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REORDERING A SEQUENCE OF MEMORY
ACCESSES TO IMPROVE PIPELINED
PERFORMANCE

PRIORITY DATA

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/045,832, titled “Memory Config-
ured to Avoid Access Hazards,” filed on Sep. 4, 2014, whose
inventors are Tai A. Ly, Swapnil D. Mhaske, Hojin Kee, Adam
T. Arnesen, David C. Uliana, and Newton G. Petersen, which
1s 1ncorporated by reference herein in 1ts entirety as though
tully and completely set forth herein.

TECHNICAL FIELD

[0002] The present disclosure relates to the field of com-
puter memory, and more particularly to techniques involving
a memory system configured to resolve or prevent memory
access hazards.

DESCRIPTION OF THE RELATED ART

[0003] Various computer programs require handling of
hazards when accessing memory. Generally, when two opera-
tions access the same memory location, a computing system
should ensure that the accesses occur in the proper order.
Various algorithms use sequences of memory operations that
are often performed iteratively. For example, error control
codes, encryption, and various equation solving algorithms
typically use complex matrices for which memory accesses
must be performed 1n specified sequences for various opera-
tions.

[0004] Low-density parity-check (LDPC) codes are one
example of error control code and are used to transmit 1nfor-
mation over potentially noisy channels. For example, the
WiIMAX and LTE standards utilize LDPC codes for data
channels. LDPC typically uses a parity check matrix referred
to as an “H matrix” to determine the makeup of incoming,
blocks of code. Decoding LDPC encoded messages involves
iterative read/modify/write operations corresponding to dif-
terent layers of the H matrix. Pipelining these operations may
be desirable 1n order to decrease decode time, but dependen-
cies between the memory accesses must be resolved to prop-
erly order the pipelined operations.

SUMMARY

[0005] Various embodiments of a memory configured to
resolve or prevent access hazards, and techniques for config-
uring or using such a memory, are presented below.

[0006] In one embodiment, an apparatus includes a
memory and circuitry coupled to or comprised in the memory.
In this embodiment, the circuitry 1s configured to receive a
sequence of memory access requests for the memory, where
the sequence of memory access requests 1s configured to
access locations associated with entries in a matrix. In this
embodiment, the circuitry 1s configured with memory access
constraints for the sequence of memory access requests. In
this embodiment, the circuitry 1s configured to grant the
sequence of memory access requests subject to the memory
access constraints, thereby avoiding memory access hazards
for a sequence of memory accesses corresponding to the
sequence of memory access requests.

[0007] Insome embodiments, the apparatus includes pipe-
line circuitry configured to pipeline performance of the
sequence ol memory accesses. In these embodiments, the

Mar. 10, 2016

circuitry may be configured to stall pipelined performance of
the sequence of memory access requests based on the
memory access constraints. The memory access constraints
may be specified using any of various formats and encodings.
For example, 1n some embodiments interlock information
indicates read/write pointer values. In other embodiments,
interlock information 1indicates token wvalues. In some
embodiments, the sequence ol memory access requests 1s
based on 1terative operations for processing rows of a matrix.
In some embodiments, the circuitry 1s configured to prevent
memory access hazards without recerving other information
indicating the memory access hazards, 1.¢., without auxihary
information describing or characterizing the memory access
hazards.

[0008] In one embodiment, a method includes determining
a sequence of memory access requests for a program and
generating information specilying memory access con-
straints based on the sequence of memory accesses, where the
information 1s usable to avoid memory access hazards for the
sequence of memory accesses. In this embodiment, the
method further includes configuring first circuitry using the
information, where the first circuitry 1s included 1n or coupled
to a memory. In this embodiment, after the configuring, the
first circuitry 1s operable to perform memory access requests
to the memory corresponding to the sequence of memory
accesses while avoiding the memory access hazards, without
receiving other information indicating the memory access
hazards. The configuring the first circuitry may be performed
using a programmable hardware element, such as a field
programmable gate array (FPGA), or other programmable
hardware. Furthermore, the configuring may be performed at
compilation time, at start of running the program, or at vari-
ous times while the program 1s running to adapt to changing
conditions or to improve any number of performance mea-
sures such as throughput, latency, power consumption, reli-
ability, resource utilization, bit-error rate, etc. In some
embodiments, the determining 1s performed using compile-
time execution.

[0009] In one embodiment, a method includes storing a
specified sequence of memory accesses that corresponds to a
function to be performed. In this embodiment, the specified
sequence ol memory accesses has first memory access con-
straints. In this embodiment, the method further includes
reordering the specified sequence of memory accesses to
create a reordered sequence ol memory accesses that has
second, different memory access constraints. In this embodi-
ment, the reordered sequence ol memory accesses 1s usable to
access a memory to perform the function. In some embodi-
ments, performance estimates are determined for a plurality
of reordered sequences of memory accesses, and one of the
reordered sequences 1s selected based on the performance
estimates. In some embodiments, the reordered sequence 1s
used to compile a program usable to perform the function.

[0010] In one embodiment, an apparatus includes a
memory and addressing circuitry coupled to or comprised in
the memory. In this embodiment, the addressing circuitry 1s
configured to receive memory access requests corresponding
to a specified sequence of memory accesses. In this embodi-
ment, the memory access requests do not include address
information. In this embodiment, the addressing circuitry 1s
turther configured to assign addresses to the memory access
requests for the specified sequence of memory accesses. In
some embodiments, the apparatus 1s configured to perform
the memory access requests using the assigned addresses.
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[0011] Various techniques disclosed herein may improve
memory access throughput, reduce complexity i devices
coupled to an interlock memory, and/or allow for flexible
programming or updating of an interlock memory for differ-
ent applications, in some embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] A better understanding of the present disclosure can
be obtained when the following detailed description 1s con-
sidered 1n conjunction with the following drawings, 1n which:
[0013] FIG. 1A illustrates a computer system configured to
execute a program according to an embodiment of the present
disclosure:

[0014] FIG. 1B illustrates a network system comprising
two or more computer systems that may implement an
embodiment of the present disclosure;

[0015] FIG. 2A illustrates an instrumentation control sys-
tem according to one embodiment of the disclosure;

[0016] FIG. 2B illustrates an industrial automation system
according to one embodiment of the disclosure;

[0017] FIG. 3A 1s a high level block diagram of an exem-
plary system which may execute or utilize programs includ-
ing graphical programs;

[0018] FIG. 3B illustrates an exemplary system which may
perform control and/or simulation functions;

[0019] FIG. 4 15 an exemplary block diagram of the com-
puter systems of FIGS. 1A, 1B, 2A and 2B and 3B;

[0020] FIG. §5illustrates one embodiment of a system that
includes a decoder with an interlock memory;

[0021] FIG. 6 A 1llustrates an exemplary H matrix;

[0022] FIG. 6B illustrates one embodiment of a beta matrix
and FIG. 6C 1llustrates one embodiment of a rearranged beta
matrix;

[0023] FIGS. 7A and 7B illustrate exemplary baseline

decoding and pipelined decoding timelines respectively;
[0024] FIGS. 8A and 8B 1llustrate respective embodiments

of an interlock memory;

[0025] FIG. 9 1llustrates one embodiment of an interlock
table;
[0026] FIG. 10 illustrates one embodiment of a method for

operating an interlock memory;

[0027] FIG. 11 illustrates one embodiment of a method for
generating information for an interlock memory using coms-
pile-time-execution;

[0028] FIG. 12 1llustrates one embodiment of a method for
determining performance estimates and rearranging memory
access sequences based on performance estimates;

[0029] FIG. 13 1llustrates one embodiment of a method for
configuring an interlock memory;

[0030] FIG. 14 1s a block diagram illustrating another
embodiment of an interlock memory;

[0031] FIGS. 15A and 15B illustrate exemplary beta matri-
ces, 1nterlock tables, and pipelined execution of memory
access operations according to one embodiment;

[0032] FIGS. 16A and 16B 1llustrate another embodiment
of a method for operating an interlock memory;

[0033] FIG. 17 illustrates one embodiment of a method
performed using an interlock memory;

[0034] FIG. 18 1llustrates one embodiment of a method for
reordering sequences of memory accesses;

[0035] FIG. 19 1illustrates one embodiment of a method
performed using a self-addressing memory; and

[0036] FIG. 20 illustrates a sequence of memory accesses
tor Cholesky factorization of a symmetric matrix.
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[0037] While the disclosure 1s susceptible to various modi-
fications and alternative forms, specific embodiments thereof
are shown by way of example 1n the drawings and are herein
described 1in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present disclosure as defined by the appended claims.
[0038] The term “configured to” 1s used herein to connote
structure by indicating that the units/circuits/components
include structure (e.g., circuitry) that performs the task or
tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the
specified unit/circuit/component 1s not currently operational
(e.g., 1s not on). The units/circuits/components used with the
“configured to” language include hardware—ifor example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component 1s “configured to” perform one or more tasks 1s
expressly mtended not to mvoke 35 U.S.C. §112(1) for that
unit/circuit/component.

DETAILED DESCRIPTION

Incorporation by Reference

[0039] The following references are hereby incorporated
by reference 1n their entirety as though fully and completely
set forth herein:

[0040] U.S. Pat. No. 4,914,568 titled “Graphical System
tor Modeling a Process and Associated Method,” 1ssued on
Apr. 3, 1990.

[0041] U.S. Pat. No. 5,481,741 titled “Method and Appa-

ratus for Providing Attribute Nodes 1n a Graphical Data
Flow Environment”.

[0042] U.S. Pat. No. 6,173,438 titled “Embedded Graphi-
cal Programming System” filed Aug. 18, 1997.
[0043] U.S. Pat. No. 6,219,628 titled “System and Method

for Configuring an Instrument to Perform Measurement
Functions Utilizing Conversion of Graphical Programs
into Hardware Implementations,” filed Aug. 18, 1997.

[0044] U.S. Pat. No. 7,210,117 titled “System and Method

for Programmatically Generating a Graphical Program 1n
Response to Program Information,” filed Dec. 20, 2000.

[0045] U.S. patent application Ser. No. 13/592,995 titled
“Compile Time Execution,” filed Aug. 23, 2012.

