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SYSTEM AND METHOD FOR
DYNAMICALLY MANAGED TASK SWITCH
LOOKAHEAD

FIELD OF THE DISCLOSUR.

L1

[0001] This disclosure generally relates to a data process-
ing system, and more particularly to a system and method for
managed task switch lookahead.

BACKGROUND

[0002] Generally, multi-core processing systems operate to
execute program 1instructions to perform various data pro-
cessing tasks. A task scheduler assigns a particular core to
execute a program to process the data associated with that
program. This combination of a program and corresponding,
data represents a specific task that 1s to be executed by the
processing system, and 1n particular, once assigned to the
core, this combination represents a specific task of the core.
Each core can be assigned multiple tasks.

[0003] A task 1s divided 1nto one or more portions that are
referred to as jobs. When a task has multiple jobs, each job
represents an operation of the task that 1s performed without
being interrupted by a task switch. A job can be executed by
a core between task switch instructions, or a job can be
executed by a non-core resource. For example, a core can
transier the control to a hardware accelerator. When control of
a 10b 1s transterred to a non-core resource, the core assigned
to process the job does not actively process the job and the
core 1s available to execute a job from another task. When the
non-core resource 1s finished executing the job, a next job of
the original task can be scheduled to be executed by the
original core, or by another core.

[0004] A core switches between tasks on job boundaries,
that 1s, after completion of one job and before starting a next
10b. When a core completes a job, the task scheduler deter-
mines the next job to assign to the core to more efliciently
execute the tasks by the multi-core processing system. Task
switching provides a benefit of enabling a core to execute
multiple tasks in a time-sliced manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present disclosure may be better understood,
and 1ts numerous features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

[0006] FIG. 1 1s a block diagram illustrating a multi-core
processing system that schedules processing of data in a
time-sliced manner, according to an embodiment of the
present disclosure;

[0007] FIG. 2 1s a block diagram 1llustrating a processor of
the multi-core processing system of FIG. 1; and

[0008] FIGS. 3-8 illustrate the processor of FI1G. 2 showing
various stages of an execution flow of a task assignment.
[0009] The use of the same reference symbols 1n different
drawings indicates similar or identical items.

DETAILED DESCRIPTION OF THE DRAWINGS

[0010] An embodiment of a multi-core processing system
1s disclosed that includes a task switch marker table that
identifies the addresses of first-in-order instructions within
basic blocks (sets of instructions that have only one entry
point and only one exit point) that are last-in-order basic
blocks of their particular jobs, and that provides a predictive
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launch delay (a number of processor cycles) associated with
cach 1dentified basic block. When a processor core of the
multi-core processing system identifies that 1t 1s processing a
new basic block, the processor core searches the task switch
marker table to see 11 the address of the first-in-order mnstruc-
tion of the new basic block matches any of the identified basic
blocks. If so, the processor core loads the launch delay value
associated with the identified basic block to a counter and
decrements the counter with each subsequent instruction
received by the processor core. When the counter 1s decre-
mented to zero, the processor core provides an indication to a
task scheduler of the multi-core processing system to initiate
a predictive task switch for the processor core, by pre-loading
context information associated with a next task into an alter-
nate register file of the processor core. Then, when the next
task 1s tasked to the processor core, the task switch operation
1s performed without the delay normally associated with
loading of context information, by merely switching the pro-
cessor core operation to the alternate register file. As used
herein, the term “processor cycle” 1s mtended to mean a
periodic signal received or generated by a processing system,
including a clock cycle, an mstruction cycle, a divided clock
cycle, and the like.

[0011] Theprocessor core determines when a basic block 1s
the last-in-order basic blocks of the associated job. When the
processor core receives the first-in-order instruction of a basic
block, the processor core checks to see 1 the address of the
first-1n-order 1nstruction 1s stored 1n the task switch marker
table. If not, the processor core provisionally stores the
address of the first-in-order instruction, and starts a second
counter that counts the number of processor cycles until the
processor core receives the last-in-order instruction of the
basic block. The last-in-order instruction of a basic block will
be either a change of flow mstruction (COFI) or a resource
switch mstruction (RSWI). If the last-in-order mstruction of
the basic block 1s a COFI, then the basic block i1s not the
last-in-order basic block of the job, and the processor core
provisionally stores the address of the next instruction, that 1s
the first-in-order mstruction of the next basic block, writing
over the previously stored address, and resets and restarts the
second counter. If the last-in-order istruction of the basic
block 1s a RSWI, then the basic block 1s the last-in-order basic
block of the job, and the processor core writes the provision-
ally stored address and the value of the second counter,
referred to as the cycle count, into the task switch marker
table.

[0012] When the provisionally stored address and the cycle
count are stored 1nto the task switch marker table, the proces-
sor core provides an indication to the hardware task scheduler
that the new task switch marker table entry (MTE) has been
stored 1n the task switch marker table. The hardware task
scheduler retrieves the cycle count for the new MTE, sub-
tracts a number of cycles needed to pre-load context informa-
tion associated into the alternate register file ol a processor
core, and re-writes the difference, reterred to as the launch
delay, to the task switch marker table.

[0013] FIG. 1 illustrates a multi-core processing system
100 that schedules processing of data 1n a time-sliced manner.
Multi-core processing system 100 includes a processor 101,
one or more additional processors 102, and an external
memory 103. Processors 101 and 102 communicate with each
other and with external memory 103 via a communication bus
104. In particular, processors 101 and 102 store data to and
receive data and programs from external memory 103. Pro-
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cessor 101 also sends and receives data and programs, via an
input/output (I/O) interface 105 that 1s connected to other
devices (not shown) of multi-core processing system 100.
Other devices can be connected to communication bus 104 as
needed or desired.

[0014] Processor 101 includes an I/O interface device 106,
connected to I/O intertace 105, one or more cores 110 and
111, one or more hardware accelerator 120, a memory 130, a
hardware task scheduler 140 that includes register contexts
142 for all running tasks, and a task switch marker table 150.
Cores 110 and 111, hardware accelerator 120, memory 130,
task scheduler 140, task switch marker table 150, and I/O
interface device 106, communicate with each other, via an
interconnect 107. Interconnect 107 operates to provide an
instruction stream 170 from memory 130 to cores 110 and
111. Interconnect 107 also operates to provide execution
parameters and data to hardware accelerator 120 such that,
when control of a job 1s passed from one of cores 110 or 111
to the hardware accelerator, the hardware accelerator com-
pletes the job. An example of hardware accelerator 120
includes, a network processor, a data stream processor, a
security device, an encryption device, a decryption device, a
statistics device, a graphics device, an audio and a video
processor, a digital signal processor, a vector processing
device, a tloating point device, a single instruction multiple
data (SIMD) processing element, a transactional memory
processor, and the like.

