178] The computer 602 1s operable to communicate with
any wireless devices or entities operatively disposed 1n wire-
less communication, €.g., a printer, scanner, desktop and/or
portable computer, portable data assistant, communications
satellite, any piece of equipment or location associated with a
wirelessly detectable tag (e.g., a kiosk, news stand, restroom),
and telephone. This includes at least Wi-Fi1 and Bluetooth™
wireless technologies. Thus, the communication can be a
predefined structure as with a conventional network or simply
an ad hoc communication between at least two devices.

[0179] Wi-Fi, or Wireless Fidelity, allows connection to the
Internet from a couch at home, a bed in a hotel room, or a
conference room at work, without wires. Wi-Fi1 1s a wireless
technology similar to that used 1n a cell phone that enables
such devices, e.g., computers, to send and receive data
indoors and out; anywhere within the range of a base station.
Wi-F1 networks use radio technologies called IEEE 802.11 (a,
b, g, n, etc.) to provide secure, reliable, fast wireless connec-
tivity. A Wi-F1 network can be used to connect computers to

cach other, to the Internet, and to wired networks (which use
IEEE 802.3 or Ethernet). Wi-F1 networks operate 1n the unli-
censed 2.4 and 5 GHzradio bands, atan 11 Mbps (802.11a) or
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54 Mbps (802.11b) data rate, for example, or with products
that contain both bands (dual band), so the networks can
provide real-world performance similar to wired Ethernet
networks used in many offices.

[0180] What has been described above includes examples
of the disclosure. It 1s, of course, not possible to describe
every concetvable combination of components or methodolo-
gies for purposes of describing the subject innovation, but one
of ordinary skill in the art may recognize that many further
combinations and permutations of the mmnovation are pos-
sible. Accordingly, the disclosure 1s intended to embrace all
such alterations, modifications and variations that fall within
the spirit and scope of the appended claims. Furthermore, to
the extent that the term “includes” i1s used 1n either the
detailed description or the claims, such term 1s intended to be
inclusive 1 a manner similar to the term “comprising” as
“comprising” 1s mterpreted when employed as a transitional
word 1n a claim.

1. A computer implemented method for detecting cyber
physical system behavior, comprising:

utilizing one or more processors and associated memory

storing one or more programs for execution by the one or

more processors, the one or more programs including

instructions for:

receiving data from a plurality of sensors associated with
the cyber physical system:;

constructing a metrization of the data utilizing a data
structuring;

determining at least one ensemble and at least one sum-
mary variable from the metrized data, wherein the
summary variable 1s based on automata model utiliz-
ing a probabilistic grammatical inference that
includes discovering common subtrees of a string
parse tree via a nonparametric Bayesian clustering
method including a Dirichlet Process or a Beta Pro-
cess a diffusion map technique;

applying a thermodynamic formalism to the at least one
summary variable to classily a plurality of system
behaviors:

identifying the plurality of system behaviors based at
least 1n part on the classified plurality of system
behaviors:

obtaining, by the one or more processors, a baseline of
the system behavior associated with the classified
plurality of systems behaviors; and

detecting an anomalous condition based on a deviation
of the plurality of system behaviors from the baseline.

2. The method for detecting cyber physical system behav-
1ior of claim 1, wherein determining at least one summary
variable includes a symbolic encoding of the metrized data.

3. The method for detecting cyber physical system behav-
1or of claim 1, wherein the probabilistic grammatical infer-
ence comprises an e-Machine Reconstruction statistical
machine learning technique that includes describing a system
trajectory as a string of symbols and describing system
dynamics in terms of shift dynamics of the associated symbol
string.

4. The method for detecting cyber physical system behav-
1or of claim 3, including 1dentifying cycles 1n strings of sym-
bols utilizing pumping lemmas.

5. The method for detecting cyber physical system behav-
1ior of claim 1 further comprising:

generating an output indicating the 1dentified plurality of

system behaviors or the anomalous condition.
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6. The method for detecting cyber physical system behav-
1or of claim 1, wherein the at least one ensemble 1s determined
empirically.

