a9y United States

US 20160080490A 1

12y Patent Application Publication o) Pub. No.: US 2016/0080490 A1

Verma et al.

43) Pub. Date: Mar. 17, 2016

(54) ONLINE DATA MOVEMENT WITHOUT
COMPROMISING DATA INTEGRITY

(71) Applicant: Microsoft Corporation, Redmond, WA

(72) Inventors:

(21) Appl. No.: 14/486,198

(22) Filed:

(US)

Surendra Verma, Bellevue, WA (US);

Emanuel Paleologu, Kirkland, WA
(US); Erik Gregory Hortsch, Bellevue,
WA (US); Karan Mehra, Sammamish,

WA (US)

Sep. 15, 2014

Publication Classification

(51) Int.CL
HO4L 29/08

b 105

\J)

Request To (

(2006.01)

(52) U.S.CL
CPC oo HO4L 67/1097 (2013.01)

(57) ABSTRACT

Embodiments are directed to modilying storage capacity
within a data store and to modifying resiliency for a data store.
In one scenario, a computer system receives a request to move
data. The computer system may determine that data 1s to be
moved from an allocation on one data store to a new alloca-
tion on another data store. The computer system may create a
new allocation on the other data store, where the new alloca-
tion 1s configured to recerve data from the first data store. The
computer system then moves the data to the new allocation on
the second data store as data 1/O requests are received at the
first data store. Data store access requests are synchronized
with the data movement by directing the data store access
requests to the first data store, to the second data store or to
both data stores depending on the type of access request.

100

Computer System 101

5 102 5 103

Processor Memaory

;104

Communications Module

Move Data)

;106

Determining Module

)—107

Allocation Creating Module

)—108

Data Moving Module

(;—109

Data Redirecting Module

/{-110

Modifying Module

K >
;1 11 First Data Store 112
(110 1113
J Requests S SData j
\ Resiliency
Scheme 114A
N g

\ < >
> Second Data Siore 1715

Resiliency
Scheme 114B

US 2016/0080490 A1l

Mar. 17,2016 Sheet 1 of 6

Patent Application Publication

aWaYIS
Aoual|ISay

ClL[9i01] Bje(puodesg

Ejleq w

EL)

ZFT 2l0)S ejeq isi
< =

VoLl mEm_._ow
fouaiisey /

| 91nbi4

sjsonbay

0/
et

004

s|npoy\ bulAjipoly

it

a|npo Bunoalipay eje(
——————————
60!

a|npopy Buinopy ejeq
——————
801

a|npoyy Buneain uonedo|y

015

SINPON BuIuIwLB}a(]

9015

S[NPO SUOKEJIUNWWON

A BlE(] DAON

boL S

Aiowapy 105599201

c0s 2005
101 we)sAg Jeindwon

v 0] Jsonbay

G015

Patent Application Publication Mar. 17,2016 Sheet 2 of 6 US 2016/0080490 A1l

200

»

210

Recelve Request To Move Data

220

Determine That Data Is To Be Moved From
First Data Store To Second Data Store

230

Create New Allocation On Second Data Store

240

Move Data To New Allocation On Second Data Store

Patent Application Publication Mar. 17, 2016 Sheet 3 of 6 US 2016/0080490 A1l

300

»

310

Determine That Resiliency Scheme For

Portion Of Data Store Is To Be Changed

320

Determine That Data Within Data Store Is
To Be Altered Base On Scheme Change

330

Modify Resiliency Scheme Of Data Store

Figure 3

US 2016/0080490 A1l

Mar. 17,2016 Sheet 4 of 6

Patent Application Publication

TETTRIS

o€0y ~ fouaisay

¢0y UOILOd Ele(d

€0y~ OWaYdS
Aoualjisay MaN

g¢0y UoMOd Ele(]

y0y ~— SUCHEJNIPON ~—

TE

qge0v ~ foualsay

d¢0y UOod Ele(]

awayos

veoy ~— foualjisoy

v 0y UoLOd Eje(d

107 ®lolS ejeQ

US 2016/0080490 A1l

Mar. 17,2016 Sheet S of 6

Patent Application Publication

T
JOUIN -

. .1- -.u.-. r
S
.4“..‘“:“_”.. .-....",_._-_.
In... 1_&'. e
R
qnu”lf " -

*
o

d¢0¢aH

sloupy buowy
pasuejeqay S| ejeq

LA W
LIS S,
L ..1._- .

",

Bt
oA
...H. .ll-. '
....u.l _...-_.. p =
F A

7 JOMI
-.\.. PSR 4
l\\\ .._W_M..”....Mﬂhnnm” ,.,...,_.;-- -

J¢050aH

1ot
&

. d
)
[

.....r P
"
17

uh.- =

L.

106G~ Aedly ysiQ

¢ aInbi4

B . .
a L . . . ;
S A
- L-..J. L-L ' ' . [g
= . - AT
. 3
) -.L o ' L....r
. R i
X] 5=
- -- *l' Jl JI 1-I1 Jl.
. RPN

sl k

gy o

. A)

S A S
._.n__... 7 P

LAR S ﬁ_“_,h._.
* 4 F ...“..l 2

r L..””........ Clr..

N

n
d
C
a

106 ~— Aeuy ysig

260G T

3iSIJ MaN

——

US 2016/0080490 A1l

Mar. 17,2016 Sheet 6 of 6

Patent Application Publication

slouI buowy
paosue(eqay S| ejeq

109 ~— Redry ¥sIg

DSAOWdY S| OH

O¢090H

109 ~— Aeny ysig

“u
o

-

y
I
¥

SR
- .ru.-.- a..._w\:\\d._.‘._.._—
s ..\\x

7

US 2016/0080490 Al

ONLINE DATA MOVEMENT WITHOUT
COMPROMISING DATA INTEGRITY

BACKGROUND

[0001] Computing systems have become ubiquitous, rang-
ing from small embedded devices to phones and tablets to
PCs and backend servers. Each of these computing systems
includes some type of data storage and typically, many dii-
terent types of data storage. For example, a computing system
may include solid-state storage and a hard drive or set of hard
drives. The solid-state storage may be able to handle read and
write I/O requests more quickly than the hard drive, but may
not have the storage capacity of the hard drive. Other media
such as tape drives, DVDs (or other optical media) or other
kinds of media may have different advantages and disadvan-
tages when reading, writing and storing data.

