US 20160055612A1

a9y United States
12y Patent Application Publication o) Pub. No.: US 2016/0055612 Al

BARIK et al. 43) Pub. Date: Feb. 25, 2016
(54) ADAPTIVE SCHEDULING FOR TASK Publication Classification
ASSIGNMENT AMONG HETEROGENEOUS
PROCESSOR CORES (51) Int. Cl.
GO06T 1/20 (2006.01)
(71) Applicant: Intel Corporation, Santa Clara, CA G09G 5/00 (2006.01)
(US) (52) U.S. CL
CPC . GO6T 1720 (2013.01); GO9G 5/001 (2013.01)
(72) Inventors: RAJKISHORE BARIK, Santa Clara,
CA (US); Tatiana Shpeisman, Menlo (57) ABSTRACT
Park, CA (US); Brian T. Lewis, Palo Generally, this disclosure provides systems, devices, methods
Alto, CA (US); Rashid Kaleem, Austin, and computer readable media for adaptive scheduling of task
TX (US) assignment among heterogeneous processor cores. The sys-

tem may include any number of CPUs, a graphics processing
umt (GPU) and memory configured to store a pool of work

(73) Assignee: Intel Corporation, Santa Clara, CA items to be shared by the CPUs and GPU. The system may

(US) also include a GPU proxy profiling module associated with

one of the CPUs to profile execution of a first portion of the

(21) Appl. No.: 14/583,247 work items on the GPU. The system may further include
profiling modules, each associated with one of the CPUs, to

(22) Filed: Dec. 26, 2014 profile execution of a second portion of the work items on

cach of the CPUs. The measured profiling information from
the CPU profiling modules and the GPU proxy profiling
module 1s used to calculate a distribution ratio for execution
(60) Provisional application No. 62/041,321, filed on Aug. ol a remaining portion of the work 1tems between the CPUs

Related U.S. Application Data

25, 2014. and the GPU.
100
Heterogeneous
Processing System Shared Memory
102 Global Pool 120
104

) 4
CPU core 1 CPU core 3
106 110

CPU core 2
108

CPU core 4
112

US 2016/0055612 Al

Feb. 25, 2016 Sheet1 of S

Patent Application Publication

0Z1
Aoweap

[DIA

F41)
P 9109 NdD

OLlL
€ 9109 NdID

vol

|ood [BqO[|D
paieys

801
Z 9109 NdD

o0l
| 9109 NdD

<0l
walsAg buissonoud

snoauabola)oH

US 2016/0055612 Al

Feb. 25, 2016 Sheet 2 of S

Patent Application Publication

¢ DId

[4{\}4
90¢ pea.y)

ananb 193 10M
mc__@mvu..w \m—‘____.._.o_.hn_
HOM ndd

20¢C
90¢ peaiy)

onanb 19} I0OM
m—.___mﬁn_.uw \mr____.._.o.._ﬂ_
HOM ndo

801
Z 9109 NdoD

r4q8
¥ 2109 NdD

_ ¥0¢
90¢ peaiy) pea.ay)

ansanb 18)JOM 19)IoM
buleas /Buijiyo.d /Buijiyoud
NIOAM Axoud NdoO

- FAIYA
90¢ peaiy)

anonb 19}IOM
Bules)s Buijyoad
A1OM Nd?o

oLl

£ 2100 NdD | 9100 NdD

174} ¥l a0l
Alowep |jood [eqo|B paieys waejsAg buissedsoid
snoausboua)oH

Patent Application Publication Feb. 25, 2016 Sheet 3 of 5 US 2016/0055612 Al

Initialize shared global pool

302

First
time kernel iIs

seen?
304

No Yes

Assign a profiling size to
GPU proxy thread
306

CPU profiler
workers work

from shared pool Offload to GPU
314 308

Calculate CPU rate
and GPU rate
310

Use GPU offload ratio to

distribute remaining iterations Derive GP.U
316 offload ratio

312

CPU GPU
Execution Execution

318 320

Completion of
lterations

322

FIG. 3

Patent Application Publication Feb. 25, 2016 Sheet 4 of 5 US 2016/0055612 Al

400

Providc a pool of work 1tcms, the pool sharcd by a plurality of

CPUs and a GPU
410

Run a GPU proxy profiling thread on on¢ of the CPUs to profile

execution of a first portion of the work 1tems on the GPU
420

Run a CPU profiling thread on each of the CPUs to profile
execution of a second portion of the work 1tems on cach of the
CPUs
430

Calculate a distribution ratio based on measured profiling
information from the CPU profiling threads and from the GPU

proxy profiling thread
440

Distribute a remaining portion of the work 1tems from the pool
between the CPUs and the GPU based on the distribution ratio
450

FIG. 4

US 2016/0055612 Al

Feb. 25, 2016 Sheet 50f S

Patent Application Publication

0SS
Juswia|3g

Aejdsig

0EsS
wo)sAg
abelol)s

(174
aoeLalu|

1i0M)ON

S DIA

0¥S
wajsAsg O/

7ol
jood [EqO|D
poieys

¢kl 0L 801 901

$3102 Nd)D

01S
wiogjeld a[Iqon

US 2016/0055612 Al

ADAPTIVE SCHEDULING FOR TASK
ASSIGNMENT AMONG HETEROGENEOUS
PROCESSOR CORES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims the benefit, under 35 USC
119(e), of U.S. Provisional Application Ser. No. 62/041,321,
filed Aug. 25, 2014, which 1s hereby incorporated by refer-
ence 1n 1ts entirety.

FIELD

[0002] The present disclosure relates to processor core task
assignment, and more particularly, to adaptive scheduling for
task assignment among heterogeneous processor cores.

