a9y United States
12y Patent Application Publication (o) Pub. No.: US 2016/0085528 Al

KALOGEROPULOS et al.

US 20160085528A1

(54) AUTOMATED ADAPTIVE COMPILER
OPTIMIZATION

(71)

(72)

(21)

(22)

(1)

Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood City, CA

(US)

Inventors: SPIROS KALOGEROPULOS, Los

Gatos, CA (US); PARTHA

TIRUMALALI, Fremont, CA (US)

Appl. No.: 14/492,743

Filed:

Publication Classification

Int. CI.
GO6F 9/45

Sep. 22, 2014

(2006.01)

Developer

145

43) Pub. Date: Mar. 24, 2016
(52) U.S.CL

CPC oo GO6F 8/443 (2013.01)
(57) ABSTRACT

Embodiments of the invention provide systems and methods
for automatically and adaptively optimizing compilation of
application code using a rule-based optimization analyzer
(RUBOA) that can command a compiler to apply and adapt
optimizations at the code segment level according to gathered
performance data. For example, source code can be canoni-
cally compiled, and annotations can associate compiled code
sections with source code sections. The generated binary can
then be executed and monitored to gather performance char-
acteristics. The RUBOA can apply the gathered performance
characteristics and annotations to a pre-defined rule set to
generate compiler optimizations, each associated with and
parametrically tailored to respective source code segments.
The RUBOA can automatically generate optimization control
data from the generated compiler optimizations, and the
source application code can be re-compiled according to the
set of optimization control data to generate executable code
that 1s adaptively optimized at the code segment level.

100
(_

Developer Computational Environment 150

Application
Program
155

Source

Code
105

Compiled
Code
165

Compiler

Compiler
Component
120a

Compiler
Component
120n

Execution
Computational
Environment 170

Compiled
Code |

110

Rule-Based
Optimization
Analyzer
130

Compiler
Driver
115

Patent Application Publication @ Mar. 24, 2016 Sheet 1 of 4 US 2016/0085528 Al

100
(_

Developer
145

Developer Computational Environment 150

Application Compiler
Program 110
155

Compiler
Component
120a

Rule-Based
Optimization
Analyzer
130

Compiler
Driver
115

Compiled
Code
165

Compiler
Component
120n

Execution
Computational
Environment 170

i Compiled
Code |

US 2016/0085528 Al

Mar. 24, 2016 Sheet 2 of 4

Patent Application Publication

0€¢
NISWUOIIAUY

SISATEUY
UOTINdIXY

e
suonerloOuUUyY

oowu\

Gee ereg

DULWLIOJID J
pajejouuyy

0CC 2POD
paidwo)

Aledruoue))

0GC 2POD
pajidwo)
paziwidO

¢ Old

0¢T
IZATRUY

uoneziumdo
paseg-ony]

a11dwon)
[eduoue))

dndwon
pazrumdQ

OTT 1B[Iduo)

<¥C
eje(] [OIIU0D)
uorjeziund

PO IDINOG

uonyed1rddy

Patent Application Publication Mar. 24, 2016 Sheet 3 of 4 US 2016/0085528 Al

300
IR

325b

Computer
Readable

Storage Media
305 310 315 320

325a
Computer
Input Output Storage Readable |
Device(s) Device(s) Device(s) Storage Media
Reader

CPU(S)

Do

Acceleration

oystem

Communications | Processing | Working Memory

|
 _ .
K Operating
330 335 System
340
340

Other Code
(Programs)
320

110

Rule-Based ¢ : . :
' ..] : : E xecution ’
i Optimization : . :
: — Analyzer @
Analyzer :

130 i &

Patent Application Publication Mar. 24, 2016 Sheet 4 of 4 US 2016/0085528 Al

400
(_

.
s OO
s
:’/

Compile source code to generate first compiled
code and a set of annotations that associate code
segments of the first compiled code with code
seements of the source code

Execute the first compiled code and monitoring

the execution to generate performance

characteristics associated with the code segments
of the source code according to the annotations

Receive the performance characteristics from a
performance analysis tool that generated the
performance characteristics by monitoring execution

of first compiled code, such that the generated
performance characteristics are associated with
compiled code segments traceable to respective source
code segments

416

Analyze the performance characteristics according to
a set of predefined optimization rules to associate
each of a set of the source code segments with a
selected compiler optimization

420

Generate optimization control data comprising
instructions for directing a compiler to apply the

selected compiler optimizations to their associated
source code segments

.
NI
E)—Ih
:}(J

Compile the source code to generate second
compiled code under direction of the
optimization control data

US 2016/0085528 Al

AUTOMATED ADAPTIVE COMPILER
OPTIMIZATION

FIELD

[0001] Embodiments of the present invention relate gener-
ally to compilers, and, more particularly, to rule-based auto-
mation of compiler optimization.

BACKGROUND

[0002] The development of software applications typically
involves writing software code 1n a high-level programming
language and translating the code into a lower-level machine
language that can be executed by a computer system. Many
so-called “compiler” applications exist to effectuate the trans-
lation from the high-level “source code” into a lower-level
“executable code.”” These compilers may implement many
different types of functionality, for example, that enhance the
eificiency of the compilation process through various com-
piler optimizations.

[0003] Advanced compilers can implement hundreds of
optimizations that have been developed over the past few
decades. However, compilers typically only apply a subset of
available optimizations, and the optimizations are typically
applied somewhat indiscriminately on every function or
block in the file (e.g., according to fixed command line
options). This can result in sub-optimal performance, for
example, from incorrectly applying speculative optimiza-
tions to functions that do not need them, from applying non-
speculative optimizations in a “one-size-fits-all” manner, etc.
Furthermore, many speculative optimizations are often
shunned during compilation, as it may be difficult for the user
to 1nstruct the compiler to perform speculative optimizations
only to selected functions 1n a file.