BRIEF SUMMARY

[0002] Embodiments described herein are directed to
modilying storage capacity within a data store and to modi-
tying resiliency for at least a portion of a data store. In one
embodiment, a computer system recerves a request to move
data. The request to move data may specily a data store to
move the data off of, a data store to move the data to, or may
allow the computer system to select where the data 1s moved
from and/or moved to. The computer system may determine
that data 1s to be moved from an allocation on one data store
to a new allocation on another data store. The computer
system may create a new allocation on the other data store,
where the new allocation 1s configured to recerve data from
the first data store. The computer system then moves the data
to the new allocation on the second data store as data I/O
requests are received at the first data store. Data store access
requests are synchronized with the data movement by direct-
ing the data store access requests to the first data store, to the
second data store or to both data stores depending on the type
ol access request.

[0003] In another embodiment, a computer system modi-
fies resiliency for a data store. The computer system deter-
mines that a resiliency scheme for at least part of a data store
1s to be changed from one resiliency scheme to another resil-
iency scheme, where the data store 1s configured to store
different portions of data. The computer system determines
how the specified portion of data within the data store 1s to be
altered according to the change in resiliency scheme, and
modifies the resiliency scheme of the specified portion of the
data store, such that the resiliency scheme for the specified
portion of the data store i1s changed, while the resiliency
scheme for other portions of the data store 1s not changed.

[0004] This Summary 1s provided to introduce a selection
ol concepts 1n a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

[0005] Additional features and advantages will be set forth
in the description which follows, and 1n part will be apparent
to one of ordinary skill 1in the art from the description, or may
be learned by the practice of the teachings herein. Features
and advantages of embodiments described herein may be
realized and obtained by means of the mstruments and com-
binations particularly pointed out 1n the appended claims.

Mar. 17, 2016

Features of the embodiments described herein will become
more fully apparent from the following description and
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] To further clarify the above and other features of the
embodiments described herein, a more particular description
will be rendered by reference to the appended drawings. It 1s
appreciated that these drawings depict only examples of the
embodiments described herein and are therefore not to be
considered limiting of its scope. The embodiments will be
described and explained with additional specificity and detail
through the use of the accompanying drawings 1n which:
[0007] FIG. 1 illustrates a computer architecture 1n which
embodiments described herein may operate including modi-
tying storage capacity within a data store.

[0008] FIG. 2 1llustrates a flowchart of an example method
for modifying storage capacity within a data store.

[0009] FIG. 3 illustrates a flowchart of an example method
for moditying resiliency for at least a portion of a data store.
[0010] FIG. 4 1llustrates an embodiment 1n which a resil-
iency scheme 1s modified for at least a portion of data.
[0011] FIG. § illustrates an embodiment 1in which storage
capacity 1s added and data 1s rebalanced among remaining
data storage.

[0012] FIG. 6 1llustrates an embodiment in which storage
capacity 1s removed and data 1s rebalanced among remaining
data storage.

DETAILED DESCRIPTION

[0013] Embodiments described herein are directed to
modifying storage capacity within a data store and to modi-
tying resiliency for at least a portion of a data store. In one
embodiment, a computer system receives a request to move
data. The request to move data may specily a data store to
move the data off of, a data store to move the data to, or may
allow the computer system to select where the data 1s moved
from and/or moved to. The computer system may determine
that data 1s to be moved from an allocation on one data store
to a new allocation on another data store. The computer
system may create a new allocation on the other data store,
where the new allocation 1s configured to receive data from
the first data store. The computer system then moves the data
to the new allocation on the second data store as data 1/O
requests are received at the first data store. Data store access
requests are synchronized with the data movement by direct-
ing the data store access requests to the first data store, to the
second data store or to both data stores depending on the type
ol access request.

[0014] In another embodiment, a computer system modi-
fies resiliency for a data store. The computer system deter-
mines that a resiliency scheme for at least part of a data store
1s to be changed from one resiliency scheme to another resil-
iency scheme, where the data store i1s configured to store
different portions of data. The computer system determines
how the specified portion of data within the data store 1s to be
altered according to the change in resiliency scheme, and
modifies the resiliency scheme of the specified portion of the
data store, such that the resiliency scheme for the specified
portion of the data store i1s changed, while the resiliency
scheme for other portions of the data store 1s not changed.

[0015] The following discussion now refers to a number of
methods and method acts that may be performed. It should be

US 2016/0080490 Al

noted, that although the method acts may be discussed 1n a
certain order or illustrated 1n a tlow chart as occurring 1n a
particular order, no particular ordering 1s necessarily required
unless specifically stated, or required because an act 1s depen-
dent on another act being completed prior to the act being
performed.

[0016] Embodiments described herein may implement
various types of computing systems. These computing sys-
tems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices
such as smartphones or feature phones, appliances, laptop
computers, wearable devices, desktop computers, main-
frames, distributed computing systems, or even devices that
have not conventionally been considered a computing sys-
tem. In this description and in the claims, the term “comput-
ing system” 1s defined broadly as including any device or
system (or combination thereof) that includes at least one
physical and tangible processor, and a physical and tangible
memory capable of having thereon computer-executable
instructions that may be executed by the processor. A com-
puting system may be distributed over a network environment
and may 1nclude multiple constituent computing systems.

[0017] As illustrated mn FIG. 1, a computing system 101
typically includes at least one processing unit 102 and
memory 103. The memory 103 may be physical system
memory, which may be volatile, non-volatile, or some com-
bination of the two. The term “memory” may also be used
herein to refer to non-volatile mass storage such as physical
storage media. If the computing system 1s distributed, the
processing, memory and/or storage capability may be distrib-
uted as well.

[0018] As used herein, the term “executable module™ or
“executable component™ can refer to soltware objects, rou-
tines, or methods that may be executed on the computing,
system. The different components, modules, engines, and
services described herein may be implemented as objects or
processes that execute on the computing system (e.g., as
separate threads).

[0019] In the description that follows, embodiments are
described with reference to acts that are performed by one or
more computing systems. If such acts are implemented in
soltware, one or more processors of the associated computing
system that performs the act direct the operation of the com-
puting system in response to having executed computer-ex-
ecutable instructions. For example, such computer-execut-
able instructions may be embodied on one or more computer-
readable media that form a computer program product. An
example of such an operation involves the manipulation of
data. The computer-executable instructions (and the manipu-
lated data) may be stored 1n the memory 103 of the computing
system 101. Computing system 101 may also contain com-
munication channels that allow the computing system 101 to
communicate with other message processors over a wired or
wireless network.

