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CONFIGURATION OF A CLUSTER SERVER
USING CELLULAR AUTOMATA

BACKGROUND
[0001] 1. Field of the Disclosure
[0002] The present disclosure relates generally to process-

ing systems and more particularly to configuration of a cluster
Server.

[0003] 2. Description of the Related Art

[0004] High performance computing systems, such as
server systems, are sometimes implemented using compute
nodes connected together by one or more fabric intercon-
nects. The compute nodes execute software programs to per-
form designated services, such as file management, database
management, document printing management, web page
storage and presentation, computer game services, and the
like, or a combination thereof. The multiple compute nodes
facilitate the processing of relatively large amounts of data
while also facilitating straightforward build-up and scaling of
the computing system. The fabric interconnects provide a
backbone for communication between the compute nodes,
and therefore can have a significant 1impact on processor
performance. In order to use the fabric interconnect atter a
system reset, the compute nodes typically have to be config-
ured with address and routing tables that implement the fabric
interconnect’s communication scheme.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present disclosure may be better understood,
and 1ts numerous features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference symbols 1n different
drawings indicates similar or 1identical 1tems.

[0006] FIG.11sablockdiagram of acluster compute server
in accordance with some embodiments.

[0007] FIG. 2 1s a block diagram illustrating an example
network topology implemented for a cluster compute server
in accordance with some embodiments.

[0008] FIG. 3 1s a block diagram illustrating an example
compute node and 1ts dimensional relationship to 1ts con-
nected compute nodes 1n the network topology of FIG. 2 in
accordance with some embodiments.

[0009] FIG. 4 15 a block diagram illustrating configuration
state fields for a compute node of a cluster compute server 1n
accordance with some embodiments.

[0010] FIG. 35 1sblock diagram illustrating a set of configu-
ration states for one of the configuration state fields of FI1G. 4
in accordance with some embodiments.

[0011] FIG. 615 a flow diagram of a method of configuring
a fabric of a cluster compute server 1n accordance with some
embodiments.

[0012] FIG. 7 1s a block diagram illustrating an example
tabric topology for a cluster compute server including a man-
agement unit node 1n accordance with some embodiments.

[0013] FIG. 8 1s a block diagram 1llustrating state transi-
tions of nodes of FIG. 4 during configuration 1n accordance
with some embodiments.

[0014] FIG. 9 1s a block diagram illustrating an example
spanmng tree self-organized by nodes of a cluster compute
server 1n accordance with some embodiments.
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[0015] FIG.101sablock diagram illustrating an example of
communicating a CHAIN-type configuration message over
the spanning tree of FI1G. 8 in accordance with some embodi-
ments.

[0016] FIG.111sablock diagram illustrating an example of
communicating a CHAIN-type configuration message over
the spanning tree of FIG. 8 in accordance with some embodi-
ments.

[0017] FIG. 12 1s a block diagram 1illustrating an example
physical arrangement of nodes of a cluster compute server in
accordance with some embodiments.

[0018] FIG. 13 1s a block diagram 1illustrating an example
implementation of a compute node of a cluster compute
server 1n accordance with some embodiments.

[0019] FIG. 14 1s a flow diagram illustrating a method for
designing and fabricating an integrated circuit (IC) device 1n
accordance with some embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

[0020] FIGS. 1-14 1illustrate techniques for configuring a
tabric of a cluster compute server alter a system reset or other
configuration event. Each node of the fabric 1s employed, for
purposes ol configuration, as a cell 1n a cellular automaton,
thereby obviating the need for a special configuration net-
work to communicate configuration information from a cen-
tral management unit. Instead, the nodes communicate con-
figuration information using the same fabric interconnect that
1s used to communicate messages during normal execution of
soltware services at the nodes, without requiring the fabric
interconnect to be pre-configured for network routing 1in
advance according to a fixed topology. This reduces server
complexity and providing for better scalability of the cluster
compute server.

[0021] TToillustrate, the cluster compute server employs the
fabric interconnect to connect its various nodes. During nor-
mal operation, as the compute nodes execute software ser-
vices, 1t 1s useful for each node to be able to communicate
unicast messages to each other node of the server, thereby
improving overall server efliciency and quality of the sofit-
ware services. Accordingly, during normal operation the fab-
ric of the compute server implements a message routing
scheme whereby each node has a fixed address 1n the fabric,
and locally stores routing information (e.g. a routing table)
that delineates the routing rules for the message routing
scheme. Permanently storing fixed routing information at
cach of the compute nodes 1s typically not feasible, because
the topology of the fabric can change over time due to errors
or failures at individual compute node. Such topology
changes will invalidate large portions of the fixed routing
information, reducing server performance. Accordingly, it 1s
usetul for the compute server to configure the fabric after each
system reset, whereby during configuration the fabric: 1)
identifies the topology of the fabric as defined by the fabric’s
functioning nodes, and 2 ) distributes to each functioning node
a unique address and routing information. This process 1s
referred to herein as the “configuration” of the compute server
(or configuration of the fabric).

[0022] To perform configuration, conventional cluster
compute servers typically employ an “out-of-band” network,
separate from the fabric mterconnect used to communicate
messages between nodes during normal operation. However,
in server systems with many compute nodes, the out-of-band
network requires a large amount of time to distribute the node
addresses and routing information and to otherwise configure
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each of the fabric nodes. In addition, the out-otf-band network
itsell must have the infrastructure to route all of the configu-
ration messages to the individual nodes, increasing the com-
plexity and cost of the compute server.

[0023] In contrast to a conventional compute server, the
techniques disclosed herein provide for a cluster compute
server that communicates node addresses, routing informa-
tion, and other configuration information by incorporating, at
cach of the compute nodes, a register or other storage struc-
ture to store a defined set of configuration fields, whereby
cach field can take on any of a limited set of corresponding
states. At defined intervals of time, referred to here as con-
figuration cycles, each node of the server sets 1ts the state of
cach of 1ts configuration fields (either remaining 1n 1ts previ-
ous state or evolving to a new state) based on the configura-
tion field’s previous state and on the state of the correspond-
ing configuration field at each of other nodes connected to 1t
via the fabric interconnect. Based on the states of its configu-
ration fields, a node will execute one or more sets of pre-
defined, stored configuration 1nstructions associated with the
configuration fields’ states. Thus, the configuration fields
define one or more tasks executed at the compute node, and
depend only on the states of corresponding fields at the con-
figuration registers of 1ts connected nodes. The cluster com-
pute server disclosed herein therefore does not need to
employ an out-of-band configuration network, simplifying
the compute server design and allowing for faster configura-
tion of a large number of compute nodes. Instead, the tech-
niques disclosed herein create a virtual out-of-band network
by distributing configuration information based on state
changes 1n neighboring nodes.

[0024] In some embodiments, the changing states at the
compute nodes perform at least two configuration operations
tfor the cluster compute server: a topology analysis and com-
munication of configuration messages. For topology analysis,
the states of the configuration fields of the compute nodes
evolve such that 1) functioning compute nodes are detected
and prepared for communication of configuration messages;
and 2) the compute nodes self-organize into a spanning tree.
Once the spanning tree has been organized, the fabric nodes
can communicate configuration messages, wherein the nodes
distribute messages to their connected nodes according to
distribution rules implied by the message type. One or more
management units of the cluster compute server mject con-
figuration information by initiating a configuration message
at the root compute node of the spanning tree, and the distri-
bution rules at each node cause the message to reach each
compute node in the spanning tree. The management unit can
thereby distribute configuration information, such as routing,
tables, node address information, and the like, to prepare the
nodes for normal operation.

[0025] In some scenarios, the cluster compute server can
re-engage 1n topology analysis 1n response to defined error
conditions, such as detection of a faulty compute node 1n the
spanmng tree. The compute nodes will then adjust the span-
ning tree topology by automatically returning the correspond-
ing configuration fields to the corresponding topology analy-
s1s states and reforming the spanning tree. Thus, the compute
nodes can automatically adjust for failures at individual com-
pute nodes and other errors.

[0026] For ease of illustration, the configuration of a server
1s described 1n the example context of a cluster compute
server as described below with reference to FIGS. 1-12.

Examples of such servers include the SM10000 series or the
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SM135000 series of servers available from the SeaMicro™
division of Advanced Micro Devices, Inc. Although a general
description 1s described below, additional details regarding
embodiments of the cluster compute server are found in U.S.
Pat. Nos. 7,925,802 and 8,140,719, the entireties of which are
incorporated by reference herein. The techniques described
herein are not limited to this example context, but instead may
be implemented in any of a variety of servers. Moreover,
while these techniques are described in the context of an
Ethernet implementation employing MAC addresses, these
techniques may be implemented in any of a variety of link
layer protocols and addressing schemes.