BACKGROUND

[0003] Heterogeneous systems are becoming increasingly
common 1n most market segments including mobiles, tablets,
laptops, desktops, and servers. These systems typically incor-
porate some types of specialized processing cores along with
the more general-purpose Central Processing Umt (CPU)
cores. The specialized processing cores may include, for
example, cores in Graphics Processing Units (GPUs), fixed
function hardware cores 1n Systems on a Chip (SoCs), small
cores 1 SoCs, and specialized cores 1n servers. While the
specialized cores are generally well-suited to perform their
domain-specific tasks, they may also be used to perform other
more general-purpose tasks. Simultaneously utilizing these
specialized cores along with CPU cores often results 1n sig-
nificant improvements 1n performance and energy eificiency
making it an attractive option for an application developer
trying to maximize benefits from the hardware.

[0004] Finding a good partitioning of work between the
cores (e.g., load-balancing), however, 1s generally a complex
problem. The division of work between the CPU and a GPU,
for example, has been the subject of numerous studies. Exist-
ing techniques typically fall into three broad categories, each
of which may have associated drawbacks:

[0005] (1) Off-line training—A runtime scheduling algo-
rithm 1s trained on an input data set ofthne (e.g., a training run
execution), and the information obtained 1s subsequently
used during the real runtime execution. The success of this
approach depends to a large extent on how accurately the
training reflects what occurs during the real runtime execu-
tion. Moreover, the training must be repeated for each new
platform.

[0006] (2) Use of a performance model—Accurate perfor-
mance models are difficult to construct, particularly for
irregular workloads (e.g., where distribution of the work can
vary significantly between processors) since runtime behav-
1or 1s highly dependent on characteristics of the input data.
[0007] (3) Extend standard work-stealing with restrictions
on stealing—Since the GPU typically cannot initiate commu-
nication with the CPU, addressing the problem of load imbal-
ance may be limited to use of extensions where work 1s
pushed to GPUs (e.g., work-stealing). Such approaches incur
overheads on CPU execution since the CPU has to act on
behalf of the GPU workers or threads.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Features and advantages of embodiments of the
claimed subject matter will become apparent as the following

Feb. 25, 2016

Detailed Description proceeds, and upon reference to the
Drawings, wherein like numerals depict like parts, and 1n

which:

[0009] FIG. 1 illustrates a top level system diagram of an
example embodiment consistent with the present disclosure;

[0010] FIG. 2 illustrates a system block diagram of an
example embodiment consistent with the present disclosure;

[0011] FIG. 3 illustrates a flowchart of operations of one
example embodiment consistent with the present disclosure;

[0012] FIG. 4 illustrates a flowchart of operations of
another example embodiment consistent with the present dis-
closure; and

[0013] FIG. S illustrates a system diagram of a platform of
another example embodiment consistent with the present dis-
closure.

[0014] Although the following Detailed Description will
proceed with reference being made to 1illustrative embodi-
ments, many alternatives, modifications, and variations
thereof will be apparent to those skilled in the art.

DETAILED DESCRIPTION

[0015] Generally, this disclosure provides systems,
devices, methods and computer readable media for adaptive
scheduling of task assignment among heterogeneous proces-
sor cores. In particular, scheduling techniques are disclosed
for systems with integrated CPU-GPU processors that
employ online profiling (e.g., at run-time, 1n contrast to tech-
niques that use off-line training, prior to run-time). Embodi-
ments ol the present disclosure may be configured to profile
some Iraction of the work items on each processor and to
calculate a desired distribution of the workload between the
CPU and GPU based on the measured device execution rates
(and other metrics) obtained through profiling. CPU Profiling
threads may execute on each CPU, and an additional GPU
proxy profiling thread may execute on one of the CPUs.
Profiling may be completed when one of the profiling threads
completes, as will be described 1n greater detail below. Addi-
tionally, work-stealing queues may be associated with each
CPU to more efficiently distribute workload. Because the
system 1s 1mplemented 1 a run-time fashion, 1t does not
require any prior training and mtroduces no additional over-
head when applied to applications with new data sets or to
new platform configurations.

[0016] FIG. 1 illustrates a top level system diagram 100 of
one example embodiment consistent with the present disclo-
sure. A heterogeneous processing system 102 1s shown to
include a number of CPUs or CPU processing cores 106, 108,
110,112 as well as a GPU 114. The GPU may be any type of
auxiliary or accelerator processor. For example, the GPU may
be configured to perform parallel operation with greater etfi-
ciency than the CPUs. In some embodiments, these proces-
sors may be mtegrated into a System on a Chip (SoC). An
integrated GPU may substantially reduce the cost of CPU-
GPU data communication, compared to systems with discrete
GPUs, thus allowing work sharing between the CPU and
GPU at a finer level of granularnty.

[0017] A shared global pool of work items 104 1s also
illustrated and 1s configured to provide work-items to be
distributed for execution among the processors 106, . . . 114.
The shared global pool of work 1tems 104 may be stored 1n
memory module 120. In some embodiments, the work 1tems
may be 1n the form of the elements of a parallel iteration space
associated with a data-parallel kernel, for example:

US 2016/0055612 Al

// for a parallel iteration space of N by M data elements
for (i=0; 1 <N;i++) {
for (j = 0; j < M; j++) {
// data parallel kernel performs work on data elements
Result[i,] = perform_work(1, |);

h
h

The kernel, in this example the function perform_work(),
may be a set of operations or processor mstructions to per-
form a task using the data elements that are organized 1nto an
N by M parallel iteration space. The work may thus be per-
formed 1n parallel, on segments of the data. For example,
there may be N invocations of the kernel, each associated with
one of N segments of the data, where each nvocation per-
forms M of the computations on that segment. The 1voca-
tions of the kernel may be distributed or scheduled among the
processors 106, . . . 114 based on the profiling techniques
described herein.

