a9y United States
12y Patent Application Publication o) Pub. No.: US 2015/0304184 A1

Ruddick et al.

43) Pub. Date:

US 20150304184A1

Oct. 22, 2015

(54)

(71)
(72)

(21)
(22)

(63)

(60)

SYSTEMS AND METHODS FOR
EXTRACTING STRUCTURED APPLICATION
DATA FROM A COMMUNICATIONS LINK

Applicant: DB Networks, Inc., Poway, CA (US)

Inventors: Timothy W. Ruddick, Oceanside, CA
(US); Eric Varsanyi, Plymouth, MN
(US); Charles A. Paterson, New
Harmony, UT (US); David A.
Rosenberg, Los Altos, CA (US)

Appl. No.: 14/755,480

Filed: Jun. 30, 2015

Related U.S. Application Data

Continuation of application No. 13/750,579, filed on
Jan. 25, 2013, now Pat. No. 9,100,291.

Provisional application No. 61/593,0735, filed on Jan.

31, 2012.
1001
Start

(51)

(52)

(57)

Publication Classification

Int. CI.

HO4L 12/26 (2006.01)

U.S. CL

CPC HO4L 43/065 (2013.01); HO4L 43/028

(2013.01); HO4L 43/12 (2013.01)

ABSTRACT

Systems and methods for generating a semantic description
ol operations between network agents. In an embodiment,

packet-level traific between two or more network agents 1s
captured. The packet-level traffic 1s bundled 1nto one or more
messages, wherein each message comprises one or more ele-

ments.

For each of the messages, the elements of the message

are matched to one or more attributes, and the message 1s
decoded into message data based on the matched attributes.
The message data 1s then used to generate a semantic descrip-
tion of operations between the network agents.

/1011

Add referenced

Yes

10056
Choose next attribute i/

l / 10006

Find element for attribute

1007

Attribute applies
to element?

Yes

templates to

session set
1008 4
1002 \
Any more No " End—)
templates in » Message
session set? \.Undecodable /
1003
\ Choose next
template v
/1009 =S 1010
1004 i
Any more NG template to Template refers to
observable setof |—» additional
attributes? matched templates?
templates

Apply all attributes from set
of matched templates to
elements

1013
e
End —

Message
Decoded

/'

. /

Patent Application Publication Oct. 22,2015 Sheet 1 of 11 US 2015/0304134 Al

102 101 103
Network Network Network
agent 1 Switch agent 2
104 103
106
107

Capture /
Analysis
Device

103

Detector

FIG. 1

Patent Application Publication

Oct. 22, 2015 Sheet2 of 11

US 2015/0304184 A1l

209

\

——

106
201
\ Network
Interface
Controller
207
202 \
203
\ Bus Storage
Controller 7 Controller
205 ‘ 210
Main Memory _— 204
Memory Controller
Cache | 206
Memory
207
CPU L

FIG. 2

Persistent
Storage

208

Patent Application Publication

Oct. 22, 2015 Sheet3 0f 11

US 2015/0304184 A1l

202
Persistent Storage Network Traffic
301
N Operating System
Networ
Storage
311 9 302
] Controller Interface |+
Dri Controller
rver .
T Driver
199 Filesystem 303 s Packet Facket 309
- N <« Fiter T
river Buffers .
Engine
Raw packet 306
Capture 1
Mechanism
312 | Timing
Facilities
304 N Capture/Analysis Address Space
e ™ 308 \
309 Model 307
™ Log Processing Packet |~
Buffers Suffers
\- / J

FIG. 3

Patent Application Publication Oct. 22,2015 Sheet 4 of 11 US 2015/0304134 Al

101 Network
Switch
106
Capture/Analysis Device 401
402
416 - 403
405
Buffer Engine
407
NIC Packet Buffers L
409
Controller Driver /
411
Packet Filter Engine L
412

Operating System Capture | 413
Mechanism

l 414

415
Raw Packet Buffers L~

!

FIG. 4 Capture/Analysis Address Space

Patent Application Publication Oct. 22, 2015 SheetSof 11 US 2015/0304184 Al

Raw packet capture
mechanism

Raw packet 415
buffers

501
Packet filter

“thernet header | _—" 002
interpreter

v

VLAN header | _—°U3
interpreter

v

510 IP header 504
\(Reassembly)H interpreter and L~

buffers
reassembly

005

IP packet
buffers

o07
AN

511 Pending out of - 1 or header
interpreter and
sequence buffers reassembly
Byte stream 206
buffers
508
~— Bundler

Bundle 509
descriptors
FIG. 5 _ and buffers

Patent Application Publication

509

Bundle
descriptors
and buffers

Oct. 22, 2015 Sheet60f 11

TNS protocol
interpreter

60
/

TTC protocol
interpreter

002
/

!

Operation filter

603
/

Model generator

!

Semantic traffic
model

!