BRIEF SUMMARY

[0004] Among other things, systems and methods are
described for automatically and adaptively optimizing com-
pilation of application code using a rule-based compiler opti-
mizer. Some implementations imnclude a rule-based optimiza-
tion analyzer (RUBOA) that can command a compiler to
perform compiler optimizations in a manner that applies and
adapts the optimizations at the code segment level according
to performance data. For example, source application code
can be compiled 1n a canonical manner, and annotations can
be generated to associate sections of compiled code with
sections of the source code. The generated binary can then be
executed and monitored to gather performance characteris-
tics. A RUBOA can utilize the gathered performance charac-
teristics to apply a set of pre-defined set of associations
between conditions and actions to generate a set of specifi-
cally tailored compiler optimizations, each associated with a
specific code segment from the source code according to the
annotations generated during the canonical compile. The
RUBOA can automatically generate a set of optimization
control data from the generated set of compiler optimizations,
and their respective parameters and source code segment
associations. The source application code can then be re-
compiled according to the set of optimization control data to
generate executable code that 1s adaptively optimized at the
code segment level.

Mar. 24, 2016

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present disclosure 1s described in conjunction
with the appended figures:

[0006] FIG. 1 shows a typical software development envi-
ronment to provide a context for various embodiments;

[0007] FIG. 2 shows a block diagram of portions of an
illustrative rule-based optimized software application com-
piling environment, according to various embodiments;

[0008] FIG. 3 shows an exemplary computational environ-
ment, 1 the context of which various embodiments may be
implemented; and

[0009] FIG. 4 shows a flow diagram an 1llustrative method
for compiling using rule-based, automated optimization
analysis, according to various embodiments.

[0010] Inthe appended figures, similar components and/or
features may have the same reference label. Further, various
components of the same type may be distinguished by fol-
lowing the reference label by a second label that distinguishes
among the similar components. If only the first reference
label 1s used 1n the specification, the description 1s applicable
to any one of the similar components having the same first
reference label irrespective of the second reference label.

DETAILED DESCRIPTION

[0011] In the following description, numerous speciiic
details are set forth to provide a thorough understanding of the
present invention. However, one having ordinary skill in the
art should recognize that the invention may be practiced with-
out these specific details. In some 1nstances, circuits, struc-
tures, and techniques have not been shown 1n detail to avoid
obscuring the present invention.

[0012] Turning first to FIG. 1, a typical software applica-
tion development environment 100 1s shown to provide a
context for various embodiments. For the sake of clarity, the
application development environment 100 1s broken gener-
ally into a developer computational environment 150 and an
execution computational environment 170. These computa-
tional environments can be part of a single computational
environment (e.g., implemented on a single computer) or
distributed among multiple computational environments. For
example, the developer computational environment 150 can
be optimized for compiling large applications and can exploit
features, such as multi-core and/or parallel processing,
resource oif-loading (e.g., using cloud-based resources), etc.;
and the execution computational environment 170 can be an
end-user computer, a development computer configured to
manifest expected features of an end-user computer, etc.

[0013] Asillustrated, the developer computational environ-
ment 150 can include a compiler 110 and an application
program 155 (1.e., the target application to be compiled). The
compiler 110 can generally translate un-compiled “source”
code 105 into compiled “executable” code 165 by using a
number of compiler components 120, each configured to
apply certain compiler 110 functionality to certain types of
code. The compiler components 120 can include various
compiler optimizations, such as methods for unrolling loops,
parallelizing code segment execution, etc. The compiler 110
can also include a compiler driver 115 (e.g., that may techni-
cally be implemented as one of the compiler components 120,
but 1s separated out for the sake of clarity) that can control
operation of some or all of the other compiler components

US 2016/0085528 Al

120. Each “compiler component 120”” can be a sub-compo-
nent of another compiler component 120 or can include one or
more sub-components.

[0014] The compiler 110 runs on a developer computa-
tional environment 150 (e.g., a personal computer or other
computing platform) to compile source code 105 of the appli-
cation program 155 into compiled code 1635 (e.g., an execut-
able binary) of the application program 155. A developer 145
(e.g., a software programmer) may develop the source code
105 by writing and debugging code segments 1n a high-level
programming or scripting language, like “Java,” “C,” “PHP,”
“Visual Basic,” “Perl,” etc. The developer 145 can then send
the source code 1035 to the compiler 110 (e.g., which may or
may not be stored locally on the developer computational
environment 150), and the compiler 110 can translate the
source code 105 to compiled code 165 using 1ts various com-

piler components 120 as controlled by the compiler driver
115.

[0015] Typically, advanced compilers 110 can implement
hundreds of optimizations that have been developed over the
past few decades. Typically, compilers 110 apply a subset of
the available optimizations, for example, as indicated by
command line options, to all the code in mput source files
(associated with and/or including the source code 105). Such
available compiler optimizations can be generally classified
into speculative optimizations and non-speculative optimiza-
tions. Speculative optimizations (e.g., prefetch generation for
direct or indirect memory accesses) can contribute to perfor-
mance improvement, so long as benefits obtained from the
optimized code outweigh any run time costs of the specula-
tion. Non-speculative optimizations are generally beneficial,
but can be “tuned” with parameters for maximum benefit. For
example, loop unrolling can often be classified as non-specu-
latrve, but the extent of the unrolling can be a parameter that
can 1mpact the benefit of the optimization.