[0020] Embodiments described herein may comprise or
utilize a special-purpose or general-purpose computer system
that includes computer hardware, such as, for example, one or
more processors and system memory, as discussed 1n greater
detail below. The system memory may be included within the
overall memory 103. The system memory may also be
referred to as “main memory”, and includes memory loca-
tions that are addressable by the at least one processing unit
102 over a memory bus in which case the address location 1s
asserted on the memory bus itself. System memory has been

Mar. 17, 2016

traditionally volatile, but the principles described herein also
apply 1n circumstances 1n which the system memory 1s par-
tially, or even fully, non-volatile.

[0021] Embodiments within the scope of the present inven-
tion also include physical and other computer-readable media
for carrying or storing computer-executable istructions and/
or data structures. Such computer-readable media can be any
available media that can be accessed by a general-purpose or
special-purpose computer system. Computer-readable media
that store computer-executable mstructions and/or data struc-
tures are computer storage media. Computer-readable media
that carry computer-executable instructions and/or data struc-
tures are transmission media. Thus, by way of example, and
not limitation, embodiments of the invention can comprise at
least two distinctly different kinds of computer-readable
media; computer storage media and transmission media.

[0022] Computer storage media are physical hardware stor-
age media that store computer-executable instructions and/or
data structures. Physical hardware storage media include
computer hardware, such as RAM, ROM, EEPROM, solid
state drives (“SSDs”), tlash memory, phase-change memory
(“PCM”), optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other hardware storage
device(s) which can be used to store program code 1n the form
of computer-executable instructions or data structures, which
can be accessed and executed by a general-purpose or special-
purpose computer system to implement the disclosed func-
tionality of the invention.

[0023] Transmission media can include a network and/or
data links which can be used to carry program code 1n the
form of computer-executable 1nstructions or data structures,
and which can be accessed by a general-purpose or special-
purpose computer system. A “network’ 1s defined as one or
more data links that enable the transport of electronic data
between computer systems and/or modules and/or other elec-
tronic devices. When information 1s transferred or provided
over a network or another communications connection (either
hardwired, wireless, or a combination of hardwired or wire-
less) to a computer system, the computer system may view the
connection as transmission media. Combinations of the
above should also be included within the scope of computer-
readable media.

[0024] Further, upon reaching various computer system
components, program code 1n the form of computer-execut-
able 1nstructions or data structures can be transierred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC”), and then eventually transferred to
computer system RAM and/or to less volatile computer stor-
age media at a computer system. Thus, 1t should be under-
stood that computer storage media can be included in com-
puter system components that also (or even primanly) utilize
transmission media.

[0025] Computer-executable instructions comprise, for
example, instructions and data which, when executed at one
Or MOore processors, cause a general-purpose computer sys-
tem, special-purpose computer system, or special-purpose
processing device to perform a certain function or group of
functions. Computer-executable instructions may be, for
example, binaries, intermediate format 1nstructions such as
assembly language, or even source code.

US 2016/0080490 Al

[0026] Those skilled 1n the art will appreciate that the prin-
ciples described herein may be practiced in network comput-
ing environments with many types ol computer system con-
figurations, 1ncluding, personal computers, desktop
computers, laptop computers, message processors, hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, mobile telephones, PDAs,
tablets, pagers, routers, switches, and the like. The invention
may also be practiced in distributed system environments
where local and remote computer systems, which are linked
(either by hardwired data links, wireless data links, or by a
combination of hardwired and wireless data links) through a
network, both perform tasks. As such, in a distributed system
environment, a computer system may include a plurality of
constituent computer systems. In a distributed system envi-
ronment, program modules may be located 1n both local and
remote memory storage devices.

[0027] Those skilled 1n the art will also appreciate that the
invention may be practiced 1n a cloud computing environ-
ment. Cloud computing environments may be distributed,
although this 1s not required. When distributed, cloud com-
puting environments may be distributed internationally
within an organization and/or have components possessed
across multiple organizations. In this description and the fol-
lowing claims, “cloud computing™ 1s defined as a model for
enabling on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, stor-
age, applications, and services). The definition of “cloud
computing’” 1s not limited to any of the other numerous advan-
tages that can be obtained from such a model when properly
deployed.

[0028] Stll further, system architectures described herein
can include a plurality of independent components that each
contribute to the functionality of the system as a whole. This
modularity allows for increased flexibility when approaching,
1ssues ol platform scalability and, to this end, provides a
variety of advantages. System complexity and growth can be
managed more easily through the use of smaller-scale parts
with limited functional scope. Platform fault tolerance 1s
enhanced through the use of these loosely coupled modules.
Individual components can be grown incrementally as busi-
ness needs dictate. Modular development also translates to
decreased time to market for new functionality. New func-
tionality can be added or subtracted without impacting the
core system.

[0029] FIG. 1 illustrates a computer architecture 100 1n
which at least one embodiment may be employed. Computer
architecture 100 includes computer system 101. Computer
system 101 may be any type of local or distributed computer
system, including a cloud computing system. The computer
system 101 includes modules for performing a variety of
different functions. For instance, the communications mod-
ule 104 may be configured to communicate with other com-
puting systems. The communications module 104 may
include any wired or wireless communication means that can
receive and/or transmit data to or from other computing sys-
tems. The communications module 104 may be configured to
interact with databases, mobile computing devices (such as
mobile phones or tablets), embedded or other types of com-
puting systems.

[0030] The commumnications module 104 of computer sys-
tem 101 may be further configured to receive requests to
move data 105. Such requests may be received from applica-

Mar. 17, 2016

tions, Ifrom users or from other computer systems. The request
to move data 105 may be generated internally to computer
system 101, or may be recerved from a source external to
computer system 101. The determining module 106 may
determine, based on the recetved request to move data 105,
that data 113 1s to be moved from a first data store 112 to a
second data store 115. The data stores 112 and 113 may be
local to or remote to computer system 101. The data stores
may be single storage devices, arrays of storage devices or
storage networks such as SANs or the cloud. The data stores
may store the data 113 according to resiliency schemes. These
resiliency schemes may include data mirroring or parity
schemes such as data striping, or any other type of resiliency

scheme including the various redundant array of inexpensive
disks (RAID) schemes.