TERMS

[0046] The following 1s a glossary of terms used in the
present application:

[0047] Memory Medium—Any of various types of non-
transitory computer accessible memory devices or storage
devices. The term “memory medium” 1s mtended to include
an mstallation medium, e.g., a CD-ROM, floppy disks 104, or
tape device; a computer system memory or random access
memory such as DRAM, DDR RAM, SRAM, EDO RAM,
Rambus RAM, etc.; a non-volatile memory such as a Flash,
magnetic media, e.g., a hard drive, or optical storage; regis-
ters, or other similar types ol memory elements, etc. The
memory medium may comprise other types ol non-transitory
memory as well or combinations thereof. In addition, the
memory medium may be located in a first computer in which
the programs are executed, or may be located 1n a second
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different computer which connects to the first computer over
a network, such as the Internet. In the latter instance, the
second computer may provide program instructions to the
first computer for execution. The term “memory medium”
may 1include two or more memory mediums which may reside
in different locations, e.g., 1in different computers that are
connected over a network.

[0048] Carrier Medium—a memory medium as described
above, as well as a physical transmission medium, such as a
bus, network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digital
signals.

[0049] Programmable Hardware Element—includes vari-
ous hardware devices comprising multiple programmable
tfunction blocks connected via a programmable interconnect.
Examples 1include FPGAs (Field Programmable Gate

Arrays), PLDs (Programmable Logic Devices), FPOAs
(Field Programmable Object Arrays), and CPLDs (Complex
PLDs). The programmable tunction blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores). A pro-
grammable hardware element may also be referred to as
“reconfigurable logic”.

[0050] Software Program—the term “soitware program™ 1s
intended to have the full breadth of 1ts ordinary meaning, and
includes any type of program instructions, code, script and/or
data, or combinations thereof, that may be stored 1n a memory
medium and executed by a processor. Exemplary software
programs 1nclude programs written in text-based program-
ming languages, such as C, C++, PASCAL, FORTRAN,
COBOL, JAVA, assembly language, etc.; graphical programs
(programs written 1n graphical programming languages);
assembly language programs; programs that have been com-
piled to machine language; scripts; and other types of execut-
able software. A soltware program may comprise two or more
soltware programs that interoperate in some manner. Note
that various embodiments described herein may be imple-
mented by a computer or software program. A software pro-
gram may be stored as program instructions on a memory
medium.

[0051] Hardware Configuration Program—a program, e.g.,
a netlist or bat file, that can be used to program or configure a
programmable hardware element.

[0052] Program—the term “program” is intended to have
the full breadth of 1ts ordinary meaning. The term “program”
includes 1) a software program which may be stored 1n a
memory and 1s executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

[0053] Graphical Program—A program comprising a plu-
rality of interconnected nodes or icons, wherein the plurality
ol mterconnected nodes or 1cons visually indicate function-
ality of the program. The interconnected nodes or i1cons are
graphical source code for the program. Graphical function
nodes may also be referred to as blocks.

[0054] The following provides examples of various aspects
of graphical programs. The following examples and discus-
s10n are not intended to limit the above definition of graphical
program, but rather provide examples of what the term
“oraphical program”™ encompasses:

[0055] Thenodesina graphical program may be connected
in one or more of a data flow, control flow, and/or execution
flow format. The nodes may also be connected 1n a “signal
flow” format, which 1s a subset of data flow.
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[0056] Exemplary graphical program development envi-
ronments which may be used to create graphical programs
include LabVIEW®, DasyLab™, DIADem™ and Matrixx/
SystemBuild™ from National Instruments, Simulink® from
the MathWorks, VEE™ from Agilent, WiT™ from Coreco,
Vision Program Manager™ from PPT Vision, Soit WIRE™
from Measurement Computing, Sanscript™ from North-

woods Software, Khoros™ from Khoral Research, SnapMas-
ter™ from HEM Data, VisSim™ {rom Visual Solutions,

ObjectBench™ by SES (Scientific and Engineering Soft-
ware), and VisiDAQ™ from Advantech, among others.

[0057] The term *“‘graphical program”™ includes models or
block diagrams created 1n graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi-
cal modeling environments include Simulink®, System-
Build™, VisSim™, Hypersignal Block Diagram™, etc.
[0058] A graphical program may be represented in the
memory of the computer system as data structures and/or
program instructions. The graphical program, e.g., these data
structures and/or program instructions, may be compiled or
interpreted to produce machine language that accomplishes
the desired method or process as shown in the graphical
program.

[0059] Input data to a graphical program may be recerved
from any of various sources, such as from a device, unit under
test, a process being measured or controlled, another com-
puter program, a database, or from a file. Also, a user may
input data to a graphical program or virtual instrument using
a graphical user interface, e.g., a front panel.

[0060] A graphical program may optionally have a GUI
associated with the graphical program. In this case, the plu-
rality of interconnected blocks or nodes are often referred to
as the block diagram portion of the graphical program.

[0061] Node—In the context of a graphical program, an
clement that may be included in a graphical program. The
graphical program nodes (or simply nodes) 1n a graphical
program may also be referred to as blocks. A node may have
an associated 1con that represents the node 1n the graphical
program, as well as underlying code and/or data that imple-
ments functionality of the node. Exemplary nodes (or blocks)
include function nodes, sub-program nodes, terminal nodes,
structure nodes, etc. Nodes may be connected together 1n a
graphical program by connection icons or wires.

[0062] DataFlow Program—A Software Program in which
the program architecture 1s that of a directed graph specifying
the flow of data through the program, and thus functions
execute whenever the necessary 1input data are available. Said
another way, data flow programs execute according to a data
flow model of computation under which program functions
are scheduled for execution 1n response to their necessary
input data becoming available. Data tlow programs can be
contrasted with procedural programs, which specity an
execution tlow of computations to be performed. As used
herein “data flow™ or “data flow programs” refer to “dynami-
cally-scheduled data flow” and/or *statically-defined data
flow™.

[0063] Graphical Data Flow Program (or Graphical Data
Flow Diagram)—A Graphical Program which 1s also a Data
Flow Program. A Graphical Data Flow Program comprises a
plurality of interconnected nodes (blocks), wherein at least a
subset of the connections among the nodes visually indicate
that data produced by one node 1s used by another node. A
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LabVIEW VI 1s one example of a graphical data flow pro-
gram. A Simulink block diagram is another example of a
graphical data tlow program.

[0064] Graphical User Interface—this term 1s intended to
have the full breadth of its ordinary meaning. The term
“Graphical User Interface” 1s often abbreviated to “GUI”. A
GUI may comprise only one or more mput GUI elements,
only one or more output GUI elements, or both mput and
output GUI elements.

[0065] The following provides examples of various aspects
of GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term “graphical user interface”™
€NCompasses:

[0066] A GUImaycomprisea single window having one or
more GUI Flements, or may comprise a plurality of indi-
vidual GUI Elements (or individual windows each having one
or more GUI FElements), wherein the individual GUI Ele-
ments or windows may optionally be tiled together.

[0067] A GUImay beassociated with a graphical program.
In this mstance, various mechanisms may be used to connect
GUI Elements 1n the GUI with nodes 1n the graphical pro-
gram. For example, when Input Controls and Output Indica-
tors are created in the GUI, corresponding nodes (e.g., termi-
nals) may be automatically created in the graphical program
or block diagram. Alternatively, the user can place terminal
nodes 1n the block diagram which may cause the display of
corresponding GUI Elements front panel objects 1n the GUI,
either at edit time or later at run time. As another example, the
GUI may comprise GUI Elements embedded in the block
diagram portion of the graphical program.

[0068] Front Panel—A Graphical User Interface that
includes input controls and output indicators, and which
enables a user to interactively control or manipulate the input
being provided to a program, and view output of the program,
while the program 1s executing.

[0069] A front panel is a type of GUI. A front panel may be
associated with a graphical program as described above.
[0070] In an mstrumentation application, the front panel
can be analogized to the front panel of an instrument. In an
industrial automation application the front panel can be
analogized to the MMI (Man Machine Interface) of a device.
The user may adjust the controls on the front panel to atfect
the input and view the output on the respective indicators.
[0071] Graphical User Interface Element—an element of a
graphical user interface, such as for providing input or dis-
playing output. Exemplary graphical user interface elements
comprise put controls and output indicators.

[0072] Input Control—a graphical user interface element
for providing user mput to a program. An mput control dis-
plays the value input by the user and 1s capable of being
manipulated at the discretion of the user. Exemplary input
controls comprise dials, knobs, sliders, input text boxes, etc.
[0073] Output Indicator—a graphical user interface ele-
ment for displaying output from a program. Exemplary out-
put indicators include charts, graphs, gauges, output text
boxes, numeric displays, etc. An output indicator 1s some-
times referred to as an “output control”.

[0074] Computer System—any of various types of comput-
ing or processing systems, including a personal computer
system (PC), mainirame computer system, workstation, net-
work appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term “com-
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puter system” can be broadly defined to encompass any
device (or combination of devices) having at least one pro-
cessor that executes 1structions from a memory medium.

[0075] Measurement Device—includes instruments, data
acquisition devices, smart sensors, and any of various types of
devices that are configured to acquire and/or store data. A
measurement device may also optionally be further config-
ured to analyze or process the acquired or stored data.
Examples of a measurement device include an instrument,
such as a traditional stand-alone “box” instrument, a com-
puter-based instrument (instrument on a card) or external
instrument, a data acquisition card, a device external to a
computer that operates similarly to a data acquisition card, a
smart sensor, one or more DAQ or measurement cards or
modules 1n a chassis, an image acquisition device, such as an
image acquisition (or machine vision) card (also called a
video capture board) or smart camera, a motion control
device, a robot having machine vision, and other similar types
of devices. Exemplary “stand-alone” instruments include
oscilloscopes, multimeters, signal analyzers, arbitrary wave-
form generators, spectroscopes, and similar measurement,
test, or automation instruments.

[0076] A measurement device may be further configured to
perform control functions, e.g., 1n response to analysis of the
acquired or stored data. For example, the measurement device
may send a control signal to an external system, such as a
motion control system or to a sensor, 1n response to particular
data. A measurement device may also be configured to per-
form automation functions, 1.€., may recerve and analyze
data, and 1ssue automation control signals 1n response.

[0077] Functional Unit (or Processing Element)—refers to
various elements or combinations of elements. Processing
clements 1include, for example, circuits such as an ASIC (Ap-
plication Specific Integrated Circuit), portions or circuits of
individual processor cores, entire processor cores, individual
processors, programmable hardware devices such as a field
programmable gate array (FPGA), and/or larger portions of
systems that include multiple processors, as well as any com-
binations thereof.