[0018] The CPU and GPU of a heterogeneous system gen-
erally have different device characteristics. CPU cores typi-
cally provide out-of-order instruction execution capability,
sophisticated branch predictors, and use relatively deep cache
hierarchies to reduce memory access latency. GPU cores, on
the other hand, typically execute instructions in-order, devote
theirr hardware resources to a relatively larger number of
arithmetic-logic units (ALUs), and hide memory latency by
switching between threads. This dissimilanity may lead to
significant differences in execution performance. Certain
applications may execute significantly faster on one device
than on another. As a result, executing even a relatively small
amount of work on the slower device may adversely impact
performance. Thus, the profiling-based runtime scheduling,
system described herein 1s configured to avoid forcing a faster
device (often the GPU) to wait 1dly, after completion of 1ts
portion of the profiling workload, while a second, slower
device (often the CPU) finishes 1ts profiling workload.

[0019] FIG. 2 1llustrates a system block diagram 200 of an
example embodiment consistent with the present disclosure.
Embodiments of the scheduling system are described in the
context of heterogeneous systems comprising any number of
CPUs and GPUs, for example four CPU cores 106, 108, 110,
112 and one GPU 114 as shown in FIG. 2. The techniques,
however, are applicable to any heterogeneous System on a
Chip (SoC) or other system with CPUs and accelerators.

[0020] Each CPU core 1s shown to include a CPU profiling/
worker thread (or module) 202. One of the CPU cores, 106, 1s
shown to additionally include a GPU proxy profiling/worker
thread (or module) 204, and for this reason the scheduling
system may be described as asymmetric (1.¢., not all of the
CPU cores host a GPU proxy thread). In some embodlments

the CPU core that hosts the GPU proxy proﬁhng/worker
thread 204 may be configured to not also host the CPU pro-
filing/worker thread 202 (unless, for example, there 1s an
oversubscription at run-time). Thus, i FIG. 2, the CPU pro-
filing/worker thread 202 associated with CPU core 1 106 1s
shown as a dotted line to indicate an optional presence 1n
some embodiments.

[0021] Memory 120 may be configured to store work-steal-
ing queues (e.g., data structures) 206 associated with each
CPU core, the operations of which will be described below.

[0022] The scheduling system may be configured to oper-
ate 1n two phases: a profiling phase and an execution phase. In
the profiling phase, a fixed quantity (first portion) of work-

Feb. 25, 2016

items (corresponding to a fixed profiling size ip, to be
described below) 1s selected and fetched from the shared
global pool 104 by the GPU proxy profiling/worker thread
204 and offloaded to the GPU 114 for execution. The GPU
proxy profiling/worker thread 204 measures or collects pro-
filing information related to the GPU execution of those ofl-
loaded work-1tems. In parallel, the CPU profiling/worker
threads 202 may fetch a second portion of work-items from
the shared global pool 104 for execution on the CPU associ-
ated with that profiling/worker thread and measures or col-
lects profiling information on the execution of those work-
items local to that CPU. This per-thread profiling information
may include execution time, energy consumption, memory
usage characteristics, and/or other suitable metrics.

[0023] When the GPU proxy profiling/worker thread 204
completes the GPU profiling phase, 1t may perform the fol-
lowing operations:

[0024] 1. Computation of the CPU-GPU work distribution
ratio based on its own GPU profiling information and the
profiling information from each CPU profiling thread 202.
[0025] 2. Fetch any remaining work-items (remaining por-
tion) from the shared global pool 104.

[0026] 3. Assign a portion of the fetched remaining work
items to one of the CPU work-stealing queues 206. The por-
tion may be based on the CPU-GPU distribution ratio com-
puted in operation 1. Other CPU profiling/worker threads 202
(e.g., on other CPU cores 108, 110, 112) may subsequently
steal work from this work-stealing queue 206 so that the work
1s shared or balance among the CPU cores.

[0027] 4. Offload the rest of the fetched work-1tems (from
operation 2) to the GPU 114.

[0028] Insomeembodiments, machine learning techniques
may be employed to predict the occurrence of the relatively
unusual situation where one or more of the CPU profiling
threads 202 may complete their profiling tasks before the
GPU proxy profiling/worker thread 204 completes. In such a
case, GPU profiling may be avoided.

[0029] Theexecution phase may follow the profiling phase.
When each CPU profiling/worker thread 202 detects that
there 1s no work remaining 1n the shared global pool 104 (for
example, since the GPU proxy profiling/worker thread 204
emptied the pool), that CPU profiling/worker thread 202 then
switches to a work-stealing mode. In work-stealing mode,
cach CPU profiling/worker thread 202 fetches work-items,
for execution, from one of the work-stealing queues 206
associated with one of the other CPU cores. Performing
work-stealing 1n this manner may be more efficient than hav-
ing each CPU profiling/worker thread 202 fetch work-1tems
one at a time from the shared global pool 104 because the
work 1s distributed more evenly and less contention i1s gener-
ated for the single lock that may be employed to protect the
pool 104. Load balancing among the CPU profiling/worker
threads 202 1s also improved. Each CPU profiling/worker
thread 202 may continue to execute work-items until all CPU
work 1s completed. Meanwhile, the GPU proxy profiling/
worker thread 204 waits until the GPU finishes executing the
portion of the work that was offloaded to 1it.