[0031] Inresponse to the determination that data 113 1s to
be moved from the first data store 112 to the second data store
115, the allocation creating module 107 of computer system
101 creates anew allocation 116 on the second data store 115.
The data moving module 108 may then move the data 113 to
the newly created allocation 116 on the second data store 115.
In some embodiments, the data stores 112 and 115 may be
online data stores that are exposed to the internet. In such
cases, data 1s moved between online databases or other data
stores. During this process, any data store access requests
(such as a request to move data 105) may be synchronized
with the data movement by directing the data store access
requests to the first data store 112, to the second data store 1135
or to both data stores depending on the type of access request.
This process will be described in greater detail below.

[0032] As the term 15 used herein, “online data movement”
represents the process ol moving allocations containing data
from one data store (e.g. a set of hard drives or tape drives) to
another. This migration of data takes place without disrupting
the functionality or availability of the data store, and without
reducing the number of failures that can be tolerated. Addi-
tionally, as part of this process, a new set of drives may be
selected to transition the data storage space to a different fault
domain (e.g. upgrading from being able to tolerate a single
enclosure failure, to being able to tolerate a whole rack fail-
ure). As used herein, the term “fault domain” may refer to an
enclosure (e.g. just a bunch of disks or JBOD), a computer
(node), a collection of nodes grouped by a common physical
clement (e.g. all the blade servers 1n an enclosure, all the
nodes 1n a rack, or all the nodes behind a specific network
switch), or a collection of nodes grouped by a logical element
(e.g. an upgrade domain which includes nodes that will be
brought down together for servicing). The new set of drives
may also increase the storage etficiency of the storage space
(1.e. better utilize the drive’s capacity), or improve the perfor-
mance ol the storage space (e.g. spread ‘hot” data (1.e. data
that 1s accessed frequently) across more drives).

[0033] Large scale deployments frequently add and remove
hardware as requirements grow and old hardware goes out of
warranty. Moreover, workloads may grow and change over
time, requiring storage that can adapt to these changes by
allowing data to migrate away from drives that have reached
their end of life, migrate onto new hardware, and shift around
to better utilize the available bandwidth and capacity based on
the workload. This 1s done 1n real time without compromising
the integrity or resiliency of data.

[0034] Intraditional scenarios, data can be shifted as drives
are added or removed; however, the data 1s typically required
to be spread across all drives 1n the system equally. For

US 2016/0080490 Al

example, many RAID cards support increasing the drives in
an array by increasing the columns of the RAID volume).
Also, previous solutions would compromise the integrity of
the data 1n order to perform movement (e.g. treating a disk to
remove data from as failed).

[0035] Embodiments described heremn allow data to be
moved between data stores (online or otherwise) based on
various criteria including user-defined criteria. Embodiments
turther provide the ability to selectively move data based on
external input or other criteria (such as information about the
heat of data), or internal heuristics (such as moving data away
from the ends of hard drives to achieve short stroking and thus
faster data access times). Embodiments may further include
increasing the number of copies 1n a mirror and converting a
parity (RAIDS/6) to parnity with mirroring (RAIDS/6+1)
dynamically and sparsely (only on the sections that need to be
moved), removing a disk from a RAID array by mirroring its
contents across the remaining disks to avoid compromising
integrity, moving data across fault domains to increase the
resiliency of a RAID array to more than 1ts mitial creation
(e.g. migrating an array that can lose an enclosure to one that
can lose a rack), and converting a mirror space to a parity
space 1n place (or vice-versa) without rewriting the data.

[0036] In some embodiments, data migration 1s performed
by temporarily converting simple and mirror spaces to mir-
rors with more copies. For this approach to work on parity, the
concept of a RAIDS5+1 will be described. As the term 1s used
herein, RAID5+1 will include a standard parity layer, which
has read, write, and reconstruct capabilities. Reads and writes
to the underlying disks will be redirected through a mirror
layer which has 1ts own read, write, and reconstruct capabili-
ties. To avoid unnecessary complexity in the parity layer, the
mirroring laying will provide an aggregated view of all the
copies holding each individual column.

[0037] When a data migration 1s to be performed, a task
may be used to create another allocation as the destination and
temporarily increase the data store’s number of copies. This
allocation will begin life as stale (i.e. 1t needs to be recon-
structed because 1t does not contain valid data), and will be
picked up and transitioned to healthy by a reconstruction task.
In this manner, data migration 1s performed at the granularity
ol allocation within a data store (instead performing it on
every allocation 1n the data store). Such embodiments offer
advantages including, but not limited to, the following: 1)
When migrating multiple copies of the same column, only
one of the copies needs to be read and can be written to both
of the destinations. 2) I a read fails during migration, but
other copies of data 113 are available, they will be available to
reconstruct from. 3) The abaility to read from any copy of data
to perform the movement will also increase the ability to
parallelize migrations, especially when moving mirrors off of

a disk.

[0038] In another embodiment, data 1s migrated between
data stores by migrating entire slabs (1.e. collections of allo-
cations that form a resiliency level). This process allocates a
whole slab, or set of slabs, at the same oflset of a current group
of slabs. These new allocations may be marked as a destina-
tion 1n an object pool configuration. By allowing sets of slabs
to be migrated, the slab size can change, as well as any other
resiliency properties. If the source and destination configura-
tions have different slab sizes, then the migration will be
performed on the smallest s1ize which may be divided by both
slab sizes (1.e. the least common multiple).

Mar. 17, 2016

[0039] Following the reallocation, a mirror object may be
placed above the slabs, forwarding writes to both copies while
a task (e.g. a reconstruction task) copies data from the old
slab(s) to the new destination slab(s). When this task com-
pletes, the old slabs will be discarded and the new slabs will
come 1n as a separate storage tier (to represent any changes 1n
resiliency). If the resiliency type of the destination imple-
ments a write-back cache, then a second child space may be
allocated to replace the old one. This allows migration
between any two resiliency configurations (resiliency type,
slab si1ze and fault tolerance can all change).

[0040] In another embodiment, whole slabs are migrated
with data overlap. This 1s a vaniant to the embodiment
described above, and would migrate at the slab level, but
would not allow the size of a slab to change. To stop the
excessive movement of data, only columns which are moving
would be reallocated, the remaining columns would be
“ohosted” or “no-oped” on the second (destination) slab. The
columns would appear to be there, but writes to them would
be blocked. This moves a minimal amount of data and allows
upgrades 1including enabling resiliency changes.