[0027] FIG. 1 illustrates a cluster compute server 100 1n
accordance with some embodiments. The cluster compute
server 100, referred to herein as “server 1007, comprises a
data center platform that brings together, 1n a rack unit (RU)
system, computation, storage, switching, and server manage-
ment. The server 100 1s based on a parallel array of indepen-
dent low power compute nodes (e.g., compute nodes 101-
106), storage nodes (e.g., storage nodes 107-109), network
nodes (e.g., network nodes 110 and 111), and management
nodes (e.g., management unit 113) linked together by a fabric
interconnect 112, which comprises a high-bandwidth, low-
latency supercomputer interconnect. Each node 1s imple-
mented as a separate field replaceable umit (FRU) comprising
components disposed at a printed circuit board (PCB)-based
card or blade so as to facilitate etficient build-up, scaling,
maintenance, repair, and hot swap capabilities.

[0028] The compute nodes operate to execute various soit-
ware programs, including operating systems (OSs), hypervi-
sors, virtualization software, compute applications, and the
like. As with conventional server nodes, the compute nodes of
the server 100 include one or more processors and system
memory to store mstructions and data for use by the one or
more processors. However, unlike conventional server nodes,
in some embodiments the compute nodes do not individually
incorporate various local peripherals, such as storage, /O
control, and network interface cards (NICs). Rather, remote
peripheral resources of the server 100 are shared among the
compute nodes, thereby allowing many of the components
typically found on a server motherboard, such as I/O control-
lers and NICs, to be eliminated from the compute nodes and
leaving primarily the one or more processors and the system
memory, 1n addition to a fabric interface device.

[0029] Adfter configuration inresponse to a system reset, the
tabric interface device, which may be implemented as, for
example, an application-specific integrated circuit (ASIC),
operates to virtualize the remote shared peripheral resources
of the server 100 such that these remote peripheral resources
appear to the OS executing at each processor to be located on
corresponding processor’s local peripheral bus. These virtu-
alized peripheral resources can include, but are not limited to,
mass storage devices, consoles, Ethernet NICs, Fiber Chan-
nel NICs, Infimiband™ NICs, storage host bus adapters
(HBASs), basic input/output system (BIOS), Universal Serial
Bus (USB) devices, Firewire™ devices, PCle devices, user
interface devices (e.g., video, keyboard, and mouse), and the
like. This virtualization and sharing of remote peripheral
resources 1n hardware renders the virtualization of the remote
peripheral resources transparent to the OS and other local
soltware at the compute nodes. Moreover, this virtualization
and sharing of remote peripheral resources via the fabric
interface device permits use of the fabric interface device 1n
place of a number of components typically found on the
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server motherboard. This reduces the number of components
implemented at each compute node, which 1n turn enables the
compute nodes to have a smaller form factor while consum-
ing less energy than conventional server blades which imple-
ment separate and individual peripheral resources.

[0030] The storage nodes and the network nodes (collec-
tively referred to as “imnput/output (I/0) nodes™) implement a
peripheral device controller that manages one or more shared
peripheral resources. This controller coordinates with the
tabric interface devices ol the compute nodes to virtualize and
share the peripheral resources managed by the resource man-
ager. To 1llustrate, the storage node 107 manages a hard disc
drive (HDD) 116 and the storage node 108 manages a solid
state drive (SSD) 118. In some embodiments, any internal
mass storage device can mount any processor. Further, mass
storage devices may be logically separated into slices, or
“virtual disks”, each of which may be allocated to a single
compute node, or, if used 1n a read-only mode, shared by
multiple compute nodes as a large shared data cache. The
sharing of a virtual disk enables users to store or update
common data, such as operating systems, application sofit-
ware, and cached data, once for the entire server 100. As
another example of the shared peripheral resources managed
by the I/O nodes, the storage node 109 manages a remote
BIOS 120, a console/universal asynchronous receiver-trans-
mitter (UART) 121, and a data center management network
123. The network nodes 110 and 111 each manage one or
more Ethernet uplinks connected to a data center network
114. The Ethernet uplinks are analogous to the uplink ports of
a top-of rack switch and can be configured to connect directly
to, for example, an end-of-row switch or core switch of the
data center network 114. The remote BIOS 120 can be virtu-
alized 1n the same manner as mass storage devices, NICs and
other peripheral resources so as to operate as the local BIOS
for some or all of the nodes of the server, thereby permitting
such nodes to forgo implementation of at least a portion of
local BIOS at each node. In some embodiments the nodes of
the server each include local BIOS that 1s executed in
response to a system reset. Execution of the local BIOS
allows each node to participate 1n the configuration processes
described further herein. In particular, execution of the local
BIOS provides for the execution of tasks at a node according
to the node’s state, and provides for transitioning the nodes to
different states according to the node’s previous state and the
state of 1ts connected nodes.

[0031] The fabric iterface device of the compute nodes,
the fabric interfaces of the I/O nodes, and the fabric intercon-
nect 112 together operate as a fabric 122 connecting the
computing resources of the compute nodes with the periph-
eral resources of the I/O nodes. To this end, the fabric 122
implements a distributed switching facility whereby each of
the fabric interfaces and fabric interface devices comprises
multiple ports connected to bidirectional links of the fabric
interconnect 112 and, after configuration of the fabric inter-
connect 112 in response to a system reset, operate as link layer
switches to route packet traflic among the ports 1n accordance
with deterministic routing logic implemented at the nodes of
the server 100. Note that the term “link layer” generally refers
to the data link layer, or layer 2, of the Open System Inter-
connection (OSI) model.

[0032] The fabric interconnect 112 can include a fixed or

flexible 1nterconnect such as a backplane, a printed wiring
board, a motherboard, cabling or other flexible wiring, or a
combination thereof. Moreover, the fabric interconnect 112
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can include electrical signaling, photonic signaling, or a com-
bination thereof. In some embodiments, the links of the fabric
interconnect 112 comprise high-speed bi-directional serial
links implemented in accordance with one or more of a
Peripheral Component Interconnect-Express (PCIE) stan-
dard, a Rapid 10 standard, a Rocket 10 standard, a Hyper-
Transport standard, a FiberChannel standard, an Ethernet-
based standard, such as a Gigabit Ethernet (GbE) Attachment
Unit Interface (XAUI) standard, and the like.

[0033] Although the FRUs implementing the nodes typi-
cally are physically arranged in one or more rows 1n a server
box as described below with reference to FIG. 12, the fabric
122 can, during configuration, logically arrange the nodes 1n
any of a variety of mesh topologies or other network topolo-
gies, such as a torus, a multi-dimensional torus (also referred
to as a k-ary n-cube), a tree, a fat tree, and the like. For
purposes of illustration, the server 100 1s described herein in
the context of a multi-dimensional torus network topology.
However, the described techniques may be similarly applied
in other network topologies using the guidelines provided
herein.

[0034] Each of the compute nodes 101-106 includes a con-
figuration state register (e.g. configuration state register 170
at compute node 101) to store a set of configuration fields for
the corresponding compute node. Each configuration field
stores state information for a particular aspect of the configu-
ration of the corresponding compute node, as described fur-
ther herein. For example, one of the configuration fields can
store configuration information imdicating the corresponding
compute node’s location, relative to its connected nodes, 1n a
spannming tree that maps the nodes of the server 100. In opera-
tion, each compute node periodically checks the configura-
tion fields at the configuration state registers of 1ts connected
compute nodes and based on the values of these fields,
updates the values at the configuration fields of 1ts own con-
figuration state register. Based on the values at the configu-
ration fields of i1ts configuration state register, a compute node
performs defined configuration operations, such as internal
processing ol configuration messages, communication of
configuration messages to 1ts connected nodes, generating
data responsive to configuration messages, and the like. In
addition, by causing transitions at its connected nodes and
observing changes 1n the states at those nodes, a compute
node can identily the state and configuration of nodes to
which 1t 1s not connected (remote nodes), and can generate
messages which, when propagated through the fabric as
described herein, cause changes 1n state and configuration at
the remote nodes.

[0035] To configure each compute node, the configuration
fields at the configuration state registers of each compute
node evolve over time based on configuration information
injected by the management node 113. The state updates for
cach configuration field are defined such that the evolution of
the configuration fields results 1n each compute node receiv-
ing a unique address 1n the topology of the fabric interconnect
112 and routing information that allows messages to be
routed between nodes according to the unique addresses of
cach node. The compute nodes are thereby prepared for rout-
ing of unicast messages during normal (post-configuration)
operation of the server 100.

[0036] FIG. 2 illustrates an example configuration of the
server 100 1n a network topology arranged as a k-ary n-cube,
or multi-dimensional torus, 1n accordance with some embodi-

ments. In the depicted example, the server 100 implements a
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three-dimensional (3D) torus network topology (referred to
herein as “torus network 200°”) with a depth of three (that 1s,
k=n=3). Accordingly, the server 100 implements a total of
twenty-seven nodes arranged 1n a network of rings formed in
three orthogonal dimensions (X.,Y,7Z), and each node 1s a
member of three different rings, one 1n each of the dimen-
s1ons. Each node 1s connected to up to six neighboring nodes
via bidirectional serial links of the fabric interconnect 112
(see FIG. 1). The relative location of each node 1n the torus
network 200 1s identified in FIG. 2 by the position tuple
(X,v,z), where X, vy, and z represent the positions of the com-
pute node 1n the X, Y, and Z dimensions, respectively. As
such, the tuple (X,y,z) of a node also may serve as its address
within the torus network 200, and thus serve as source routing,
control for routing packets to the destination node at the
location represented by the position tuple (x,y,z).