Model log
buffers

Filesystem

FIG. 6

US 2015/0304184 A1l

Patent Application Publication

Agent 1
102

Re uest1 - 701

“Response1” - 708

"Response1 Ack” -

Switch
101

“Request1 Ack” - 705

710

Oct. 22, 2015 Sheet 70111

Request1 - 702

Request1 - 703

"Request1 Ack” - 704

“Request1 Ack” - 706

“Response1” - 707

“Response1” - 709
‘Response1 Ack™ - 711

“Response! Ack” - 712

FIG. 7

Agent 2
103

US 2015/0304184 A1l

Capture Device
107

Patent Application Publication

Kernel TCP
Reassembly

Request 1.1 - 801 S
Request 1.1 Ack - 802 S

Request 1.2 - 804

Reguest 1.2 Ack - 805 i \
Response 1.1 - 807
Resgonse 1.1 Ack - 808 z\

Response 1.2 Ack - 811 S
Response 1.2 Ack - 812 >

Response 1.3 - 814 S
Response 1.3 Ack - 815 5

Request 2.1 - 817 >
Request 2.1 Ack - 818 S

Oct. 22, 2015 Sheet 8 of 11 US 2015/0304184 Al

Request 1.1 data - 803

Request 1.2 data - 806

Response 1.1 data - 809

Response 1.2 data - 813

Response 1.3 data - 816

Request 2.1 data - 819

FIG. 8

Application

Request 1 - 810

Response 1 - 820

Patent Application Publication Oct. 22,2015 Sheet 9 of 11 US 2015/0304184 Al

906
Attribute Templates —
011 ~ 5
T Attribute 1.1 Attribute 3.1 E
012 : Observable E 008
T Attribute 1.2 Attribute 3.2 Attributes _—
§ Attribute 3.3
| 907
Chosen Attribute Templates e
913 - l l l 5
T~ Attribute 1.3 | Attribute 2.1 Attribute 4.1 ;
i i 909
i Attribute 2.2 Attribute 4.2 !’/
. Inferred i
i Attributes Attribute 4.3 i
902 A 903 \ 904 \ 905 \
§ § 90
| Element1 | Element2 | Element3 | Elementd4 |
914 —__ 910
= Data 1 Data 2 Data 3 Data 4 /

FIG. 9

Patent Application Publication

Oct. 22, 2015 Sheet 10 of 11

US 2015/0304184 A1l

/1011

1002

Any more
templates in
session set?

1003
\ Choose next
template

1004

Any more
observable
attributes?

Yes

Add referenced
templates to

session set
1008 N 1
" End—=)
NO | Message
\Undecodable/
/1 009 ves 010
Add
NG template to Template refers to
set of > additional
matched templates?
templates

1005
Choose next attribute i/

'

/ 1006
Find element for attribute

1007

Attribute applies

Yes

to element?

FIG. 10

App
of

y all attributes from set

matched templates to
elements

1013
e
4 End —

Message
Decoded

\ /

Patent Application Publication Oct. 22, 2015 Sheet 11 of 11

Communication Bus 555

290
Processor Secondary
960 Memory 570
Main Memory |”tema5|7|\gedlum
565
Removable
Medium
580
/O Interface
585

- 605 -
Communication External Medium
Interface 590 595

US 2015/0304184 A1l

Baseband Radio
620 615

_

000

Antenna
610

FIG. 11

US 2015/0304184 Al

SYSTEMS AND METHODS FOR
EXTRACTING STRUCTURED APPLICATION
DATA FROM A COMMUNICATIONS LINK

PRIORITY

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 13/750,579, filed on Jan. 25, 2013 and
titled “Systems and Methods for Extracting Structured Appli-
cation Data from a Communications Link.,” which claims
priority to U.S. Provisional Patent App. No. 61/393,075, filed
on Jan. 31, 2012 and titled “System and Method for Extract-
ing Structured Application Data from a Communications
Link,” the entireties of both of which are hereby incorporated
herein by reference.

BACKGROUND
[0002] 1. Field of the Invention
[0003] The mvention 1s generally directed to information

technology with features of network switching, routing,
proxy, and database technologies, and, more particularly, to
the extraction of semantic data, via a network tap that pro-
vides a (possibly mcomplete) copy of traffic between two
network agents with no substantial modifications to the exist-
ing network or application infrastructure.

[0004] 2. Description of the Related Art

[0005] Over the last few decades, structured database tech-
nology has become a critical component in many corporate
technology iitiatives. With the success of the Internet, the
use of database technology has exploded 1n many consumer
and business-to-business applications. With the popularity of
database architectures, new risks and challenges have arisen.
Such risks and challenges include complex and difficult to
identily performances 1ssues and subtle gaps 1n security that
can allow confidential data to be accessed by unauthorized
users. Accordingly, what 1s needed are new, improved mecha-
nisms for identifying these performance issues and closing
these security gaps.

[0006] A large fraction of database applications use a data-
base server which has structured data stored and indexed.
Clients access the database server to store, update, and query
the structured data. The clients may communicate with the
database server using standard networking technology, such
as Transmission Control Protocol (TCP), Internet Protocol
(IP), Ethernet, and the like, using various physical or virtual
media. While standard protocols are generally used for the
lower levels of communications with the database server,
higher-level protocols are often specific to a vendor and/or
client-server architecture, and may not be fully specified.
Vendors may not be technically able to publish these specifi-

cations, or may choose not to publish these specifications for
other reasons.

[0007] Below the application and/or database layer, a
sequenced byte protocol, such as TCP or Sequenced Packet
Exchange (SPX), 1s generally used to ensure delivery of mes-
sages between client and server systems 1n the face of poten-
tially unreliable lower-level transport mechanisms. These
protocols may exchange multiple packets to deliver a single
byte of data. The transmission and/or reception of such pack-
cts may be asynchronous, such that the order of the packets 1s
not necessarily the same as the order of the byte stream
required by the application or database layer. These protocols

Oct. 22, 2015

are designed to work when packets are lost or corrupted
between two network agents, such as a client system and
server system.

[0008] Many network sessions may be established between
a server (e.g., database server) and one or more client sys-
tems. Generally, each session operates asynchronously with
respect to the other sessions, and the data and control 1nfor-
mation from a plurality of sessions may overlap temporally.
In addition, multiple encapsulation technologies and physical
layer technologies may be used between a server and its
clients.

[0009] There are a number of network-tapping technolo-
gies that can be used to extract a copy of the packet stream
flowing between two or more network agents. However, a
network tap attempting to observe an exchange will not wit-
ness an exact copy of the traffic as seen by either network
agent. Rather, the network tap will receive a umique third-
party view of the packets, which may comprise a subset or
superset of the packets seen by the network agents.

[0010] While many uncertainties, as to encapsulation, ses-
sion multiplexing, order, and validity of request data, may be
resolved using data embedded 1n underlying protocols and
transports, these mechanisms are designed to operate at either
end of a network conversation (1.e., at the network agent).
Furthermore, this embedded data 1s not able to fully resolve
uncertainties in the actual content of a specific network con-
versation. In addition, 1n commonly used network architec-
tures, the packet stream captured by a network tap 1s ire-
quently damaged 1n some way. Moreover, the application
protocols (e.g., Oracle’s client-server protocol) are often not
publicly specified. Thus, conventionally, 1t 1s 1mpossible to
derive full details of operations between a server and its
clients using a network tap.