[0041] In yet another embodiment, individual columns
may be migrated with RAID level migration. This process
may be implemented by two separate mechamisms which
work together to provide an end-to-end solution. The first
process reallocates individual columns 1n place. First, a task
(such as a pool transaction) creates new allocations and pairs
them with sources that are to be moved. Each source and
destination are then combined into a mirror, with the destina-
tion being marked as ‘Needs Regeneration’ or an equivalent
marking. These mirrors are then surfaced to the slab as a
single allocation, and the regeneration task copies the data
from the source to destination. Upon completion, a task
deletes the old allocations and the mirror objects under the
slab are replaced by the new allocations. The second mecha-
nism allows conversion between mirror and parity storage
spaces. First, the mirroring 1s separated from the striping by
making a storage space with a mirror in place of each alloca-
tion. The parity columns are then tacked onto the end and
marked as needing regeneration. When this regeneration
completes, a second pool transaction selects one copy from
cach of the mirrors and surfaces a parity slab.

[0042] The conversion from mirror to parity results in an
enclosure- or rack-aware parity space, the enclosure-aware
parity spaces having the correct on-disk format. This process
can also be reversed to convert back to a mirror and a similar
process can convert between storage spaces such as 2-way
mirrors and 3-way mirrors. During this conversion, some data
columns may need to be moved to guarantee the ability to
tolerate higher fault domain failure(s) (as mirror has different
allocation requirements than parity). This migration may be
performed as an intermediate step (after parity has been
regenerated) to avoid placing the data store i1n a state of
reduced resiliency. This allows fine grain control of which
allocations move. Moreover, free space 1s only required on
destination drives, and multiple slabs may be migrated 1n
parallel. These concepts will be explained further below with

regard to methods 200 and 300 of FIGS. 2 and 3, respectively.

[0043] In view of the systems and architectures described
above, methodologies that may be implemented 1n accor-
dance with the disclosed subject matter will be better appre-
ciated with reference to the flow charts of FIGS. 2 and 3. For
purposes ol simplicity of explanation, the methodologies are
shown and described as a series of blocks. However, it should

US 2016/0080490 Al

be understood and appreciated that the claimed subject matter
1s not limited by the order of the blocks, as some blocks may
occur in different orders and/or concurrently with other
blocks from what 1s depicted and described herein. Moreover,
not all i1llustrated blocks may be required to implement the
methodologies described heremafter.

[0044] FIG. 2 illustrates a flowchart of a method 200 for
modilying storage capacity within a data store. The method
200 will now be described with frequent reference to the
components and data of environment 100.

[0045] Method 200 includes receiving a request to move
one or more portions of data (210). For example, communi-
cations module 104 of computer system 101 may receive a
request to move data 105 from a request source. The request
source may be an application, service, user or other computer
system. The request may specily that data 113 1s to be moved
from one data store 112 to another data store 115, either or
both of which may be online. The data 113 may be individual
files, collections of files, blobs of data or other allocations of
data such as slabs, metadata or other types of data or collec-
tions of data. The request 105 may specily the data store to
move data off of (e.g. first data store 112 1n FIG. 1), the data
store to move data to (e.g. second data store 115 1n FIG. 1), or
neither (i.e. the request may simply 1ndicate that a certain
portion of data 1s to be moved. If no data store 1s specified, the
computer system 101 may determine which data stores have
the specified data and may further determine which data
store(s) the data 1s to be moved to. In such cases, the request
105 may include information about the data stores to aid the
system 1n making the decision. The request may include
multiple data sources and multiple data targets.

[0046] Method 200 further includes determining that data
1s to be moved from the first data store to the second data store
(220). The determining module 106 of computer system 101
may determine, based on the request to move data 103, that
data 113 1s to be moved from the first data store 112 to the
second data store 115. This determination may include deter-
miming which data or data stores are being most heavily
utilized. As mentioned above, each data store may include a
single storage device or multiple storage devices. In cases
where a data store 1s an array of hard drives, some of the hard
drives may be being used more than others. Those drives that
are constantly being written to may be said to be “hot” or
including “hot data”, whereas drives that are not being written
to as often are “cold” or include a greater portion of “cold
data.” The determining module 106 may 1dentify which data
(among data 113) can be moved, which data must move and
where the data 1s to be moved to. In some cases, data cannot
be moved and may be labeled “unmovable data.” I the data
can move, the determining module 106 may determine the
best location for that data.

[0047] These determinations may be made based on vari-
ous factors including external component input. For example,
a heat engine may be implemented which tracks all reads/
writes to data 1n a given data store. Other factors may include
heuristics (e.g. move data away from ends of drives to facili-
tate short trips for the hard drive data reading tip). Still other
factors may include characteristics of the data store including
tavoring larger drives over smaller drives, favoring the out-
side of the drive platter as 1t 1s traveling faster and 1s capable
of quicker reads and writes. The determiming module 106
may further be configured to 1dentily where data 1/0O request
bottlenecks are occurring. For example, 11 multiple applica-
tions are trying to write data to a single hard drive or a set of

Mar. 17, 2016

hard drives within the first data store, and the high volume of
data writes to those drives 1s causing an I/O bottleneck, the
determining module may determine that existing data on
those drives 1s to be moved to other drives to spread out the I/O
requests 111, or that the incoming I/O requests are to be
redirected to other drives within the data store (e.g. by the data
redirecting module 109) or to a different data store (e.g. the
second data store 115).

[0048] Method 200 further includes creating a new alloca-
tion on the second data store, the new allocation being con-
figured to receive at least a portion of data from the first data
store (230), and moving the data to the new allocation on the
second data store as data I/O requests are received at the first
data store, wherein data store access requests are synchro-
nized with data movement by directing the data store access
requests to the first data store, the second data store or both
data stores depending on the type of access request (240). The
allocation creating module 107 of computer system 101 may
create new allocation 116 on the second data store 115. This
new allocation 116 may be configured to receive some or all
of the data 113 that 1s moved from the first data store 112 to
the second data store 115.

[0049] In some embodiments, the second data store 115
may 1nclude at least one hard drive. In such cases, the newly
created allocation 16 on the second data store 115 may be
located substantially near the beginning of the hard drive (1.e.
near the outer edge of the hard drive). In this manner, data may
be moved away from the ends of hard drives on the first data
store and moved to the beginning of drives on the second data
store 115. This allows the data to be accessed more quickly.
Other optimizations may be used for other data storage
devices such as tape drives or optical drives.