[0037] Insomeembodiments, in response to a system reset
the fabric interconnect 112 configures each node so that one
or more media access control IMAC) addresses 1s temporarily
or permanently associated with a given node. Some or all of
such associated MAC address may directly represent the
position tuple (x,y,z), which allows the location of a destina-
tion node 1n the torus network 200 to be determined and
source routed based on the destination MAC address of the
packet. During configuration, distributed look-up tables of
MAC address to position tuple translations may be cached at
the nodes to facilitate the identification of the position of a
destination node based on the destination MAC address.

[0038] It will be appreciated that the illustrated X, Y, and Z
dimensions represent logical dimensions that describe the
positions of each node m a network, but do not necessarily
represent physical dimensions that indicate the physical
placement of each node. For example, the 3D torus network
topology for torus network 200 can be implemented via the
wiring of the fabric interconnect 112 with the nodes in the
network physically arranged in one or more rows on a back-
plane or in arack. That 1s, the relative position of a given node
in the torus network 200 1s defined by nodes to which 1t 1s
connected, rather than the physical location of the compute
node. In some embodiments, the fabric 122 (see FIG. 1)
comprises a plurality of sockets wired together via the fabric
interconnect 112 so as to implement the 3D torus network
topology, and each of the nodes comprises a field replaceable
unit (FRU) configured to couple to the sockets used by the
tabric interconnect 112, such that the position of the node 1n
torus network 200 1s dictated by the socket into which the
FRU 1s mserted.

[0039] In the server 100, after configuration of the fabric
interconnect 112, messages communicated between nodes
are segmented mto one or more packets, which are routed
over a routing path between the source node and the destina-
tion node. The routing path may include zero, one, or more
than one intermediate node. As noted above, each node,
including each I/O node, includes an interface to the fabric
interconnect 112 that implements a link layer switch to route
packets among the ports of the node connected to correspond-
ing links of the fabric interconnect 212. In some embodi-
ments, alter configuration of these distributed switches oper-
ate to route packets over the fabric 122 using source routing or
a source routed scheme, such as a strict deterministic dimen-
sional-order routing scheme (that i1s, completely traversing
the torus network 200 in one dimension before moving to
another dimension) that aids 1n avoiding fabric deadlocks. To
illustrate an example of strict deterministic dimensional-or-
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der routing, a packet transmitted from the node at location
(0,0,0) to location (2,2,2) would, 1T imtially transmaitted 1n the
X dimension from node (0,0,0) to node (1,0,0) would con-
tinue 1n the X dimension to node (2,0,0), whereupon 1t would
move i theY plane from node (2,0,0) tonode (2,1,0) and then
to node (2,2,0), and then move in the Z plane from node
(2,2,0) to node (2,2,1), and then to node (2,2,2). The order 1n
which the planes are completely traversed between source
and destination may be preconfigured and may differ for each
node.

[0040] Moreover, as there are multiple routes between
nodes 1n the torus network 200, the fabric 212 can be config-
ured, during the configuration process, for packet traific to
traverse a secondary path 1n case of a primary path failure.
The fabric 212 also can be configured to implement packet
classes and virtual channels to more effectively utilize the link
bandwidth and eliminate packet loops, and thus avoid the
need for link-level loop prevention and redundancy protocols
such as the spanning tree protocol.

[0041] Conventionally, certain types of nodes are config-
ured to be limited 1n their routing capabilities during normal
execution of software services at the server. For example,
compute nodes are permitted to act as intermediate nodes that
exi1st 1n the routing path of a packet between the source node
of the packet and the destination node of the packet, whereas
I/0 nodes are configured so as to act as only source nodes or
destination nodes, and not as intermediate nodes that route
packets to other nodes. In the illustrated embodiment, each
I/0 node 1s configured to route packets in a similar fashion to
the compute nodes, so that all nodes provide similar routing
capability.

[0042] The fabric 122 may be configured to implement
various packet routing and techniques protocols. For
example, to avoid the need for large bullers at switch of each
node, the fabric 122 may, after configuration, use tlow control
digit (“tht”)-based switching whereby each packet 1s seg-
mented 1nto a sequence of thits. The first flit, called the header
tlit, holds information about the packet’s route (namely the
destination address) and sets up the routing behavior for all
subsequent thit associated with the packet. The header tlit 1s
followed by zero or more body ftlits, containing the actual
payload of data. The final flit, called the tail tlit, performs
some bookkeeping to release allocated resources on the
source and destination nodes, as well as on all intermediate
nodes 1n the routing path. These flits then may be routed
through the torus network 200 using cut-through routing,
which allocates buffers and channel bandwidth on a packet
level, or wormhole routing, which allocated butiers and chan-
nel bandwidth on a flit level. Wormhole routing has the advan-
tage of enabling the use of virtual channels 1n the torus net-
work 200. A wvirtual channel holds the state needed to
coordinate the handling of the flits of a packet over a channel,
which includes the output channel of the current node for the
next hop of the route and the state of the virtual channel (e.g.,
idle, waiting for resources, or active). The virtual channel
may also include pointers to the flits of the packet that are
buffered on the current node and the number of tlit bullers
available on the next node.

[0043] FIG. 3 1llustrates anode 301 of the fabric 122 and 1ts
connected nodes 302, 303, 304, 305, 306, and 307. Node 301

1s connected to each of the nodes 302-307 via a corresponding
communication port. In some embodiments, the node 301
internally identifies each of 1ts connected nodes 302-307
according to their expected relative position 1 a 3D torus
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topology. Thus, the node 302 1s identified by the node 301 as
it’s “+ X’ node, indicating that the node 302 1s expected to lie
in one direction along an X-plane of the 3D torus relative to
the node 301. Node 305 i1s 1dentified by the node 301 as 1t’s
“~X" node, indicating that the node 302 1s expected to lie 1n
the opposite direction of node 302 along the X-plane of the
3D torus, relative to the node 301. For analogous reasons,
node 303 1s 1dentified by node 301 as 1t’s “+Y " node, node
306 1s 1dentified by node 301 as 1t’s “~Y node”, node 304 1s
identified by node 301 as it’s “+Z” node, and node 307 1s
identified by node 301 as 1t’s “~Z" node.

[0044] In response to a system reset, the node 301 periodi-
cally sends tokens, via the fabric interconnect 122, to 1ts
connected nodes 302-307 indicating the present state of each
of 1its configuration fields. In addition, the node 301 recerves,
via the fabric interconnect 122, tokens from its connected
nodes 302-307 indicating the corresponding states of each of
the configuration fields for each of the connected nodes 302-
307. Based on the current states of 1ts configuration fields and
the states of the configuration fields at its connected nodes
302-307, the node 301 adjusts 1ts the states of 1ts own con-
figuration fields state and executes any processing operations
required by the adjusted state.

[0045] FIG. 4 illustrates an example of the configuration
state register (CSR) 170 1n accordance with some embodi-
ments. In the illustrated example, the CSR 170 stores values
for a number of configuration fields, including an address and
orientation field 401, a spanning tree state field 402, an inter-
rupt forwarding state field 403, a wave message state 404, and
a chain message state 405. Each of the configuration fields
401-405 stores a value indicating the state for that field.
During each configuration cycle, the compute node 102 takes
configuration actions based on the state of each configuration
field. In addition, by the end of each configuration cycle, the
compute node 102 updates each of the configuration fields
401-405 based on the values of the corresponding configura-
tion fields at each of 1ts corrected nodes.

[0046] To illustrate, the address and orientation field 401
stores information indicating an orientation of the FRU asso-
ciated with the compute node 102. After a system reset, the
compute node 102 sets the value at the address and orientation
fiecld 401 to indicate that the orientation of the FRU is
unknown. In response to the address and orientation field at
one of i1ts connected nodes indicating a particular orientation
for its corresponding FRU, the compute node 102 updates the
address and orientation field 401 to indicate that the FRU
associated with the compute node 102 has the same orienta-
tion as the connected node’s FRU.

[0047] The spanning tree state field 402 stores information
indicating whether the compute node 102 1s ready to join a
spanning tree for the nodes of the fabric interconnect 112 and,
once 1t has joined, 1ts location, relative to its connected nodes,
in the spanning tree. For example, after a system reset the
compute node 102 can set the value at the spanning tree state
field 402 to an IDLE state, indicating that the compute node
102 has not yet joined the spanning tree. In response to the
spanmng tree state field at one of 1ts connected nodes being
placed 1n a READY state, the compute node 102 sets the
spanmng tree state field 402 to a READY state, indicating that
it 1s ready to join the spanning tree. Based on subsequent
changes 1n the states at the spanning tree state field at each of
its connected nodes, the compute node 102 evolves the state
of the spanning tree state field 402 to indicate the compute
node’s position 1n the spanning tree, relative to 1ts connected
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nodes. As described further herein, the spanning tree that
results from the evolution of the spanning tree state fields at
cach of the compute nodes of the server 100 1s used to com-
municate configuration messages to configure each node.