SUMMARY

[0011] Accordingly, systems and methods are disclosed
which utilize the butlering from a network tap 1n conjunction
with capture-and-analysis techniques to dertve a detailed
semantic description or model of operations between two
network agents. This detailed model can then be used to
detect and respond to performance 1ssues and security gaps,
particularly in the context of database-based applications.
[0012] In an embodiment, a method for generating a
semantic description of operations between network agents 1s
disclosed. The method comprises, using at least one hardware
processor: capturing packet-level traffic between a first net-
work agent and a second network agent; bundling the packet-
level traflic 1nto one or more messages, wherein each of the
one or more messages comprises one or more elements; for
cach of the one or more messages, matching one or more of
the one or more elements of the message to one or more
attributes, and decoding the message into message data based
on the matched one or more attributes; and generating a
semantic description of operations between the first network
agent and the second network agent based on the message
data.

[0013] In an additional embodiment, a system for generat-
ing a semantic description ol operations between network
agents 1s disclosed. The system comprises: at least one hard-
ware processor; and at least one executable software module
that, when executed by the at least one hardware processor,
captures packet-level tratfic between a first network agent and
a second network agent, bundles the packet-level traific into
one or more messages, wherein each of the one or more

US 2015/0304184 Al

messages comprises one or more elements, for each ol the one
or more messages, matches one or more of the one or more
clements of the message to one or more attributes, and
decodes the message into message data based on the matched
one or more attributes, and generates a semantic description
of operations between the first network agent and the second
network agent based on the message data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The details of the present invention, both as to 1ts
structure and operation, may be gleaned 1n part by study of the
accompanying drawings, in which like reference numerals
refer to like parts, and 1n which:

[0015] FIG. 1 illustrates an example architectural environ-
ment 1n which traific between network agents may be cap-
tured for analysis, according to an embodiment;

[0016] FIG. 2 1llustrates an example hardware architecture
for a capture-and-analysis device, according to an embodi-
ment;

[0017] FIG. 3 illustrates an example software architecture
for a capture-and-analysis device, according to an embodi-
ment,

[0018] FIG. 4 illustrates example components and data
flows related to capturing packet-level traffic and preparing
the captured tratfic for analysis, according to an embodiment;
[0019] FIG. § illustrates example components and data
flows related to reassembly of packet-level traific into byte
streams, request and response bundles, and ultimately a struc-
tured model of operations taking place between network
agents, according to an embodiment;

[0020] FIG. 61llustrates example application-level analysis
of captured traffic resulting in the generation of a semantic
operation model, according to an embodiment;

[0021] FIG. 7 1s a ladder diagram illustrating packet inter-
actions 1n a transaction from a perspective that 1s external to a
capture-and-analysis device or module, according to an
embodiment;

[0022] FIG. 8 1s a ladder diagram 1llustrating packet pro-
cessing for a transaction from a perspective that 1s internal to
a capture-and-analysis device or module, according to an
embodiment, wherein the elements of the first request (e.g.,
clements 801 and 803) represent packets, the elements of the
first request data (e.g., elements 803 and 806) represent con-
tiguous streams of byte data, and the first request 810 repre-
sents a bundle of stream data that corresponds to message
boundaries;

[0023] FIG. 9 illustrates an example data tlow for applica-
tion protocol matching, according to an embodiment;

[0024] FIG. 10 illustrates a process which may be used by
an application protocol interpreter to select attribute tem-
plates for decoding an application protocol message, accord-
ing to an embodiment; and

[0025] FIG. 11 illustrates a processing system on which one
or more of the processes described herein may be executed,
according to an embodiment.

DETAILED DESCRIPTION

[0026] Systems and methods are disclosed for generating a
detailed semantic model or description of operations between
two or more network agents. In an embodiment, the disclosed
systems and methods are applied to network sessions com-
prising device interactions that are synchronous at the appli-
cation layer. This includes, without limitation, remote proce-

Oct. 22, 2015

dure calls (RPCs) or smmilar request-and-response
interactions, such as those utilizing Hypertext Transier Pro-
tocol (HTTP). In these interactions, a first device transmits a
request to a second device through one or more networks, and
the second device returns a response to the first device via the
one or more networks. Both the request and the response may
comprise one or more packets transmitted between the
devices. The packet-level flow between the request and
response may overlap temporally (from the perspective of
either device or a network-mirroring device) and/or may be
collected from multiple points within the network architec-
ture. In an embodiment, multiple network sessions between
communicating network agents may generate packets that
interleave arbitrarily without aflecting operation of the dis-
closed systems and methods.

[0027] According to an embodiment, the systems and
methods extract a model or description of semantic opera-
tions performed between two network agents from an 1mper-
tect copy of the network packet traffic exchanges between the
network agents. This model may include, without limitation,
raw performance data on each operation, descriptive meta-
data (e.g., query string, data types, data sizes, etc.), and/or
actual data. When traific 1s missing, out of order, or the exact
specification of the traffic 1s unknown, a partial model of
operations may still be generated and used at an application-
layer level, and the framework of a session may be resynchro-
nized based on a change in direction of data flow (e.g.,
between request and response messages).

[0028] Database queries or operations that update the data
in a database may be serviced quickly or slowly by a database
server, depending on the complexity of the data query or
update operation, the mstantaneous load being experienced
by the database server, or by other factors which may be
beyond the database server itself (e.g., the storage system, a
varying virtual central processing unit (CPU) allotment, etc.).
In an embodiment, by observing the time lag between a
specific request and response, using the descriptive metadata
(e.g., Structured Query Language (SQL) query string), and by
observing the content and format of the data itself, the per-
formance of many operational aspects of the database server
can be determined 1n real time. In addition, the nature of data
and actual data being updated or retrieved is latent 1n the
network data packets flowing bi-directionally between a cli-
ent system and server. By observing this traflic, inappropriate
attempts to extract or change parts of the database may be
detected. In an embodiment, semantics ol the operations
between a client system and server are extracted and analyzed
using a copy of the existing traific. Based on this analysis,
traffic may be modified to accelerate or otherwise improve
performance and/or mitigate against various forms of attacks.