[0015] Cores 110 and 111, hardware task scheduler 140,

and I/O interface device 106, may represent a general purpose
processor, a digital signal processor, another type of logic
circuit capable of performing operations, and the like. In an
exemplary embodiment, cores 110 and 111 represent instruc-
tion-based processors.

[0016] Hardware task scheduler 140 assigns and schedules
tasks 1n processor 101 by assigning a program and the corre-
sponding data to a specific resource, such as core 110 or
hardware accelerator 120. Task switch marker table 1350
includes information about assigned and scheduled tasks, and
hardware task scheduler 140 utilizes the information in the
task switch marker table to assign tasks and make scheduling
decisions. In a particular embodiment, a task switch marker

table similar to task switch marker table 150 1s included 1n
each core 110 and 111.

[0017] Task switch marker table 150 has a fixed size and
number of task switch marker table entries (MTEs) 151, such
as MTE(0) 152, MTE(1) 153, and MTE(L) 154. MTEs 151

are managed by a policy, such as a least recently used (LRU),
a Pseudo LRU, a Protected LRU, a Most Recently Used
(MRU), a Not Recently Used (NRU), a Re-Reference Interval
Prediction (RRIP), a Least Frequently Used (LFU), and a Set
Dueling (dynamically select) policy, and the like. Each of
MTEs 151 has task specific information fields including a
marker address 157, resource switch instruction attributes
158, and a launch delay 159, described 1n more detail below.

[0018] Core 110 includes a processor pipeline 160, a delay
unit 163, a counter unit 164, a register file 165, an alternate
register file 166, a candidate flag 167, a basic block flag 168,
a core marker address field 169, and a core interconnect 113.
Core interconnect 113 1s connected to interconnect 107. Pro-
cessor pipeline 160 has a detector 161, and a branch predic-
tion module 162. The devices of core 110, such as detector
161 and delay unit 163, communicate with each other, and
with devices of processor 101, for example memory 130 and
task switch marker table 150, via core interconnect 113 and
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interconnect 107. Interconnects 107 and 113 enable core 110
to send a request for instructions and data to memory 130, and
receive requested 1nstructions and data from the memory for
processing by the core.

[0019] A {fetch and decode unit of processor core 110 (not
shown) recerves and decodes 1nstructions from 1nstruction
stream 170, and detector 161 determines a position of instruc-
tions within the instruction stream, and maintains informa-
tion 1n the devices of core 110 and task switch marker table
150. The information includes operations specified and posi-
tions of mstructions, associated with a specific set of mnstruc-
tions. For example, detector 161 can include a basic block
detector circuit operable that can detect various instructions
within a basic block, and a detector circuit that can provide
various functions, as described below.

[0020] Each instruction 1n instruction stream 170 has a
format as indicated by a representative istruction 171, that
detector 161 utilizes to determine an operation specified and
a position of the mstruction within the instruction stream, as
described below. Instruction 171 includes an instruction
address 177, an opcode 178, and an instruction field 179. In
particular, instruction address 177 1s typically not an explicit
portion of mstruction 171, but 1s implied from the location of
the mstruction 1n mstruction stream 170. Thus, 1n a particular
embodiment, the fetch and decode unit can derive 1nstruction
address 177 from instruction stream 170. Instruction 171 also
includes task information associated with the instruction that,
together with instruction address 177, uniquely 1dentifies the
instruction within 1nstruction stream 170. A value 1n Opcode
178 field specifies the operation to be performed by instruc-
tion 171. Instruction field 179 has additional instruction infor-
mation associated with instruction 171. For example, the
additional instruction information may include the specifica-
tion of one or more registers, one or more flags, and the like.
In order to maintain information associated with specific sets
ol 1nstructions, detector 161 may store the value included 1n
instruction address 177, referred heremnafter as a marker
address, 1n core marker address field 169.

[0021] Detector 161 also directs counter unit 164 to count
the number of instructions received by processor core 110,
also referred herein as the cycle count, between 1ssue of the
specific instruction associated with the marker address, also
referred herein as a marker instruction, and the 1ssuance of a
resource switch istruction (RSWI). Counter unit 164 starts
the cycle count from zero (0), and the marker instruction and
the RSWI are part of the same specific set of instructions.

When detector 161 detects the 1ssue of the RSWI, the detector
may store information in a vacant (Iree) MTE of task switch
marker table 150. In particular, detector 161 may store the
marker address from core marker address field 169 to marker
address 157, the attributes of the RSWI to resource switch
instruction attributes 158, and the cycle count from counter
unmt 164 to launch delay 159. Detector 161 may also commu-
nicate to hardware task scheduler 140 that task switch marker
table 150 has been updated and provide the marker address
associated with the update to the task scheduler. In response,
hardware task scheduler 140 may update launch delay 159 at
the newly filled MTE corresponding to the marker address,
based on information at the newly filled MTE. For example,
launch delay 159 can be updated with a launch delay cycle
count that would allow a scheduling decision pre-computa-
tion to be performed, such that the scheduling decision would
coincide with the issue of the resource switch instruction.
Here, when detector 161 subsequently detects the 1ssue of an
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instruction having an instruction address 177 that matches a
particular marker address 157 at a particular MTE 151,
referred to as the matching MTE, the detector directs delay
unit 163 to start counting down a launch delay cycle count,
where the launch delay cycle count includes launch delay 159
of the matching M TE, as updated by hardware task scheduler.
Delayunit 163, after completing the count down of the launch
delay cycle count, requests hardware task scheduler 140 to
pre-compute a scheduling decision for the upcoming resource

switch instruction corresponding to core marker address field
169.

[0022] Hardware task scheduler 140 receives the request to
pre-compute the scheduling decision and corresponding core
marker address field 169 from delay unit 163, determines a
matching MTE that stores a matching marker address 157,
determines the hardware resource based on the matching
MTE’s resource switch instruction attributes 1358, and pre-
computes the scheduling decision, where the scheduling
decision may take multiple cycles to be made. In an embodi-
ment, hardware task scheduler 140 stores the scheduling deci-
sion at the matching MTE (not shown). Alternatively, hard-
ware task scheduler 140 includes a scheduling decision table
(not shown) where the scheduling decision and associated
information, such as the marker address value, are main-
tained. Pre-computing the scheduling decision includes:
assigning and scheduling a resource, such as hardware accel-
crator 120 or core 111, as specified by resource switch
instruction attributes 158 at the matching M'TE, to process the
next portion of the current task; pre-loading the resource with
context information for the next portion of the current task;
assigning and scheduling the current resource, core 110, to
process a next portion of a next task; and pre-loading core 110
with the context information for the next portion of the next
task. By pre-computing the scheduling decision, hardware
task scheduler 140 may minimize or eliminate the time
needed to make the scheduling decision and to pre-load the
context information, also referred herein as latency of the
scheduling decision, during execution of the RSWI. In this
manner, the scheduling decision may be made by the time the
resource switch 1s requested. In response to core 110 execut-
ing the RSWI, hardware task scheduler 140 switches the
portions of the tasks from current resources to next resources
based on the previously pre-computed scheduling decision
corresponding to the RSWI. The operation of detector 161,
delay unit 163, counter unit 164, and hardware task scheduler

140, 1s further described below.