[0078] Automatically—relers to an action or operation per-
formed by a computer system (e.g., software executed by the
computer system) or device (e.g., circuitry, programmable
hardware elements, ASICs, etc.), without user input directly
specilying or performing the action or operation. Thus the
term “‘automatically” 1s in contrast to an operation being
manually performed or specified by the user, where the user
provides 1put to directly perform the operation. An auto-
matic procedure may be initiated by mnput provided by the
user, but the subsequent actions that are performed “automati-
cally” are not specified by the user, 1.e., are not performed
“manually”, where the user specifies each action to perform.
For example, a user filling out an electronic form by selecting
cach field and providing mput specilying information (e.g.,
by typing information, selecting check boxes, radio selec-
tions, etc.) 1s filling out the form manually, even though the
computer system must update the form 1n response to the user
actions. The form may be automatically filled out by the
computer system where the computer system (e.g., soltware
executing on the computer system) analyzes the fields of the
form and fills 1n the form without any user mput specitying
the answers to the fields. As indicated above, the user may
invoke the automatic filling of the form, but 1s not involved 1n
the actual filling of the form (e.g., the user 1s not manually
speciiying answers to fields but rather they are being auto-
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matically completed). The present specification provides
various examples ol operations being automatically per-
formed 1n response to actions the user has taken.

[0079] Concurrent—retfers to parallel execution or pertor-
mance, where tasks, processes, or programs are performed in
an at least partially overlapping manner. For example, con-
currency may be implemented using “strong’ or strict paral-
lelism, where tasks are performed (at least partially) 1n par-
allel on respective computational elements, or using “weak
parallelism”, where the tasks are performed in an 1interleaved
manner, €.g., by time multiplexing of execution threads.

FIG. IA—Computer System

[0080] FIG. 1A illustrates an exemplary computer system
82 configured to execute a program, €.g., a graphical pro-
gram, configured to program and/or utilize an interlock
memory, according to some embodiments. Note that while
some of the embodiments are described 1n terms of a graphi-
cal program, the techniques disclosed are broadly applicable
to text based programs, as well, and so the described graphical
program aspects of the described embodiments should be
considered to be exemplary only, 1.e., the novel techniques
described with respect to graphical programs also apply to
text based programs.

[0081] As shown in FIG. 1A, the computer system 82 may
include a display device configured to display a graphical
program as the graphical program 1s created and/or executed.
The display device may also be configured to display a
graphical user interface or front panel of the graphical pro-
gram during execution of the graphical program. The graphi-
cal user interface may comprise any type of graphical user
interface, e.g., depending on the computing platform.

[0082] The computer system 82 may include at least one
memory medium on which one or more computer programs
or software components according to one embodiment of the
present disclosure may be stored. For example, the memory
medium may store one or more graphical (or text based)
programs which are executable to perform the methods
described herein. Additionally, the memory medium may
store a graphical (or text based) programming development
environment application used to create and/or execute such
graphical (or text based) programs. The memory medium
may also store operating system software, as well as other
soltware for operation ol the computer system. Various
embodiments further include receiving or storing instructions
and/or data implemented 1n accordance with the foregoing
description upon a carrier medium.

FIG. 1B—Computer Network

[0083] FIG. 1B illustrates a system including a first com-
puter system 82 that i1s coupled to a second computer system
90. The computer system 82 may be coupled via a network 84
(or a computer bus) to the second computer system 90. The
computer systems 82 and 90 may each be any of various
types, as desired. The network 84 can also be any of various
types, including a LAN (local area network), WAN (wide area
network), the Internet, or an Intranet, among others. The
computer systems 82 and 90 may execute a graphical pro-
gram 1n a distributed fashion. For example, computer 82 may
execute a {irst portion of the block diagram of a graphical
program and computer system 90 may execute a second por-
tion of the block diagram of the graphical program. As
another example, computer 82 may display the graphical user
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interface of a graphical program and computer system 90 may
execute the block diagram of the graphical program.

[0084] In one embodiment, the graphical user interface of
the graphical program may be displayed on a display device
of the computer system 82, and the block diagram may
execute on a device coupled to the computer system 82. The
device may include a programmable hardware element and/
or may include a processor and memory medium which may
execute a real time operating system. In one embodiment, the
graphical program may be downloaded and executed on the
device. For example, an application development environ-
ment with which the graphical program 1s associated may
provide support for downloading a graphical program for
execution on the device 1n a real time system.

Exemplary Systems

[0085] Embodiments of the present disclosure may be
involved with performing test and/or measurement functions;
controlling and/or modeling instrumentation or industrial
automation hardware; modeling and simulation functions,
¢.g., modeling or simulating a device or product being devel-
oped or tested, etc. Exemplary test applications where the
graphical program may be used include hardware-in-the-loop
testing and rapid control prototyping, among others.

[0086] However, it1s noted that embodiments of the present
invention can be used for a plethora of applications and 1s not
limited to the above applications. In other words, applications
discussed 1n the present description are exemplary only, and
embodiments of the present invention may be used in any of
various types of systems. Thus, embodiments of the system
and method of the present invention 1s configured to be used
in any of various types of applications, including the control
of other types of devices such as multimedia devices, video
devices, audio devices, telephony devices, Internet devices,
etc., as well as general purpose software applications such as
word processing, spreadsheets, network control, network
monitoring, financial applications, games, etc.

[0087] FIG. 2A illustrates an exemplary instrumentation
control system 100 which may implement embodiments of
the invention. The system 100 comprises a host computer 82
which couples to one or more instruments. The host computer
82 may comprise a CPU, a display screen, memory, and one
or more iput devices such as a mouse or keyboard as shown.
The computer 82 may operate with the one or more 1nstru-
ments to analyze, measure or control a unit under test (UUT)
or process 150, e.g., via execution of soitware 104.

[0088] The one or more instruments may include a GPIB
instrument 112 and associated GPIB interface card 122, a
data acquisition board 114 mserted into or otherwise coupled
with chassis 124 with associated signal conditioning circuitry
126, a VXI instrument 116, a PXI instrument 118, a video
device or camera 132 and associated image acquisition (or
machine vision) card 134, a motion control device 136 and
associated motion control interface card 138, and/or one or
more computer based instrument cards 142, among other
types of devices. The computer system may couple to and
operate with one or more of these mstruments. The 1nstru-
ments may be coupled to the unit under test (UUT) or process
150, or may be coupled to recerve field signals, typically
generated by transducers. The system 100 may be used 1n a
data acquisition and control application, 1n a test and mea-
surement application, an 1mage processing or machine vision
application, a process control application, a man-machine
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interface application, a simulation application, or a hardware-
in-the-loop validation application, among others.

[0089] FIG. 2B illustrates an exemplary industrial automa-
tion system 200 which may implement embodiments of the
invention. The industrial automation system 200 1s similar to
the instrumentation or test and measurement system 100
shown 1n FIG. 2A. Elements which are similar or identical to
clements in FIG. 2A have the same reference numerals for
convenience. The system 200 may comprise a computer 82
which couples to one or more devices or istruments. The
computer 82 may comprise a CPU, a display screen, memory,
and one or more input devices such as a mouse or keyboard as
shown. The computer 82 may operate with the one or more
devices to perform an automation function with respect to a
process or device 150, such as MMI (Man Machine Inter-
face), SCADA (Supervisory Control and Data Acquisition),
portable or distributed data acquisition, process control,
advanced analysis, or other control, among others, e.g., via
execution of software 104.

[0090] The one or more devices may include a data acqui-
sition board 114 1nserted into or otherwise coupled with chas-
s1s 124 with associated signal conditioning circuitry 126, a
PXImstrument 118, a video device 132 and associated image
acquisition card 134, a motion control device 136 and asso-
ciated motion control interface card 138, a fieldbus device
270 and associated fieldbus interface card 172, a PLC (Pro-
grammable Logic Controller) 176, a serial instrument 282
and associated serial interface card 184, or a distributed data
acquisition system, such as Fieldpoint system 1835, available
from National Instruments Corporation, among other types of
devices.

[0091] FIG. 3A 1s a high level block diagram of an exem-
plary system which may execute or utilize programs, e.g.,
graphical programs. FIG. 3A 1llustrates a general high-level
block diagram of a generic control and/or stmulation system
which comprises a controller 92 and a plant 94. The controller
92 represents a control system/algorithm the user may be
trying to develop. The plant 94 represents the system the user
may be trying to control. For example, 11 the user 1s designing
an ECU {for a car, the controller 92 1s the ECU and the plant 94
1s the car’s engine (and possibly other components such as
transmission, brakes, and so on.) As shown, a user may create
a graphical program that specifies or implements the func-
tionality of one or both of the controller 92 and the plant 94.
For example, a control engineer may use a modeling and
simulation tool to create a model (graphical program) of the
plant 94 and/or to create the algorithm (graphical program)
tor the controller 92.

[0092] FIG. 3B illustrates an exemplary system which may
perform control and/or simulation functions. As shown, the
controller 92 may be implemented by a computer system 82
or other device (e.g., including a processor and memory
medium and/or including a programmable hardware element)
that executes or implements a graphical program. In a similar
manner, the plant 94 may be implemented by a computer
system or other device 144 (e.g., including a processor and
memory medium and/or including a programmable hardware
clement) that executes or implements a graphical program, or
may be implemented in or as a real physical system, e.g., a car
engine.

[0093] In one embodiment, one or more graphical pro-
grams may be created which are used in performing rapid
control prototyping. Rapid Control Prototyping (RCP) gen-
erally refers to the process by which a user develops a control
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algorithm and quickly executes that algorithm on a target
controller connected to a real system. The user may develop
the control algorithm using a graphical program, and the
graphical program may execute on the controller 92, e.g., on
a computer system or other device. The computer system 82
may be a platform that supports real time execution, e.g., a
device including a processor that executes a real time operat-
ing system (RTOS), or a device including a programmable
hardware element.

[0094] In one embodiment, one or more graphical pro-
grams may be created which are used 1n performing Hard-
ware 1n the Loop (HIL) simulation. Hardware 1n the Loop
(HIL ) refers to the execution of the plant model 94 1n real time
to test operation of a real controller 92. For example, once the
controller 92 has been designed, 1t may be expensive and
complicated to actually test the controller 92 thoroughly 1n a
real plant, e.g., areal car. Thus, the plant model (implemented
by a graphical program) 1s executed in real time to make the
real controller 92 “believe” or operate as 11 1t 15 connected to
a real plant, e.g., a real engine.