[0048] The mnterrupt forwarding state field 403 stores infor-
mation indicating the state of interrupt messages received
from or sent to connected nodes of the compute node 102. For
example, in some embodiments, after the compute node 102
has joined the spanning tree for the nodes of the fabric inter-
connect 112, 1t sets the state of the interrupt forwarding state
field 403, based on the states of the interrupt forwarding state
fields at 1ts connected nodes to reflect the status of interrupts
recetved from those connected nodes, to reflect when i1t has
received an interrupt message from one of 1ts connected
nodes, whether 1t has forwarded the mterrupt message to
another of its connected nodes, whether a response to an
interrupt message has been received, and the like. In addition,
the compute node 102 processes recerved interrupt messages
and responses based on the state of its forwarding state field
403, including forwarding recerved messages to other con-
nected nodes based on the state of the forwarding field 403.
The interrupt forwarding field 403 thereby provides a low-
latency mechanism for the forwarding of interrupt messages
via the fabric interconnect 112 without the use of direct
addressing of individual nodes.

[0049] Thewavemessage state field 404 and chain message
state fields 405 each store values indicating the state of pro-
cessing ol particular configuration message types, as
described further herein. During configuration, the compute
node 102 evolves the states of each of the fields 404 and 405
based on the messages recerved of each type, to ensure that
the messages are processed according to a defined protocol.

[0050] Insomeembodiments, the compute node 102 stores
BIOS code or other configuration information that, when
executed by the compute node 102, updates each of the con-
figuration fields 401-405 according to corresponding formu-
lae defined by the BIOS code or other configuration informa-
tion. This ensures that the state information at each
configuration field evolves according to a defined process, as
indicated by the formulae, that ensures each node 1s config-
ured according to a defined configuration process. Because
the formulae provide for evolution of the configuration fields
without direct communication of state information by a con-
figuration node or other control node, the need for a special
out-of-band configuration network 1s obviated.

[0051] A general form of a formula providing for the evo-
lution of a configuration field 1s set forth below:

S 1 =ALS;  FENE) })

where S, ,, 1s the state of the configuration field for node S at
configuration cycle n, and N(1) 1s the connected cells of inter-
est for node S. The particular function and N(1) can be differ-
ent for each configuration field, and N(1) can change based on
the state of one or more of the configuration fields, thus

providing for more complex evolutions of the configuration
fields.

[0052] FIG. 5 i1llustrates an example set 500 of states for a
configuration field of compute node 102 1n accordance with
some embodiments. The set 500 includes states 501, 502,
503, and 504, each represented by a different value stored at
the configuration field. The arrows between the states 501 -
504 represent transitions between the states resulting from
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changes 1n the values at the corresponding configuration
fields of one or more of the nodes connected to the compute

node 102.

[0053] Toillustrate, 1n some embodiments the set 500 1s the
set of states for the spanning tree state 402 of FIG. 1. In
response to a system reset, the spanning tree state 402 1s
placed mto state 501, representing an IDLE state. In the IDLE
state, the compute node 102 periodically sends out tokens
indicating 1ts IDLE state to 1ts connected nodes.

[0054] In response to receiving a token (referred to as a
“TOPQO” token for purposes of description) from at least one
ol 1ts connected nodes that the corresponding connected node
has entered a READY state, the compute node 102 transitions
the spanning tree state 402 to state 502, representing a
READY state. While 1n the READY state, in response to
receiving spanning tree information from one of 1ts connected
nodes, indicating the connected nodes relative position in the
spannming tree, the compute node 102 transitions the spanning
tree state 402 to state 503. In state 503, the compute node 102
identifies its location 1n a spanning tree relative to 1ts con-
nected nodes. For example, 1n some embodiments the com-
pute node 1dentifies the connected node that sent the TOPO
token as the node closer (more proximal) to the root of the
spanning tree. The node that sends the TOPO token 1s thus
identified by the compute node 102 as 1ts “proximal node” for
the spanning tree. The compute node 102 can then transition

back to the READY state 502.

[0055] In addition, 1n the READY state 502 the compute
node 102 can recerve tokens from its connected nodes indi-
cating that the compute node 102 has been established as the
proximal node for one or more of the connected nodes. In
response, the compute node 102 transitions the spanning tree
state 402 to state 504. When the spanning tree state 402 1s 1n
state 504, the compute node 102 stores information indicating
which of 1ts connected nodes are 1ts “distal nodes” in the
spanning tree. By 1dentifying its proximal node and its distal
nodes, the compute node 102 1dentifies 1its own position in the
spanning tree relative to 1ts connected nodes, without 1denti-
tying the overall topology of the spanning tree. This simpli-
fies configuration at each of the nodes of the fabric 122.

[0056] In some scenarios, while 1n the IDLE state 501 the
compute node 102 can concurrently receive TOPO tokens
from multiple ones of 1ts connected nodes, indicating that
cach of the multiple ones has transitioned from the IDLE state
501 to the READY state 502. In response, the compute node
102 transitions to the READY state and 1dentifies, according
to a predefined convention reflected 1n the BIOS code, one of
the connected nodes that sent a TOPO token as 1ts proximal
node 1n the spanning tree. For example, 1n some embodiments
cach node includes a counter, whereby the counter 1s mnitially
set to zero 1n response to a system reset. In response to
transitioming to the READY state 502, a node increments its
counter and communicates the incremented value as a tree-
depth field incorporated 1n the TOPO token it sends to 1its
connected nodes. In response to recewving a single TOPO
token while 1n the IDLE state 501, a node sets 1ts own counter
to the value of the tree-depth field. Accordingly, each node’s
counter will indicate the depth of the node 1n the spanning
tree. In response to recerving multiple TOPO tokens while in
the IDLE state, a node selects the TOPO token with the
tree-depth field having the lowest value, increments the value
and stores the incremented value at 1ts own counter, and stores
information indicating that the corresponding connected
node 1s 1ts proximal node 1n the spanning tree. Accordingly,
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cach node will have only one proximal node 1n the spanning
tree, but can have multiple distal nodes.

[0057] While in the READY state 502, the compute node
102 can recerve a token indicating, or can otherwise 1dentily,
that 1ts proximal node has experienced a failure of some kind.
In response, the compute node 102 returns to the IDLE state
501. It will subsequently recerve a token indicating that one of
its other connected nodes 1s 1n the READY state, allowing the
compute node 102 to return to the READY state 502 and
re-establish 1ts position in the spanning tree relative to its
other connected nodes. Thus, the nodes of the fabric 122 can
adjust to failures of individual nodes during configuration,
improving the robustness of the configuration process.

[0058] It will be appreciated that the set 300 represents the
different states for only one of the configuration fields for the
compute node 102, and that each configuration field can have
its own set of corresponding states that differ from the states
illustrated at FIG. 5. Further, the compute node 102 can adjust
the state of more than one of 1ts configuration fields 1n each
configuration cycle based on the states of the corresponding
configuration fields at 1ts connected nodes. For example, 1n
some scenari1os the compute node 102 can recerve, during the
same configuration cycle, a token from one of 1ts connected
nodes indicating a change 1n 1ts imnterrupt forwarding state and
a token from another of i1ts connected nodes indicating a
change in 1ts wave message state. Accordingly, during the
configuration cycle the compute node 102, in response to the
tokens, can update both 1ts imterrupt forwarding state and its
wave message state and take configuration actions corre-
sponding to the update states for both fields. This allows for
configuration of multiple aspects of the compute node 102
during the same configuration cycle, enhancing efficiency of
the configuration process.

[0059] FIG. 6 illustrates a tlow diagram of a method 600 of
configuring a server 1n accordance with some embodiments.
For purposes of description, the method 600 1s described with
respect to an example implementation at the fabric 122
described 1n FIGS. 1-5. At block 602 the server 100 experi-
ences a system reset, such as can occur 1n response to power
being cycled at the server 100, 1n response to a software reset,
activation of a reset switch, and the like. In response to the
system reset, cach node of the fabric 122 1s reset. At block 604
cach of the nodes of the fabric 122 synchronizes a local clock,
referred to herein as a configuration clock, with the configu-
ration clocks of its connected nodes. Each of the nodes gov-
erns 1ts transitions between states of 1ts configuration fields
based on its configuration clock. In some embodiments, the
configuration clocks of connected nodes are synchronized via
an ongoing feedback process within each node. The feedback
process 1s such that the configuration clock of a node 1s
synchronized with its connected nodes within a defined tol-
erance. The defined tolerance 1s defined so that the configu-
ration clocks of all the nodes are synchronized within an
overall tolerance. The overall tolerance establishes periodic
instances wherein every node 1s expected to have completed
any required state transitions. The times defined by these
periodic instances are referred to herein as “configuration
cycles.” In particular, the configuration cycles establish an
overall timing structure for state transitions at the nodes of the
fabric 122, whereby state transitions at each node are
expected to start at or after the beginning of a configuration
cycle, and expected to complete at or before the end of the
same configuration cycle, even though the configuration
clocks of any two given nodes may not be fully synchronized.