[0023] Branch prediction module 162, in response to
receiving a branch instruction, makes a speculative prediction
as to whether the branch will be taken or not and what the
target of the branch 1s likely to be, and performs a pre-fetch of
instructions for the predicted branch. Examples of branch
istructions and branch predictors 1n processing devices are
well known 1n the art, and will not be further elaborated on
herein.

[0024] Processor 101 implements an 1nstruction set archi-
tecture that specifies an 1instruction set, data types, addressing,
modes, memory architecture, interrupt and exception han-
dling, I/O architecture, a set of architectural registers, and
other elements related to programming of the processing
device. In the illustrated embodiment, core 110 includes two
sets of physical registers, register file 165 and alternate reg-
ister file 166, that are implemented 1n the micro- architecture,
such that the architectural registers can be mapped to one of
the two sets of physical registers and switched to the other set
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of physical registers 1n response to a context switch. For
example, when core 110 1s executing instructions for a current
portion of a current task having the architectural registers
mapped to register file 165 and a RSWI occurs, which
requires hardware task scheduler 140 to make a scheduling
decision, the architectural registers’ mapping can be switched
to alternate register file 166 for executing the instructions
corresponding to a next portion of a next task. The two sets of
physical registers allows hardware task scheduler 140 to pre-
load the context information for the next portion of the next
task at alternate register file 166 while core 110 utilizes reg-
ister file 163 for the current portion of the current task, such
that the latency associated with loading the context informa-
tion can be mimmized or eliminated from the actual context
switch when 1t occurs.

[0025] FIG. 2 1llustrates a portion 200 of processor 101 of
FIG. 1, where memory 130 includes one or more tasks 280-
282. Task(0) 280, task(1) 281, and task(I) 282, each represent

a particular program and corresponding data that 1s to be
executed by processor 101, and for a portion of instruction
stream 170. Tasks 280-282 are divided into one or more jobs,
where each job generally represents an operation to be per-
formed by the task without being interrupted by a task switch.
The jobs of each task are represented by the mnemonic job
(1,.k), where 7 1s an 1nteger that indicates the job 1s associated
with task(y), and k 1s an integer indicating the order of the job
within the associated task, task(y). Further, the data associated
with each task 1s represented by the mnemonic data(j) where
11s the integer that indicates the data 1s associated with task(j).
As such, task(0) 280 1s divided 1nto a 10b(0,0) 283, a job(0,1)
284, and a job(0,S) 285 and operates on task data(0) 286,
task(1) 281 1s divided into a job(1,0) 287, a job(1,1), and a
10b(1,T) and operates on task data(1) 288, and task(I) 281 1s
divided 1nto a job(1,0), a job(I1,1), and a job(I,U) and operates
on task data(1).

[0026] For example, job(0,0) 283 can include a RSWI and
10b(0,1) 284 can correspond to an operation for which control
has been transferred, in response to execution of the RSWI,

from one core to another, such as from core 110 to core 111,
as specified by the RSWI. Here, core 111 executes job(0,1)

284 with associated data(0) 286. As such, job(0,1) 284
includes 1nstructions in accordance with the instruction set
architecture for core 111. Core 111 may perform a dedicated
operation, for example, maintaining a particular data base,
and the like. Alternatively, job(0,1) 284 can correspond to an
operation for which control has been transferred, in response
to execution of the RSWI, {from a core to a non-core resource,
such as from core 110 to hardware accelerator 120, as speci-
fied by the RSWI. Here, hardware accelerator 120 executes
10b(0,1) 284 with associated data(0) 286. In this case, job(0,1)
284 can include commands that can be accessed by hardware
accelerator 120, and may be specific to the particular type of
hardware accelerator, such as a security device commands,
encryption/decryption device commands, statistics device
commands, and the like.

[0027] A job includes one or more basic blocks. A basic
block 1s a set of instructions that has only one entry point and
only one exit point. As such, a basic block includes a set of
instructions where the last-in-order instruction is either a
change of flow mstruction (COFI), or a RSWI. The instruc-
tion 1mmediately following a COFI 1s the first-in-order
instruction of a next basic block, referred to as 1% BBI. The
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last-in-order basic block of the job includes a RSWI as 1ts
last-in-order instruction. That 1s, the RSW11s the last-in-order
instruction of the job.

[0028] Job(0,0) 283 includes a set of nstructions associ-
ated with task(0) 280, including instructions 271, 272 and
273. Instruction 271 includes instruction address 177 with a
value of Addr_X, opcode 178 with a value of COFI_X, and
istruction field 179 with a value of Field_X. The opcode
COFI X indicates that instruction 271 1s a COFI and has a
position of Addr_X. Instruction 272 includes instruction
address 177 with value of Addr_Y, opcode 178 with a value of
1°* BBI Y, and instruction field 179 with value of Field_ Y.
Instruction 272, being the target of COFI instruction 271, and
having opcode 1°°_BBI _Y, indicates that instruction 272 is
the first-1in-order 1nstruction of a basic block and has a posi-
tion of Addr Y. The set of instructions includes additional
sequential 1nstructions of the basic block (not shown).
Instruction 273 1s the last-in-order mstruction of job(0,0) 283
and includes instruction address 177 with a value of Addr

Y+M, opcode 178 with a value of RSWI_Y +M, and 1nstruc-
tion field 179 with value of Field_Y+M. The opcode RSWI_
Y+M indicates that instruction 273 1s a RSWI, that the
instruction 1s the last-in-order instruction of job(0,0) 283, and
that the istruction has a position of Addr_ Y+M. The “M” 1s
an integer that indicates the basic block includes M+1 sequen-
tial instructions, where the first-in-order basic block 1nstruc-
tion 272 is at Addr Y and the M” basic block instruction 273
at Addr Y+M 1s the last-in-order instruction of the basic
block. Note, the execution of the change of flow instruction
2’71 does not 1nvolve a switching a resource, loading another
context, or scheduling a decision. In contrast, RSWI instruc-
tion 273 requires a switch to the resource specified by the
istruction, and a scheduling decision to be made, and may
require loading another context on the resource specified by
the mstruction and loading a different context on the resource
that executed the RSWI. The scheduling decision may be
pre-computed and the contexts pre-loaded before RSWI
istruction 273 1ssues and executes.