[0095] Inthe embodiments of FIGS. 2A, 2B, and 3B above,
one or more of the various devices may couple to each other
over a network, such as the Internet. In one embodiment, the
user operates to select a target device from a plurality of
possible target devices for programming or configuration
using a program, €.g., a graphical program. Thus the user may
create a graphical program on a computer and use (execute)
the graphical program on that computer or deploy the graphi-
cal program to a target device (for remote execution on the
target device) that 1s remotely located from the computer and
coupled to the computer through a network.

[0096] Graphical software programs which perform data
acquisition, analysis and/or presentation, €.g., for measure-
ment, instrumentation control, industrial automation, model-
ing, or simulation, such as in the applications shown in FIGS.
2A and 2B, may be referred to as virtual instruments.

FIG. 4—Computer System Block Diagram

[0097] FIG. 4 1s a block diagram 12 representing one
embodiment of the computer system 82 and/or 90 1llustrated
in FIGS. 1A and 1B, or computer system 82 shown in FIG. 2A
or 2B. It 1s noted that any type of computer system configu-
ration or architecture can be used as desired, and FIG. 4
illustrates a representative PC embodiment. It 1s also noted
that the computer system may be a general purpose computer
system, a computer implemented on a card installed 1n a
chassis, or other types of embodiments. Elements of a com-
puter notnecessary to understand the present description have
been omitted for simplicity.

[0098] The computer may include at least one central pro-
cessing unit or CPU (processor) 160 which 1s coupled to a
processor or host bus 162. The CPU 160 may be any of
various types, including an x86 processor, ¢.g., a Pentium
class, a PowerPC processor, a CPU from the SPARC family of
RISC processors, as well as others. A memory medium, typi-
cally comprising RAM and referred to as main memory, 166
1s coupled to the host bus 162 by means of memory controller
164. The main memory 166 may store the one or more pro-
grams configured to program and/or utilize an interlock
memory. The main memory may also store operating system
soltware, as well as other software for operation of the com-
puter system.

[0099] The host bus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
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bridge logic. The expansion bus 170 may be the PCI (Periph-
eral Component Interconnect) expansion bus, although other
bus types can be used. The expansion bus 170 includes slots
tor various devices such as described above. The computer 82
turther comprises a video display subsystem 180 and hard
drive 182 coupled to the expansion bus 170. The computer 82
may also comprise a GPIB card 122 coupled to a GPIB bus
112, and/or an MXI device 186 coupled to a VXI chassis 116.
[0100] Asshown,adevice 190 may also be connected to the
computer. The device 190 may include a processor and
memory which may execute a real time operating system. The
device 190 may also or mstead comprise a programmable
hardware element. The computer system may be configured
to deploy a program, e.g., a graphical program to the device
190 for execution of the graphical program on the device 190.
The deployed graphical program may take the form of graphi-
cal program 1nstructions or data structures that directly rep-
resents the graphical program. Alternatively, the deployed
graphical program may take the form of text code (e.g., C
code) generated from the graphical program. As another
example, the deployed graphical program may take the form
of compiled code generated from either the graphical pro-
gram or {rom text code that 1in turn was generated from the
graphical program. As noted above, 1n some embodiments,
the program(s) may be text based.

Exemplary LDPC Decoder

[0101] Various embodiments discussed below with refer-
ence to FIGS. 5-16 involve techniques associated with decod-
ing error correcting code, and low-density parity-check
(LDPC) codes 1n particular. However, similar techniques may
be applied to various algorithms in addition to and/or 1n place
of such decoding. LDPC codes are discussed for explanatory
purposes but are not intended to limait the scope of the present
techniques. Embodiments of the interlock memory, perfor-
mance modeling, hardware programming, memory sequence
rearrangement, and/or self-addressing techniques discussed
herein may be applied in various contexts for any of various
algorithms which may or may not be explicitly listed herein.
[0102] Examples of such algorithms include, without limi-
tation: error control code, graph encoding/decoding, source
coding, cryptography, maximum likelihood detector, maxi-
mum a posterior1 detector, compression, multiple-input mul-
tiple-output (MIMO) communications, beam-forming,
beam-steering, differential equation solving, linear equation
solving, linear algebra, optimization, detection and estima-
tion, networking, machine learning, channel estimation,
1mage processing, motion control, process control, biointor-
matics, dynamic programming, big data applications, com-
putational informatics, internet of things, etc. Thus sequences
of memory accesses may be based on, and/or derived from,
one or more of, without limitation: a parity-check matrix, a
generator matrix, a channel matrix, the number of nodes
and/or edges 1n a decoding algorithm, number of antennae,
number of channel taps, compression ratio, angle range,
degree of polynomial, number of equations, local and/or glo-
bal maxima and/or minima, number of network nodes, etc.

[0103] Exemplary embodiments of linear algebra algo-
rithms include, without limitation: symmetric rank-k update,
symmetric rank-2k update, Cholesky factorization (decom-
position of a positive-definite matrix into a product of a lower
triangular matrix and 1ts conjugate transpose), update
Cholesky factorization (e.g., when a previously-decomposed
matrix changes 1n some way ), lower upper (LU) factorization
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(decomposition of a matrix into a product of a lower triangu-
lar matrix and an upper triangular matrix), QR factorization
(decomposition of a matrix into a product of an orthogonal
matrix Q and an upper triangular matrix R), update QR fac-
torization, LQ factorization, triangular matrix inversion,
reduction to Hessenberg form, reduction to bi-diagonal form,
reduction to tri-diagonal form, triangular matrix Lyapunov
equation solutions, triangular matrix Sylvester equation solu-
tions, etc.

[0104] FIG. 5 shows one embodiment of an exemplary
system that includes an LDPC decoder. In the illustrated
embodiment, system 500 includes encoder 510, decoder 520,
modulator 530, and demodulator 540.

[0105] Encoder 510, 1n the illustrated embodiment, 1s con-
figured to recerve a message to be transmitted, encode the
message, e.g., using an LDPC generator matrix, and send the
encoded message to modulator 330.

[0106] Modulator 530, 1n the illustrated embodiment, 1s
configured to transform and/or group bits of the encoded
message 1nto symbols for wireless transmission to an antenna
coupled to demodulator 540, 1.e., to modulate the encoded
message for transmission. The wireless transmission may
conform to any of various transmission standards. In other
embodiments, the transmission may not be wireless.

[0107] Demodulator 540, 1n the 1llustrated embodiment, 1s
configured to demodulate the received signals to generate the
encoded message. However, because of noise 1n transmis-
sion, 1t may be difficult to determine the value of elements
(e.g., the polarity of bits) in the encoded message. LDPC
decoding may allow accurate reconstruction of the original
message 1n many situations.

[0108] Decoder 520, 1n the 1llustrated embodiment, 1s con-
figured to reconstruct the original message, €.g., based on a
parity check matrix (which 1s often denoted using the letter
‘H” and may be referred to as an “H matrix™), 1.e., to decode
the encoded message, thereby recovering the original mes-
sage. In the illustrated embodiment, decoder 520 includes
interlock memory 550, which may be configured to resolve or
prevent access hazards corresponding to operations associ-
ated with the parity check matrix. Embodiments of interlock
memory 350 are described 1n further detail below. Decoder
520 may 1include a pipelined data path for performing
memory accesses based on the parity check matrix, and vari-
ous techniques disclosed herein may reduce latency in the
pipelined data path. Decoder 520 may be configured to trans-
mit the decoded message to recipient hardware, not shown.

[0109] FIG. 6A shows a diagram 1llustrating an exemplary
embodiment of an H matrix 620. In the illustrated embodi-
ment, H matrix 620 1s a parity check matrix and the number in
cach position indicates a cyclic shift amount. The blank posi-
tions 1n H matrix 620 indicate a “don’t care,” where the shift
amount 1s not indicated, e.g., because 1t 1s not used.

[0110] In some embodiments, to decode a received signal
using LDPC, decoder 520 1s configured to 1terate through the
layers of H matrix 620 (12 layers in the illustrated embodi-
ment, which correspond to the rows of the matrix) to decode
a recerved signal. For example, decoder 520 may read the
relevant positions 1n a layer, determine a mimmum or maxi-
mum value, and update values for the layer based on the
determined minimum or maximum before proceeding to the
next layer. In the illustrated embodiment, H matrix 6201sa 12
by 24 matrix, but any of various matrix sizes may be used in
other embodiments.
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[0111] FIG. 6B shows a diagram 1llustrating an exemplary
embodiment of a beta matrix 640. Beta matrix 640, in the
illustrated embodiment, encodes memory read/write
addresses for 1terative processing of layers L1 through .12 of
H matrix 620. The encoded addresses correspond to locations
in 1nterlock memory 350 1n some embodiments. In the 1llus-
trated embodiment, beta matrix 640 1s formed based on H
matrix 620, and indicates the block index of positions 1n H
matrix 620 that are relevant (e.g., are not “don’t cares”). For
example, the position at layer L1 and block mndex 4 in H
matrix 620 has a value of 30, so that block index (4) 1s
included in layer L1 1n beta matrix 640. In the illustrated
embodiment, beta matrix 640 also includes some blank
“don’t care” positions, which may be included 1n order to
maintain a regular matrix.

[0112] In the illustrated embodiment, beta matrix 640
includes only a third the number of columns included 1n H
matrix 620. This may increase LDPC decoding performance
significantly, e.g., by up to three times 1n some embodiments,
relative to performing operations for each position in H
matrix 620.

[0113] Decoder 520, in some embodiments, 1s configured
to process beta matrix 640 iteratively in layers. In this
example, to process the first layer, decoder 520 1s configured
to read memory locations 0, 4, 6, 8, 10, 12, and 13, modily at
least some of the retrieved data, and write modified data back
to at least some of the same locations. In one embodiment,
decoder 520 1s configured to calculate a minimum value for a
given layer and calculate new values to write back to the same
locations based on the minimum value, before proceeding to
the next layer. Thus, operations for a given layer may depend
on the values written for the previous layer. It may be desir-
able to pipeline memory accesses to improve performance.
However, note for example that the first location 1n layer 2 1s
the same as the first location inlayer 1 (both location 0). Thus,
the read for layer 2 for location 0 1s dependent on the write for
layer 1. In some embodiments, interlock memory 550 1s con-
figured to resolve this dependency by waiting to perform the
read for layer 2 until the write for layer 1 has completed. This
stalling of the read may ensure correctness. However, reduc-
ing such stalling may be desirable 1 order to increase read/
write performance in pipelined implementations.