-
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[0060] At block 606, the nodes of the fabric 122 transition
from IDLFE states to READY states, 1n similar fashion to that
described above with respect to FIG. 5. In some embodi-
ments, as described further herein, the fabric 122 includes at
least one processor, referred to as a management unit (MU)
that controls configuration of the fabric 122. The MU 1s
connected to a memory that includes configuration informa-
tion, such as routing tables, node addresses, and the like, to
configure each node of the fabric 122. The MU 1s connected
to one of the compute nodes of the fabric 122. In response to
a system reset, the MU executes 1ts own BIOS code to send a
command to 1ts connected compute node that transitions the
compute node from the IDLE state to the READY state. This
causes each functioning node of the fabric 122 to eventually
transition to the READY state.

[0061] As the nodes transition to READY states, at block
608 they self-organize into a spanming tree as described above
with respect to FIG. 5. At block 610, the MU uses messages,
such as CHAIN and WAVE messages, to distribute configu-
ration mnformation, to each node. Examples of the configura-
tion mformation include addresses for each node, routing
tables for each node, and the like, to allow each node to
communicate with any other node via one or more unicast
messages between the nodes. At block 612, the nodes of the
fabric 122 execute software services, wherein the execution
includes sending messages between the nodes based on the

addresses, routing tables, and other configuration mforma-
tion distributed at block 610.

[0062] FIG. 7 illustrates a fabric 700 including compute
nodes 602-613 connected via a fabric interconnect 1 accor-
dance with some embodiments. The fabric 700 operates 1n
similar fashion to the fabric 122 described above, but i1s
arranged 1 a two dimensional topology for purposes of
description. It will be appreciated that the principles and
techniques discussed herein for the fabric 700 also apply to a
tabric having a 3D topology (e.g. a 3D torus). In the illustrated
example of FIG. 7, the fabric 700 includes a single MU 701
connected to the node 702. The MU 701 controls the configu-
ration of the fabric 700 for execution of software services by
initiating transition of the nodes 702-713 to their READY
states. Further, once the nodes 702-713 are in their ready
states, the MU configures each node by initiating propagation
ol configuration messages throughout the fabric 700. These

techniques can be better understood with reference to the
examples of FIGS. 8-10.

[0063] FIG. 8 illustrates an example sequence wherein the
nodes 702-713 transition from IDLE states to READY states
in accordance with some embodiments. These transitions
cause the nodes 702-713 to self-organize into a spanning tree
that governs the propagation of configuration messages
through the fabric 700. FIG. 8 illustrates the transitions by
depicting a sequence of configuration cycles 801-806. Nodes
in the IDLE state are illustrated as circles without cross-
hatching, while nodes 1n the READY state are 1llustrated as
cross-hatched circles.

[0064] Prior to configuration cycle 801, the fabric 700 has

experienced a system reset, causing 1mtialization of the MU
701 and synchronization of the configuration clocks at the
nodes 702-713. At configuration cycle 801, the MU 701
issues a command to the node 702 (e.g. by writing to a
designated register of the node 702) to transition its spanning
tree state field to the READY state. Accordingly at configu-
ration cycle 802, the node 702 has transitioned 1ts spanning,
tree state field to the ready state, and therefore 1ssues TOPO
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tokens to nodes 703, 704, and 706. At configuration cycle 803
nodes 703, 704, and 706 have each transitioned their respec-
tive spanmng tree state fields from the IDLE state to the
READY state, and theretfore 1ssue TOPO tokens to their con-
nected nodes (nodes 705, 707, and 609). Accordingly, at
configuration cycle 804, nodes 705, 707, and 708 have tran-
sitioned from the IDLFE state to the READY state, and 1ssue
TOPO tokens to their connected nodes (nodes 708, 710, and
712). Inresponse to the TOPO tokens, the nodes 708, 710, and
712 transition their spanning tree state fields to the READY
state by configuration cycle 805, and therefore 1ssue TOPO
tokens to their connected nodes 711 and 713. In response, the
nodes 711 and 713 transition to the READY state at configu-
ration cycle 806. Thus, in the illustrated example of FIG. 8,
the nodes 702-713 all transition their spanning tree state fields
from IDLE states to READY states based on the MU 401
issuing a command to a single one of the nodes (1.e. node
702). This reduces overhead at the MU 401 relative to a
conventional system whereby the MU 401 must individually
prepare each node for configuration by sending individual
messages to each node via an out-of-band network.

[0065] In similar fashion to that described above with
respect to FIG. 5, as the nodes 702-713 transition to the
READY state, they self-organize ito a spanning tree by
identifying their position in the spanning tree relative to one
or more of their connected nodes. An example spanning tree
900 1s 1llustrated at FIG. 9. Note that the spanning tree 900
may not represent the spanning tree that 1s formed by the
example sequence of FIG. 8, butinstead 1llustrates a spanning
tree for a different fabric topology, in order to show that
different ones of the nodes 702-713 can have different num-
bers of distal nodes 1n the spanning tree that 1s formed. Thus,
in the 1llustrated example of spanning tree 900, the node 702
has two distal nodes, nodes 702 and 704, while node 706 has
a single distal node 710 and node 707 has three distal nodes
711, 712, and 713. However, each of the nodes 702-713 has

only a single corresponding proximal node.

[0066] Configuration messages can be propagated along
the topology of the spanning tree 900 to distribute configura-
tion information from the MU 701 to one or more of the nodes
702-713. In particular, each of the nodes 602-613 manages
the states of a configuration field corresponding to the mes-
sage type 1 order to manage processing of the different
message types. FIG. 10 illustrates an example technique for
communicating configuration mformation using a CHAIN
message type. In response to recerving a chain message each
of the nodes 702-713 places their CHAIN message state field
to a state wherein the node provides the chain message to one
of 1ts distal nodes, 11 any. I a node has more than one distal
node 1n the spanning tree 700, 1t assigns a fixed number to
cach of 1ts distal nodes, and transitions 1ts CHAIN message
state to a state wherein 1t sends the CHAIN message to the
lowest numbered connected node to which the chain message
has not yet been sent. If a node 1dentifies that the message has
been sent to all of its distal nodes 1t transitions 1ts CHAIN
message state to a state wherein the node provides the mes-
sage to 1ts proximal node. The CHAIN message thereby per-
forms a depth traversal of the spanning tree 700, whereby the
traversal 1s concluded with the message being returned the
rootnode 702. From there, the CHAIN message, or a payload
thereof, can be provided to the MU 701 for further processing.

[0067] FIG. 10 1illustrates a set of configuration cycles
showing a portion of the propagation of a CHAIN message
throughout the fabric in accordance with some embodiments.
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At configuration cycle 1001 the node 702 receives a chain
message from the MU 601. In response 1t identifies that the
message 1s to be sent to its lowered numbered distal node,
identified as node 703, and therefore communicates the mes-
sage to the output port corresponding to node 703. At con-
figuration cycle 1002, the CHAIN message has been deliv-
ered to node 703, and node 703 1dentifies 1ts connected distal
nodes 705 as the lowest numbered distal node that has not yet
received the CHAIN message. The node 703 therefore pro-
vides the chain message to node 705. At configuration cycle
1003, the node 705 1dentifies node 708 as 1ts lowest numbered
distal node and provides the chain message to node 708. At
configuration cycle 1004, the node 708 identifies that 1t has no
distal nodes and therefore communicates the chain message
to 1ts proximal node 705. At configuration cycle 1005, the
node 705 1dentifies that 1ts lowest numbered distal node that
has not yet received the chain message 1s node 709. Accord-
ingly, the node 705 provides the chain message to node 709.
At configuration cycle 1006 the node 709 determines that 1t
does not have a distal node and therefore provides the chain
message to proximal node 705. The node 705 determines that
the chain messages been provided to all of 1ts distal nodes and
therefore provides a message to 1ts proximal node 703. The
chain message continues to traverse the fabric along the
according to the topology of the spanning tree 900 until 1t
reaches the root node 702, which can provide the chain mes-
sage, or payload thereof to the MU 701.