[0029] Job(0,1) 284 1s presumed to nclude a set of com-

mands (not shown) that are to be executed by a non-core
resource, such as hardware accelerator 120. The set of com-
mands can be embedded into the task. Here, directly before a
RSWI, the mstructions will include setup instructions for
storing parameters for the non-core resource, that is, to store
the parameters to an agreed upon location in memory. Then
the RSWI operates to transfer control to the non-core
resource.

[0030] Job(0,S) 285 includes a set of instructions associ-
ated with task(0) 280, including nstructions 274, 275, 276,
277, and 278. Instruction 274 includes instruction address
177 with a value of Addr_U, opcode 178 with a value of
COFI U, and instruction field 179 with a value of Field U.
The opcode COFI_U 1indicates that instruction 274 1s a COFI
and has a position of Addr_U. Instructions 275 and 276 are
first-1n-order and last-in-order 1nstructions of a first-in-order
basic block of 10b(0,S) 285 having N+1 instructions, as indi-
cated by the opcodes 1”_BBI_V and COFI_V+N in the
respective opcode 178, and having respective instruction
address 177 values of Addr V and Addr V+N. Instructions
277 and 278 are the first-in-order and the last-in-order
instructions of a last-in-order basic block of job(0,S) 2835
having 0+1 instructions, as indicated by the opcodes 1%_

BBI_W and RSWI_W+0O 1n the respective opcode 178, and

having respective mstruction address 177 values of Addr_ W
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and Addr W+Q. The first-in-order basic block ends with
COFI 1nstruction 276 and does not involve a resource and
context switch. The second basic block ends with the RSWI
instruction 278 and requires a scheduling decision and a

resource switch as specified by the istruction, similar to the
RSWI instruction 273 above.

[0031] In a particular embodiment, processor 101 requests
tasks 280-282 from an external device such as processor 102
or external memory 103, recerves the tasks via communica-
tion bus 104, and stores the tasks in memory 130. In another
embodiment, processor 101 requests and receives tasks 280-
281 {from I/O interface device 106, and stores the tasks in
memory 130. In yet another embodiment, external memory
103 or I/O interface device 106 stores the tasks mnto memory
130 and loads task information into hardware task scheduler
140. Hardware task scheduler 140 then directs one of proces-
sor cores 110 or 111 to start executing one of the new tasks. In
a particular embodiment (not shown), a job includes one basic
block where the last-in-order instruction 1s a RSWI. The
skilled artisan will recognize that a job can be defined 1n
program code based upon an understanding of a programmer
or compiler as to the resources needed by particular code
portions when executed by one of the resources. The jobs of
a task can be indicated 1n the task code through the use of job
transition instructions that are located 1n the task software at
a 10b boundary, such as the last-in-order instruction of a job,

such as a RSWI.

[0032] FIGS. 3-8, described 1n detail below, 1llustrate pro-

cessor 101 of the multi-core processing system 100 without
reference to core 111, and execution flows for performing
task switching operations corresponding tasks 280-282.

[0033] FIG. 3 1llustrates an execution flow 300 on processor
101, including steps 390 and 391 for showing an instruction
stream and the associated task assignment. In an embodi-
ment, the processor 101 pre-configures hardware task sched-
uler 140 and the devices of the processor and core 110 during
a conflguration process prior to any data being received at the
processor. In another embodiment, processor 101 configures
the task scheduler 140 and the devices of the processor and
core 110 during mitialization, restart, or upon receipt of an
initial datum of data associated with a specific task. Config-
uring hardware task scheduler 140 may include mitializing a
scheduling decision table (not shown) to a state indicating
that no scheduling decisions have been made. During opera-
tion, data corresponding with tasks 280-282 1s received by
processor 101 via communication bus 104 or I/O interface
device 106 and the data can be stored 1n memory 130 along
with the corresponding task. For example, data(0) 286 can be

received for task(0) 280.

[0034] In step 390, 1in response to recerving data(0) 286,
hardware task scheduler 140 makes a scheduling decision to
assign and schedule job(0,0) 283 to process the data(0) on
core 110. As such, mstruction stream 170 provides instruction
271 to core 110. As noted above, instruction 271 includes
instruction address 177 having the value Addr_X, and opcode
178 having the value COFI_X, indicating that instruction 271
1s a COFL.

[0035] In step 391, hardware task scheduler 140 causes

register file 165 to be loaded with register context for job(0,0)
283, as indicated by the mnemonic Regs(0,0) 1n the register
file. The other devices of processor 101 are shown with their
reset or 1nitial state values, prior to processing any instruc-
tions. For example, alternate register file 166 has the value
Null, mdicating that no other task’s context registers have
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been pre-loaded 1nto core 110. Candidate flag 167 and basic
block flag 168 have the value of False, and core marker
address field 169 has the value of Null, indicating that no prior
task has been processed on core 110. Task switch marker table
150 1s also empty, indicating that no prior task’s 1nstruction
set information has been maintained, as shown by each of the
MTE(0) 152, MTE(1) 153, and MTE(L) 154, having a Null
value for both their MTE marker address 157, and switch
instruction attributes 138, and a value of zero (0) for launch

delay 159.

[0036] FIG.41illustrates an execution flow 400 on processor
101 that 1s executed after execution flow 300, and that
includes steps 490-493 for showing a response to COFI
instruction 271. In step 490, detector 161 receives 1nstruction
271, and determines that the instruction 1s a COFI, as indi-
cated by the value of COFI_X 1n opcode 178. In step 491,
detector 161 maintains the Null address at core marker
address field 169 to indicate that the first-in-order 1nstruction
ol a basic block has not been recerved. Further, in step 492,
because the target of COFI instruction 271, that 1s the first-
in-order 1nstruction of a basic block, has not been received,
detector 161 maintains candidate tlag 167 as False, to indicate
that the detector has not determined that the first-in-order
instruction of a basic block to be received 1s a candidate for
entry 1n task switch marker table 150. In step 493, detector
161 sets basic block flag 168 to True to indicate that the next
instruction of the mstruction stream 170 will be the beginning
of a basic block. In a step (not shown), core 110 executes
instruction 271. In the following description, the execution of
the subject mnstructions by core 110 will be implied.