[0030] The choice of the profiling size {p may be important
for full utilization of available parallelism on the GPU. For
example, on an integrated GPU that has 20 execution units
(EUs), with 7 hardware threads per EU and each thread being
configured for 16-way single-instruction-multiple-data
(SIMD), a total of 2240 work-1tems may execute 1n parallel.
In this case, Ip may be chosen as 2048 (a nearest power of 2

US 2016/0055612 Al

to the total number of work-1tems that may be executed in
parallel). In some embodiments, where the GPU uses
OpenCL (a soltware framework for parallel computing across
heterogeneous platiorms), this information can be obtained
by querying the GPU device using OpenCL tlags such as

CL_DEVICE MAX COMPUTE_UNITS,
CL_DEVICE MAX_ WORK_GROUP_SIZE, and
CL_DEVICE_NATIVE_VECTOR_WIDTH_INT.

[0031] Ifboththe CPUs 106, ...112 and GPU 114 are kept
busy during profiling, by having a sufficient number of par-
allel iterations to execute, then the profiling phase may reduce
the overhead to near zero. In some embodiments, this over-
head may be limited to the relatively few arithmetic opera-
tions associated with calculating the CPU-GPU work distri-
bution ratio, which 1s typically negligible compared to the
total execution time of an application. The CPU profiling/

worker thread 202 may continue to work off the shared global
pool 104 while the GPU proxy profiling/worker thread 204

oftloads computations to the GPU 114. Once the GPU fin-
1shes, the GPU proxy profiling/worker thread 204 will com-
pute the CPU-GPU distribution ratio, distribute work, and
then both the CPUs and the GPU threads may 1mmediately

begin the execution phase.

[0032] The decision to start the profiling phase of the
scheduling process with data from the shared global pool 104
rather than the work-stealing queues 206 may be advanta-
geous since there 1s no prior knowledge, at the beginning of
work distribution, of how to partition work among the CPU
cores and the GPU. For example, with 1irregular applications
(where some segments of the application have many more
computations than other segments), 1t would likely be costly
to partition the work equally, up front, into the work-stealing,
queues 206 without knowing the characteristics of the appli-
cation’s 1rregular behavior.

[0033] FIG. 3 illustrates a tlowchart of operations 300 of
one example embodiment consistent with the present disclo-
sure. The operations provide a method for adaptive schedul-
ing of task assignment among heterogeneous processor cores.
At operation 302, the shared global pool 104 1s initialized
with work 1tems. The work 1tems may be 1n the form of a
parallel 1iteration space associated with a data-parallel kernel.
At operation 304, a determination 1s made as whether this
kernel has been previously profiled. It so, then at operation
306, a profiling size 1s assigned to the GPU proxy profiling/
worker thread 204 and a quantity of work-items (based on the
profiling size) 1s selected and fetched from the shared global
pool 104 by the GPU proxy profiling/worker thread 204.
These work-1tems are then offloaded, at operation 308, to the
GPU 114 for execution. In parallel, at operation 314, the CPU
profiling/worker threads 202 fetch remaining work-i1tems

from the shared global pool 104 for execution on the associ-
ated CPU.

[0034] At operation 310, the CPU execution rate (and/or
other profiling metrics) 1s calculated by the CPU profiling/
worker threads 202 (as executed in operation 314) and the
GPU execution rate (and/or other profiling metrics) 1s calcu-
lated by the GPU proxy profiling/worker thread 204 (as
executed 1n operatlon 308). At operation 312, the GPU ofil-
load ratio 1s dertved from those rate calculations. For
example, if the GPU execution rate 1s determined to be twice
that of the CPU execution rate, then the GPU offload ratio

Feb. 25, 2016

could be set to approximately a factor of 2, meaning that the
GPU would be given twice the amount of work as the CPUSs.

[0035] At operatlon 316, after the kernel has been proﬁled
the GPU oilload ratio 1s used to distribute the remaining work
(1terations) from the shared global pool 104 to the CPUs and
the GPU. At operation 318, the CPUs execute their assigned
workload, including work-stealing from other CPUs when
their own tasks are completed. At operation 320 the GPU
executes its assigned workload. At operation 322, all itera-
tions are completed.

[0036] Although this asymmetric profiling approach sub-
stantially reduces overhead in the profiling phase, compared
to existing profiling based scheduling algorithms, there may
still be some overhead incurred during the execution phase 11
the iterations that were executed 1n the profiling phase were
not representative of the entire 1teration space. Such execu-
tion wrregularity can cause a workload imbalance. Addition-
ally, there may be situations where a data-parallel kernel 1s
invoked several times, but the optimal CPU-GPU distribution
ratios differ from one invocation to another. In some embodi-
ments, the following additional adaptive strategies may be
employed by the asymmetric profiling system to address
these problems.

(A) Load Imbalance

[0037] Since profiling 1s performed only one time, the
CPU-GPU distribution ratio that 1s chosen may not be accu-
rate for some classes of workload that exhibitload imbalance.
These classes may include workloads that perform graph
algorithms like breadth first search (BFS), depth first search
(DFS), and Delauny mesh refinement. To address this prob-
lem, 1n some embodiments the profiling phase may be
repeated until a termination condition 1s reached, after which
the benefit of further re-profiling 1s likely to diminish
Repeated profiling to adapt the distribution ratio may improve
the characterization of the application’s behavior. Examples
of three possible termination schemes include:

[0038] (1) Convergence-based termination: Profiling 1s
repeated until two successive profiling phases result in CPU-
GPU distribution ratios that differ by less than a threshold
value, which 1s to say that they converge. For example, the
convergence criteria may be selected as a relative difference
between successive distribution ratios ol approximately 5
percent or less. This termination criterion may be advanta-
geous 1n cases where the distribution ratio stabilizes after
some period of execution.