[0016] In typical compilers 110, optimizations are applied
somewhat indiscriminately on every function or block 1n
source code 105 file (e.g., according to fixed command line
options). This can result in sub-optimal performance, for
example, from incorrectly applying speculative optimiza-
tions to functions that do not need them, from applying non-
speculative optimizations in a “one-size-fits-all” manner, etc.
Furthermore, many speculative optimizations are often
shunned during compilation, as 1t may be diflicult for the
developer 145 to mstruct the compiler 110 to perform specu-
lattve optimizations only to selected functions in a source

code 105 file.

[0017] A number of traditional approaches have been
developed for deciding which optimizations to apply and/or
which parameters to use with the applied optimizations. In
one such approach, called “static analysis,” the compiler 110
can analyze the source code 105 to decide whether and how to
apply an optimization. For example, 1f the compiler 110
encounters the code “for (1=0; 1<10000000; 1++) x[1]=y[1]+
t*z[1],” the compiler 110 can decide whether and how to
parallelize, unroll, use prefetch, etc. (e.g., because the code
indicates a fairly standard type of loop with a relatively small
number ol instructions and a relatively large trip count). How-
ever, static analysis often fails, as the code does not often
provide clear guidance as to which optimizations to apply. For
example, 11 the above code were written as “for (1=0; 1<n; 1++)
x[1]=y[1]+t*z[1]” (1.e., with an “n” 1nstead of a “100000007),
the value of n may not be known to the compiler 110, and the
compiler 110 may not be able to accurately determine

Mar. 24, 2016

whether and how to apply optimizations. In such instances,
the compiler 110 may be left to guess or introduce “version-
ing.” For example, the compiler 110 may create two or more
versions of the loop, one for a small trip count case and
another for a large trip count case, which may add complexity
and run time cost to select the appropriate version at runtime.

[0018] Another traditional approach involves adding so-
called “command line options” to control the applied com-
piler optimizations. The command line options permit a
developer 143 to select the exact options to apply (assuming
the compiler provides command line options for every pos-
sible optimization) to each function or code fragment. Usu-
ally, most compilers 110 implement internal options for
detailed control (e.g., primarily for debugging purposes), but
such internal options are not typically made available to exter-
nal developers 145. Using either type of option 1s typically
impractical, as 1t would be tedious, inconvenient, and error-
prone to specily every option and parameter for each function
or block 1n the source code. Further, the source code 105
programmers typically are not sufliciently familiar with the
internal workings of the compiler 110 and/or of the target
computational environment (e.g., the execution computa-
tional environment 170) to know which compiler optimiza-
tions to apply or 1n which ways.

[0019] Another traditional approach involves so-called
“pragmas,” or “directives.” The pragmas or directives are
typically added by the developer 145 to the source code 105
elifectively as hints to the compiler 110. For example, a
pragma can be inserted in the source code 105 belfore a par-
ticular type of loop or other code section that can invoke a
certain type of compiler optimization. While these are often
more usetul to programmers than command line options (e.g.,
they are typically more intuitive and part of the source code
programming language, as opposed to being part of the com-
piler command line), adding all the needed pragmas and
directives can still be very tedious, and 1s typically impracti-
cal for large applications. Further, effective use of pragmas
and directives still typically involve the application developer
145 learning about internal workings and options of the com-

piler 110.

[0020] Another traditional approach involves so-called
“profile feedback,” 1n which execution data are collected by
the compiler 110 as the application 1s executed. The compiler
110 can then be re-invoked, and the collected data can be
consulted by the compiler 110 to decide which optimizations
to apply. There are typically at least two limitations to this
approach. One limitation 1s that the execution data 1s typically
collected with an instrumented binary that 1s produced by the
compiler 110, and often contains very limited amounts and
types of information. For example, the data often reflects only
a profile of branch edges in the application program, and other
detailed execution data 1s absent. Another limitation 1s that
the compiler 110 typically operates 1n a “pull” mode, where
cach optimization individually queries the collected data and
decides whether and how to apply the optimization. For
example, exploiting the collected data mvolves moditying
cach optimization in the compiler to include additional
instructions that allow the optimization to analyze the col-
lected data and to modily 1ts parameters accordingly. In prac-
tice, these modifications are often extensive, and mature com-
pilers 110 generally only include such modifications 1n a
small subset of the available optimizations, such that use of
the collected data 1s limited.

US 2016/0085528 Al

[0021] Embodiments described herein include a novel rule-
based optimization analyzer (RUBOA) 130 that can com-
mand the compiler 110 (e.g., the compiler driver 115) to
perform appropriate optimizations with appropriate param-
eters for some or all code sections 1n the source code 105 (e.g.,
functions or other logical blocks of code). For example, the
source code 105 can be canonically compiled by the compiler
110, and generated annotations can associate compiled code
sections with source code sections. The generated binary can
then be executed (e.g., by the execution computational envi-
ronment 170) and momtored to gather performance charac-
teristics. The RUBOA 130 can utilize the gathered perior-
mance characteristics and annotations to apply a pre-defined
rule set to determine compiler optimizations, each associated
with and parametrically tailored to respective source code
segments. The RUBOA 130 can then automatically generate
optimization control data from the selected compiler optimi-
zations, and the source code 105 can be re-compiled (e.g.,
with the compiler 110) according to the set of optimization
control data to generate executable compiled code 165 that 1s
adaptively optimized at the code segment level.

[0022] FIG. 2 shows a block diagram of portions of an
illustrative rule-based optimized software application com-
piling environment 200, according to various embodiments.
The environment 200 includes a compiler 110, an execution
analysis environment 230, and a rule-based optimization ana-
lyzer (RUBOA) 130. For the sake of clarity, various input and
output data are shown. The compiler 110 and the RUBOA 130
can be implementations of the respective components of FIG.