7. The method for detecting cyber physical system behav-
ior of claim 1, wherein applying a thermodynamic formalism

includes applying thermodynamic techniques to the sensor
data.

8. The method for detecting cyber physical system behav-
1ior of claim 1, wherein the data structuring includes a mani-
fold learning technique comprising at least one of a Diffusion
Mapping, a bijective mapping or a spectral graph analysis.

9. The method for detecting cyber physical system behav-
1ior of claim 1, wherein the at least one summary variable 1s
determined by forming a derivative of a natural variable.

10. The method for detecting cyber physical system behav-
1or of claim 1, wherein receiving data includes recerving time
series data from a plurality of sensors monitoring a cyber-
physical system.

11. The method for detecting cyber physical system behav-
ior of claim 10, wherein the cyber-physical system i1s an
clectrical power grid system.

12. The method for detecting cyber physical system behav-
ior of claim 1, wherein detecting an anomalous condition
includes at least one of predicting or detecting the presence of
an Improvised Explosive Device.

13. A system for detecting cyber physical system behavior,
comprising:
a processor and memory coupled to the processor, the

processor executes the following executable compo-
nents:

a data collection component that receives encoded infor-
mation from a plurality of sensors associated with the
cyber physical system;

a data assimilation component for decoding the encoded
information, via a spectral graph analysis process
comprising a diffusion mapping technique, by apply-
ing a manifold learning technique to the information
to 1identily system features including at least one sum-
mary variable, wherein the data assimilation compo-
nent applies a thermodynamic formalism to the at
least one summary variable to obtain an indication of
system behavior; and

an operational component for recerving the indication of
system behavior and for detecting an anomalous sys-
tem behavior.

14. The system for detecting cyber physical system behav-
10r of claim 13, wherein the encoded information includes at
least one of continuous, discrete or transactional cyber physi-
cal system dynamics.

15. The system for detecting cyber physical system behav-
1ior of claim 13, wherein the operational component provides
an output indicating the anomalous system behavior.

16. The system for detecting cyber physical system behav-
ior of claam 13, wherein the data assimilation component
utilizes the spectral graph analysis process that includes inte-
grating data across at least one of a continuous physical
domain or a discrete physical domains and at least one of a
computational cyber domain or a transactional cyber domain.

17. The system for detecting cyber physical system behav-
1ior of claim 16, wherein the operational component 1s further
configured to generate an output indicating the identified
anomalous system behavior.
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18. The system for detecting cyber physical system behav- applying a thermodynamic formalism to the at least one
1ior of claim 13, wherein the data assimilation component summary variable to classity a plurality of system
utilizes a bijective mapping technique. behaviors;

identifying the plurality of system behaviors based at least
in part on the classified plurality of system behaviors;
obtaining, by the one or more processors, a baseline of the

system behavior associated with the classified plurality
of systems behaviors; and

detecting an anomalous condition based on a deviation of
constructing a metrization of the data utilizing a data struc- the plurality of system behaviors from the baseline.
turing; 20. The tangible computer readable medium of claim 19,

wherein the determining at least one summary variable
includes a symbolic encoding of the metrized data and
wherein the probabilistic grammatical inference comprises
an e-Machine Reconstruction statistical machine learning
technique that includes describing a system trajectory as a
string of symbols and describing system dynamics 1n terms of
shift dynamics of the associated symbol string,

19. A tangible computer readable medium, comprising
computer executable mnstructions that when executed by a
processor perform operations, comprising:

receiving data from a plurality of sensors associated with
the cyber physical system:;

determining at least one ensemble and at least one sum-
mary variable from the metrized data, wherein the sum-
mary variable 1s based on automata model utilizing a
probabilistic grammatical inference that includes dis-
covering common subtrees of a string parse tree via a
nonparametric Bayesian clustering method including a
Dirichlet Process or a Beta Process a diffusion map
technique; I I
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