[0029] In an embodiment, a capture component 1s placed
within a network topology, such that 1t 1s exposed to traific
transmitted between the plurality of network agents to be
analyzed. Observed packets may be copied and transmaitted to
a filter component via a series of network links and/or buifer
stages. The filter component may then discard packets that are
not related to the network agents and/or applications being
analyzed. The remaining packets may be passed to a reassem-
bly component, which builds a representation of the byte
stream for each network session using sequence data and
other descriptive data 1n the packets and/or the time of receipt
of the packets.

[0030] Once the representation of the byte stream for a
session 1s built by the reassembly component, 1t may be

US 2015/0304184 Al

passed to an application-layer analysis component. The
analysis component may unpack the contents of the byte
stream 1nto the request and response data and descriptions to
generate a semantic operation model of the traffic. This
semantic model may be used by an application-specific com-
ponent, which uses the semantic model to detect security and
performance 1ssues and/or mitigate detected breaches of a
security policy.

[0031] It should be understood that the capture component,
filter component, reassembly component, application-layer
analysis component, application-specific component and any
other components or modules discussed herein may be imple-
mented 1in hardware, software, or both hardware and soft-
ware, and may be separate or integrated components. For
instance, the filter component, reassembly component, appli-
cation-layer analysis component, and application-specific
components may be software modules executing on hardware
ol a capture device or on a separate device that 1s communi-
catively coupled to the capture device.

[0032] Layvers Overview

[0033] At the outset, the layers of the Open System Inter-
connection (OSI) model will be described. The OSI model
defines a networking framework to implement protocols 1n
seven layers. A layer serves the layer above 1t and 1s served by
the layer below 1t.

[0034] Layer 7: Application Layer. This layer supports
applications and end-user processes. The application layer
interacts with software applications that implement a com-
munication component. Functions of the application layer
include identifying communication partners, determining
resource availability, and synchronizing communications.
[0035] Layer 6: Presentation Layer (or Syntax Layer). This
layer translates between application formats and network
formats 1n order to provide independence from differences 1n
data representations (e.g., encryption). The presentation layer
transforms data from the network into a form that the appli-
cation layer can understand, and formats and encrypts data
from an application to be sent across a network.

[0036] Layer 5: Session Layer. This layer controls the con-
nections between computers. It establishes, manages, and
terminates connections between applications. The session
layer 1s commonly implemented explicitly in application
environments that use RPCs.

[0037] Layer 4: Transport Layer. This layer provides trans-
parent transier of data between network agents, and 1s respon-
sible for end-to-end error recovery, segmentation and de-
segmentation, and flow control. Flow control involves
determining whether data 1s coming from more than one
application, and integrating each application’s data into a
single stream for the physical network. The transport layer
ensures complete data transfer.

[0038] Layer 3: Network Layer. This layer provides the
functional and procedural means of transferring variable
length data sequences from a source host on one network to a
destination host on a different network, while maintaining the
quality of service requested by the transport layer. It creates
logical paths for transmitting data from node to node. It
provides switching, routing, forwarding, addressing, inter-
networking, error-handling, congestion-control, and packet-
sequencing functions. The network layer determines the way
that data will be sent to a recipient agent.

[0039] Layer 2: Data Link Layer. This layer provides the
functional and procedural means to transier data between
network agents and to detect and possibly correct errors that

Oct. 22, 2015

may occur in the physical layer. The data link layer encodes
and decodes data packets, provides transmission protocol
knowledge and management, and handles errors in the physi-
cal later, as well as flow control and frame synchronization. It
assigns the appropriate physical protocol to data, and defines
the type of network and packet-sequencing. The data link
layer 1s subdivided into a Media Access Control (MAC) layer
and a Logical Link Control (LLC) layer. The MAC layer
controls how a network agent gains access to data and the
permission to transmit data. The LLC layer controls frame
synchronization, flow control, and error-checking.

[0040] Layer 1: Physical Layer. This layer defines the elec-
trical and physical specifications for devices. It conveys the
bit stream (e.g., via electrical, light, or radio signal) through
the network at the electrical and/or mechanical level. The
physical layer provides the hardware means of sending and
receiving data on a carrier, including defining cables, cards,
voltage levels, timing, and other physical aspects.

[0041] System Overview

[0042] FIG. 1 1llustrates an example system for capturing
and analyzing interactions between two or more network
agents, according to an embodiment. The system may com-
prise a set of one or more capture-and-analysis devices (e.g.,
servers) 107 which host and/or execute one or more of the
various functions, processes, and/or software modules
described herein. In addition, device(s) 107 are communica-
tively connected to a device, such as network switch 101, via
a communicative path 106. Network switch 101 1s positioned
on a network path 104/105 between a first network agent 102
and a second network agent 103. The network comprising
network path 104/105 may comprise any type of network,
including an intranet and/or the Internet, and network agents
102 and 103 may communicate using any standard and/or
proprietary protocols. For instance, network agents 102 and
103 may communicate with each other through the Internet
using standard transmaission protocols, such as HI'TP, Secure

HTTP (HT'TPS), File Transter Protocol (FTP), and the like.

[0043] In an embodiment, capture-and-analysis device(s)
107 may not be dedicated device(s), and may instead be cloud
instances, which utilize shared resources of one or more
servers. It should be understood that network agents 102 and
103 and capture-and-analysis device(s) 107 may comprise
any type or types ol computing devices capable of wired
and/or wireless communication, including without limita-
tion, desktop computers, laptop computers, tablet computers,
smart phones or other mobile phones, servers, game consoles,
televisions, set-top boxes, electronic kiosks, Automated
Teller Machines, and the like. Network agent 102, network
agent 103, and/or device(s) 107 may also comprise or be
communicatively coupled with one or more databases, such
as a MySQL, Oracle™ IBM™, Microsoft™ SQL, Sybase™
Access™, or other types of databases, including cloud-based
database instances. In addition, while only two agents 102
and 103, one switch 101, and one set of capture-and-analysis
device(s) 107 are illustrated, 1t should be understood that the
network may comprise any number of agents, switches, and
capture-and-analysis devices.