[0039] (2) Size-based termination: Profiling 1s repeated
until a certain portion of the 1teration space 1s completed, for
example, half of the iteration space. This strategy may work
well for many irregular applications. Although re-profiling
imposes an overhead, that overhead may be amortized by
obtaining an improved CPU-GPU distribution ratio.

[0040] (3) Linear-based termination: Profiling 1s repeated a
fixed number of times, after which a linear regression 1is
computed for the key optimization metric (typically execu-
tion time or energy use) as a function of the iteration number.
This computation may be based on any suitable method
including, for example, least-squares minimization. If there 1s
an acceptable linear approximation of the optimization metric
(e.g., the linear fitting error 1s below a threshold), then the
slope of the line may be used to predict the best future CPU-
GPU distribution ratio.

US 2016/0055612 Al

[0041] Whle the profiling phase 1s repeated, the CPUs and
GPU may be kept busy since no processor 1s waiting for any
other processor to complete. Thus, low overhead 1s main-
tained during re-profiling.

(B) Multiple Invocations Per Kernel

[0042] In applications where the kernel 1s 1nvoked repeat-
edly (e.g., a data-parallel kernel 1s invoked 1nside a for-loop),
the calculated distribution ratio may vary with each invoca-
tion. In some embodiments, the following adaptive strategy
may be employed to address this 1ssue. The first invocation
may be used as an 1nitial profile run to obtain a CPU-GPU
distribution ratio. During subsequent runs, whenever work-
items are executed on one or both processors, the asymmetric
profiling system may observe the per-processor execution
rates and update the running CPU-GPU distribution ratio
according to one of the following two update strategies:

[0043] (1) Previous: The processor execution rates found
for the previous invocation are used to determine the CPU-
GPU distribution ratio of the current invocation.

[0044] (2) Sample-weighted: A running distribution ratio
may be computed each time as a weighted average of the
previously used running distribution ratio and a ratio calcu-
lated from processor execution rates generated from the most
recent 1teration. In some embodiments, the current and pre-
vious ratios may be weighted by factors alpha and (1-alpha)
respectively, where alpha 1s a chosen from the range 01 0 to 1
to select the relative weight given to current data over histori-
cal data.

[0045] Thus, embodiments of the present disclosure for
adaptive scheduling using online profiling, as described
herein, may achieve improved results including the follow-
ng:

[0046] (1) Available system resources are utilized with near
zero additional overhead to more fully exploit the benefits of
heterogeneous processing. Existing profiling algorithms typi-
cally execute a fixed set of 1iterations to profile on multiple
processors to determine their effectiveness. The problem with
this approach 1s that processors other than the slowest pro-
cessor are forced to wait, which may introduce delay in the
system. In contrast, embodiments of the present disclosure
may employ an asymmetric scheduling technique for hetero-
geneous core assignment that eliminates these overheads by
using the faster of multiple devices to determine how long to
run the system in profile mode. Once the faster device finishes
executing the profiling work assigned to 1t, it signals other
devices to stop profiling. In this way the system does not have
to wait for a slower device during profiling and thus incurs
reduced profiling overhead.

[0047] (2) The profiling may measure, more accurately, the
execution ratio of different processors, which might other-
wise be difficult 1n the presence of load 1imbalance that often
occurs 1n 1rregular applications (e.g., where the required
workload may vary significantly between processors). Adap-
tive strategies are provided to address these potential load
imbalances caused by irregular kernels.

[0048] (3) Diverse types of workloads may be effectively
handled including those with multiple kernels and multiple
invocations of the same kernel, where each invocation
behaves differently. Adaptive strategies are provided to
account for the possibility that optimal execution might be
achieved with different CPU/GPU partitioning for each ker-
nel invocation or for different kernels. Additionally, multiple

Feb. 25, 2016

invocations of the same kernel may be handled by accumu-
lating work partitioning information across the invocations.

[0049] FIG. 4 illustrates a flowchart of operations 400 of
another example embodiment consistent with the present dis-
closure. The operations provide a method for adaptive sched-
uling of task assignment among heterogeneous processor
cores. At operation 410, a pool of work 1tems 1s provided. The
pool 1s shared by a plurality of central processing units
(CPUs) and a graphics processing unit (GPU). At operation
420, a GPU proxy profiling thread 1s run on one of the CPUs
to profile execution of a first portion of the work 1tems on the
GPU. At operation 430, a CPU profiling thread 1s run on each
of the CPUs to profile execution of a second portion of the
work 1tems on each of the CPUs. At operation 440, a distri-
bution ratio 1s calculated based on measured profiling infor-
mation from the CPU profiling threads and from the GPU
proxy profiling thread. At operation 450, a remaining portion

of the work 1tems from the pool 1s distributed between the
CPUs and the GPU based on the distribution ratio.

[0050] FIG. 5 illustrates a system diagram 3500 of one
example embodiment consistent with the present disclosure.
The system 500 may be a mobile platform 510 or computing
device such as, for example, a smart phone, smart tablet,
personal digital assistant (PDA), mobile Internet device
(MID), convertible tablet, notebook or laptop computer, or
any other suitable device. It will be appreciated, however, that
embodiments of the system described herein are not limited
to mobile platforms, and 1n some embodiments, the system
500 may be a workstation, desktop computer, node 1n a com-
pute cluster or one blade 1n a cloud or datacenter server. The
device may generally present various interfaces to a user via
a display element 550 such as, for example, a touch screen,
liquad crystal display (LCD) or any other suitable display

type.