[0068] The chain message can be used by the configuration
node to send and receive configuration mnformation to one or
more of the nodes 702-713. For example, 1n some embodi-
ments the CHAIN message includes a payload of configura-
tion mnformation, such as address information, routing table
information, or other configuration information. The CHAIN
message also includes a field that identifies a particular one of
the nodes 702-713 as the target of the payload information. In
some embodiments, the MU 1dentifies the target of the mes-
sage by including in the message the relative location of the
target node with a tuple (X,v,z,). As each node transfers the
CHAIN message to one of its connected nodes, 1t adjusts the
value of the tuple based on the recerving node’s relative
location to the communicating node. For example, 11 the
receiving node 1s the “+X” node relative to the communicat-
ing node, the communicating node can subtract one to the
x-value of the tuple. The tuple will therefore have a value of
(0,0,0) when 1t reaches 1ts destination. As each node recerves
the chain message, i1t checks the node identifier of the chain
message, and 1 the tuple value 1s (0, 0, 0), the node stores the
payload at one of 1ts configuration registers, where 1t can be
turther processed according to BIOS code executed at the
node. In some embodiments, this further processing gener-
ates a responsive payload, which the target node can store at
the CHAIN message before providing 1t to the next node in
the spanning tree 700. Because of the chain message eventu-
ally returns to the root node 702, and from there to the MU
701, the chain message provides a technique both for com-
municating information from the MU 701 to a target node,
and for communicating return iformation from the target
node to the MU 701. Moreover, this communication of con-
figuration mformation 1s performed without the MU 701
determining a direct path to the target node, and without any
of thenodes 702-713 routing the configuration message along
special routing paths defined by the target node’s location.
This allows the configuration message to be communicated
via the same fabric interconnect that 1s later used, during
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execution of software services, to communicate messages
along defined routing paths between the nodes 702-713.

[0069] Toillustrate viaanexample, 1iithe MU 701 wishes to
communicate configuration information to node 708, 1t pro-
vides a CHAIN message with the configuration information
to node 702 at configuration cycle 1001. By configuration
cycle 1004, the CHAIN message has reached the node 708. In
response, node 708 identifies that 1t 1s the target node for the
CHAIN message, and therefore stores the payload informa-
tion for the chain message at one or more of 1ts configuration
registers, generates any responsive information, and stores
the responsive information at the payload of the CHAIN
message. The node 708 provides the modified chain message
to the distal node 705, at configuration cycle 10035, The
CHAIN message continues to traverse the spanning tree over
subsequent configuration cycles until the CHAIN message
has returned to the node 702, which provides the message’s

payload (including any responsive information from node
708) to the MU 701.

[0070] FIG. 11 illustrates a sequence of configuration
cycles showing how a WAVE message 1s propagated through
the spanning tree 900 1n accordance with some embodiments.
In response to recerving a WAVE type message, each node
places its WAVE message state field into a state wherein the
node 1dentifies whether 1t has previously provided the wave
message to 1ts distal nodes, and 11 not transitions 1ts WAVE
state message field wherein the node provides the message to
all of 1ts distal nodes. If the message has previously been
provided to 1ts distal nodes, the node transitions its WAVE
state message field to a state wherein 1t awaits a response to
the WAVE message from all of 1ts distal nodes. Once 1t has
received a response from all of 1ts distal nodes to the WAVE
message, the node transitions its WAVE message state field to
state wherein the node provides the wave message to its
proximal nodes. Thus, 1n the illustrated example of FIG. 11, at
configuration cycle 1101 the node 702 receives a wave mes-
sage from the MU 701. In response, the node 702 provides the
WAVE message to both its distal nodes 703 and 704. At
configuration cycle 1102 the nodes 703 and 704 cach deter-
mine the wave message has not previously been provided to
their distal nodes. Accordingly, node 703 provides the WAVE
message to 1ts distal node 705 and 706, and node 704 provides
the WAVE message to its distal node 707. In stmilar fashion,
at configuration cycle 1103 node 705 provides the WAVE
message to 1ts distal nodes 708 and 709, node 706 provides
the WAVE message to i1ts distal node 710, and node 707

provides the wave message to its distal nodes 711, 712, and
713.

[0071] At configuration cycle 1104, each of the nodes 708-
713 1dentifies that 1t has no distal nodes 1n the spanning tree
800. Accordingly each of the nodes 708-713 provides the
WAVE message to 1ts corresponding proximal node. For
example, node 709 provides the WAVE message to its proxi-
mal node 7035. At configuration cycles 1105 and 1106 the
WAVE message continues to progress distally along the span-
ning tree 900, until 1t has returned to the MU 701 at configu-
ration cycle 1106.

[0072] FIG. 12 1llustrates an example physical arrangement
ol nodes of the server 100 1n accordance with some embodi-
ments. In the 1llustrated example, the fabric interconnect 112
(FI1G. 1) includes one or more interconnects 1202 having one
or more rows or other aggregations of plug-in sockets 1204.
The interconnect 1202 can include a fixed or tlexible inter-
connect, such as a backplane, a printed wiring board, a moth-
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erboard, cabling or other flexible wiring, or a combination
thereol. Moreover, the iterconnect 1202 can implement
clectrical signaling, photonic signaling, or a combination
thereol. Each plug-in socket 1204 comprises a card-edge
socket that operates to connect one or more FRUs, such as
FRUs 1206-1211, with the interconnect 1202. Each FRU
represents a corresponding node of the server 100. For
example, FRUs 1206-1209 may comprise compute nodes,
FRU 1210 may comprise a network node, and FRU 1211 can
comprise a storage node. One or more ol the FRUs1206-1211
may also mclude a corresponding management unit.

[0073] Each FRU includes components disposed on a PCB,

whereby the components are interconnected via metal layers
of the PCB and provide the functionality of the node repre-
sented by the FRU. For example, the FRU 1206, being a
compute node 1n this example, includes a PCB 1212 imple-
menting a processor 1220 comprising one or more processor

cores 1122, one or more memory modules 1124, such as
DRAM dual inline memory modules (DIMMs), and a fabric

interface device 1126. Each FRU further includes a socket
interface 1240 that operates to connect the FRU to the inter-
connect 1202 via the plug-in socket 1204.

[0074] The interconnect 1202 provides data communica-
tion paths between the plug-in sockets 1204, such that the
interconnect 1202 operates to connect FRUs 1nto rings and to
connect the rings mto a 2D- or 3D-torus network topology,
such as the torus network 300 of FIG. 3. The FRUs take
advantage of these data communication paths through their
corresponding fabric interfaces, such as the fabric interface
device 1226 of the FRU 1206. The socket interface 1230
provides electrical contacts (e.g., card edge pins) that electri-
cally connect to corresponding electrical contacts of plug-in
socket 1204 to act as port interfaces for an X-dimension ring
(e.g., ring-X_IN port 1232 for pins 0 and 1 and nng-X_OUT
port 1234 for pins 2 and 3), for a Y-dimension ring (e.g.,
ring-Y_IN port 1136 for pins 4 and 5 and ring-Y_OUT port
1238 for pins 6 and 7), and for an Z-dimension ring (e.g.,
ring-7._IN port 1240 for pins 8 and 9 and ring-Z_OUT port
1242 for pins 10 and 11). In the illustrated example, each port
1s a diflerential transmitter comprising either an iput port or
an output port of, for example, a PCIE lane. A skilled artisan
will understand that a port can include additional TX/RX
signal pins to accommodate additional lanes or additional
ports.

[0075] FIG. 13 illustrates a compute node 1300 imple-
mented 1n the server 100 of FIG. 1 in accordance with some
embodiments. The compute node 1300 corresponds to, for
example, one of the compute nodes 101-106 of FIG. 1. In the
depicted example, the compute node 1300 includes a proces-
sor 1302, system memory 1304, and a fabric interface device
1306 (representing the processor 1320, the one or more
memory modules 1224, and the fabric interface device 1226,
respectively, of FIG. 12). The processor 1302 includes one or
more processor cores 1308 and a northbridge 1210. The one
or more processor cores 1308 can include any of a variety of
types of processor cores, or combination thereot, such as a
central processing unit (CPU) core, a graphics processing unit
(GPU) core, a digital signal processing unit (DSP) core, and
the like, and may implement any of a variety of instruction set
architectures, such as an x86 instruction set architecture or an
Advanced RISC Machine (ARM) architecture. The system
memory 1204 can include one or more memory modules,
such as DRAM modules, SRAM modules, flash memory, or

a combination thereof. The northbridge 1310 interconnects
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the one or more cores 1308, the system memory 1304, and the
tabric interface device 1306. The fabric iterface device
1306, 1n some embodiments, 1s implemented 1n an integrated
circuit device, such as an application-specific integrated cir-
cuit (ASIC), a field-programmable gate array (FPGA), mask-
programmable gate arrays, programmable logic, and the like.

[0076] In a conventional computing system, the north-
bridge 1310 would be connected to a southbridge, which
would then operate as the interface between the northbridge
1310 (and thus the processor cores 1308) and one or local
more I/O controllers that manage local peripheral resources.
However, as noted above, in some embodiments the compute
node 1300 does not maintain local peripheral resources or
their I/0 controllers, and instead uses shared remote periph-
eral resources at other nodes 1n the server 100. To render this
arrangement transparent to software executing at the proces-
sor 1302, the fabric interface device 1306 virtualizes the
remote peripheral resources allocated to the compute node
such that the hardware of the fabric iterface device 1306
emulates a southbridge and thus appears to the northbridge
1310 as a local southbridge connected to local peripheral
resources.

[0077] Tothisend, the fabric interface device 1306 1includes
an 1/O bus interface 1312, a virtual network controller 1314,
a virtual storage controller 1316, a packet formatter 1318, and
a NIC 1319 comprising a fabric switch 1320. The I/O bus
interface 1312 connects to the northbridge 1310 via a local
I/O bus 1324 and acts as a virtual endpoint for each local
processor core 1208 by intercepting requests addressed to
virtualized peripheral resources that appear to be on the local
I/O bus 1324 and responding to the requests in the same
manner as a local peripheral resource, although with a poten-
tially longer delay due to the remote location of the peripheral

resource being virtually represented by the 1/0 bus interface
1312.