[0037] FIG.Sillustrates an execution tlow 500 on processor
101 that 1s executed after execution flow 400, and that
includes steps 590-595 for an execution flow of a first-in-
order basic block instruction (1°°_BBI). In step 590, detector
161 recerves 1nstruction 272, and determines that the instruc-
tion 1s a BBI, as determined by the fact that the imstruction 1s
the first-in-order mstruction received after COFI 1nstruction
271 1n FIG. 4. In step 591, in response to determining that the
instruction 272 is a 1°°_BBI, also referred to as the marker
istruction, detector 161 stores the Addr Y wvalue from
instruction address 177, referred to as the marker address, in
core marker address field 169 for future use. In step 592,
detector 161 sets basic block tlag 168 to False to indicate that
the 1_BBI has been received. In step 593, detector 161
requests counter unit 164 to begin counting the machine
cycles between 1ssue of the marker instruction and 1ssue of a
RSWI, as described below. In step 594, detector 161 deter-
mines 1f the marker address at core marker address field 169
matches marker address 157 of any of MTE(0) 152, MTE(1)
153, or MTE(L) 154, as indicated by the marker address 157
having a Null value for all of the MTEs. In step 595, in
response to determining that the marker address 1s not 1n task
switch marker table 150, detector 161 sets candidate tflag 167
to True, to indicate that the marker address 1s a candidate for
entry 1nto task switch marker table 150.

[0038] FIG. 61llustrates an execution flow 600 on processor
101 that 1s executed after execution flow 500, and that
includes steps 690-699 for an execution tlow of a RSWI. In
step 690, detector 161 recerves instruction 273, and deter-
mines that the instruction 1s a RSWI, as indicated by the
RSWI_Y+M value m opcode 178. In step 691, 1n response to
determining that instruction 273 i1s the RSWI, detector 161
determines that candidate tlag 167 is set to True, indicating
that the basic block currently being executed 1s a candidate for
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entry into task switch marker table 150. In step 692, detector
161 stores the Addr Y value from core marker address 169,
the RSWI_Y+M value from opcode 178, and the current
cycle count value (CY) from counter unit 164 at marker
address 157, resource switch instruction attributes 158, and
launch delay 159, respectively, of a vacant MTE of task
switch marker table 150, such as MTE(0) 152.

[0039] In step 693, detector 161 communicates an 1ndica-
tion to hardware task scheduler 140 that task switch marker
table 150 has been updated, and provides the Addr_Y value
from core marker address 169 to the task scheduler. In step
694, hardware task scheduler 140 retrieves MTE(0) 152 from
task switch marker table 150, because marker address 157 1n
the MTE(0) matches the marker address value, Addr_Y,
received from detector 161. Hardware task scheduler 140
calculates a new launch delay based on information in MTE
(0) 152 including the RSWI_Y+M value from resource
switch 1nstruction attributes 158 and the current cycle count
value from launch delay 1359, and stores an updated launch
delay of LDY at the launch delay of the MTE(0). In a particu-
lar embodiment, the updated launch delay 1s not calculated by
hardware task scheduler. Here, the number of processor
cycles that are needed to perform a task switch can be known
for multi-core processing system 100, and the updated launch

delay 1s calculated directly when the cycle count 1s provided
to launch delay 159 for the particular MTE 151.

[0040] The resource switch instruction attributes 158 allow
for the correct scheduling decision to be made, and may
include, for example, one or more of: a target destination of
RSWI mstruction 273; a type of the resource requested, such
as a specific type of hardware accelerator; a particular dedi-
cated operation to be performed by a core, such as maintain-
ing a particular data base; a run time associated with execus-
tion of a particular job on associated data on the requested
resource; features of the resource requested, such as features
of hardware accelerator 120, and the like. Launch delay 159
of MTE(0) 152 as stored by detector 161, and prior to the
update by hardware task scheduler 140, 1s the number of
machine cycles between the 1ssue of marker mstruction 272
of FI1G. 5 and the 1ssue of RSWIinstruction 273. The updated
launch delay 1s less than the originally stored launch delay
159 of MTE(0) 152, having a value of the number of machine
cycles that occur between the 1ssue of marker instruction 272
and the launch of the pre-computed scheduling decision, such
that the updated launch delay will minimize or eliminate the
latency of the scheduling decision and the context pre-loading
from the execution of RSWI instruction 273. As a result, the
scheduling decision 1s made by the time the resource switch 1s
requested. Hardware task scheduler 140 also calculates the
updated launch delay such that the decision window (the time
between the launch of a scheduling decision pre-computation
request and the 1ssue of an associated RSWI) 1s as small as
possible. Thus, hardware task scheduler 140 1s able to con-
sider additional information just ahead of the time the RSWI
1ssues, allowing more complete and correct scheduling deci-
s10ns to be made.

[0041] In step 6935, detector 161 stores the Null address at
core marker address field 169, to indicate that the first-in-

order 1nstruction of a next basic block has not been received.
In step 696, detector 161 resets candidate flag 167 to False, to

indicate that a next candidate for entry 1n task switch marker
table 150 has not been identified. In step 697, hardware task
scheduler 140 makes a scheduling decision to assign and
schedule 10b(0,1) 284, the next job 1n the order of jobs within
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task(0) 280, on a resource such as hardware accelerator 120,
as specified in RSWI mnstruction 273. In addition, hardware
task scheduler 140 causes any associated context to be loaded
into the hardware accelerator, and switches the job(0,1) to be
executed by the hardware accelerator. Hardware accelerator
120 begins execution of a set of commands associated with
10b(0,1) 284. In a particular embodiment, 1n step 698, hard-
ware task scheduler 140 makes the scheduling decision to
assign and schedule 10b(0,1) 284 on a core resource, such as
the core 111, as specified in RSWI instruction 273, switches
the job(0,1) to be executed by the core, and the core begins
execution of the job(0,1). If necessary, hardware task sched-
uler 140 causes the context associated with the job(0,1) to be
loaded 1n core 111.

[0042] In step 699, hardware task scheduler 140 makes
another scheduling decision to assign and schedule another
j0b, such as job(1,0) 287 of task(l) 281, on the current
resource, core 110. In addition, hardware task scheduler 140
causes the context for job(1,0) to be loaded 1n to alternate
register file 166, as depicted by the value of AltRegs(1,0), and
switches the job(1,0) to be executed by core 110. Upon
completion of RSWI mstruction 273, core 110 switches the
mapping of the architectural registers from register file 165 to

alternate register file 166 and begins execution of job(1,0)
287.

[0043] FIG. 71llustrates an execution flow 700 on processor
101 that 1s executed after execution flow 600, and that
includes steps 790-798 for an execution tlow of a subsequent
instance of a 1¥°_BBL In step 790, detector 161 receives
instruction 272, and determines that the instruction is a 1°°_
BBI, as determined by the fact that the instruction 1s the
first-1n-order instruction recerved after a previous COFI or
RSWI. In step 791, 1n response to determining that the
instruction 272 is a 1°°_BBI, or marker instruction, detector
161 storesthe Addr Y value, or marker address, from instruc-
tion address 177, 1n core marker address field 169 for future
use. In step 792, detector 161 sets basic block flag 168 to False
to indicate that the 1°°_BBI has been received. In step 793,
detector 161 requests counter unit 164 to begin counting the
machine cycles between 1ssue of the marker istruction and

1ssue of a RSWI.