[0044] FIG. 2 1llustrates an example hardware architecture
for capture-and-analysis device(s) 107, according to an
embodiment. The internal hardware architecture may com-
prise standard, commercially-available components. A copy
or minor of the traflic sent between network agents 102 and
103, which comprises network packets, may be received from

network switch 101 via interface 106 (e.g., 1000 BASE-T

US 2015/0304184 Al

link) by a network interface controller (NIC) 201. A bus
controller 203 may transier packet data from NIC 201 via bus
202 (e.g., aPeripheral Controller Interface (PCI) bus) through
memory controller 204 1into main memory 205.

[0045] Memory controller 204 provides a path for CPU 207
to read data from and write data to main memory 205 via
cache memory 206. CPU 207 may execute a program com-
prising soltware instructions stored in main memory 205
which implement the processes described herein.

[0046] Storage controller 207 may be connected via bus
210 to bus controller 203. Storage controller 207 may read
and write data (e.g., a semantic model) and program 1nstruc-
tions to a persistent storage device 209 via link 208. For
example, storage device 209 may comprise a commercial
one-terabyte Serial Advanced Technology Attachment
(SATA) hard drive, and link 208 may comprise a SATA-II
link. However, 1t should be understood that any storage device
and associated interface may be used.

[0047] FIG. 3 illustrates an example high-level software
architecture for capture-and-analysis device(s) 107, accord-
ing to an embodiment. In this example, the architecture com-
prises an operating system kernel 301 (e.g., Linux 3.1) and
related utilities which manage the physical hardware archi-
tecture described above. Software program or modules 304,
which comprise the capture-and-analysis processes
described herein, are copied into memory by operating sys-
tem kernel 301. These modules 304 may then be executed by
CPU 207 to analyze and process recerved packets, and gen-

crate a semantic model of the operations taking place between
network agents 102 and 103.

[0048] Network interface controller driver 302 controls
NIC 201 and marshals packets recerved on network link 106
into packet butfers 303 in main memory 205. Some packets
may be discarded by a packet filter engine 305 under the
direction of capture-and-analysis modules 304. For example,
packet filter engine 305 may discard packets that are not
related to specific protocols of interest to the model-building
mechanism of modules 304, such as administrative traffic
(e.g., Address Resolution Protocol (ARP)) or other broad-
casts or trailic between network agents other than those of
interest. Raw packet capture module 306 may then copy the
retained packets mto ingress packet buifer(s) 307 used by
capture-and-analysis modules 304.

[0049] Capture-and-analysis modules 304 perform pro-
cessing 308 (as described elsewhere herein) on the ingress
packet traific placed in packet builers 307 to generate a
semantic model of the operations taking place between net-
work agents 102 and 103. This model may be incrementally
placed mto model log butlers 309, and then written by file
system driver 310 (e.g., 1n the context of a Linux operation
system, an Ext4 file system driver) and storage controller
driver 311 to persistent storage device 209.

[0050] Kernel 301 may provide timing facilities 312 to the
capture-and-analysis modules 304, so that they may interpret
the packet traflic 1n buffers 307 during processing 308. Tim-
ing facilities 312 may include a mechanism to retrieve the
current time of day at high resolution (e.g., microseconds or
greater). Modules 304 may compare the time, retrieved from
timing facilities 312, to timestamps written by network inter-
face controller driver 302 into the packets as they are
received. These timestamps may be used, for example, to
determine when expected packets are to be considered lost by
the reassembly and protocol-analysis code.

Oct. 22, 2015

[0051] Packet Capture Mechanism

[0052] In an embodiment, packet traific between network
agents 102 and 103 1s copied by a network minor or Switched
Port Analyzer (SPAN) tap mechanism. For example, a net-
work switch 101 may be placed 1n the path 104/105 between
network agents 102 and 103, such that all packets transmitted
by network agent 102 to network agent 103, and vice versa,
are transmitted through switch 101 via communication links
104 and 105. In an embodiment, network switch 101 may be
alLayer 2 (1.e., the data link layer) network switch. Switch 101
may be configured to transmit a copy of all packets, recerved
from both network agents 102 and 103 via network links 104
and 105, respectively, to capture-and-analysis device(s) 107
via communication link 106. Each of the network links 104,
105, and/or 106 may conform to the Institute of Electrical and
Electronics Engineers (IEEE) 802.3ab (1000 BASE-T) Eth-
ernet standards.

[0053] In addition, one or more detectors 108, which may
be local (e.g., executed on the same machine) or remote to
capture-and-analysis device 107 (e.g., executed on separate
machine(s) communicatively connected to capture-and-
analysis device 107 via one or more networks), may be pro-
vided. Detector(s) 108 may process the output of capture-
and-analysis device 107. For example, detector(s) 108 may
utilize semantic descriptions of operations between network
agents 102 and 103, generated by capture-and-analysis
device 107, to create one or more higher-level models, includ-
ing multiple layers of higher-level models and different types
of higher-level models (e.g., models specific to a security
application, a performance application, and/or for other types
of applications). Modules of capture-and-analysis device 107
may interface with detector(s) 108 via one or more applica-
tion programming interfaces (APIs).

[0054] FIG. 7 illustrates an example request and response
interaction between two network agents 102 and 103, accord-
ing to an embodiment. The packets exchanged in the interac-
tion may comprise an Ethernet header, Internet Protocol (IP)
header, and TCP header. A request 701, which may comprise
a complete Layer 7 request payload in one or more packets,
can be transmitted from network agent 102 via link 104 to
switch 101. Request 701 may be addressed to network agent
103. Accordingly, switch 101 transmits a copy 702 of request
701 on link 105 to network agent 103. However, switch 101
also transmits a copy 703 of request 701 on link 106 to
capture-and-analysis device(s) 107.

[0055] Network agent 103 may send an acknowledgement
704 to network agent 102 via link 105. Acknowledgement
704 1s recerved at switch 101, which 1s on the communication
path 105/104 between network agents 103 and 102. Switch
101 sends a copy 703 of acknowledgement 704 on link 104 to
network agent 102, and also transmuits a copy 706 of acknowl-
edgement 704 on link 106 to capture-and-analysis device(s)
107. Acknowledgement 704 may comprise one or more pack-
cts that indicate to network agent 102 that request 701 was
received.