[0114] FIG. 6C shows a diagram 1illustrating one embodi-
ment of a rearranged beta matrix 660. In the illustrated
embodiment, rearranged beta matrix 1s formed by rearrang-
ing the positions 1n each row of beta matrix 640. This rear-
rangement may reduce read/write hazards and thus improve
memory access performance. For example, consider the
accesses to location O shown in bold. The read to location O for
layer two has been shifted such that the write to location O for
layer one may be completed before the read for layer two, thus
avoiding the need to stall in pipelined implementations. Thus,
in various embodiments, sequences of memory accesses may
be rearranged to improve memory performance. This rear-
ranging may be performed automatically by a compiler and/
or by configuration circuitry for interlock memory 550, for
example. Techniques for performance modeling and select-
ing a rearranged sequence ol memory accesses are discussed
below with reference to FIG. 12.

[0115] Referring now to FIG. 7A, a diagram 1llustrating a
timeline of baseline decoding 710 according to one embodi-
ment 1s shown. In FIGS. 7A-7B, shaded rectangles indicate

writes while non-shaded rectangles indicate reads.
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[0116] Inthe example of FIG. 7A, reads occur for all loca-
tions for layer 1 of beta matrix 660, which takes at least eight
cycles (assuming that one read 1s initiated per cycle). All
locations for layer 1 are then written, taking at least another
eight cycles 1n the 1llustrated example. Processing for layer
two then begins with a similar sequence of reads followed by
a sequence of writes.

[0117] Referring now to FIG. 7B, a diagram 1illustrating a
timeline of pipelined decoding 720 according to one embodi-
ment 1s shown. In some embodiments, decoder 520 1s con-
figured to pipeline performance of memory accesses. In the
illustrated example, reads for layer 2 begin as soon as reads
for layer 1 are finished. This may improve decoding perfor-
mance substantially, e.g., by up to two times, relative to the
baseline decoding 710. Note that hazards must still be
resolved or prevented (e.g., by inserting bubbles into the
pipeline), but that rearranging a sequence of memory
accesses (e.g., using rearranged beta matrix 660) may greatly
reduce hazards in some embodiments.

[0118] Various pipelined memory access approaches are
discussed herein, but 1t should be noted that 1n other embodi-
ments the disclosed techniques may be used 1n the context of
non-pipelined memory accesses.

[0119] In some embodiments, memory accesses may be
tully pipelined such that one or more reads and writes are
1ssued every cycle 1f available, barring stalls to resolve haz-
ards (not shown in FIG. 7B). In some embodiments, a
memory may be multi-ported, allowing multiple reads and/or
writes to 1ssue 1 a given cycle, which may further increase
performance relative to baseline decoding 710.

Exemplary Interlock Memory

[0120] FIG. 8A shows a block diagram illustrating one

embodiment of interlock memory 350. In the 1illustrated
embodiment, interlock memory 5350 includes memory 810
and arbiter 830. Arbiter 830, 1n the illustrated embodiment,
includes circuitry configured to recerve read and write
requests and grant the requests, resolving or preventing/
avolding any hazards 1n accessing memory 810 1n the process.
Interlock memory 550 may be configured to avoid memory
access hazards without recerving information indicating the
hazards along with memory access requests corresponding to
the sequence (e.g., interlock memory 550 may be configured
to avoid the hazards based on internal configuration). Arbiter
830 may be configured with memory access constraints for
the sequence of memory access requests, exemplary embodi-
ments of which are described below with reference to FIGS.
9 and 14-15. These memory access constrains may be
referred to as “interlock information.” In some embodiments,
interlock information i1s populated based on a specified
sequence ol memory accesses to be performed using inter-
lock memory 550.

[0121] Asused herein, circuitry being “configured with” or
“configured using” memory access constraints 1s intended to
include configurations 1 which: 1) the circuitry stores infor-
mation, €.g., such as a data structure or table which contains
information regarding the memory access constraints 2) the
circuitry includes dedicated circuitry configured to imple-
ment the memory access constraints (e.g., an ASIC), and/or 3)
the circuitry includes programmable circuitry that 1s pro-
grammed to implement the memory access constraints. Haz-
ard circuitry configured with memory access constraints may
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be grouped 1n one location or may be distributed (e.g., among
stages ol a pipelined memory access data path), 1n some
embodiments.

[0122] Memory 810, 1n the 1llustrated embodiment, 1s con-
figured to store received write data and provide read data, as
allowed by arbiter 830. In some embodiments, memory 810 1s
multi-ported to allow 1nitiation of multiples reads and/or mul-
tiple writes 1n a given cycle. For example, dual-ported
embodiments of memory 810 may allow initiation of writes to
two different locations i the same cycle. In some embodi-
ments, memory 810 includes multiple banks. In some
embodiments, each bank allows mitiation of only one read
and one write per cycle, but different banks may be accessed
in the same cycle, e.g., concurrently.

[0123] FIG. 8B shows a block diagram 1illustrating another
embodiment of interlock memory 350. In the illustrated
embodiment, interlock memory 550 includes address genera-
tor 820. Other elements of FIG. 8B may be configured as
described above with reference to similarly numbered ele-
ments of FIG. 8A. Address generator 820, 1n the illustrated
embodiment, includes circuitry configured to generate
addresses for read and write requests. For example, interlock
memory 350 may be configured for a particular array or
matrix of memory accesses and address generator 820 may be
configured to assign addresses to requests based on the
sequence in which they are recerved. This may allow interlock
memory 550 to be self-addressing, in some embodiments,
such that programs can simply provide memory access
requests, without address information, and interlock memory
550 1s configured to generate appropriate addresses for cor-
responding accesses. In some embodiments, the sequence
and/or addresses of memory accesses 1n a program are deter-
mined during compilation, which may include compile-time
execution as discussed below with reference to FIG. 11. In
some embodiments, interlock memory 350 includes one or
more programmable hardware elements such that it 1s easily
reconfigurable for different programs and/or algorithms.

[0124] In some embodiments, interlock memory 350 may
include additional elements (not shown) configured to per-
form data forwarding, caching, prefetching, etc. associated
with memory systems. In some embodiments, interlock
memory 550 includes look-ahead circuitry configured to per-
form and/or adjust one or more of cachuing, prefetching, data
forwarding, etc., based on upcoming memory access
addresses to improve performance. In various embodiments,
interlock memory 550 1s included 1n a device such as an
LDPC decoder or any of various appropriate devices. The
various techniques discussed herein may be used to improve
performance of any of various devices that include one or
more interlock memories.

[0125] FIG. 9 shows a replication of the first five levels of
rearranged beta matrix 660 and a corresponding interlock
table 900. In various embodiments, interlock tables are used
to specily memory access constraints for a sequence of
memory accesses. The interlock tables may be stored 1n an
interlock memory system and/or various circuitry may be
otherwise configured with the memory access constraints
(¢.g., rather than maintaining the particular information
specified by a given interlock table). The illustrated interlock
table(s) are provided to facilitate explanation of particular
memory access constraints. In some embodiments, interlock
table 900 1s generated for a given program or matrix and
interlock memory 550 1s configured with the memory access
constraints specified by interlock table 900. In the 1llustrated
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embodiment, blank entries 1n interlock table 900 indicate that
a corresponding access may be performed at any time because
there are no hazards for that access.

[0126] In some embodiments, interlock memory 550
includes a read counter and a write counter, which are 1nitial-
1zed to zero before executing a program. In these embodi-
ments, when performing a given read operation, interlock
memory 550 may be configured to compare the current write
pointer to an entry 1n mterlock table 900 corresponding to the
read pointer and allow the read only 1f the write pointer 1s
greater than the entry. For example, consider the entry in row
3, column 3 1n rearranged beta matrix 660, which indicates
location 0. The corresponding entry in interlock table 900
contains a 9. Thus, 1n this embodiment, a read cannot be
performed from location O for row 3, column 3 1n rearranged
beta matrix 660 until the write counter 1s at least 10. Note that
when the write counter 1s 10, for this sequence of memory
operations, location 0 will have been written (based on row 2,
column 2 1n rearranged beta matrix 660), and so a potential
hazard has been avoided. Similar techniques may be used for
writes. For example, in some embodiments, interlock
memory 550 1s configured to grant a write only if the current
read pointer 1s greater than an entry in the interlock table
indicated by the write pointer.

[0127] Insome embodiments, mnterlock memory 350 1s not
configured to perform hazard checks for write operations
because hazards are already resolved by dataflow. For
example, for rearranged beta matrix 660, write after read
hazards are not present because the sequence already ensures
that reads for a given layer and the previous layer will be
completed before a given write to mterlock memory 550 1s
requested (1n this embodiment, writes for a given level are not
initiated until reads for the entire row have completed in order
to find a minimum value).

[0128] FIG. 10 shows a flow diagram illustrating one
embodiment of a method 1000 for resolving or preventing
data hazards. The method shown 1n FIG. 10 may be used 1n
conjunction with any of the computer systems, devices, cir-
cuits, elements, or components disclosed herein, among oth-
ers. In various embodiments, some of the method elements
(also referred to herein as “blocks™) shown may be performed
concurrently, in a different order than shown, or may be

omitted. Additional method elements may also be performed
as desired. Flow begins at block 1010.

[0129] At block 1010, arrays for a linearized beta matrix
(addr[96]) and 1nterlock table (interlock[96]) are maintained.
These arrays may be generated by using raster scan ordering
on beta matrix 660 and interlock table 900. One or both of
these arrays are stored in interlock memory 350 1n some
embodiments. In other embodiments, hazard circuitry 1s oth-
erwise configured with information from one or both of these
arrays. In the illustrated embodiment, rearranged beta matrix
660 may be used as an address table to generate addresses for

received memory access requests. Flow proceeds to block
1020.

[0130] Atblock1020, read and write pointers are initialized
to zero. Flow proceeds to blocks 1030 and 1060.

[0131] At block 1030, a read request 1s received. Flow
proceeds to decision block 1040.