1

[0023] In some implementations, application source code
105 can be compiled in a canonical manner to generate
canonically compiled code 220. For example, the compiler
110 (e.g., a static compiler) can include a set of 1nstructions,
which, when applied to the compiler driver (or in any other
suitable manner), cause the compiler 110 to run a canonical
compile 213. The canonical compile 213 can include dis-
abling speculative optimizations, for example, by turning off
functions, such as soitware prefetching. This can help “stan-
dardize” the generated executable (1.¢., the canonically com-
piled code 220), which can make the analysis easier, as
described below. For example, 1f soltware prefetching is
included, the prefetches themselves can generate cache
misses, some of which may be speculative and unnecessary,
and those can cloud true misses from loads and stores (i.e.,
stemming from the source code 105 itself). The canonical
compile can also include applying non-speculative optimiza-
tions with predetermined (e.g., default, or otherwise known)
parameters. For example, any loop unrolling the compiler 110
decides to perform may be implemented with a parameter of
‘4.’ As with disabling the speculative optimizations, applying
the non-speculative optimizations in a more deterministic
manner can help facilitate later interpretations of produced
data. For example, if loops were unrolled by different
amounts based on available heuristics iside the compiler
110, the performance may be better, but the data can become
more difficult to analyze.

[0024] Annotations 2235 can also be generated during the
canonical compile 213 to associate sections of canomically
compiled code 220 with sections of the source code 105. This
can effectively generate a standardized set of binary code that
tacilitates tracking of source code 105 sections and applied
optimizations. For example, the annotations 225 of the
canonically compiled code 220 code can be produced (i.e.,

Mar. 24, 2016

cifectively maintained) in a separate “section” to keep the
annotations 223 stored together with the canonically com-
piled code 220 can to better facilitate later analysis. In other
implementations, the annotations 2235 can be generated and/
or stored 1n any suitable manner. For example, the annotations
225 can include marking loads as direct or indirect accesses,
the level of indirection for indirect accesses, etc. Such infor-
mation can appreciably reduce the amount of re-analysis
during a later re-build (e.g., as part of the approach described
below).

[0025] Some embodiments of the canonically compiled
code 220 generated by the canonical compile 213 are not
“instrumented” to produce data. Rather, the canonically com-
piled code 220 can be a normal binary, except that the opti-
mizations are applied mn a known, canonical manner, and
annotations 225 are generated 1n a manner that can be used by
later analysis (e.g., and saved 1n a separate section). Accord-
ingly, the canonically compiled code 220 can run relatively
fast, in comparison to typical mstrumented binaries, which
are oiten slow.

[0026] In some embodiments, the canomically compiled
code 220 and the annotations 225 (e.g., as one or more files)
can be provided to the execution analysis environment 230.
The execution analysis environment 230 can be implemented
as any suitable execution analysis tool (e.g., Oracle Solaris
Studio Performance Analyzer), and can be run, for example,
on the execution computational environment 170 of FIG. 1 or
in any other suitable environment. As the canonically com-
piled code 220 1s executed by the execution analysis environ-
ment 230, the execution can be monitored to gather perfor-
mance characteristics. For example, the performance
characteristics can include detailed sampling data relating to
execution and/or other statistics (e.g., numbers ol cache
misses, etc.) by using hardware performance counters and/or
other suitable techniques. The execution analysis environ-
ment 230 can be invoked with a targeted set of performance
characteristics to collect. Embodiments of the execution
analysis environment 230 can generate a data repository of
the performance characteristics, which, along with the anno-
tations 225, can effectively provide a set of annotated perfor-
mance data 235. The annotated performance data 2335 can, for
example, indicate which code segments of the source code
105 result 1n which types of performance data.

[0027] In some embodiments, the annotated performance
data 235 can be sent to the RUBOA 130 for analysis. Some
implementations of the annotated performance data 235 are
stored 1n a dedicated format that facilicates analysis of the
data by the RUBOA 130. Embodiments of the RUBOA 130
can include a pre-defined set of associations between condi-
tions and actions, such that the annotated performance data
235 can be used to generate a set of specifically tailored (e.g.,
selected and parametrically optimized) compiler optimiza-
tions, and each selected optimization can be associated with a
specific code segment from the source code 105, according to
the annotations 225 generated during the canonical compile
213. The RUBOA can automatically generate a set of optimi-
zation control data from the generated set of compiler opti-
mizations, and their respective parameters and source code
segment associations.

[0028] For example, the RUBOA’s 130 analysis of the
annotated performance data 235 can determine an 1nstance 1n
which a particular code segment from the source code 105,
compiled under the canonical compile 213 parameters,

results in cache misses. The RUBOA 130 can then identify an

US 2016/0085528 Al

associated rule that corresponds to the determined execution
characteristic, and can generate a command (e.g., optimiza-
tion control data) for a particular compiler optimization (e.g.
cache blocking with tile size of 8 kilobytes) associated with
the 1dentified rule to be applied to the particular code segment
of the source code 105.

[0029] For the sake of further illustration, optimizations,
such as loop transformations, tend to have a high cost due to
appreciable variety, phase ordering, dependence analysis,
and/or other parameters involved in applying them. Similarly,
inlining typically has a high cost 1n 1ts generated code size
and, 11 applied extravagantly, can result 1n excessive I-cache
misses. Such optimizations are oiten best applied to particular
types of code segments, such as “hot call sites” or “loop
nests.” In some 1mplementations, the RUBOA 130 can use
time and/or tick counter profiles to drive these and/or other
optimizations. For example, code segments (e.g., blocks) can
be sorted by execution time (e.g., according to gathered anno-
tated performance data 235), and regions that are in the top
25% (e.g., or any other suitable threshold) can be targeted for
particular optimizations.