[0056] Network agent 103 may send a response 707 to
network agent 102 via link 105. Response 707 1s recerved at
switch 101, which sends a copy 708 of response 707 on link
104 to network agent 102. Switch 101 also transmits a copy
709 of response 707 on link 106 to capture-and-analysis
device(s) 107. Response 707 comprises one or more packets
that form a response to request 701.

[0057] Network agent 102 may send an acknowledgement
710 to network agent 103 via link 104. Acknowledgement
710 1s recerved at switch 101, which 1s on the communication

US 2015/0304184 Al

path 104/105 between network agents 102 and 103. Switch
101 sends a copy 711 of acknowledgement 710 on link 105 to
network agent 103. Switch 101 also transmits a copy 712 of
acknowledgement 710 on link 106 to capture-and-analysis
device(s) 107. Reception of acknowledgement copy 711 by
network agent 103 completes a single application-level
request-and-response cycle that began with the transmission
of request 701 by network agent 102.

[0058] FIG. 4 illustrates an example process for capturing a
packet, according to an embodiment. In an embodiment, the
processing of packets 1n capture-and-analysis device(s) 107
begins with a packet being recerved at NIC 416 or 302 from
network switch 101 via link 106, which may be an Ethernet
link. Flectrical signals used on network link 106 may be
demodulated, for example, by a Media Independent Interface
(MII) for an Ethernet physical transcerver (PHY) 401. MII/
PHY 401 may also recover data and clock information. The
demodulated data and clock information may be passed as a
digital bit stream 402 to a network MAC 403, which separates
the stream 1nto discrete packets and applies an error-correc-
tion code to verily that the packets have not been corrupted
during transmission. Corrupted packets may be discarded
during this phase. In an embodiment, network PHY 401 and
MAC 403, along with their attendant interfaces, may be
defined by IEEE 803.3ab (1000 BASE-T) and/or related Eth-
ernet standards, and may be implemented as part of a com-
mercially available NIC.

[0059] In an embodiment, buffer engine 405 in NIC 416
assembles the data from MAC 403 1nto representations of the
packets, and stores the representations in packet butler(s)
407. Controller driver 409 (which may correspond to driver
302 1n FIG. 3) passes the received packets stored 1n packet
butter 407 through a packet filter engine 411. Packet filter
engine 411 may comprise or utilize instructions generated by
a program which compiles an optimized packet filter from a
high-level network description. The resulting packet filter
discards packets that are not of interest to model-building
process 308. What remains are TCP/IP packets that are
intended for reception by the network agents of interest (e.g.,
network agents 102 and 103) and/or for specific TCP ports.
The filter (e.g., the specific agents and/or TCP ports of inter-
est) may be configured by a user of the system.

[0060] In an embodiment, the filter may comprise a set of
one or more specifications or criteria, which may be specified
via a user iterface and/or as text lines 1n a configuration file.
For example, a specification may include, without limitation,
one or more IP addresses (e.g., defined as singletons or
ranges), one or more TCP port numbers (e.g., defined as
singletons or ranges), and/or one or more Virtual Local Area
Network (VLAN) tags. In addition, each of the specifications
may be positive or negative. A positive specification will keep
or allow packets meeting the specification, whereas a nega-
tive specification will discard or deny packets meeting the
specification. Implicit specifications may also exist. For
instance, completely empty or non-TCP packets may be dis-
carded without an explicit specification being established.
For each packet, the set of specifications are processed 1n
order until one of them matches the packet 1n question. Once
a packet 1s matched to one of the specifications, the action
specified (e.g., allow or deny) 1s enacted. Denied packets are
discarded, while allowed packets are passed on to the next
module 1n the analysis chain.

[0061] An operating system capture mechanism or facility
413 (e.g., 1n the case of a Linux operating system,

Oct. 22, 2015

AF_PACKET, version 2) may copy the packets remaining
alter the first-stage filter 411 1nto raw packet butfers 415. Raw
packet butlers 415 may be shared with, or accessible by, the
capture-and-analysis address space 304.

[0062] Packet Analysis

[0063] Packets placed 1n raw builer 4135 by operating sys-
tem capture mechanism 413 are processed or analyzed by the
programs or modules residing in the capture-and-analysis
address space 304. In an embodiment, the result of this analy-
s1s 1s a semantic model of the operations between two net-
work agents at Layer 7 (1.e., the application layer). For
instance, this model may describe the database operations
between a database client and a database server 1n terms of
events and their surrounding contexts.

[0064] In an embodiment illustrated 1n FIG. 3, packets are
processed by capture-and-analysis modules 304 after they are
placed 1n raw packet buflers 415 by operating system capture
mechanism 413. A second-stage packet filter 501 may be
applied to discard non-TCP packets that were not previously
discarded by in-kernel first-stage filter 411. Filter 501 may
also discard TCP control packets (e.g., packets with all flags
set) that are not used or are harmiul to the reassembly process,
but can not be easily removed by first-stage filter 411. Nota-
bly, 1n an embodiment, first-stage filter 411 1s intended to run
with very little state or configuration information, whereas
second-stage filter 501 has access to broad real-time state
provided by higher layers.

[0065] Examples of packets that may be harmiul include
those that indicate unusual or unexpected conditions in TCP
state. For 1nstance, a “christmas tree” packet with all control
bits set may cause the internal state machine of the TCP stack
to misinterpret the packet and use the data 1n 1t. This data may
potentially hide an attack in a properly formatted packet
received around the same time. As another example, harmiul
packets may include a packet that duplicates the TCP
sequence space of a previous packet. Sending both sets of data
for processing by a higher layer would cause the higher layer
to see the invalid data. Another example of harmiul packets
are packets with invalid checksums or length fields. These
may be misinterpreted by higher layers, causing them to read
un-initialized storage space (e.g., a buller-overrun type of
attack). As yet another example, packets deemed by a higher
layer to not be of interest may be harmiul. Such packets are
identified by their source/destination IP/port and VLAN
tuple, and this identification changes dynamically. It 1s not
practical to recompile a specific filter every time a higher
layer 1dentifies a TCP connection as “uninteresting,” so the
filtering 1s done 1n a place where dynamic state 1s available.