[0132] Atdecisionblock 1040, 1t 1s determined whether the
write pointer 1s greater than the value 1n the interlock table at
an 1ndex of the read pointer (interlock|[read pointer]). If the
write pointer 1s greater, flow proceeds to block 1050. Other-
wise, tlow proceeds back to decision block 1040 (e.g., inter-
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lock memory 550 1s configured to wait to grant the read
request until the write pointer i1s greater than the value at
interlock[read pointer].

[0133] At block 1050, the location 1indicated by a position
in the beta matrix at an index of the read pointer (addr[read
pointer|) 1s read. Thus, the requested read operation 1s per-
tformed. Flow returns to block 1030.

[0134] At block 1060, a write request 1s received. Flow
proceeds to block 1070.

[0135] Atblock 1070, data for the write request 1s written to
the location indicated by a position in the beta matrix at an
index of the write pointer (addr{write pointer]). Thus, the
requested write operation 1s performed. In this embodiment,
the write pointer 1s incremented (which may allow one or
more waiting read requests to proceed). Flow returns to block
1060.

[0136] In other embodiments, writes may be checked 1n a
similar manner as utilized for reads in block 1040. In these
embodiments, iterlock memory 550 1s configured to stall a
given write until the read pointer 1s greater than interlock
[write pointer|. This block 1s omitted in the illustrated
embodiment because of the nature of the writes i the
example beta matrix 660, as discussed above. In still other
embodiments, this block may be included for writes but block
1040 may be omitted for reads, e.g., for programs in which
dataflow ensures that reads will not cause hazards.

Generating Interlock Information

[0137] FIG. 11 shows a flow diagram illustrating one
embodiment of a method 1100 for determining sequences
and/or addresses of memory accesses for a program. The
method shown 1n FIG. 11 may be used 1n conjunction with
any ol the computer systems, devices, circuits, elements, or
components disclosed herein, among others. In various
embodiments, some of the method elements (or blocks)
shown may be performed concurrently, in a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired. Flow begins at block 1110.
[0138] At block 1110, an input program 1s received. The
program may 1include memory access operations, e.g.,
memory reads and/or writes. In some embodiments, a com-
piler receives the program for compilation for a system that
includes interlock memory 5350. Flow proceeds to block
1120.

[0139] At block 1120, during compilation of the mnput pro-
gram, information 1s generated by executing portions of the
input program. Exemplary techniques for executing portions
of an input program during compilation are described 1n U.S.
patent application Ser. No. 13/592,995, filed Aug. 23, 2012
and titled “Compile Time Execution,” which 1s incorporated
herein by reference 1n its entirety. In some embodiments,
these techniques are used to generate mformation for pro-
gramming interlock memory 350. Flow proceeds to block

1130.

[0140] At block 1130, addresses, a sequence, and/or
memory access constraints are generated for memory
accesses 1n the mput program based on the information. For
example, 1n some embodiments, a compiler 1s configured to
generate one or more address tables (e.g., a beta matrix) and
memory access constraints for one or more interlock tables
based on the information. In these embodiments, the compiler
may be configured to partially execute the mput program in
order to determine the order of memory accesses 1n the pro-
gram, addresses of the memory accesses, and/or hazards
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between the memory accesses. In some embodiments, the
address information 1s used for self-addressing. In some
embodiments, hazard circuitry for interlock memory 550 1s
configured with determined memory access constraints and
used to avoid hazards when executing the input program. In
some embodiments, this configuring may be performed auto-
matically, e.g., when the input program 1s to be compiled and
programmed onto particular hardware. In some embodi-
ments, the compiler 1s configured to rearrange the sequence of
memory operations 1n order to improve performance using
interlock memory 550. In some embodiments, the rearrange-
ment may alter compilation of the program to use the rear-
ranged sequence. Flow ends at block 1130.

[0141] In other embodiments, interlock information may
be generated using other techniques, in place of and/or in
addition to compile time execution. For example, 1n some
embodiments, a program, (e.g., a graphical program) may
allow a user to enter an array or matrix corresponding to
memory accesses and may be configured to generate inter-
lock and/or address table(s) based on the entered information.
For example, 1n one embodiment, a program 1s configured to
generate a beta matrix and one or more 1nterlock tables based
on an input H matrix. In these embodiments, interlock infor-
mation may be generated before compiling or executing an
associated mput program at all. In other embodiments any of
various programs, arrays, matrices, or other information asso-
ciated with sets of memory accesses may be input to a pro-
gram for configuring an interlock memory.

[0142] In various embodiments, information (e.g., nter-
lock information and/or address table(s)) may be transferred
to an 1nterlock memory at any of various appropriate times.
For example, the information may be transierred at the begin-
ning of execution of a program or while the program 1s run-
ning. In some embodiments, sequence and/or interlock infor-
mation may be updated during execution to adaptto changing
conditions or improve one or more performance measures.
Exemplary performance measures include, without limita-
tion: throughput, latency, power consumption, reliability,
resource utilization, and bit-error rate.

Pertormance Estimates

[0143] In some embodiments, a program (e.g., a graphical
program) 1s configured to run cycle accurate simulations for
interlock memory 550 for an mput program or a sequence of
memory access operations. In some embodiments, the cycle
accurate simulations are achieved or performed based on
knowledge of the sequence of memory operations and the
pipelined nature of memory accesses. For example, the num-
ber of stalls and number of cycles for each stall may be
determined for a particular sequence of accesses. In some
embodiments, performance estimates may be generated
based on such simulations. In some embodiments, sequences
of memory accesses may be reordered to improve perfor-
mance based on performance estimates.

[0144] FIG. 12 shows a flow diagram illustrating one
embodiment of a method for generating a rearranged or reor-
dered sequence of memory access operations based on per-
formance modeling. The method shown 1n FIG. 12 may be
used 1 conjunction with any of the computer systems,
devices, circuits, elements, or components disclosed herein,
among others. In various embodiments, some of the method
clements shown may be performed concurrently, 1n a differ-
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ent order than shown, or may be omitted. Additional method
clements may also be performed as desired. Flow begins at
block 1210.

[0145] At block 1210, a performance estimate 1s deter-
mined. The performance estimate may indicate an estimated
number of cycles needed to perform a sequence of memory
access operations using interlock memory 550. Flow pro-
ceeds to decision block 1220.

[0146] Atdecisionblock 1220, 1t 1s determined whether the
performance estimate 1s acceptable. In some embodiments,
this determination 1s based on whether a particular number of
iterations of blocks 1210-1230 have been performed. In some
embodiments, this determination 1s based on a desired per-
formance estimate or some other threshold. In some embodi-
ments, an optimal ordering may be acceptable, while in other
embodiments sub-optimal orderings may be acceptable, e.g.,
based on some heuristic. If the performance 1s acceptable,

flow proceeds to block 1240 and flow ends. Otherwise, flow
proceeds to block 1230.

[0147] At block 1230, the sequence of memory access
operations 1s rearranged or reordered. One example of such
reordering 1s discussed above with reference to FIGS. 6 A-6C.
Flow proceeds to block 1210. In some embodiments, the
rearranged sequences and/or performance estimates are
stored, and one of the rearranged sequences 1s selected based
on the performance estimates. In some embodiments, the
selected sequence 1s used to compile a program and/or gen-
erate one or more interlock tables for interlock memory 550.

[0148] FIG. 13 shows a flow diagram illustrating one
embodiment of a method for configuring an interlock
memory system. The method shown 1n FIG. 13 may be used
in conjunction with any of the computer systems, devices,
circuits, elements, or components disclosed herein, among
others. In various embodiments, some of the method elements
shown may be performed concurrently, 1n a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired. Flow begins at block 1310.

[0149] Atblock1310, a sequence of memory accesses for a
program 1s determined. In some embodiments, the sequence
1s determined based on compilation of an input program, €.g.,
per embodiments of the method of FIG. 11, discussed above.
The sequence may be reordered, 1n some embodiments to
improve performance of interlock memory 550. Flow pro-

ceeds to block 1320.

[0150] At block 1320, information specifying memory
access constraints 1s generated, based on the sequence of
memory accesses. In this embodiment, the information 1s
usable to avoid memory access hazards for the sequence of
memory accesses. In some embodiments, the iformation

includes one or more nterlock tables. Flow proceeds to block
1330.

[0151] At block 1330, circuitry 1s configured using the
information. In this embodiment, the circuitry 1s included 1n
or coupled to a memory. In this embodiment, the circuitry 1s
operable, after the configuration, to perform memory access
requests to the memory corresponding to the sequence of
memory accesses while avoiding memory access hazards. In
this embodiment, the circuitry 1s configured to avoid the
memory access hazards without recerving other information
indicating the memory access hazards (e.g., a program may
send the sequence of memory access requests for pipelined
execution without indicating memory access hazards and
without waiting for a particular memory access to complete
betore sending dependent accesses). In some embodiment,
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the configuration 1s performed using one or more program-
mable hardware elements. In some embodiments, the con-
figuration 1s performed by downloading values into one or
more storage elements (e.g., one or more random access
memories (RAMs) and/or one or more read only memories
(ROMs)) included 1n and/or coupled to interlock memory
550. In some embodiments, circuitry 1s also configured with
address information for self-addressing the memory accesses
using any of various appropriate techniques. In some embodi-
ments, method 1300 1s performed automatically based on
various inputs to a graphical program. Flow ends at block

1330.

Additional Interlock Memory Embodiments

[0152] FIG. 14 shows a block diagram illustrating one
embodiment of a system 1400 configured to implement an
interlock memory. FIGS. 15A-B and 16 A-B illustrate exem-
plary imnterlock tables, execution timelines, and methods asso-
ciated with system 1400 1n some embodiments. System 1400,
in the illustrated embodiment, includes memory 1410 and
hazard circuitry 1420. Memory 1410, 1n some embodiments,
1s a shared memory.

[0153] Hazard circuitry 1420, 1n the illustrated embodi-
ment, 1s configured to recerve read and write requests and
determine when to grant them 1n order to resolve hazards
based on write interlock table 1470 and read imterlock table
1480. Hazard circuitry 1420, 1n some embodiments, 1s inte-
grated 1into the memory system that includes memory 1410.
Hazard circuitry 1420, in the illustrated embodiment,
includes write interlock table 1470, read interlock table 1480,
and circuitry configured to maintain values for write pointer
1430, read pointer 1440, write tokens 1450, and read tokens
1460. In various embodiments, hazard circuitry may be dis-
tributed among elements of a pipelined data path. In some
embodiments the information specified by write interlock
table 1470 and read interlock table 1480 may not be directly
stored, but may instead be used to configure hazard circuitry
to perform various functionality described below.