[0044] In step 794, detector 161 determines if the marker
address at core marker address field 169 matches marker
address 157 of any of MTE(0) 152, MTE(1) 153, or MTE(L)
154. Here detector 161 determines that marker address 157 of
MTE(0) 152 matches core marker address field 169, as indi-
cated by the Addr_Y value of marker address 157. In step 795,
in response to determining that the Addr_Y value 1s already 1n
task switch marker table 150, detector 161 sets candidate tlag
167 to False, to indicate that the marker address 1s not a
candidate for entry in task switch marker table 150. In step
796, detector 161 requests delay unit 163 to begin a count-
down of launch delay 159 of LDY cycles, that 1s, the number
of cycles (LDY) from launch delay 159 of MTE(0) 152. In
step 797, 1n response to completing the countdown of the
LDY cycles, delay unmit 163 communicates the marker
address, Addr_Y, associated with MTE(0) 152, to hardware
task scheduler 140 for a scheduling decision pre-computation
request.

[0045] Instep 798, 1in response to receiving the scheduling

decision pre-computation request from delay unit 163, hard-

ware task scheduler 140 retrieves MTE(0) 152 from task
switch marker table 150 and performs the scheduling deci-
sion pre-computation based on information mm MTE(0),
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including the resource switch instruction attributes 158 of
RSWIA_Y+M. In a particular embodiment, hardware task
scheduler 140 stores the scheduling decision for the marker
address of Addr_Y at MTE(0) 152 (not shown). Alternatively,
the hardware task scheduler 140 stores the scheduling deci-
sion for the marker address of Addr_Y at a scheduling deci-
s10on table within the hardware task scheduler.

[0046] FIG. 8illustrates an execution flow 800 on processor
101 that 1s executed after execution flow 700, and that
includes steps 890-896 for an execution tlow of a subsequent
instance of a RSWI. In step 890, detector 161 receives
istruction 273, and determines that the instruction 1s a
RSWI, as indicated by the RSWI_Y+M value in opcode 178.
In step 891, in response to determining that instruction 273 1s
the RSWI, detector 161 determines that candidate tlag 167 1s
set to False, indicating that the basic block currently being
executed 1s not a candidate for entry into task switch marker
table 150. In step 892, 1n response to determiming that the
candidate tlag 167 1s set to False, detector 161 stores the Null
address at core marker address field 169. In step 893, detector
161 communicates a task switch marker table updated 1ndi-
cator to hardware task scheduler 140, indicating that task
switch marker table 150 has been updated, and provides the
Addr Y value from core marker address field 169 to the
hardware task scheduler.

[0047] Instep 894, in response to receiving the task switch
marker table updated indicator and the core marker address
field 169 from detector 161, hardware task scheduler 140
retrieves the pre-computed scheduling decision of MTE(0)
152, because marker address 157 matches core marker
address field 169. In step 895, hardware task scheduler 140
makes a scheduling decision to assign and schedule j0b(0.1)
284, the next job 1n the order of jobs within task(0) 280, on a
resource, such as hardware accelerator 120, as specified in
RSWI 1nstruction 273, causes any associated context to be
loaded into the hardware accelerator, and switches the job(0,
1) to be executed by the hardware accelerator. Hardware
accelerator 120 begins execution of a set of commands asso-
ciated with job(0,1) 284. In a particular embodiment, 1n step
896, hardware task scheduler 140 makes the scheduling deci-
s1on to assign and schedule job(0,1) 284 on a core resource,
such as the core 111, as specified in RSWI instruction 273,
causes the context associated with the job(0,1) to be loaded 1n
core 111, switches the j10b(0,1) to be executed by the core, and
the core begins execution of the 10b(0,1). Here, upon comple-
tion of the execution of RSWI instruction 273, core 110
switches the mapping of the architectural registers from reg-
ister file 163 to alternate register file 166 and begin execution
of j0b(1,0) 287. The pre-computed scheduling decision for
RSWI mstruction 273 allows the latency of the scheduling
decision and the context pre-loading to be minimized or
climinated from the execution of the RSWI instruction 273.

[0048] Thus, a processor can detect resource switch
instructions 1n an instruction stream and automatically insert
an entry 1n a task switch marker table, assign a marker address
corresponding to the beginning of the basic block containing
the resource switch instruction, and assign a number of cycles
to delay following the marker address before launching a
scheduling decision. The processor can further record the task
switch instruction attributes to allow for the correct schedul-
ing decision. Whenever a next address 1n the instruction
stream matches the marker address, the processor can wait a
launch delay cycles, and then begin pre-execution of the
scheduling decision using the stored switch instruction
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attributes. The processor can also monitor the actual latency
between completion of the instruction associated with the
marker address and adjust the launch delay to ensure the
decision window 1s as small as possible.

[0049] In a first embodiment of the present disclosure, a
processing system includes a processor core that receives a
first instance of a first instruction of a first basic block, where
the first instruction 1s a first-in-order instruction of the first
basic block, determines that a last-in-order instruction of the
first basic block 1s a first instance of a RSWI, receives a
second 1nstance of the first istruction, and to provide an
indication in response to recerving the second instance of the
first instruction. The processing system also includes a task
scheduler that mitiates a resource switch 1n response to the
first indication, where the resource switch 1s 1nitiated based
on a cycle count that indicates a number of processor cycles
between receiving the first instance of the first instruction and
receiving the first instance of the RSWI.

[0050] In an aspect of the first embodiment, the processor
core determines that the first instruction i1s the first-in-order
instruction of the first basic block based upon an address
associated with the first instruction. In another aspect, the
processor core determines that the first istruction has not
been previously received by the processor core based on the
address. In still another aspect, the processor core stores the
address 1n a task switch marker table of the processing sys-
tem. In yet another aspect, the processor core starts a counter
in response to recerving the first instance of the first mstruc-
tion, where the counter 1s incremented for each processor
cycle after the first instruction 1s recerved. In another aspect,
the cycle count includes a value of the first counter in response
to recerving the first mstance of the RSWI. In yet another
aspect, mitiating the resource switch 1s based on a launch
delay, where the launch delay 1s associated with a number of
processor cycles for processing a resource switch. In another
aspect, the launch delay includes a difference of the cycle
count and the second number of processor cycles.

[0051] In asecond embodiment of the present disclosure, a
method includes recerving, by a processor core of a process-
ing system, a first instance of a first instruction of a first basic
block, where the first instruction 1s a first-in-order instruction
of the first basic block, determining, by the processor core,
that a last-in-order instruction of the first basic block 1s a
RSWI, receiving, by the processor core, a second instance of
the first instruction, providing, by the processor core, an 1ndi-
cation in response to receiving the second mstance of the first
instruction, and mitiating, by a task scheduler of the process-
ing system, a resource switch 1n response to the first indica-
tion, where the resource switch 1s 1nitiated based on a cycle
count that indicates a number of processor cycles between
receiving the first instance of the first instruction and receiv-
ing the first mstance of the RSWI.