[0066] In an embodiment, an Ethernet header interpreter
502 determines the end of the Ethernet header. Ethernet
header interpreter 502 may then discard packets that are not
tagged as IP unicast or VLAN (e.g., according to IEEE 802.

1Q)). For instance, multicast packets may not be of interest
and can drain resources needed to handle a high-load situa-
tion, whereas VL AN-tagged packets may need to be kept so
that the underlying “unicast” header and other headers can be
extracted from them in order to decide whether or not they
should be kept. A VLAN header interpreter 503 may extract
the VLAN identifier as an identifier attribute on the final
model for packets with a VL AN header. The extracted VLAN
header may be used to associate a packet with a TCP connec-
tion. A TCP connection, 1n this context, may be identified by
a tuple of source IP, destination IP, source TCP port, destina-
tion TCP port, VL AN 1dentifier, and/or physical receive port.

US 2015/0304184 Al

The use of the VLAN 1dentifier and receive port allows the
system to differentiate traific seen on different virtual or real
networks that may be using cloned, i1dentical IP configura-
tions. VLAN header interpreter 503 may also discard any
VLAN-tagged packets that are not IP.

[0067] Inanembodiment, an IP interpreter and reassembler
504 (which may be compliant with Request for Comments
(RFC) 791) extracts the source address and destination
address from packets, and reassembles sequences of frag-
mented IP packets into single IP packets in IP packet builers
505. Fragments of IP packets may be held in reassembly
butfers 510 until either all other fragments for the IP packet
are received or a timeout occurs. If a timeout occurs, all
fragments for the IP packet may be discarded, or, alterna-
tively, assembled as incomplete and optionally marked as
incomplete. A short timeout on packets held for reassembly
can ensure that memory usage 1s kept in check 1 a frag-
mented environment with high packet loss.

[0068] Completed IP packets 1n IP packet buffers 505 may
be processed by a TCP header interpreter and stream reas-
sembler 507 (which may be compliant with RFC 793). TCP
header interpreter and stream reassembler 507 may sort 1P
packets mto streams of data per TCP connection and data
direction (e.g., from agent 102 to agent 103, or from agent 103
to agent 102), and store the sorted IP packets 1in byte stream
buffers 506. In other words, TCP header interpreter and
stream reassembler 507 may maintain a byte stream buffer
506 for each TCP stream direction. Out-of-sequence data
may be held 1n pending data buffers 511. As in-sequence data
for a given TCP stream direction 1s identified, 1t may be
appended to the corresponding byte stream buiier 506. The
data 1n byte steam butfers 506 hold ordered, contiguous, and
non-duplicated payload data for each specific TCP session in
cach specific direction. As m-order TCP data 1s added to a
connection-specific byte stream buffer 506, a bundler 508
may be notified. Bundler 508 1s also notified 1f a message
boundary 1s detected (e.g., from a control packet, from a
change 1n direction of traflic, or from a timeout that indicates
that no additional data has been received on a stream for a
predetermined period of time).

[0069] Thus, pre-Layer 7 processing starts with raw Ether-
net packets, and ends with byte stream buifers and an event
stream which describes notable events in a session. For
example, the notable events 1n a TCP session may comprise
an 1ndication that in-order TCP data has been added to the
byte stream buller corresponding to the TCP session, an
indication that no additional data has been added after a
timeout period, or an indication that a TCP control message
has been received which closes the session. The byte and
event streams may be passed to bundler 508, which com-
mences the Layer 7 portion of the analysis process.

[0070] Application Layer Processing
[0071] A. Bundling
[0072] A “bundle”1s a complete request message or a com-

plete response message at the application layer. Bundler 508
may use several strategies to determine the boundaries of a
bundle (e.g., using control packets, data direction, or tim-
couts) and send a bundle of data on to the protocol analysis
modules. For instance, boundary determination methods may
comprise one or more of the following;:

[0073] Data Direction: in-sequence data received from the
reassembler for a single session will change directions, for
example, at the boundary between the request message and
the response message. This change of direction may be used

Oct. 22, 2015

to indicate an end-of-message boundary. For example, a
change of direction may be used to indicate an end to request
message 701 and/or the beginning of an acknowledgement
message 704 or response message 707. Thus, the very nature
ol request-and-response interactions may be used to place
markers 1n a data stream to indicate message boundaries (or
otherwise indicate message boundaries) that could not have
otherwise been deduced without perfect knowledge and cap-
turing.

[0074] Reassembler Activity Timeout: at the end of a mes-
sage, where no additional tratfic 1s immediately forthcoming
(e.g., typically a response), a time tick from the reassembler
or an expiration of a timer may be used to indicate an end-oi-
message boundary. For example, the occurrence of a timeout,
following receipt of a packet of response message 707, may
be used to indicate and end to response message 707.

[0075] Reassembler Missing Segment: 11 a segment of a
message 1s missing, a timeout may be used to indicate a
message boundary. A missing message segment may repre-
sent a TCP packet which should have been received with
payload from the middle of a request or response stream. An
incomplete message may be marked as incomplete. In many
cases, protocol handlers can still extract suificient data from
the incomplete message to build a model. For example, an
expiration of a timer or an occurrence of a timeout, following
receipt of a prior segment or other event which results 1n an
expectation of the missing segment, may be used to indicate
an end to a request or response message. The mcomplete
request or response message may be marked as incomplete.
An interpreter (e.g., TNS protocol interpreter 601 and/or TTC
protocol iterpreter 602) may use a detected gap, resulting
from packet loss, to determine 11 1t can extract data, and how
much data it can extract from the data that 1t has, without
having to receive all of the data.

[0076] Inan embodiment, bundler 308 provides bundles of
in-sequence unidirectional application traific and associated
descriptive data to an application protocol interpreter (e.g.,
interpreter 601). Bundler 508 needs no knowledge of the
application protocol specification, and may pass incomplete
traffic (1.e., bundles with one or more regions ol missing
in-sequence data) to the application protocol interpreter 1f
segments or packets were lost.