[0051] The system 500 1s shown to include one or more
processors, including CPU cores 106, . . . 112, and GPU 114
which may be configured as heterogeneous processors. In
some embodiments, the processors may be implemented as
any number of processor cores. The processor (or processor
cores) may be any type of processor, such as, for example, a
micro-processor, an embedded processor, a digital signal pro-
cessor (DSP), a graphics processor (GPU), a network proces-
sor, a lield programmable gate array or other device config-
ured to execute code. The processors may be multithreaded
cores 1n that they may include more than one hardware thread
context (or “logical processor”) per core.

[0052] The system 500 1s shown to also include a memory
120 and a shared global pool of work 1tems 104, as described
previously. The memory 120 may be coupled to the proces-
sors and, 1n some embodiments, may be configured to host the
shared global pool 104. In some embodiments, for example,
the shared global pool 104 may be included in the memory
120, while in other embodiments, the shared global pool 104
may be implemented as a separate memory. The memory 120
may be any of a wide variety of memories (including various
layers of memory hierarchy and/or memory caches) as are
known or otherwise available to those of skill in the art. It will
be appreciated that the processors and memory may be con-
figured to store, host and/or execute one or more operating
systems, kernels, user applications or other software mod-
ules, which may execute 1n any of a number of available
privilege modes, including, for example, VMX root mode,
ring 0 mode and ring 3 mode. These applications may include,
but not be limited to, for example, any type of computation,

US 2016/0055612 Al

communication, data management, data storage and/or user
interface task. In some embodiments, these applications may

employ or interact with any other components of the mobile
platform 510.

[0053] System 500 1s also shown to include a storage sys-
tem 530, for example a hard disk drive (HDD) or solid state
drive (SSD).

[0054] System 500 1s also shown to include an input/output
(I0) system or controller 540 which may be configured to
enable or manage data communication between processors
and other elements of system 3500 or other elements (not
shown) external to system 500.

[0055] System 500 1s also shown to include network 1nter-
face module 520 which may include wireless communication
capabilities, such as, for example, cellular communications,
Wireless Fidelity (WikF1), Bluetooth®, and/or Near Field
Communication (NFC). The wireless communications may
conform to or otherwise be compatible with any existing or
yet to be developed communication standards including past,
current and future version of Bluetooth®, Wi-F1 and mobile
phone communication standards.

[0056] Itwill be appreciated that 1n some embodiments, the
various components of the system 500 may be combined 1n a
system-on-a-chip (SoC) architecture. In some embodiments,
the components may be hardware components, firmware
components, soltware components or any suitable combina-
tion of hardware, firmware or software.

[0057] Embodiments of the methods described herein may
be implemented 1n a system that includes one or more storage
mediums having stored thereon, individually or 1n combina-
tion, instructions that when executed by one or more proces-
sors perform the methods. Here, the processor may include,
for example, a system CPU (e.g., core processor) and/or
programmable circuitry. Thus, 1t 1s intended that operations
according to the methods described herein may be distributed
across a plurality of physical devices, such as, for example,
processing structures at several different physical locations.
Also, 1t 1s mtended that the method operations may be per-
formed individually or in a subcombination, as would be
understood by one skilled 1n the art. Thus, not all of the
operations of each of the tlow charts need to be performed,
and the present disclosure expressly intends that all subcom-
binations of such operations are enabled as would be under-
stood by one of ordinary skill in the art.

[0058] The storage medium may include any type of tan-
gible medium, for example, any type of disk including floppy
disks, optical disks, compact disk read-only memories (CD-
ROMs), compact disk rewritables (CD-RWs), digital versa-
tile disks (DVDs) and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random access
memories (RAMs) such as dynamic and static RAMs, eras-
able programmable read-only memories (EPROMSs), electri-
cally erasable programmable read-only memories (EE-
PROMSs), flash memories, magnetic or optical cards, or any
type of media suitable for storing electronic instructions.

[0059] ““Circuitry”, as used in any embodiment herein, may
include, for example, singly or in any combination, hardwired
circuitry, programmable circuitry, state machine circuitry,
and/or firmware that stores instructions executed by program-
mable circuitry. An application or “app” may be embodied as
code or instructions which may be executed on program-
mable circuitry such as a host processor or other program-
mable circuitry. A module, as used 1n any embodiment herein,

Feb. 25, 2016

may be embodied as circuitry. The circuitry may be embodied
as an integrated circuit, such as an integrated circuit chip.
[0060] Thus, the present disclosure provides systems,
devices, methods and computer readable media for adaptive
scheduling of task assignment among heterogeneous proces-
sor cores. The following examples pertain to further embodi-
ments.

[0061] According to Example 1 there i1s provided a system
for workload scheduling. The system may include a plurality
of central processing units (CPUs); a graphics processing unit
(GPU); and a memory module configured to store a pool of
work 1tems, the pool shared by the CPUs and the GPU. The
system of this example may also include a GPU proxy pro-
filing module, associated with one of the CPUs, configured to
profile execution of a first portion of the work 1tems on the
GPU. The system of this example may further include a
plurality of CPU profiling modules, each associated with one
of the CPUs, configured to profile execution of a second
portion of the work 1tems on each of the CPUs. The measured
profiling information from the CPU profiling modules and
from the GPU proxy profiling module 1s used to calculate a
distribution ratio for execution of a remaining portion of the
work 1tems between the CPUs and the GPU.

[0062] Example 2 may include the subject matter of
Example 1, and the measured profiling information includes
execution time, energy consumption and/or memory usage
characteristics.

[0063] Example 3 may include the subject matter of
Examples 1 and 2, and the first portion size 1s based on
properties ol the GPU related to a maximum number of work-
items that may be executed 1n parallel on the GPU.

[006d] Example 4 may include the subject matter of
Examples 1-3, and the memory 1s further configured to store
a plurality of work-stealing queues, each queue associated
with one of the CPUs.