[0052] In an aspect of the second embodiment, the method
includes receiving, by the processor core, a last instruction of
another basic block immediately prior to receiving the first
instruction, and providing, by the processor core, another
indication that the first instruction 1s the first-in-order instruc-
tion 1n the first basic block 1n response to recerving the last
instruction. In another aspect, the method includes storing an
address associated with the first instruction 1n response to the
second indication. In yet another aspect, the method includes
determining that the first instruction 1s the first-in-order
instruction of the first basic block based on the address. In yet
another aspect, the method includes determining that the first
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instruction has not been previously recerved by the processor
core based upon the address. In still another aspect, the
method includes storing, by the processor core, a launch
delay 1in a counter 1n response to recerving the second 1nstance
of the first instruction, where the launch delay 1s a difference
of the cycle count and a number of processor cycles associ-
ated with processing a resource switch, and decrementing, by
the processor core, the counter for each processor cycle after
receiving the first instruction, where initiating the resource
switch by the task scheduler 1s 1n response to the counter
being decremented to a predetermined value. In another
aspect, 1n mitiating the resource switch, the method further
includes loading, by the task-scheduler, context information
for a next basic block of instructions 1into an alternate register
file of the processor core. In yet another aspect, the method
includes recerving, by the processor core, a second instance of
the RSWI, recerving, by the processor core, a second mnstruc-
tion ol another basic block, immediately after recerving the
RSWI the second time, the second instruction being a first-
in-order instruction of the second basic block, and executing,
by the processor core, the second 1nstruction using the context
information from the alternate register file.

[0053] In a third embodiment of the present disclosure a
processor core ol a multi-core processing system includes a
detector that stores an address associated with a first instruc-
tion received by the processor core, where the first instruction
1s a first instance of a first-in-order mstruction of a first basic
block; starts a counter unit in response to recerving the first
instruction, wherein the counter 1s incremented for each pro-
cessor cycle after the first instance of the first instruction 1s
recetved; determines that a last-in-order instruction of the first
basic block 1s a RSWI, stores a cycle count from the counter
unit 1n response to determining that the second 1nstruction 1s
the first instance of the RSWI, where the stored cycle count
indicates a number of processor cycles received by the pro-
cessor between recerving the first mstruction and receiving
the first instance of the RSWI, determines that a second
instruction received by the processor core 1s a second 1nstance
of the first-in-order instruction, and provides a first indication
to a task scheduler 1n response to determining that the pro-
cessor core recerved the second 1nstruction.

[0054] In an aspect of the third embodiment, the processor
core further includes a candidate tlag to indicate that the first
basic block 1s a candidate for entry into a task switch marker
table of the multi-core processing system, where, 1n storing,
the address associated with the first instruction, the detector
determines that the candidate flag indicates that the first basic
block 1s the candidate for entry into the task switch marker
table. In another aspect, the processor core includes a basic
block flag to indicate that the first instruction 1s the first
mstruction 1n the first basic block, where the detector further
determines that a third instruction recerved by the processor
core immediately prior to recerving the first instruction 1s a
last-1n-order instruction of another basic block, and sets the
basic block flag in response to recerving the third istruction.
In yet another aspect, the processor core further includes a
delay unit to store a launch delay that 1s decremented by one
for each instruction received by the processor core after
receiving the first instruction, where the detector stores the
launch delay 1n response to receiving the second instance of
the first-in-order instruction, and where providing the first
indication 1s 1n response to the delay unit being decremented
to a pre-determined value.
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[0055] It will be appreciated that the devices disclosed
herein can be implemented in various manners using various
types of memory.

[0056] Inthis document, relational terms such as “first” and
“second”, and the like, may be used solely to distinguish one
entity or action from another entity or action without neces-
sarily requiring or implying any actual such relationship or
order between such entities or actions. The terms *“‘com-
prises’, “comprising’, or any other varnation thereof, are
intended to cover a non-exclusive inclusion, such that a pro-
cess, method, article, or apparatus that comprises a list of
clements does not include only those elements but may
include other elements not expressly listed or inherent to such
process, method, article, or apparatus. An element preceded
by “comprises . . . a” does not, without more constraints,
preclude the existence of additional identical elements in the
process, method, article, or apparatus that comprises the ele-

ment.
[0057] The term *“‘another”, as used herein, 1s defined as at
least a second or more. The terms “including”, “having™, or
any variation thereot, as used herein, are defined as compris-
ing. The term “coupled”, as used herein with reference to
clectro-optical technology, 1s defined as connected, although

not necessarily directly, and not necessarily mechanically.

[0058] The terms “assert” or “set” and “negate” (or “deas-
sert” or “clear’) are used when referring to the rendering of a
signal, status bit, or similar apparatus into its logically true or
logically false state, respectively. It the logically true state 1s
a logic level one, the logically false state 1s a logic level zero.
Andifthelogically true state 1s a logic level zero, the logically
false state 1s a logic level one.

[0059] As used herein, the term “bus™ 1s used to refer to a
plurality of signals or conductors that may be used to transier
one or more various types ol information, such as data,
addresses, control, or status. The conductors as discussed
herein may be 1llustrated or described in reference to being a
single conductor, a plurality of conductors, unidirectional
conductors, or bidirectional conductors. However, different
embodiments may vary the implementation of the conduc-
tors. For example, separate unidirectional conductors may be
used rather than bidirectional conductors and vice versa.
Also, plurality of conductors may be replaced with a single
conductor that transiers multiple signals serially or in a time
multiplexed manner. Likewise, single conductors carrying,
multiple signals may be separated out 1nto various different
conductors carrying subsets of these signals. Therefore, many
options exist for transferring signals.

[0060] As used herein, the term “machine-executable
code” can refer to instructions that can be provided to a
processing device and can be executed by an execution unit.
The machine-executable code can be provided from a system
memory, and can include a system BIOS, firmware, or other
programs. In addition, machine-executable code can refer to
microcode 1nstructions that can be used by a processing
device to execute instructions, and can be provided by a
microcode memory of the processing device.