[0154] Write tokens 1450 and read tokens 1460, in the
illustrated embodiment, indicate how many reads or writes
can be respectively performed before the next hazard, assum-
ing the tokens are not incremented. For example, if read
tokens 1460 has a value of three, then three reads can be
performed before a potential hazard, assuming the value 1s
not incremented as a result of writes in the interim.

[0155] Write pointer 1430 and read pointer 1440, 1n the
illustrated embodiment, indicate the how many operations of
cach type have been performed in a sequence of memory
accesses. In some embodiments, write pointer 1430 and read
pointer 1440 are imitialized to zero before execution of a given
program and are incremented for each write and read respec-
tively.

[0156] Write interlock table 1470 and read interlock table
1480, 1n the 1illustrated embodiment, 1indicate values to be
added to read tokens 1460 or write tokens 1450 upon comple-
tion of particular read or write operations. These tables may
be generated using compile time execution, generated based
on user input, hard coded for a particular array or matrix, etc.
Exemplary embodiments of values for these tables are dis-
cussed below with reference to FIGS. 15A-B.

[0157] Hazard circuitry 1420, 1n the illustrated embodi-
ment, 1s configured to provide write address, write enable,
read address, and read enable signals to memory 1410. In
some embodiments, hazard circuitry 1420 1s self-addressing
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and does not receive the address information during execu-
tion of a sequence ol memory operations. In other embodi-
ments, the addresses are included in the read and write
requests.

[0158] FIGS. 15A-B show exemplary embodiments of
interlock tables and pipelined execution for different exem-
plary sequences of memory access operations using system
1400. These Figures show that rearranging a sequence of
memory accesses (e.g., rearranging beta matrix 1510 to pro-
duce beta matrix 1550 1n the illustrated embodiment) may
increase pipelined performance memory accesses using an
interlock memory.

[0159] Beta matrix 1510, 1n the illustrated embodiment,
includes two layers that each include three blocks. In the
illustrated embodiment, the positions 1n the second layer of
cach table are shown using shaded blocks. Beta matrix 1550,
in the i1llustrated embodiment, 1s generated by reordering the
first layer of beta matrix 1510.

[0160] The execution diagrams illustrate exemplary pipe-
lined performance of memory accesses for each of beta matri-
ces 1510 and 1550. In the illustrated embodiment, upon
completion of memory accesses for layer 2, execution begins
again for layer 1. FIGS. 15A-B show that rearranging the
order of memory access operations can improve perior-
mance, as the reordering to generate beta matrix 1550 has
improved throughput relative to beta matrix 1510.

[0161] Write interlock tables 1520 and 1560 and read inter-
lock tables 1530 and 1570, in the illustrated embodiment,
include entries indicating the number of tokens to add upon
completion of a corresponding operation in one of the beta
matrices. For example, upon completion of a write to location
0 for layer 1 of beta matrix 1510, two read tokens are added,
allowing at least two reads to occur before a stall to avoid the
next potential hazard. As another example, upon completion
ol a write to location 4 for layer 2 of beta matrix 1510, four
read tokens are added, allowing at least for reads to occur
before a stall to avoid the next hazard. In the illustrated
embodiment, each read operation adds a single write token.
Note that 1n the i1llustrated embodiments, writes do not occur
immediately after a token 1s added. In this embodiment, this
1s the result of the nature of the LDPC decoding operations, 1n
which a program 1s configured to read all positions 1n a layer
betore writing any of them. Thus, when the first write request
1s received, 1n this example, the write tokens value has already
been incremented to three based on the three reads.

[0162] FIGS. 16A-B show exemplary embodiments of
methods 1600 and 1650 for operation of an interlock memory
system, such as, for example, the embodiment of system
1400. The methods shown 1n FIGS. 16 A-B may be used 1n
conjunction with any of the computer systems, devices, cir-
cuits, elements, or components disclosed herein, among oth-
ers. In various embodiments, some of the method elements
shown may be performed concurrently, in a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired. Flow begins at block 1602
for FIG. 16 A and block 1652 for FIG. 16B. In some embodi-
ments, these methods are performed (at least partially) in
parallel.

[0163] Referring to FIG. 16A, at block 1602, hazard cir-
cuitry 1mnitializes a read tokens value. In the embodiments of
FIGS. 15A-B, read tokens are 1nitialized to a value of three
while write tokens are initialized to a value of zero. Flow

proceeds to block 1604.
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[0164] Atblock1604, hazard circuitry 1420 waits for a read
request. Flow proceeds to decision block 1606.

[0165] Atdecisionblock 1606, hazard circuitry 1420 deter-
mines whether read tokens 1s greater than zero. I 1t 1s, flow
proceeds to block 1608. Otherwise, tlow remains at decision
block 1606 until read tokens 1s greater than zero. As shown by
the dashed arrow from block 1666 in FIG. 16B, read tokens
may become greater than zero in response to a write opera-
tion, e.g., because performance of the write operation
removes a hazard.

[0166] Atblock 1608 hazard circuitry 1420 fetches a token
value from read interlock table 1470 based on the read
pointer. In self-addressing embodiments, hazard circuitry
1420 1s also configured to retrieve the read address from an
address table. Note that 1n some embodiments, the interlock
table may be configured to store addresses as well as indicate
memory constraints. In these embodiments addresses may be
retrieved from the interlock table in addition to interlock
information. Flow proceeds to block 1610.

[0167] Atblock 1610, hazard circuitry 1420 increments the
read pointer. Flow proceeds to block 1612.

[0168] At block 1612, hazard circuitry 1420 decrements

the read tokens. In this embodiment, each read may be
thought of as consuming a read token, such that reads are

allowed to occur only if a read token 1s available. Flow pro-
ceeds to block 1614.

[0169] At block 1614, hazard circuitry 1420 performs the
requested read operation. Flow proceeds to block 1616.

[0170] At block 1616, hazard circuitry 1420 adds the
retrieved token value from block 1608 to write tokens. As
shown by the dashed line from block 1616 to decision block
1656 of FIG. 16B, this incrementing may allow a waiting
write to proceed because performance of the read in block
1614 may remove a hazard. Flow returns to block 1604.

[0171] Referring to FIG. 16B, at block 1652, hazard cir-
cuitry 1420 mitializes a write tokens value. Flow proceeds to
block 1654.

[0172] At block 1654, hazard circuitry 1420 waits for a
write request. Flow proceeds to decision block 1656.

[0173] Atdecisionblock 1656, hazard circuitry 1420 deter-
mines whether write tokens 1s greater than zero. If it 1s, flow
proceeds to block 1658. Otherwise, tlow remains at decision
block 1656 until write tokens 1s greater than zero.

[0174] Atblock 1638 hazard circuitry 1420 fetches a token
value from write interlock table 1480 based on the write
poimnter. In self-addressing embodiments, hazard circuitry

1420 1s also configured to retrieve the write address from an
address table. Flow proceeds to block 1660.

[0175] Atblock 1660, hazard circuitry 1420 increments the
write pointer. Flow proceeds to block 1662.

[0176] At block 1662, hazard circuitry 1420 decrements
the write tokens. In this embodiment, each write may be
thought of as consuming a write token, such that writes are
allowed to occur only if a write token 1s available. Flow

proceeds to block 1664.

[0177] At block 1664, hazard circuitry 1420 performs the
requested write operation. Flow proceeds to block 1666.

[0178] At block 1666, hazard circuitry 1420 adds the
retrieved token value from block 1608 to read tokens. As
shown by the dashed line from block 1666 to decision block
1606 of F1G. 16 A, this incrementing may allow a waiting read
to proceed because performance of the write 1n block 16354
may remove a hazard. Flow returns to block 1654.
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[0179] Note that FIGS. 14-16B 1llustrate exemplary token-
based techniques for interlock tables while FI1G. 9 illustrates
an exemplary counter-based technique (e.g., each entry in
interlock table 900 indicates the count or number of memory
operations that must occur before a given access 1s allowed to
proceed). In other embodiments, various other techniques
may be used to indicate hazards using an interlock table and
stall execution of memory accesses based on the interlock
table. The disclosed embodiments are provided herein for
exemplary purposes and are not intended to limit interlock
table implementations in other embodiments.

[0180] Insomeembodiments, an interlock memory system
may be configured with sets of memory access constraints for
multiple different programs. In these embodiments, an 1ndi-
cation of one of the different programs may be transmitted to
the interlock memory system and the corresponding memory
access constraints may be used to handle memory access
requests for a given program. In various programmable
embodiments, circuitry configured with a first set of memory
access constraints for a first program may be re-configured
with a second, different set of memory access constraints for
a second program.

[0181] Re-configurable circuitry may be advantageous 1n
various applications. For example, a user equipment device
(UE) that includes re-configurable interlock circuitry may
receive a new H matrix or beta matrix for LDPC-backed
communications. In these embodiments, the UE may be con-
figured to generate a program to implement LDPC decoding
based on the received matrix. In other embodiments, the
program may be transierred directly to the UE. In these
embodiments, the UE may be configured to re-order memory
accesses corresponding to the matrix 1 order to reduce pipe-
lined execution time. In these embodiments, the UE 1s con-
figured to configure hazard circuitry with a new set of
memory access constraints for the communication. In some
embodiments, the UE is configured to receive a set of memory
access constraints for the program rather than generating
them internally. In various embodiments, the UE may decode
incoming wireless transmissions using the program and an
interlock memory configured with the memory access con-
straints. In some embodiments, a UFE that includes interlock
memory configured to store memory access constraints for
multiple programs may be configured to use different parity
check techniques for different communications, e.g., when a
device communicates via different networks.

[0182] Referring now to FIG. 17, one generalized embodi-
ment of a method 1700 for operating an interlock memory 1s
shown. The method shown in FIG. 17 may be used 1n con-
junction with any of the computer systems, devices, circuits,
clements, or components disclosed herein, among others. In
various embodiments, some of the method elements shown
may be performed concurrently, in a different order than
shown, or may be omitted. Additional method elements may
also be performed as desired. Flow begins at block 1710.

[0183] At block 1710, a sequence of memory access
requests 1s received for a memory. In some embodiments,
execution ol a program generates the sequence ol memory
access requests. Flow proceeds to block 1720.