[0065] Example 5 may include the subject matter of
Examples 1-4, and the GPU proxy profiling module 1s further
configured to distribute the remaining portion of the work
items between the work-stealing queues and the GPU.
[0066] Example 6 may include the subject matter of
Examples 1-5, and the GPU proxy profiling module and the
CPU profiling modules are further configured to repeat the
profiling execution until the calculated distribution ratio con-
verges to less than a threshold value.

[0067] Example 7 may include the subject matter of
Examples 1-6, and the GPU proxy profiling module and the
CPU profiling modules are further configured to repeat the
profiling execution and update the distribution ratio as a
weighted average of previously calculated distribution ratios.
[0068] Example 8 may include the subject matter of
Examples 1-7, and the CPU and the GPU are integrated 1n a
System on a Chip (SoC).

[0069] Example 9 may include the subject matter of
Examples 1-8, and the system 1s a smart phone, smart tablet,
notebook, laptop computer, compute cluster node or cloud/
datacenter server blade.

[0070] According to Example 10 there 1s provided at least
one computer-readable storage medium having instructions
stored thereon which when executed by a processor result 1n
the following operations for adaptive scheduling of a work-
load. The operations may include providing a pool of work
items, the pool shared by a plurality of central processing
units (CPUs) and a graphics processing unit (GPU); runming
a GPU proxy profiling thread on one of the CPUs to profile

US 2016/0055612 Al

execution of a first portion of the work i1tems on the GPU;
running a CPU profiling thread on each of the CPUs to profile
execution of a second portion of the work items on each of the
CPUs; calculating a distribution ratio based on measured
profiling information from the CPU profiling threads and
from the GPU proxy profiling thread; and distributing a
remaining portion of the work items from the pool between
the CPUs and the GPU based on the distribution ratio.
[0071] Example 11 may include the subject matter of
Example 10, and the measured profiling information includes
execution time, energy consumption and/or memory usage
characteristics.

[0072] Example 12 may include the subject matter of
Examples 10 and 11, and the first portion size 1s based on
properties of the GPU related to a maximum number of work-
items that may be executed 1n parallel on the GPU.

[0073] Example 13 may include the subject matter of
Examples 10-12, turther including distributing the remaining
portion of the work 1tems between the GPU and a plurality of
work-stealing queues, each queue associated with one of the
CPUs.

[0074] Example 14 may include the subject matter of
Examples 10-13, further including repeating the profiling
execution until the calculated distribution ratio converges to
less than a threshold value.

[0075] Example 15 may include the subject matter of
Examples 10-14, further including repeating the profiling
execution and updating the distribution ratio as a weighted
average ol previously calculated distribution ratios.

[0076] According to Example 16 there 1s provided a
method adaptive scheduling of a workload. The method may
include providing a pool of work 1tems, the pool shared by a
plurality of central processing unmits (CPUs) and a graphics
processing unit (GPU); running a GPU proxy profiling thread
on one of the CPUs to profile execution of a first portion of the
work 1tems on the GPU; running a CPU profiling thread on
cach of the CPUs to profile execution of a second portion of
the work 1tems on each of the CPUs; calculating a distribution
rat1o based on measured profiling information from the CPU
profiling threads and from the GPU proxy profiling thread;
and distributing a remaining portion of the work items from
the pool between the CPUs and the GPU based on the distri-
bution ratio.

[0077] Example 17 may include the subject matter of
Example 16, and the measured profiling information includes
execution time, energy consumption and/or memory usage
characteristics.

[0078] Example 18 may include the subject matter of
Examples 16 and 17, and the first portion size 1s based on
properties of the GPU related to a maximum number of work-
items that may be executed 1n parallel on the GPU.

[0079] Example 19 may include the subject matter of
Examples 16-18, further including distributing the remaining
portion of the work 1items between the GPU and a plurality of

work-stealing queues, each queue associated with one of the
CPUs.

[0080] Example 20 may include the subject matter of
Examples 16-19, further including repeating the profiling
execution until the calculated distribution ratio converges to
less than a threshold value.

[0081] Example 21 may include the subject matter of
Examples 16-20, further including repeating the profiling
execution and updating the distribution ratio as a weighted
average ol previously calculated distribution ratios.

Feb. 25, 2016

[0082] According to Example 22 there 1s provided a system
for adaptive scheduling of a workload. The system may
include means for providing a pool of work 1tems, the pool
shared by a plurality of central processing units (CPUs) and a
graphics processing unit (GPU); means for running a GPU
proxy profiling thread on one of the CPUs to profile execution
of a first portion of the work items on the GPU; means for
running a CPU profiling thread on each of the CPUs to profile
execution of a second portion of the work 1tems on each of the
CPUs; calculating a distribution ratio based on measured
profiling information from the CPU profiling threads and
from the GPU proxy profiling thread; and means for distrib-
uting a remaining portion of the work 1tems from the pool
between the CPUs and the GPU based on the distribution
ratio.

[0083] Example 23 may include the subject matter of
Example 22, and the measured profiling information includes
execution time, energy consumption and/or memory usage
characteristics.

[0084] Example 24 may include the subject matter of
Examples 22 and 23, and the first portion size 1s based on
properties of the GPU related to a maximum number of work-
items that may be executed 1n parallel on the GPU.

[0085] Example 25 may include the subject matter of
Examples 22-24, further including means for distributing the
remaining portion of the work 1tems between the GPU and a
plurality of work-stealing queues, each queue associated with
one of the CPUs.

[0086] Example 26 may include the subject matter of
Examples 22-25, further including means for repeating the
profiling execution until the calculated distribution ratio con-
verges to less than a threshold value.