[0078] Whilethe I/O bus interface 1312 provides the physi-
cal interface to the northbridge 1310, the higher-level
responses are generated by the virtual network controller
1314 and by the virtual storage controller 1316. Requests sent
over I/0 bus 1324 for a network peripheral connected to an
external network, such as an Ethernet NIC connected to the
data center network 114 (FIG. 1), are routed by the I/O bus
interface 1312 to the virtual network controller 1314, while
storage requests are routed by the I/O bus interface 1312 to the
virtual storage controller 1316. The virtual network controller
1314 provides processing of incoming and outgoing requests
based on, for example, an Ethernet protocol. The virtual stor-
age controller provides processing of incoming and outgoing
requests based on, for example, a serial ATA (SATA) protocol,
a serial attached SCSI (SAS) protocol, a Universal Serial Bus
(USB) protocol, and the like.

[0079] Adfter configuration of each of the compute nodes as
described above with respect to FIGS. 1-11, the compute
node 1300 executes software services that generate requests.
After being processed by either the virtual network controller
1314 or the virtual storage controller 1316, requests are for-
warded to the packet formatter 1318, which encapsulates the
request 1nto one or more packets. The packet formatter 1318
then determines the fabric address or other location 1dentifier
of the I/O node managing the physical peripheral resource
intended for the request. The packet formatter 1318 adds the
identified fabric address (referred to herein as the “fabric ID”)
to the headers of the one or more packets 1n which the request
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1s encapsulated and provides the packets to the fabric switch
1320 of the NIC 1319 for transmission.

[0080] As illustrated, the fabric switch 1320 implements a
plurality of ports, each port interfacing with a different link of
the fabric interconnect 112. To 1llustrate using the 3x3 torus
network 200 of FIG. 2, assume the compute node 1300 rep-
resents the node at (1,1,1). In this example, the fabric switch
1320 would have at least seven ports to couple 1t to seven
bi-directional links: an internal link to the packet formatter
1318; an external link to the node at (0,1,1); an external link
to the node at (1,0,1), an external link to the node at (1,1,0), an
external link to the node at (1,2,1), an external link to the node
at (2,1,1), and an external link to the node at (1,1,2). After
configuration of the compute node 1200, control of the
switching of data among the ports of the fabric switch 1320 1s
determined based on integrated deterministic switching
logic, which specifies the egress port based on the destination
address (that 1s, destination fabric ID) indicated by the packet
and based on the deterministic routing implemented in the
server 100. The destination fabric ID of each compute node
can be distributed to the respective nodes during configura-
tion. For example, an MU can distribute to each compute node
its destination fabric 1D via a series of CHAIN messages as
described above.

[0081] Adter configuration by the MU, and during normal
execution of software services, the compute node 1300
handles receirved packets as follows. For packets received
from another other node, wherein the packet’s destination 1s
the compute node 1300, the fabric switch 1320 routes the
incoming packet to the port connected to the packet formatter
1318 based on the deterministic routing logic. The packet
formatter 1318 then de-encapsulates the response/request
from the packet and provides 1t to either the virtual network
controller 1314 or the virtual storage controller 1316 based on
a type-identifier included in the request. The controller
receiving the request then processes the response/request and
controls the I/O bus interface 1312 to signal the request to the
northbridge 1310, whereupon the response/request 1s pro-
cessed as though 1t were a response or request from a local
peripheral resource.

[0082] For a transitory unicast packet for which the com-
pute node 1300 1s an intermediate node 1n the routing path for
the packet, the fabric switch 1320 determines the destination
address (e.g., the tuple (x,y,z)) from the header of the transi-
tory packet, and provides the packet to a corresponding output
port 1dentified by the deterministic routing logic. In some
embodiments, the fabric switch 1320 determines the destina-
tion address using a locally stored routing table. During con-
figuration, the MU can distribute routing tables to each com-
pute node using CHAIN messages or WAVE messages, as
described above.

[0083] As noted above, a portion of the BIOS to configure
the compute node 1300 likewise can be a virtualized periph-
eral resource. In such instances, the fabric intertace device
1306 can include a BIOS controller 1326 connected to the
northbridge 1310 either through the local 1/O bus 1224 or via
a separate low pin count (LPC) bus 1328. As with storage and
network resources, the BIOS controller 1326 can emulate a
local BIOS by responding to BIOS requests from the north-
bridge 1310 by forwarding the BIOS requests via the packet
formatter 1318 and the fabric switch 1320 to a I/O node
managing a remote BIOS, and then providing the BIOS data
supplied in turn to the northbridge 1310.
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[0084] Inthe illustrate example of FI1G. 13, the fabric inter-
face device 1306 includes the configuration state register 170.
During configuration of the server 100, the fabric interface
device 1306 updates the fields of the configuration state reg-
ister 170 1n response to updates of corresponding fields of the
configuration state registers at the nodes connected to the
compute node 1300, as described above with respect to FIGS.

1-12. Based on the state of each of the fields at the configu-
ration register 170, the fabric interface device i1dentifies the
position of the compute node 1300 1n a spanning tree relative
to 1ts connected nodes, receives, processes, and communi-
cated configuration messages, and performs other configura-
tion operations.

[0085] Insomeembodiments, atleast some of the function-
ality described above may be implemented by one or more
processors executing one or more software programs tangibly
stored at a computer readable medium, and whereby the one
or more software programs comprise 1nstructions that, when
executed, manipulate the one or more processors to perform
one or more functions described above. In some embodi-
ments, the apparatus and techniques described above are
implemented 1n a system comprising one or more ntegrated
circuit (IC) devices (also referred to as integrated circuit
packages or microchips), such as certain components of the
server 100 (e.g., the fabric interface device or the compute
node) described above with reference to FIGS. 1-13. Elec-
tronic design automation (EDA) and computer aided design
(CAD) software tools may be used 1n the design and fabrica-
tion of these IC devices. These design tools typically are
represented as one or more soltware programs. The one or
more software programs comprise code executable by a com-
puter system to mampulate the computer system to operate on
code representative of circuitry of one or more IC devices so
as to perform at least a portion of a process to design or adapt
a manufacturing system to fabricate the circuitry. This code
can 1nclude instructions, data, or a combination of instruc-
tions and data. The software instructions representing a
design tool or fabrication tool typically are stored 1n a com-
puter readable storage medium accessible to the computing
system. Likewise, the code representative of one or more
phases of the design or fabrication of an IC device may be
stored 1 and accessed from the same computer readable
storage medium or a different computer readable storage
medium.

[0086] A computer readable storage medium may include
any storage medium, or combination of storage media, acces-
sible by a computer system during use to provide instructions
and/or data to the computer system. Such storage media can
include, but 1s not limited to, optical media (e.g., compact disc
(CD), dagital versatile disc (DVD), Blu-Ray disc), magnetic
media (e.g., floppy disc, magnetic tape, or magnetic hard
drive), volatile memory (e.g., random access memory (RAM)
or cache), non-volatile memory (e.g., read-only memory
(ROM) or Flash memory), or microelectromechanical sys-
tems (MEMS)-based storage media. The computer readable
storage medium may be embedded 1n the computing system
(e.g., system RAM or ROM), fixedly attached to the comput-
ing system (e.g., a magnetic hard drive), removably attached
to the computing system (e.g., an optical disc or Universal
Serial Bus (USB)-based Flash memory), or coupled to the
computer system via a wired or wireless network (e.g., net-
work accessible storage (NAS)).

[0087] FIG. 14 1s a flow diagram illustrating an example
method 1400 for the design and fabrication of an IC device
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implementing one or more aspects. As noted above, the code
generated for each of the following processes 1s stored or
otherwise embodied in computer readable storage media for
access and use by the corresponding design tool or fabrication
tool.

[0088] At block 1402 a tfunctional specification for the IC
device 1s generated. The functional specification (often
referred to as a micro architecture specification (MAS)) may
be represented by any of a variety of programming languages
or modeling languages, including C, C++, SystemC, Sim-
ulink™, or MATLAB™,

[0089] Atblock 1404, the functional specification 1s used to
generate hardware description code representative of the
hardware of the IC device. In at some embodiments, the
hardware description code 1s represented using at least one
Hardware Description Language (HDL), which comprises
any of a variety ol computer languages, specification lan-
guages, or modeling languages for the formal description and
design of the circuits of the IC device. The generated HDL
code typically represents the operation of the circuits of the IC
device, the design and organization of the circuits, and tests to
verily correct operation of the IC device through simulation.