[0050] The second data store 115 may be configured to
accept new data storage devices and/or new data storage
media. In some embodiments, the second data store 1135 may
include data storage media that was added to the second data
store. This second data store may be located on a fault domain
that 1s different from the fault domain of the first data store.
For instance, 1f a fault domain 1s established for a given
hardware storage rack (e.g. first data store 112), the storage
media may be added to the second data store 115 which, at
least 1n some embodiments, 1s 1n a different fault domain than
the first data store. When new media 1s added, the existing
data may be rebalanced, based on what kind of hardware was
added. Indeed, 1n some cases, entire racks may be added to
existing data stores. In such cases, the existing data may be
rebalanced among the hardware storage devices of the newly

added rack.

[0051] When the rebalancing occurs, the data 1s not neces-
sarily distributed evenly among the different drives. For
instance, when hard drives are added to a data store, some of
those hard drives may be different capacity drives. In such
cases, the tull capacity of each hard disk may be assigned to
and be accessible by the second data store. Accordingly, each
hard drive or tape drive or other type of block storage such as
solid-state drives (SSDs), non-volatile memory express
(NVMe), virtual hard disks (VHDs), etc. may be used to 1ts
fullest extent, even when other drives of larger or smaller
capacity are present. When data writes are received at the data
store, the data writes may be sent to both the first and second
data stores, and incoming data reads may be sent to the first
data store until the data of the first data store i1s copied to the
new allocation on the second data store. In this manner, con-
sistency 1s maintained at the data stores, such that incoming

US 2016/0080490 Al

writes can be sent to either data store, while data reads are sent
to the older data until the data 1s fully copied over to the other
(second) data store.

[0052] InFIG.5, adiskarray 501 1s shown having two hard
drives: HD 502A and HD 502B. A new hard drive 502C may
be added to the disk array 501 during operations. When the
new disk 502C 1s added, the data of the disk array 1s rebal-
anced using the new disk and any existing disks. The rebal-
ancing may be performed without compromising any existing
resiliency implementations on the disk array. For instance, 1
data mirroring has been implemented, the data in HD S02A
may be mirrored between previous disk 502B and newly
added disk 502C. The data may be distributed evenly among
the disks of the array, or may be distributed 1n another manner,
such as based on the heat of the data or the overall heat of the
disk. Here, 1t should be noted that while two or three disks are
shown in FI1G. 5, the disk array 501, or either of the data stores
in FIGS. 1 (112 & 115), may include substantially any num-
ber of disks, tape drives or other storage devices. Moreover,
while a mirroring resiliency scheme 1s implemented 1n FIGS.
5 and 6, 1t should be noted that any RAID or other type of
mirroring or parity resiliency scheme may be used.

[0053] FIG. 6 1llustrates an embodiment where at least one
hard disk 1s removed from a disk array 601. The disk array 601

may include hard drives HD 602B, HD 602C and HD 602D.
Hard drive 602C may be removed due to failure of the drive or
for some other reason. The disk array 601 now includes 602 A,
6028 and 602D. The data that was on drive 602C 1s rebal-
anced among the remaining hard drives. As with the embodi-
ment above where a hard drive was added to the disk array, the
data may be rebalanced according to a variety of different
factors, and does not need to be rebalanced evenly over the
remaining hard drives. Furthermore, as with the above
example, disks may be removed from the array 601 without
compromising existing resiliency implementations such as
mirroring. The data may be automatically and dynamically
distributed among the remaining drives 1n a manner that does
not degrading the resiliency of the disk array 601. The data
may be rebalanced according to hot or cold data, such that the
hot and cold data are distributed evenly among the remaining
drives, or may be rebalanced to the beginning of each disk.
Additionally or alternatively, data may be rebalanced accord-
ing to the assigned importance of the data (1.e. the importance
of the data may dictate the order in which the data 1s rebal-
anced).

[0054] Returning to FIG. 1, 1n some embodiments, data I/O
collisions may be prevented during transition of the data 113
to the new allocation 116 by allowing a first user’s data writes
take priority over a second user’s data writes or by allowing a
user’s data writes to take priority over a computing system’s
data writes, or vice versa. As such, when writes are coming 1n
from multiple different users or applications, the writes may
be prioritized based on user or applications and processed in
order of priority, such that I/O collisions are avoided. When
data has been successiully moved to a new data store (or to a
new allocation), any previously used allocations on the first
data store may be deleted.

[0055] The allocations (whether existing or newly added)
are 1mplemented within the data store to logically define
specified areas of storage. Each allocation i1dentifies where
the allocation 1s located within the data store, what data 1t
contains and where its data 1s stored on different data storage
devices. The allocations may be stored 1n a mapping table.
Whenever storage devices are added to a data store (such as

Mar. 17, 2016

disk array 501/601 above) or removed from a data store, the
computing system 101 may access the mapping table to deter-
mine which allocations were stored on the added/removed
storage devices. Then, the data stored on the added/removed
drives 1s rebalanced to one or more other storage devices of
the data store. In some cases, previously used allocations may
include a pointer to the newly created allocation on the data
store to which the data 1s being moved (1.¢. the second data
store 115), In this manner, 11 data 1s deleted during transition
of the data from the first data store to the second data store, the
newly created allocation 1s notified of the deletion, and resil-
iency 1s guaranteed throughout the transition.

[0056] Turning now to FI1G. 3, a flowchart 1s 1llustrated of a
method 300 for modifying resiliency for at least a portion of
a data store. The method 300 will now be described with
frequent reference to the components and data of environ-
ment 100.

[0057] Method 300 includes determining that a resiliency
scheme for at least a specified portion of a data store 1s to be
changed from a first resiliency scheme to a second, different
resiliency scheme, the data store including one or more por-
tions of data (310). For example, the determining module 106
of computer system 101 may determine that resiliency
scheme 114 A for at least some data 113 on the first data store
112 1s to be changed to a second resiliency scheme 114B. As
mentioned above, the resiliency schemes may include mir-
roring, parity or combinations thereot (including the various
RAID implementations) or other resiliency schemes.

[0058] Method 300 next includes determining how the data
within the specified portion of the data store 1s to be altered
according to the change in resiliency scheme (act 320) and
moditying the resiliency scheme of the specified portion of
the data store, such that the resiliency scheme for the specified
portion of the data store i1s changed, while the resiliency
scheme for other portions of the data store 1s not changed
(330). The determining module 106 of computer system 101
may thus determine how the data 113 1s to be altered accord-
ing to the change in resiliency scheme (e.g. from mirroring to
parity or from parity to mirror). The modifying module 110 of
computer system 101 may then modity the resiliency scheme
for a certain portion of data, while leaving other portions of
data untouched.