[0087] Example 26 may include the subject matter of
Examples 22-25, further including means for repeating the
profiling execution and updating the distribution ratio as a
weilghted average of previously calculated distribution ratios.
[0088] The terms and expressions which have been
employed herein are used as terms of description and not of
limitation, and there 1s no intention, in the use of such terms
and expressions, of excluding any equivalents of the features
shown and described (or portions thereot), and 1t 1s recog-
nized that various modifications are possible within the scope
of the claims. Accordingly, the claims are intended to cover
all such equivalents. Various features, aspects, and embodi-
ments have been described herein. The features, aspects, and
embodiments are susceptible to combination with one
another as well as to variation and modification, as will be
understood by those having skill in the art. The present dis-
closure should, therefore, be considered to encompass such
combinations, variations, and modifications.

What 1s claimed 1s:

1. A system for workload scheduling, said system compris-
ng:

a plurality of central processing units (CPUs);

a graphics processing unit (GPU);

a memory module to store a pool of work 1tems, said pool

shared by said CPUs and said GPU;
a GPU proxy profiling module associated with one of said

CPUs to profile execution of a first portion of said work
items on said GPU; and

a plurality of CPU profiling modules, each associated with
one of said CPUs, to profile execution of a second por-
tion of said work items on each of said CPUs, wherein

measured profiling information from said CPU profiling

US 2016/0055612 Al

modules and from said GPU proxy profiling module 1s
used to calculate a distribution ratio for execution of a
remaining portion of said work items between said
CPUs and said GPU.

2. The system of claim 1, wherein said measured profiling
information includes execution time, energy consumption
and/or memory usage characteristics.

3. The system of claim 1, wherein said first portion size 1s
based on properties of said GPU related to a maximum num-
ber of work-items that may be executed 1n parallel on said
GPU.

4. The system of claim 1, wherein said memory 1s further to
store a plurality of work-stealing queues, each queue associ-
ated with one of said CPUs.

5. The system of claim 4, wherein said GPU proxy profiling
module 1s further to distribute said remaining portion of said
work items between said work-stealing queues and said GPU.

6. The system of claim 1, wherein said GPU proxy profiling
module and said CPU profiling modules are further to repeat
said profiling execution until said calculated distribution ratio
converges to less than a threshold value.

7. The system of claim 1, wherein said GPU proxy profiling,
module and said CPU profiling modules are further to repeat
said profiling execution and update said distribution ratio as a
weighted average of previously calculated distribution ratios.

8. The system of claim 1, wherein said CPU and said GPU
are 1ntegrated 1n a System on a Chip (SoC).

9. The system of claim 1, wherein said system 1s a smart
phone, smart tablet, notebook, laptop computer, compute
cluster node or cloud/datacenter server blade.

10. Atleast one computer-readable storage medium having
instructions stored thereon which when executed by a proces-
sor result 1n the following operations for adaptive scheduling
ol a workload, said operations comprising:

providing a pool of work items, said pool shared by a

plurality of central processing units (CPUs) and a graph-
ics processing unit (GPU);

running a GPU proxy profiling thread on one of said CPUs

to profile execution of a first portion of said work 1tems
on said GPU;

running a CPU profiling thread on each of said CPUs to

profile execution of a second portion of said work 1tems
on each of said CPUs;

calculating a distribution ratio based on measured profiling

information from said CPU profiling threads and from
said GPU proxy profiling thread; and

distributing a remaining portion of said work 1tems from

said pool between said CPUs and said GPU based on
said distribution ratio.

11. The computer-readable storage medium of claim 10,
wherein said measured profiling information includes execu-
tion time, energy consumption and/or memory usage charac-
teristics.

Feb. 25, 2016

12. The computer-readable storage medium of claim 10,
wherein said first portion size 1s based on properties of said
GPU related to a maximum number of work-items that may
be executed 1n parallel on said GPU.

13. The computer-readable storage medium of claim 10,
further comprising distributing said remaining portion of said
work items between said GPU and a plurality of work-steal-
ing queues, each queue associated with one of said CPUSs.

14. The computer-readable storage medium of claim 10,
further comprising repeating said profiling execution until
said calculated distribution ratio converges to less than a

threshold value.

15. The computer-readable storage medium of claim 10,
further comprising repeating said profiling execution and
updating said distribution ratio as a weighted average of pre-
viously calculated distribution ratios.

16. A method for adaptive scheduling of a workload, said
method comprising:

providing a pool of work 1tems, said pool shared by a

plurality of central processing units (CPUs) and a graph-
ics processing unit (GPU);

running a GPU proxy profiling thread on one of said CPUs

to profile execution of a first portion of said work 1tems
on said GPU:;

running a CPU profiling thread on each of said CPUs to
profile execution of a second portion of said work 1tems

on each of said CPUs;

calculating a distribution ratio based on measured profiling
information from said CPU profiling threads and from
said GPU proxy profiling thread; and

distributing a remaining portion of said work items from

said pool between said CPUs and said GPU based on
said distribution ratio.

17. The method of claim 16, wherein said measured pro-
filing information includes execution time, energy consump-
tion and/or memory usage characteristics.

18. The method of claim 16, wherein said first portion size
1s based on properties of said GPU related to a maximum
number of work-i1tems that may be executed in parallel on
said GPU.

19. The method of claim 16, further comprising distribut-
ing said remaining portion of said work items between said
GPU and a plurality of work-stealing queues, each queue
associated with one of said CPUSs.

20. The method of claim 16, further comprising repeating,
said profiling execution until said calculated distribution ratio
converges to less than a threshold value.

21. The method of claim 16, further comprising repeating,
said profiling execution and updating said distribution ratio as

a weighted average of previously calculated distribution
ratios.

	Front Page
	Drawings
	Specification
	Claims