[0030] As another example, software prefetching 1s an opti-
mization that targets cache misses. Because only a small
number of loads and stores typically miss the cache (hit rates
are oiten well over 90%), 1t can be difficult to find appropriate
locations to apply this optimization. Implementations of the
RUBOA 130 can use cache miss data (e.g., according to
annotated performance data 235, for example, relating to
cache misses 1n the largest on-chip cache, or any other suit-
able cache misses) to decide into which code regions to insert
soltware prefetches. In some implementations, the annota-
tions 225 can indicate whether direct or indirect prefetching 1s
approprate, and the RUBOA 130 can activate the most appro-
priate type of prefetching for regions with high cache miss
rates.

[0031] As vyet another example, trace scheduling and 1i-
conversion are optimizations that attempt to reduce branch
mispredict penalties. These penalties can be relatively high,
for example, 1n deeply pipelined, high clock-rate systems.
Trace scheduling tends to works best for branches that are
highly skewed to one direction, while 1f-conversion tends to
works best for branches that are substantially unskewed (e.g.,
nearly 50%-50% with respect to taken/not taken). Implemen-
tations of the RUBOA 130 can analyze branch mispredict
data (e.g., according to the annotated performance data 235)
to decide whether a code segment should be incorporated 1nto
a trace or if-converted.

[0032] As even another example, software pipelining can
provide appreciable performance benefits for loops, but typi-
cally only when there 1s a certain mimimum number of loop
iterations (€.g., a minimum trip count). Implementations of
the RUBOA 130 can analyze loop trip count data (e.g.,
according to the annotated performance data 235) to decide
whether to apply solftware pipelining on a particular loop. As
still another example, at a whole program level, implementa-
tions of the RUBOA 130 can analyze Translation Lookaside
Buffer (TLB) miss data (e.g., according to the annotated
performance data 235) to decide which page size should be
requested for heaps and stacks.

[0033] The examples provided above are intended only to
provide added clarity, and are not intended to limit the types
of annotated performance data 235 that can be collected or the
types of rules or analyses that can be performed by 1imple-
mentations ol the RUBOA 130. Some implementations of the

Mar. 24, 2016

RUBOA 130 are designed so that new rules can be easily
added, as needed. When the RUBOA 130 analyzes the anno-
tated performance data 235 and applies 1ts rules, 1t can gen-
crate a set of optimization control data 245. The optimization
control data 245 can include a set of directives for instructing
the compiler 110 as to which optimizations to perform on
which particular code segments of the source code 105 and
with which parameters. The optimization control data 245
can be output in any suitable format. For example, some
implementations output the optimization control data 245 as
a set of internal compiler options that may or may not be
readable by (e.g., or even accessible to) the application devel-
oper. Some other implementations output the optimization
control data 245 as a set of command line options, as a set of
pragmas or directives, or 1n any other suitable manner or
combination thereol. For example, the optimization control
data 245 can indicate compiler directives, such as: “inline the
calls at lines 127, 243, 257, 289”’; ““‘unroll the loop at line 506
by 4, at line 1001 by 77”; “add direct prefetches to the accesses

at line 133”; “add indirect prefetches to the accesses at line
1203”’; etc.

[0034] Insomeembodiments, the optimization control data
245 15 used to direct operation of the compiler 110 to re-
compile the source code 105 into optimized compiled code
250. For example, the compiler 110 can execute an optimized
compile 217 function under the direction of the optimization
control data 245. For example, embodiments of the RUBOA
130 can control the compile driver of the compiler 110. The
compiler executing the optimized compile 217 can be the
same as or different from the compiler that performed the
canonical compile 213. For example, the optimized compile
217 can be implemented as a modification to the canonical
compile 213 1n accordance with the optimization control data
245. Directing compilation using the optimization control
data 245 can permit the compiler 110 to output executable
application code (e.g., an executable binary file) that 1s adap-
tively optimized at the code segment level.

[0035] Onefeature of the novel rule-based automated adap-
tive compiler optimization 1s that 1s permits a fine degree of
control. For example, the effect can be similar to that of a very
long and detailed command line option, but without the need
for a programmer to understand the internal workings of the
compiler, with potentially more capability (e.g., where inter-
nal compiler commands are more powerful than those com-
mand line options provided to developers), less error-prone
(c.g., as they are generated automatically based on actual
performance data, and not based on manual entry and suppo-
sition), etc. Another feature 1s that some implementations can
exploit a wealth of execution data collected by already avail-
able performance analysis tools. Yet another feature 1s that
some 1mplementations 1involve minimal modifications to the
compiler optimizations (e.g., as with typical profile feedback
approaches, or the like), as the types of exploited internal
compiler options are generally already available for debug-
ging by compiler developers (or the exploited command line
options, or the like, are typically already available to appli-
cation developers). Still another feature 1s that the automated
nature of the rule-based optimization analysis can mitigate, or
even obviate, any need for the application developer to under-
stand internal compiler optimization details.

[0036] Various functionality described above can be imple-
mented 1n one or more computational environments, such as
developer computational environment 150 and/or execution
computational environment 170 of FIG. 1. FIG. 3 shows an

US 2016/0085528 Al

exemplary computational environment 300, 1n the context of
which various embodiments may be implemented. The com-
putational environment 300 may be implemented as or
embodied 1n single or distributed computer systems, or 1n any
other usetul way. The computational environment 300 is
shown including hardware elements that may be electrically
coupled via a bus 355.