[0059] Thus, for example, as shown in FIG. 4, data store
401 has multiple different data portions (402A, 402B and
402C). These data portions may each be different storage
devices (e.g. hard disks) or may be logical portions of the
same hard disk, or a combination of physical and logical data
portions. Each data portion within the data store may have its
own resiliency scheme: scheme 403 A for data portion 402 A,
scheme 403B for data portion 402B, and scheme 403C for
data portion 402C. Embodiments herein may modify a por-
tion of a data store (e.g. 402B) and 1ts resiliency scheme
without modifying other portions of the data store or their
resiliency schemes. Thus, when modifications 404 are made
to the data store portion 402B, a new resiliency scheme 403D
may be implemented for that data portion without affecting
any other data portions.

[0060] In some cases, a storage device may be added to a
data store. At least one portion of that storage device may be
implementing an N-way mirror resiliency scheme. When the
new device 1s added, an N+1-way mirroring scheme may be
implemented for the data store, such that the data store data 1s
split between two storage devices. The split need not be even,
and may be balanced according to heuristics such as relative

US 2016/0080490 Al

heat level. Still further, in some case, a storage device may be
removed from a data store. The data that was stored on the
removed data storage device may be rebalanced among the
remaining storage devices, without rebalancing existing data
on the remaining storage devices. The granularity of the data
store portions that are to be converted from one resiliency
scheme to another may be set to an arbitrary value (1 GB) or
may be substantially any size. In this manner, whole volumes
or arrays need not be converted to change a resiliency scheme.
Rather, embodiments herein may convert one section of an
array or volume from mirroring to parity or vice versa, while
leaving the rest of the volume or array alone. Then 11 user
wants to remove one drive, the system can merely rebalance/
realign the data on that drive or that portion of the data store.
[0061] Accordingly, methods, systems and computer pro-
gram products are provided which modily storage capacity
within a data store. Moreover, methods, systems and com-
puter program products are provided which modity resiliency
for at least a portion of a data store.

Claim Support

[0062] A computer system i1s provided including at least
one processor. At the computer system, a computer-imple-
mented method 1s provided for modilying storage capacity
within a data store. The method includes recerving a request
105 to move one or more portions of data, determining that
data 113 1s to be moved from an allocation on a first data store
112 to a new allocation 116 on the second data store 115, the
first and second data stores being configured to store alloca-
tions of data, creating the new allocation 116 on the second
data store 115, the new allocation being configured to receive
at least a portion of data 113 from the first data store 112, and
moving the data 113 to the new allocation 116 on the second
data store 115 as data I/O requests 111 are received at the first
data store, wherein data store access requests are synchro-
nized with the data movement by directing the data store
access requests to the first data store 112, to the second data
store 115 or to both data stores depending on the type of
access request.

[0063] Insomeembodiments, determining thatdataisto be
moved from the {irst data store to the second data store com-
prises determining which data or data stores are being most
heavily utilized. In some embodiments, the second data store
comprises at least one hard drive, and wherein the new allo-
cation on the second data store 1s located nearer to the begin-
ning of the second data store than the allocation on the first
data store. In some embodiments, the second data store com-
prises a data storage media that was added to the computing
system, the second data store being located on a fault domain
that 1s different from the fault domain of the first data store. In
some embodiments, the fault domain comprises a hardware
storage rack, such that the second data store comprises data
storage media that was added to hardware storage rack that 1s
different from the hardware storage rack of the first data store.
[0064d] A computer system i1s provided including at least
one processor. At the computer system, a computer-imple-
mented method 1s provided for modifying resiliency for at
least a portion of a data store. The method includes determin-
ing that a resiliency scheme 114A for at least a specified
portion of a data store 112 1s to be changed from a first
resiliency scheme 114A to a second, different resiliency
scheme 114B, the data store including one or more portions of
data 113, determining how the data 113 within the specified
portion of the data store 112 1s to be altered according to the

Mar. 17, 2016

change in resiliency scheme, and modifying the resiliency
scheme 114 A of the specified portion of the data store 112,
such that the resiliency scheme for the specified portion of the
data store 1s changed, while the resiliency scheme for other
portions of the data store 1s not changed.

[0065] Someembodiments further include adding a storage
device to the data store, wherein the specified portion of the
data store 1s mmplementing an N-way mirror resiliency
scheme and implementing an N+1-way mirroring scheme for
the data store, wherein the data store data 1s split between two
storage devices. Other embodiments further include remov-
ing a storage device from the data store and rebalancing the
data that was stored on the removed data storage device
among the remaining storage devices, without rebalancing
existing data on the remaining storage devices.

[0066] A computer system comprising the following: one
Or more processors, a recerver 104 for receiving a request 105
to move one or more portions of data off of a first data store
112 and on to a second data store 1135, a determining module
106 for identifying which data 113 1s to be moved from the
first data store to the second data store, an allocation creating
module 107 for creating a new allocation 116 on the second
data store 115, the new allocation being configured to recerve
at least a portion of data 113 from the first data store 112 and
a data moving module 108 for moving the data 113 to the new
allocation 116 on the second data store 115 as data I/O
requests 111 are recerved at the first data store, such that data
writes are sent to both the first and second data stores, and data
reads are sent to the first data store 112 until the data 113 of the
first data store 1s copied to the new allocation 116 on the
second data store 115.

[0067] Some embodiments further include removing at
least one storage device from the data store, accessing the
mapping table to determine which allocations were stored on
the removed storage devices and rebalancing the data of the
allocations stored on the removed drive to one or more other
storage devices of the data store. In some embodiments, the
second data store comprises a plurality of block storage
devices, at least two of which are of different capacity. Some
embodiments further include adding at least one hard disk to
the plurality of block storage devices 1n the second data store
and rebalancing at least a portion of data stored on the first
data store among the newly added hard drive and at least one
of the existing plurality of hard disks, the rebalancing being
performed without compromising existing resiliency imple-
mentations on the second data store.