[0184] At block 1720, the memory access requests are
granted by circuitry configured with memory access con-
straints for the memory access requests. In this embodiment,
the circuitry 1s configured to grant the memory access
requests subject to the memory access constraints, thereby
avolding memory access hazards for a sequence of memory
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accesses corresponding to the sequence of memory access
requests. The circuitry may include one or more storage ele-
ments configured to store information specifying the memory
access constraints. The circuitry may be programmable to
grant the memory access requests based on the memory
access constraints (e.g., the circuitry may include program-
mable hardware elements). The circuitry may be dedicated to
granting the memory access requests based on the memory
access constraints (e.g., the circuitry may be an ASIC). Flow

ends at block 1720.

[0185] Referring now to FIG. 18, one generalized embodi-
ment of a method 1800 for reordering a sequence of memory
accesses 15 shown. The method shown 1n FIG. 18 may beused
in conjunction with any of the computer systems, devices,
circuits, elements, or components disclosed herein, among
others. In various embodiments, some of the method elements
shown may be performed concurrently, 1n a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired. Flow begins at block 1810.

[0186] At block 1810, a specified sequence of memory
accesses 15 stored. The specified sequence may be recerved
from another computing system or generated by the comput-
ing system storing the sequence, e.g., using compile-time
execution. In this embodiment, the specified sequence corre-
sponds to a function to be performed (such as LDPC decod-

ing, for example) and has first memory access constraints.
Flow proceeds to block 1820.

[0187] At block 1820, the specified sequence 1s reordered
to create a reordered sequence of memory accesses that has
second, different memory access constraints. In this embodi-
ments, the reordered sequence of memory accesses 1s usable
to access a memory to perform the function. The reordering
may improve performance of the memory accesses using an
interlock memory, as discussed above with retference to FIGS.
6C and 12. The reordering may be performed multiple times
and a particular reordered sequence may be selected based on
one or more criteria. The reordered sequence of memory
accesses may have a greater memory access elficiency than
the original sequence of memory accesses. For example, the
reordered sequence may be usable to perform the function in
a smaller number of clock cycles than a number of clock
cycles used to perform the function using the original
sequence. Flow ends at block 1820.

[0188] In some embodiments, a computing system may
compile a program to implement the reordered sequence of
memory accesses. Execution of the program may generate a
sequence of memory access requests corresponding to the
reordered sequence of memory accesses. The memory access
requests may be performed using an mterlock memory.

[0189] Referring now to FI1G. 19, one generalized embodi-
ment of a method 1900 for operating a self-addressing
memory 1s shown. The method shown 1n FIG. 19 may be used
in conjunction with any of the computer systems, devices,
circuits, elements, or components disclosed herein, among
others. In various embodiments, some of the method elements
shown may be performed concurrently, 1n a different order
than shown, or may be omitted. Additional method elements
may also be performed as desired. Flow begins at block 1910.

[0190] At block 1910, memory access requests are
received, corresponding to a specified sequence of memory
accesses, but the memory access requests do not include
address information. For example, the memory access
requests may be generated by an LDPC decoder program.
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The requests may specily whether a read or write operation 1s
desired, but do not specily a location to be read/written. Flow
proceeds to block 1920.

[0191] At block 1920, addresses are assigned to the
memory accesses requests for the specified sequence of
memory accesses. This may be performed by addressing cir-
cuitry configured with address information for the specified
sequence ol memory accesses. The addressing circuitry may
be programmable or may be dedicated to a particular
sequence. Flow proceeds to block 1930.

[0192] At block 1930, the sequence of memory accesses 1S
performed using the assigned addresses. Flow ends at block
1930.

[0193] Referring now to FIG. 20, a sequence ol memory

accesses 2020 for Cholesky factorization of a symmetric
matrix 2010 1s shown. In the i1llustrated embodiment, sym-
metric matrix 2010 1s divided into 2x2 submatrix blocks
B0-B3. Sequence 2020 captures the Choleskey factorization
algorithm’s sequence of read/modity/writes for these subma-
trix blocks. In the 1llustrated embodiment, for the second row,
for example, B2 and B0 are read, potentially modified, and
written before proceeding to row three. In other embodi-
ments, similar sequences may be determined for any of vari-
ous matrix operations. In some embodiments, various tech-
niques described herein may be utilized for such sequences.
For example, interlock information may be generated for
sequence 2020, sequence 2020 may be rearranged to reduce
memory access hazards, addresses may be generated for

sequence 2020, etc.

[0194] Although the embodiments above have been
described 1n considerable detail, numerous variations and
modifications will become apparent to those skilled 1n the art
once the above disclosure 1s fully appreciated. It 1s intended
that the following claims be interpreted to embrace all such
variations and modifications.

We claim:

1. A method, comprising:

storing, by a computing system, a specified sequence of
memory accesses, wherein the specified sequence cor-
responds to a function to be performed, wherein the
specified sequence of memory accesses has first
memory access constraints; and

reordering, by the computing system, the specified
sequence ol memory accesses to create a reordered
sequence of memory accesses, wherein the reordered
sequence of memory accesses has second memory
access constraints, wherein the second memory access
constraints are different than the first memory access
constraints;

wherein the reordered sequence of memory accesses 1s
usable to access a memory to perform the function.

2. The method of claim 1, further comprising;

determining performance estimates for a plurality of reor-
dered sequences of memory accesses, wherein the plu-
rality of reordered sequences of memory accesses are
based on the specified sequence of memory accesses and
are usable to access the memory to perform the function;
and

selecting one of the plurality of reordered sequences based
on the performance estimates.

3. The method of claim 2,

wherein the performance estimates are based on memory
access constraints for each of the plurality of reordered
sequences of memory accesses; and

Mar. 10, 2016

wherein the performance estimates are determined based
on cycle-accurate simulations of the reordered
sequences of memory accesses for pipelined perfor-
mance of the memory accesses using hazard circuitry.

4. The method of claim 1, further comprising:

configuring first circuitry coupled to or comprised 1n a
memory according to the second memory access con-
straints, wherein said configuring configures the first
circuitry to implement the second memory access con-
straints.

5. The method of claim 4, further comprising;

executing a program to generate a sequence of memory
access requests corresponding to the reordered sequence
of memory accesses; and

granting, by the first circuitry, the sequence of memory
access requests according to the second memory access
constraints, thereby avoiding memory hazards for the
sequence of memory access requests.

6. The method of claim 1, further comprising:

compiling a program to implement the reordered sequence
of memory accesses.

7. The method of claim 1,

wherein the specified sequence of memory accesses has a
first memory access efliciency; and

wherein the reordered sequence of memory accesses has a
second, greater memory access efficiency.

8. The method of claim 1, wherein the specified sequence

of memory accesses 1s based on a parity check matrix.

9. A system, comprising:

one or more processors; and

one or more memories having program instructions stored

thereon that are executable by the one or more proces-
sors to perform operations comprising;

storing a specilied sequence of memory accesses,
wherein the specified sequence corresponds to a func-
tion to be performed, wherein the specified sequence
of memory accesses has first memory access con-
straints; and

reordering the specified sequence of memory accesses to
create a reordered sequence of memory accesses,
wherein the reordered sequence of memory accesses
has second memory access constraints, wherein the
second memory access constraints are different than

the first memory access constraints;

wherein the reordered sequence of memory accesses 1s
usable to access the memory to perform the function.

10. The system of claim 9, wherein the operations further
comprise:

determiming performance estimates for a plurality of reor-
dered sequences of memory accesses, wherein the plu-
rality of reordered sequences ol memory accesses are
based on the specified sequence of memory accesses and
are usable to access the memory to perform the function;
and

selecting one of the plurality of reordered sequences based
on the performance estimates.

11. The system of claim 9, wherein the operations further
comprise:
configuring first circuitry coupled to or comprised 1n a
memory according to the second memory access con-
straints, wherein said configuring configures the first
circuitry to implement the second memory access con-
straints for the reordered sequence of memory accesses.
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12. The system of claim 11, wherein the operations further
comprise:

generating a sequence of memory access requests corre-

sponding to the reordered sequence of memory
accesses; and

granting, by the {first circuitry, the sequence of memory

access requests according to the second memory access
constraints, thereby avoiding memory hazards for the
sequence of memory access requests.

13. The system of claim 9, wherein the operations further
comprise:

compiling a program to implement the reordered sequence

of memory accesses.

14. The system of claim 9, wherein the operations further
comprise:

determining the specified sequence of memory accesses

using compile-time execution of an mput program.

15. The system of claim 9,

wherein the specified sequence of memory accesses has a

first memory access eificiency; and

wherein the reordered sequence of memory accesses has a

second, greater memory access efficiency.

16. The system of claim 9, wherein the specified sequence
of memory accesses corresponds to entries in a beta matrix,
wherein the beta matrix 1s generated based on a parity check
matrix.

17. A non-transitory computer-readable medium having
instructions stored thereon that are executable by a computing
device to perform operations comprising:

storing a specified sequence of memory accesses, wherein

the specified sequence corresponds to a function to be
performed, wherein the specified sequence of memory
accesses has first memory access constraints; and
reordering the specified sequence of memory accesses to
create a reordered sequence ol memory accesses,
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wherein the reordered sequence of memory accesses has
second memory access constraints, wherein the second
memory access constraints are different than the first
memory access constraints;

wherein the reordered sequence of memory accesses 1S
usable to access the memory to perform the function.

18. The non-transitory computer-readable medium of
claim 17, wherein the operations further comprise:

reordering the specified sequence ol memory accesses to
create one or more additional, different reordered
sequences of memory accesses;

determiming performance estimates for the reordered
sequence of memory accesses and the one or more addi-
tional, different reordered sequences of memory
accesses, wherein the performance estimates are based
on memory access constraints for the reordered
sequence and the one or more different, reordered
sequences; and

selecting one of the reordered sequence and the one or
more additional, different reordered sequences based on
the performance estimates.

19. The non-transitory computer-readable medium of
claim 17, wherein the operations further comprise:

configuring first circuitry coupled to or comprised 1n a
memory according to the second memory access con-
straints, wherein said configuring configures the first
circuitry to implement the second memory access con-
straints for the reordered sequence of memory accesses.

20. The non-transitory computer-readable medium of
claim 17, wherein the operations further comprise:

determining the specified sequence of memory accesses
using compile-time execution of an iput program.
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