[0037] The hardware elements may include one or more
central processing units (CPUs) 305, one or more 1nput
devices 310 (e.g., a mouse, a keyboard, etc.), and one or more
output devices 3135 (e.g., a display device, a printer, etc.). The
computational environment 300 may also include one or
more storage devices 320. By way of example, storage device
(s) 320 may be disk drives, optical storage devices, solid-state
storage device such as a random access memory (RAM)
and/or a read-only memory (ROM), which can be program-
mable, tflash-updateable and/or the like.

[0038] The computational environment 300 may addition-
ally include a computer-readable storage media reader 3254,
a communications system 330 (e.g., amodem, a network card
(wireless or wired), an infra-red communication device, etc.),
and working memory 340, which may include RAM and
ROM devices as described above. In some embodiments, the
computational environment 300 may also include a process-
ing acceleration unit 335, which can include a DSP, a special-
purpose processor and/or the like.

[0039] The computer-readable storage media reader 325a
can further be connected to a computer-readable storage
medium 3255, together (and, optionally, 1n combination with
storage device(s) 320) comprehensively representing remote,
local, fixed, and/or removable storage devices plus storage
media for temporarily and/or more permanently containing,
computer-readable information. The communications system
330 may permit data to be exchanged with a network and/or
any other computer described above with respect to the com-
putational environment 300.

[0040] The computational environment 300 may also
include software elements, shown as being currently located
within a working memory 340, including an operating system
345 and/or other code 350, such as an application program
(which may be a client application, web browser, mid-tier
application, RDBMS, etc.). For example, embodiments can
be implemented as instructions, which, when executed by one
or more processors 303, cause the processors 305 to perform
certain functions. Such functions can include functionality of
a compiler 110, an execution analyzer 230, and or a rule-
based optimization analyzer (RUBOA) 130, such as those
described above with reference to FIGS. 1 and 2.

[0041] Forexample, embodiments ofthe compiler 110 may
interact with an application program as code 350 loaded into
working memory 340. The compiler 110 can be a set of
programs for translating source code into executable code
(e.g.,compiled code 1635 of FIG. 1). Software source code can
typically be written by a developer 1n a high-level language
such as C, C++, Fortran, or other, and stored on a computer
readable medium (e.g., storage device(s) 320 or computer
readable storage medium 32556). The compiler 110 can com-
pile the source code according to a set of components (e.g.,

optimizations, etc.), which can be directed, according to
embodiments described above, by the RUBOA 130.

[0042] In some implementations, the source code can be
compiled 1n a canonical manner by the compiler 110 (e.g.,
with speculative optimizations disabled, and non-speculative
optimizations applied using predetermined parameters).

Mar. 24, 2016

Annotations can be applied during the canonical compile to
associate sections of compiled code with sections of the
source code to eflectively generate a standardized set of
binary code that facilitates tracking of source code sections
and applied optimizations. The generated binary can then be
executed, and the execution can be monitored (e.g., by the
execution analysis environment 230, which may or may not
be part of the same computational system 300) to gather
performance characteristics of the executable program. The
RUBOA 130 can include a pre-defined set of associations
between conditions and actions, such that the gathered per-
formance characteristics can be used to generate a set of
specifically tailored (e.g., selected and parametrically opti-
mized) compiler optimizations, and each generated optimi-
zation can be associated with a specific code segment from
the source code, according to the annotations generated dur-
ing the canonical compile. The RUBOA 130 can thus auto-
matically generate a set of optimization control data from the
generated set of compiler optimizations, and their respective
parameters and source code segment associations. The source
application code can then be compiled again (e.g., by the
same compiler 110) according to the set of optimization con-
trol data. For example, the RUBOA 130 can effectively direct
operation of the compiler 110 using 1ts generated optimiza-
tion control data.

[0043] Alternate embodiments of a computational environ-
ment 300 may have numerous variations from that described
above. For example, customized hardware might also be used
and/or particular elements might be implemented 1n hard-
ware, soltware (including portable software, such as applets),
or both. Further, connection to other computing devices such
as network 1mput/output devices may be employed. Software
of the computational environment 300 may include code 350
for implementing embodiments of the present invention as
described herein.

[0044] It will be appreciated that various systems, includ-
ing the systems described above 1n FIGS. 1-3, can be used to
implement embodiments of the rule-based, automated opti-
mization analysis techniques described herein. Some
embodiments are further described according to the methods
of FIG. 4. Where the methods are described 1n the context of
specific system components, those descriptions are intended
only for the sake of clarity and should not be construed as
limiting the scope of any embodiments.

[0045] FIG. 4 shows a flow diagram an illustrative method
400 for compiling using rule-based, automated optimization
analysis, according to various embodiments. Some embodi-
ments of the method 400 begins at stage 404 by compiling
source code to generate first compiled code and a set of
annotations that associate code segments of the first compiled
code with code segments of the source code. As described
above, the compiling can be a canonical compiling. For
example, the canonical compiling can include disabling
speculative compiler optimizations and performing non-
speculative compiler optimizations using default (e.g., pre-
determined) parameters. The annotations can be generated 1n
any suitable manner, for example as a section of the first
compiled code.

[0046] At stage 408, embodiments can execute the first
compiled code (e.g., with a computer-implemented perfor-
mance analysis tool) and monitor the execution to generate
performance characteristics associated with the code seg-
ments of the source code according to the annotations. In
some 1mplementations, the performance -characteristics

US 2016/0085528 Al

include execution statistics gathered during the execution
using hardware counters. Any suitable performance charac-
teristics can be gathered, including, for example, any of cache
miss data, timing data, tick counter data, branch mispredict

data, loop trip count data, Translation Lookaside Buifer
(TLB) miss data, efc.