Examples of HDL include Analog HDL (AHDL), Verilog
HDL, SystemVerilog HDL, and VHDL. For IC devices
implementing synchronmized digital circuits, the hardware
descriptor code may include register transfer level (RTL)
code to provide an abstract representation of the operations of
the synchronous digital circuits. For other types of circuitry,
the hardware descriptor code may include behavior-level
code to provide an abstract representation of the circuitry’s
operation. The HDL model represented by the hardware
description code typically 1s subjected to one or more rounds
of simulation and debugging to pass design verification.

[0090] Adter verifying the design represented by the hard-
ware description code, at block 1406 a synthesis tool 1s used
to synthesize the hardware description code to generate code
representing or defining an 1nitial physical implementation of
the circuitry of the IC device. In some embodiments, the
synthesis tool generates one or more netlists comprising cir-
cuit device instances (e.g., gates, transistors, resistors, capaci-
tors, inductors, diodes, etc.) and the nets, or connections,
between the circuit device instances. Alternatively, all or a
portion of a netlist can be generated manually without the use
of a synthesis tool. As with the hardware description code, the
netlists may be subjected to one or more test and verification
processes before a final set of one or more netlists 15 gener-
ated.

[0091] Alternatively, a schematic editor tool can be used to
draft a schematic of circuitry of the IC device and a schematic
capture tool then may be used to capture the resulting circuit
diagram and to generate one or more netlists (stored on a
computer readable media) representing the components and
connectivity of the circuit diagram. The captured circuit dia-
gram may then be subjected to one or more rounds of simu-
lation for testing and verification.

[0092] At block 1408, one or more EDA tools use the
netlists produced at block 1406 to generate code representing,
the physical layout of the circuitry of the IC device. This

process can include, for example, a placement tool using the
netlists to determine or fix the location of each element of the
circuitry of the IC device. Further, a routing tool builds on the
placement process to add and route the wires needed to con-
nect the circuit elements 1n accordance with the netlist(s). The
resulting code represents a three-dimensional model of the IC
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device. The code may be represented in a database file format,
such as, for example, the Graphic Database System II (GD-
SII) format. Data 1n this format typically represents geometric
shapes, text labels, and other information about the circuit
layout 1n hierarchical form.

[0093] Atblock1410,the physicallayoutcode (e.g., GDSII
code) 1s provided to a manufacturing facility, which uses the
physical layout code to configure or otherwise adapt fabrica-
tion tools of the manufacturing facility (e.g., through mask
works) to fabricate the IC device. That 1s, the physical layout
code may be programmed 1nto one or more computer sys-
tems, which may then control, 1n whole or part, the operation
of the tools of the manufacturing facility or the manufacturing
operations performed therein.

[0094] Note that not all of the activities or elements
described above 1n the general description are required, that a
portion of a specific activity or device may not be required,
and that one or more further activities may be performed, or
elements included, 1n addition to those described. Still fur-
ther, the order 1n which activities are listed are not necessarily
the order 1n which they are performed.

[0095] Also, the concepts have been described with refer-
ence to specific embodiments. However, one of ordinary skill
in the art appreciates that various modifications and changes
can be made without departing from the scope of the present
disclosure as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present dis-
closure.

[0096] Benefits, other advantages, and solutions to prob-
lems have been described above with regard to speciiic
embodiments. However, the benefits, advantages, solutions to
problems, and any feature(s) that may cause any benefit,
advantage, or solution to occur or become more pronounced
are not to be construed as a critical, required, or essential

teature of any or all the claims.

What 1s claimed 1s:
1. A server system, comprising:

a Tabric interconnect to route messages during execution of
software services;

a plurality of compute nodes coupled to the fabric inter-
connect to execute services for the server system, each of
the plurality of compute nodes configured as a cell 1n a
cellular automaton to communicate configuration infor-
mation using the fabric interconnect.

2. The server system of claim 1, wherein each of the plu-
rality of compute nodes 1s to:

clfect transitions in a set of state fields among predefined
sets of states 1n response to transitions in states of cor-
responding state fields at connected compute nodes;

recetve routing information based on the transitions of the
set of state fields; and

route received messages to others of the plurality of com-
pute nodes via the fabric interconnect based on the rout-
ing information.

3. The server system of claim 2, wherein each of the plu-
rality of compute nodes 1s to:

1dentily 1ts location relative to one or more of 1ts connected
compute nodes 1n a spanning tree based on the transi-
tions 1n the set of state fields.

4. The server system of claim 3, wherein each of the plu-
rality of compute nodes 1s to:
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communicate, via the fabric interconnect, routing informa-
tion to a connected compute node based on the spanming
tree, the communication based on the transitions in the
set of state fields.

5. The server system of claim 3, wherein at least one of the

plurality of compute nodes 1s to:

1n response to receiving a message of a first type:
communicate the message of the first type to a selected

first one of a plurality of distal nodes in the spanning,
tree relative to the at least one compute node’s posi-
tion 1n the spanning tree based on the transitions 1n the
set of state fields.

6. The server system of claim 5, wherein the at least one of
the plurality of compute nodes 1s to:

in response to subsequently recerving the message of the
first type from the selected first one of the plurality of
distal nodes:
communicate the message of the first type to a selected

second one of the plurality of distal nodes based on the
transitions 1n the sets of state fields.

7. The server system of claim 6, wherein the at least one of
the plurality of compute nodes 1s to:

in response to subsequently recerving the message of the
first type from the selected second one of the plurality of
distal nodes:
communicate the message of the first type to a proximal

node of the at least one compute node 1n the spanning
tree based on the transitions 1n the sets of state fields.

8. The server system of claim 5, wherein the at least one of
the plurality of compute nodes 1s to:

in response to 1dentifying that a payload of the message of
the first type 1s targeted to the at least one of the plurality
of compute nodes, store the payload of the message at a
configuration register of the at least one of the plurality
of compute nodes based on the transitions 1n the sets of
state fields.

9. The server system of claim 5, wherein the at least one of

the plurality of compute nodes 1s to:

1n response to receiving a message ol a second type:
concurrently communicate the routing information to

cach of the plurality of distal nodes 1n the spanning
tree relative to the at least one compute node’s posi-
tion in the spanning tree based on the transitions 1n the
sets of state fields.

10. The server system of claim 2, wherein the routing
information 1s node address information that identifies a loca-
tion of one of the plurality of compute nodes 1n the fabric
interconnect.

11. The server system of claim 1, a first computed node of
the plurality of compute nodes can 1identily a configuration of
a second compute node to which 1t 1s not connected based on
transitions in states of the first compute node’s connected
compute nodes.

12. A server system, comprising:

a Tabric interconnect to route messages;

a plurality of field replaceable units (FRUs) comprising a
plurality of compute nodes coupled to the fabric inter-
connect to execute services for the server system, each of
the compute nodes to:

elfect transitions 1n a set of state fields among predefined
sets of states 1in response to transitions in states of
corresponding state fields at connected compute
nodes;
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receive routing information based on the transition of the
set of state fields; and
route recerved messages to others of the plurality of
compute nodes via the fabric interconnect based on
the routing information.
13. The server system of claim 12, wherein each of the
compute nodes 1s to:
1dentily 1ts location relative to one or more of 1ts connected
compute nodes 1n a spanning tree based on the transi-
tions 1n the sets of state fields.
14. The server system of claim 13, wherein each of the
compute nodes 1s to:
commumnicate, via the fabric interconnect, the routing
information to a second connected compute node based
on the spanning tree based on the transitions 1n the sets of
state fields.
15. The server system of claim 13, wherein at least one of
the compute nodes 1s to:
in response to receving a message of a first type:
communicate the message of the first type to a selected
first one of a plurality of distal nodes in the spanning,
tree relative to the at least one of the compute node’s
position in the spanning tree based on the transitions
in the sets of state fields.
16. The server system of claim 13, wherein the at least one
of the compute nodes 1s to:
in response to receving a message of a second type:
concurrently communicate the routing information to
cach of the plurality of distal nodes 1n the spanning
tree relative to the at least one of the compute node’s
position 1n the spanning tree based on the transitions
in the sets of state fields.
17. The server system of claim 16, wherein the at least one
of the compute nodes 1s to:
in response to 1identitying that a payload of the message of
the first type 1s targeted to the at least one of the compute
nodes, store the payload of the message at a configura-
tion register of the at least one the compute nodes based
on the transitions in the sets of state fields.
18. A method, comprising:
in response to a system reset at a server comprising a
plurality of compute nodes coupled to a fabric intercon-
nect to route messages:
at a first compute node of the plurality of compute nodes,
elfecting transitions 1 a set of state fields among
predefined sets of states 1n response to transitions in
states of corresponding state fields at connected com-
pute nodes;
receiving routing information based on the transitions of
the set of state fields; and
routing recerved messages to others of the plurality of
compute nodes via the fabric interconnect based on
the routing information.
19. The method of claim 18, further comprising;:
identifying, at the first compute node, the first compute
node’s location relative to one or more of 1ts connected
compute nodes 1n a spanning tree based on the transi-
tions of the set of state fields.
20. The method of claim 19, further comprising:
communicating, via the fabric interconnect, routing infor-
mation from the first compute node to a connected com-
pute node based on the spanming tree, the communica-
tion based on the transitions 1n the set of state fields.
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