[0061] Other embodiments, uses, and advantages of the
disclosure will be apparent to those skilled 1 the art from
consideration of the specification and practice of the disclo-
sure disclosed herein. The specification and drawings should
be considered exemplary only, and the scope of the disclosure
1s accordingly intended to be limited only by the following
claims and equivalents thereof.
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1. A method comprising;:

processing, by a processor core of a processing system, a
first instruction of a first istance of a first basic block,
wherein the first instruction of the first instance of the
first basic block 1s a first-in-order 1nstruction of the first
instance of the first basic block;

determinming, by the processor core of the processing sys-
tem, that a last-in-order instruction of the first instance of
the first basic block 1s a resource switch instruction
(RSWI);

in response to determining that the last-in-order instruction

of the first instance of the first basic block 1s the RSWI,

storing, by the processor core of the processing system,
a cycle count indicating a first number of processor
cycles occurring between processing of the first instruc-
tion of the first instance of the first basic block and

processing of the RSWI;

processing, by the processor core of the processing system,
a {irst mnstruction of a second instance of the first basic

block; and

imitiating, by a hardware task scheduler of the processing
system, a resource switch in response to processing the
first instruction of the second instance of the first basic
block, wherein the resource switch 1s initiated based on
the cycle count.

2. The method of claim 1, further comprising:

receving, by the processor core of the processing system.,
a last-in-order 1nstruction of a first instance of a second
basic block immediately prior to receiving the first
instruction of the first instance of the first basic block;
and

providing, by the processor core of the processing system,
a first indication that a next instruction 1s a first-in-order
instruction of the first instance of the first basic block,
wherein the next instruction 1s the first instruction of the
first instance of the first basic block.

3. The method of claim 2, further comprising:

storing, by the processor core of the processing system, an
address associated with the next istruction in response
to the first indication.

4. The method of claim 3, further comprising;

determining, by the processor core of the processing sys-
tem, that the next instruction 1s the first-in-order instruc-

tion of the first instance of the first basic block based
upon the address.

5. The method of claim 3, wherein storing the cycle count
1s 1n response to determining that the cycle count of the first
basic block 1s not currently stored.

6. The method of claim 1, further comprising;

storing, by the processor core of the processing system, a
launch delay in a first counter 1n response to receiving,
the first instruction of the second instance of the first
basic block, wherein the launch delay 1s a difference of
the cycle count and a number of processor cycles asso-
ciated with processing the resource switch; and

wherein initiating the resource switch by the hardware task
scheduler 1s based upon the stored launch delay.

7. The method of claim 1, further comprising;

in response to iitiating the resource switch, loading, by the
processor core of the processing system, context infor-
mation for a next basic block of instructions into an
alternate register file of the processor core of the pro-
cessing system.
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8. The method of claim 7, further comprising;

receiving, by the processor core of the processing system,
the RSWI of the second instance of the first basic block:

receiving, by the processor core of the processing system,

a second 1nstruction of a first instance of a second basic

block, immediately after receirving the RSWI of the sec-

ond 1nstance of the first basic block, wherein the second
instruction of the first instance of the second basic block
1s a first-1n-order mstruction of the first istance of the
second basic block; and

executing, by the processor core of the processing system,
the second 1nstruction of the first instance of the second
basic block using the context information from the alter-
nate register file of the processor core of the processing
system.

9. A processing system comprising;

a processor pipeline to recetve an instruction stream;

a detector circuit including:

a basic block detector circuit coupled to the processor
pipeline configured to determine that the processor
pipeline received a first instruction of a first imstance
of a first basic block, to determine that the first instruc-
tion of the first instance of the first basic block 1s a
first-in-order instruction of the first instance of the
first basic block, and to determine that a last-in-order
instruction of the first instance of the first basic block
1s a resource switch mstruction (RSWI); and

an mndicator circuit coupled to the basic block detector
circuit configured to provide a first indication 1n
response to the basic block detector circuit determin-
ing that the processor pipeline received a first instruc-
tion of a second 1nstance of the first basic block; and

a hardware task scheduler coupled to the indicator circuit
configured to 1mitiate a resource switch, 1n response to
the first indication, at a time subsequent to the first
istruction of the first instance of the first basic block
being recerved that 1s based on a cycle count that indi-
cates a first number of processor cycles that occurred
between recewving the first istruction of the first
instance of the first basic block and receiving the RSWI.

10. (canceled)

11. The processing system of claim 9, wherein the basic

block detector circuit 1s further configured to determine that
the first instruction of the first instance of the first basic block
1s the first-in-order instruction of the first instance of the first
basic block based upon an address associated with the first
instruction of the first instance of the first basic block.

12. The processing system of claim 11, wherein the detec-
tor circuit 1s configured to store the address associated with
the first instruction of the first instance of the first basic block
for a prior instance of the first basic block.

13. The processing system of claim 9, further comprising:

a counter configured to maintain the cycle count.

14. The processing system of claim 13, wherein the cycle
count 1s based upon a number of cycles between when pro-
cessing of the first instruction of the first instance of the first
basic block begins and when processing of the RSWI begins.

15. The processing system of claim 14, wherein the hard-
ware task scheduler i1s further configured to initiate the
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resource switch based upon a difference between the cycle
count and a number of processor cycles needed to process the
resource switch.

16. The processing system of claim 9, wherein the hard-
ware task scheduler 1s further configured to initiate the
resource switch based upon a number of processor cycles
needed to process the resource switch.

17. A method comprising:

determiming, by a basic block detector circuit of a process-
ing system, that a processor pipeline of the processing

system received a first instruction of a first instance of a
first basic block;

determining, by the basic block detector circuit of the
processing system, that the first instruction of the first
instance of the first basic block 1s a first-in-order istruc-
tion of the first instance of the first basic block;

determiming, by the basic block detector circuit of the
processing system, that a last-in-order instruction of the

first instance ot the first basic block 1s a resource switch
istruction (RSWI);

determining, by the basic block detector circuit of the
processing system, that the processor pipeline of the
processing system recerved a first instruction of a second
instance of the first basic block;

providing, by an indicator circuit of the processing system,
an 1ndication 1n response to the basic block detector
circuit of the processing system determining that the
processor pipeline of the processing system recerved the
first instruction of the second nstance of the first basic

block; and

imitiating, by a hardware task scheduler of the processing
system, a resource switch, 1n response to the indication,
at a time subsequent to the first instruction of the first
instance of the first basic block being received that i1s
based on a cycle count that indicates a first number of
processor cycles that occurred between receiving the

first 1instruction of the first instance of the first basic
block and receiving the RSWI.

18. The method of claim 17, further comprising;:

storing, by the basic block detector circuit of the processing
system, an address associated with the first instruction of
the first instance of the first basic block;

wherein determining that the first mstruction of the first
instance of the first basic block 1s a first-in-order instruc-
tion of the first instance of the first basic block 1s based
upon the address associated with the first instruction of
the first instance of the first basic block.

19. The method of claim 17, further comprising:

maintaining, by a counter of the processing system, the
cycle count;

wherein mitiating the resource switch 1s based upon the
cycle count.

20. The method of claim 19, wherein initiating the resource
switch 1s based upon a difference between the cycle count and
a number of processor cycles needed to process the resource
switch.
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