[0047] Atstage 412, the performance characteristics can be
analyzed according to a set of predefined optimization rules
to associate each of a set of the code segments of the source
code with a selected compiler optimization. The association
with the source code segments can include first associating,
with a compiled code segment, then using the annotations to
map the associated compiled code segment to a respective
source code segment. In some implementations, the analyz-
ing further associates at least some of the selected compiler
optimizations with respective optimization parameters
according to the performance characteristics and the set of
predefined optimization rules. For example, each time one of
the rules 1s triggered by performance data, an approprate
compiler optimization can be selected, associated with the
triggering code segment, and further associated with an
appropriate parameter (e.g., a “loop unrolling” optimization
can be associated with a parameter of “47).

[0048] At stage 416, optimization control data can be gen-
erated to include instructions that each defines one of the
selected compiler optimizations and 1ts associated code seg-
ment of the source code. For example, a rule-based optimi-
zation analyzer (RUBOA) can generate a set of internal com-
piler options that correspond to each of the compiler
optimizations selected 1n stage 412 1n a format that can be
used to direct operation of a compiler (e.g., read by the com-
piler, etc.). Alternatively, the RUBOA can generate a com-
piler-readable text file, a set of command line options, or any
other suitable optimization control data. In some embodi-
ments, the method can compile the source code (e.g., asecond
time) to generate second compiled code under direction of the
optimization control data.

[0049] Some embodiments of the method 400 begin at
stage 412 by receiving the performance characteristics. In
such embodiments, the performance characteristics can be
received Ifrom a computer-implemented performance analy-
s1s tool that generated the performance characteristics by
monitoring execution of first compiled code, such that the
generated performance characteristics are associated with
compiled code segments traceable to respective source code
segments (e.g., according to a set ol annotations generated
during compiling of the source code 1nto the first compiled
code). Such embodiments can, at stage 416, analyze the per-
formance characteristics according to a set of predefined opti-
mization rules to associate each of a set of the source code
segments with a selected compiler optimization. Further, at
stage 420, such embodiments can generate optimization con-
trol data including instructions for directing a computer-
implemented compiler to apply the selected compiler optimi-
zations to their associated source code segments. Some such
embodiments can further compile the source code canoni-
cally to generate the first compiled code (e.g., as 1n stage 404),
compile the source code to generate second compiled code

under direction of the optimization control data (e.g., as in
stage 424), etc.

[0050] The various operations of methods described above
may be performed by any suitable means capable of perform-
ing the corresponding functions. The means may include
various hardware and/or software component(s) and/or mod-

Mar. 24, 2016

ule(s), including, but not limited to a circuit, an application
specific itegrated circuit (ASIC), or processor.

[0051] The various illustrative logical blocks, modules, and
circuits described may be implemented or performed with a
general purpose processor, a digital signal processor (DSP),
an ASIC, a field programmable gate array signal (FPGA), or
other programmable logic device (PLD), discrete gate, or
transistor logic, discrete hardware components, or any com-
bination thereot designed to perform the functions described
herein. A general purpose processor may be a miCroproces-
sor, but 1n the alternative, the processor may be any commer-
cially available processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combi-
nation of computing devices, e.g., a combination of a DSP
and a microprocessor, a plurality of microprocessors, one or
more microprocessors 1 conjunction with a DSP core, or any
other such configuration.

[0052] The steps of a method or algorithm described 1n
connection with the present disclosure, may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside i any form of tangible storage medium. Some
examples of storage media that may be used include random
access memory (RAM), read only memory (ROM), flash
memory, EPROM memory, EEPROM memory, registers, a
hard disk, a removable disk, a CD-ROM and so forth. A
storage medium may be coupled to a processor such that the
processor can read information from, and write information
to, the storage medium. In the alternative, the storage medium
may be integral to the processor. A software module may be a
single 1struction, or many instructions, and may be distrib-
uted over several different code segments, among different
programs, and across multiple storage media.

[0053] The methods disclosed herein comprise one or more
actions for achieving the described method. The method and/
or actions may be interchanged with one another without
departing from the scope of the claims. In other words, unless
a specific order of actions 1s specified, the order and/or use of
specific actions may be modified without departing from the
scope of the claims.

[0054] The functions described may be implemented 1n
hardware, software, firmware, or any combination thereof. IT
implemented in software, the functions may be stored as one
or more instructions on a tangible computer-readable
medium. A storage medium may be any available tangible
medium that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM, or other
optical disk storage, magnetic disk storage, or other magnetic
storage devices, or any other tangible medium that can be
used to carry or store desired program code in the form of
instructions or data structures and that can be accessed by a
computer. Disk and disc, as used herein, include compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk, and Blu-ray® disc where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers.

[0055] Thus, a computer program product may perform
operations presented herein. For example, such a computer
program product may be a computer readable tangible
medium having instructions tangibly stored (and/or encoded)
thereon, the instructions being executable by one or more
processors to perform the operations described herein. The
computer program product may include packaging materal.

US 2016/0085528 Al

[0056] Other examples and implementations are within the
scope and spirit of the disclosure and appended claims. For
example, due to the nature of software, functions described
above can be implemented using software executed by a
processor, hardware, firmware, hardwiring, or combinations
of any of these. Features implementing functions may also be
physically located at various positions, including being dis-
tributed such that portions of functions are implemented at
different physical locations. Also, as used herein, including 1n
the claims, “or” as used 1n a list of items prefaced by “at least
one of”1indicates a disjunctive list such that, for example, a list
of “at leastone of A, B, or C” means A or B or C or AB or AC
or BC or ABC (1.¢., A and B and C). Further, the term “exem-
plary” does not mean that the described example 1s preferred
or better than other examples.