[0068] Some embodiments further include removing at
least one hard disk from the plurality of hard disks 1n the first
data store and rebalancing at least a portion of data stored on
the first data store among the remaining hard disks of the
plurality of hard disks, the rebalancing being performed with-
out compromising existing resiliency implementations on the
second data store. In some embodiments, data I/O collisions
are prevented during transition of the data to the new alloca-
tion by allowing a user’s data writes take priority over the
computing system’s data writes. In some embodiments, the
previously used allocation includes a pointer to the newly
created allocation on the second data store, such that 1f data 1s
deleted during transition of the data from the first data store to
the second data store, the newly created allocation 1s notified
of the deletion.

[0069] The concepts and features described herein may be
embodied in other specific forms without departing from their
spirit or descriptive characteristics. The described embodi-

US 2016/0080490 Al

ments are to be considered 1n all respects only as illustrative
and not restrictive. The scope of the disclosure 1s, therefore,
indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and
range of equivalency of the claims are to be embraced within
their scope.

We claim:

1. At a computer system 1ncluding at least one processor, a
computer-implemented method for modifying storage capac-
ity within a data store, the method comprising;:

receiving a request to move one or more portions of data;

determining that data 1s to be moved from an allocation on

a first data store to a new allocation on the second data
store, the first and second data stores being configured to
store allocations of data;

creating the new allocation on the second data store, the

new allocation being configured to receive at least a
portion of data from the first data store; and

moving the data to the new allocation on the second data

store as data I/O requests are recerved at the first data
store, wherein data store access requests are synchro-
nized with the data movement by directing the data store
access requests to the first data store, to the second data
store or to both data stores depending on the type of
access request.

2. The method of claim 1, wherein determining that data 1s
to be moved from the first data store to the second data store
comprises determining which data or data stores are being
most heavily utilized.

3. The method of claim 1, wherein determining that data 1s
to be moved from the first data store to the second data store
turther comprises determining which data among the stored
data 1s moveable.

4. The method of claim 1, wherein the second data store
comprises at least one hard drive, and wherein the new allo-
cation on the second data store 1s located nearer to the begin-
ning of the second data store than the allocation on the first
data store.

5. The method of claim 1, wherein the second data store
comprises a data storage media that was added to the com-
puting system, the second data store being located on a fault
domain that 1s different from the fault domain of the first data
store.

6. The method of claim 5, wherein the fault domain com-
prises a hardware storage rack, such that the second data store
comprises data storage media that was added to hardware
storage rack that 1s different from the hardware storage rack
of the first data store.

7. The method of claim 1, wherein the second data store
comprises a plurality of block storage devices, at least two of
which are of different capacity.

8. The method of claim 7, further comprising;

adding at least one hard disk to the plurality of block
storage devices 1n the second data store; and

rebalancing at least a portion of data stored on the first data
store among the newly added hard drive and at least one
of the existing plurality of hard disks, the rebalancing
being performed without compromising existing resil-
iency implementations on the second data store.

9. The method of claim 7, further comprising;

removing at least one hard disk from the plurality of hard
disks 1n the first data store; and

rebalancing at least a portion of data stored on the first data
store among the remaiming hard disks of the plurality of

Mar. 17, 2016

hard disks, the rebalancing being performed without
compromising existing resiliency implementations on
the second data store.

10. The method of claim 1, wherein data I/O collisions are
prevented during transition of the data to the new allocation
by allowing a user’s data writes take priority over the com-
puting system’s data writes.

11. The method of claim 1, further comprising deleting one
or more previously used allocations on the first data store
upon determining that the data contained 1n the allocation has
been moved to the second data store.

12. The method of claim 11, wherein the previously used
allocation 1ncludes a pointer to the newly created allocation
on the second data store, such that 1f data 1s deleted during
transition of the data from the first data store to the second
data store, the newly created allocation 1s notified of the
deletion.

13. At a computer system including at least one processor,
a computer-implemented method for modifying resiliency
for at least a portion of a data store, the method comprising:

determining that a resiliency scheme for at least a specified
portion of a data store 1s to be changed from a first
resiliency scheme to a second, different resiliency
scheme, the data store including one or more portions of
data;

determining how the data within the specified portion of
the data store 1s to be altered according to the change in
resiliency scheme; and

modifying the resiliency scheme of the specified portion of
the data store, such that the resiliency scheme for the
specified portion of the data store 1s changed, while the
resiliency scheme for other portions of the data store 1s
not changed.

14. The method of claim 13, wherein the resiliency scheme
for the specified portion of the data store 1s changed from
mirror to parity or from parity to mirror.

15. The method of claim 13, further comprising:

adding a storage device to the data store, wherein the speci-
fied portion of the data store 1s implementing an N-way
mirror resiliency scheme; and

implementing an N+1-way mirroring scheme for the data
store, wherein the data store data 1s split between two
storage devices.

16. The method of claim 13, further comprising:
removing a storage device from the data store; and

rebalancing the data that was stored on the removed data
storage device among the remaiming storage devices,
without rebalancing existing data on the remaining stor-
age devices.

17. The method of claim 16, wherein allocations are imple-
mented within the data store to logically define specified
areas of storage, each allocation i1dentitying where the allo-
cation 1s located within the data store, what data i1t contains
and where 1ts data 1s stored on one or more different data
storage devices.

18. A computer system comprising the following:
ONE Or MOre processors;

one or more computer-readable storage media having
stored thereon computer-executable instructions that,
when executed by the one or more processors, cause the
computing system to perform a method for moditying
storage capacity within a data store, the method com-
prising the following:

US 2016/0080490 Al

receiving a request to move one or more portions of data
oif of a first data store and on to a second data store;

identifying which data 1s to be moved from the first data
store to the second data store;:

creating a new allocation on the second data store, the
new allocation being configured to receive at least a
portion of data from the first data store; and

moving the data to the new allocation on the second data
store as data I/O requests are received at the first data
store, such that data writes are sent to both the first and
second data stores, and data reads are sent to the first
data store until the data of the first data store 1s copied
to the new allocation on the second data store.

19. The computer system of claim 18, wherein allocations
are 1mplemented within the data store to logically define
specified areas of storage, each allocation 1dentifying where
the allocation 1s located within the data store, what data 1t
contains and where 1ts data 1s stored on one or more different
data storage devices, the allocations being stored in a map-
ping table.

20. The computer system of claim 19, further comprising:

removing at least one storage device from the data store;

accessing the mapping table to determine which alloca-
tions were stored on the removed storage devices; and

rebalancing the data of the allocations stored on the
removed drive to one or more other storage devices of
the data store.

Mar. 17, 2016

	Front Page
	Drawings
	Specification
	Claims