[0057] Various changes, substitutions, and alterations to
the techniques described herein can be made without depart-
ing from the technology of the teachings as defined by the
appended claims. Moreover, the scope of the disclosure and
claims 1s not limited to the particular aspects of the process,
machine, manufacture, composition of matter, means, meth-
ods, and actions described above. Processes, machines,
manufacture, compositions of matter, means, methods, or
actions, presently existing or later to be developed, that per-
form substantially the same function or achieve substantially
the same result as the corresponding aspects described herein
may be utilized. Accordingly, the appended claims include
within their scope such processes, machines, manufacture,
compositions of matter, means, methods, or actions.

1. A method for automated rule-based compiling optimi-
zation, the method comprising:

first compiling source code to generate first compiled code

and a set of annotations that associate code segments of
the first compiled code with code segments of the source
code;

executing the first compiled code and momitoring the

execution to generate performance characteristics asso-
ciated with the code segments of the source code accord-
ing to the annotations;

analyzing the performance characteristics according to a

set of predefined optimization rules to associate each of
a set of the code segments of the source code with a
selected compiler optimization;

generating optimization control data comprising instruc-

tions that each defines one of the selected compiler opti-
mizations and 1ts associated code segment of the source
code; and

second compiling the source code to generate second com-

piled code under direction of the optimization control
data.

2. The method of claim 1, wherein the first compiling
comprises canonically compiling the source code to generate
the first compiled code.

3. The method of claim 2, wherein the canonically compil-
ing comprises disabling speculative compiler optimizations
and performing non-speculative compiler optimizations
using default parameters.

4. The method of claim 1, wherein the annotations are
generated as a section of the first compiled code.

5. The method of claim 1, wherein the analyzing further
associates at least some of the selected compiler optimiza-
tions with respective optimization parameters according to
the performance characteristics and the set of predefined opti-
mization rules.

Mar. 24, 2016

6. The method of claim 1, wherein the performance char-
acteristics comprise execution statistics gathered during the
execution using hardware counters.

7. The method of claim 1, wherein the performance char-
acteristics comprise at least two of cache miss data, timing
data, tick counter data, branch mispredict data, loop trip count
data, or Translation Lookaside Buffer (TLB) miss data.

8. The method of claim 1, wherein the optimization control
data comprises internal compiler options 1n a format readable
by a compiler to direct the second compiling.

9. The method of claim 1, wherein the analyzing and the
generating optimization control data are performed by a rule-
based optimization analyzer.

10. A method for automated rule-based compiling optimi-
zation, the method comprising:

receving performance characteristics from a computer-

implemented performance analysis tool that generated
the performance characteristics by monitoring execu-
tion of first compiled code, such that the generated per-
formance characteristics are associated with compiled
code segments traceable to respective source code seg-
ments;

analyzing the performance characteristics according to a

set of predefined optimization rules to associate each of
a set of the source code segments with a selected com-
piler optimization; and

generating optimization control data comprising instruc-

tions for directing a computer-implemented compiler to
apply the selected compiler optimizations to their asso-
ciated source code segments.

11. The method of claim 10, wherein the compiled code
segments are traceable to respective source code segments
according to a set of annotations generated during compiling
of the source code into the first compiled code.

12. The method of claim 10, further comprising;:

compiling the source code to generate second compiled

code under direction of the optimization control data.

13. The method of claim 10, further comprising:

compiling the source code canonically to generate the first

compiled code.

14. The method of claim 10, wherein the analyzing further
associates at least some of the selected compiler optimiza-
tions with respective optimization parameters according to
the performance characteristics and the set of predefined opti-
mization rules.

15. The method of claim 10, wherein generating the opti-
mization control data comprises generating internal compiler
options 1n a format readable by the computer-implemented
compiler to apply the selected compiler optimizations to their
associated source code segments.

16. A computer-implemented compiler system compris-
ng:

a rule-based optimization analyzer that:

recerves performance characteristics from a computer-

implemented performance analysis tool that generated
the performance characteristics by monitoring execu-
tion of first compiled code, such that the generated per-
formance characteristics are associated with compiled
code segments traceable to respective source code seg-
ments;

analyzes the performance characteristics according to a set

of predefined optimization rules to associate each of a
set of the source code segments with a selected compiler
optimization; and

US 2016/0085528 Al

generates optimization control data comprising instruc-
tions for directing a computer-implemented compiler to
apply the selected compiler optimizations to their asso-
ciated source code segments.

17. The computer-implemented compiler system of claim

16, further comprising;:

a computer-implemented compiler, communicatively
coupled with the rule-based optimization analyzer, that
compiles the source code to generate second compiled
code under direction of the optimization control data.

18. The computer-implemented compiler system of claim

16, further comprising;:

a computer-implemented compiler, communicatively

coupled with the rule-based optimization analyzer, that

canonically compiles the source code to generate the
first compiled code.
19. The computer-implemented compiler system of claim
16, further comprising:
a set of processors; and

a non-transient, computer-readable memory having
instructions stored thereon, which, when executed,

cause the set of processors to implement the rule-based
optimization analyzer.
20. The computer-implemented compiler system of claim
16, further comprising:
the computer-implemented performance analysis tool.

G e x Gx ex

Mar. 24, 2016

	Front Page
	Drawings
	Specification
	Claims