[0077] FIG. 8 illustrates an example of a process for bun-
dling a request message and response message from raw
packets placed into raw packet butfers 415 by kernel 301. The
packets presented to the analysis modules are those sent by
switch 101. (Refer back to the description of FIG. 7 for an
example of external packet handling.) In the example 1llus-
trated 1n FIG. 8, the first request requires two payload packets
(numbered 1.1 and 1.2) and three response packets (num-

bered 1.1, 1.2, and 1.3).

[0078] Inanembodiment, the TCP reassembly phase 1llus-
trated 1n FIG. 8 comprises processing by second-stage packet
filter 501, Ethernet header interpreter 502, VLAN header
interpreter 503, IP header interpreter and reassembler 504,
and TCP header interpreter and reassembler 507. The arrows
showing request and response data, provided by the TCP
reassembler 507 to bundler 508, represent the byte stream
buifers 506. The full request and response data, resulting
from bundler 508, comprise bundle descriptors and buifers
509. Bundle descriptors and butifers 509 provide the output of
bundler 508 to the first stage of Layer 7 protocol interpreta-
tion (e.g., TNS protocol interpreter 601 in an Oracle™-spe-
cific context).

US 2015/0304184 Al

[0079] In the message flow illustrated i FIG. 8, the first
request segment 801 of the request transmitted from network
agent 102 and the first segment 802 of the acknowledgement
(ACK) transmitted from network agent 103 are received.
Reassembly renders the payload of first segment 801 as a
stream of request data 803 to bundler 508. This provision of
the payload of first segment 801 may be provided before
reception of ACK 802, or may be provided after reception of
ACK 802 which indicates that first request segment 801 was
successiully received by network agent 103. In addition, the
ACK messages may be used by the reassembler to shortcut
the timeout process. For mstance, if an ACK message 1s seen
for a payload packet that was not witnessed, 1t 1s likely that the
missing packet was lost 1n the capture path. In erther case,
when bundler 508 receives first request data 803, there 1s no
indication yet that the message 1s complete. Thus, bundler
508 queues first request data 803.

[0080] The second and final request segment 804 of the
request from network agent 102 and the corresponding ACK
805 from network agent 103 are then received by the reas-
sembler. The reassembler appends this second request seg-
ment 804 1n sequence to the current stream of request data to
bundler 508, and provides the payload data 806 of second
request segment 804 to bundler 508. Since bundler 508 still
has no mdication that the message 1s complete, bundler 508
queues second request data 806. In other words, bundler 508
appends second request data 806 to first request data 803.

[0081] In the illustrated example, network agent 103 for-
mulates a three-segment response to the request from network
agent 102. The first segment 807 of the response from net-
work agent 103 and the corresponding ACK 808 from net-
work agent 102 are recerved. The reassembler provides the
payload data 809 for first response segment 807 to bundler
508. Bundler 508 detects that the direction of traffic has
changed, and determines that the previous message bundle 1t
was collating 1s now complete. Thus bundler 508 sends this
message bundle 810 (1.¢., the full request from network agent
102 to network agent 103 comprising request data 803 and
806) to a Layer 7 protocol interpreter for further analysis.

[0082] The additional two segments 811 and 814 of the

response from network agent 103 to network agent 102, and
the corresponding ACK messages 812 and 815, are recerved.
Second response segment 811 and third response segment
814 are processed into data streams 813 and 816, respectively,
and provided to bundler 508. Bundler 508 collates first
response data 813 and second response data 816 (1.e., appends
data 813 and 816 to data 809), but does not yet pass them on
to the Layer 7 protocol interpreter.

[0083] Next, a first segment 817 of a second, new request
from network agent 102 to network agent 103 and the corre-
sponding ACK 818 are receirved. The reassembler sends the
request data 819 from request segment 817 to bundler 508.
Bundler 508 detects that the direction of data transmission
has changed, and 1ssues the complete response 820 (1.e.,
comprising response data 809, 813, and 816), corresponding
to the first request, to the Layer 7 protocol interpreter.

[0084] B. Application Protocol Decoding

[0085] Bundles 509, representing requests and responses,
are processed by higher-level protocol processing to build a
semantic model of the operations taking place between the
two network agents 102 and 103. While this higher-level
protocol processing may sometimes be described herein in
the context of an Oracle™ client-server connection, 1t should
be understood that this description 1s merely illustrative. The

Oct. 22, 2015

systems and methods disclosed herein may be applied to or
generalized for other applications and contexts as well.

[0086] In an example embodiment specific to an Oracle™
client-server connection, a Transparent Network Substrate
(TNS) protocol interpreter 601 may be provided which
unpacks the procedure call and response payloads and asyn-
chronous messages from TNS wrapper structures found 1n
bundles 509. TNS 1s a multiplexing and asynchronous mes-
sage wrapper protocol used by the Oracle™ client-server
protocol. It should be understood that alternative or additional
interpreters may be used for other protocols. For instance,
Microsoft™ SQL Server uses Tabular Data Stream (TDS)
and Symmetric Multiprocessing (SMP) wrapper protocols,
which may be abstracted similarly to TNS. LDAP, MySQL,
and Postgresql each use header wrapper protocols. In addi-
tion, HTTP 1s a header/wrapper protocol for eXtensible
Markup Language (XML) tratfic or HyperText Markup Lan-
guage (HTML) traffic. An interpreter can be constructed for
any one or more of these protocols and used as an alternative
or 1n addition to interpreter 601.

[0087] Inaddition, 1nanembodiment, a Two Task Common
(T'TC) protocol decoder or interpreter 602 may extract remote
procedure verbs, parameters, and result payloads from each
request bundle and response bundle. The TTC protocol pro-
vides character set and data type conversion between different
characters sets or formats on a client and server.

[0088] Protocol template matching by a protocol inter-
preter (e.g., T'TC protocol template matching by TTC proto-
col interpreter 602) will now be described with reference to
FIG. 9. Messages processed by the protocol interpreter are
made up of a sequence of elements 901 (e.g., RPC verbs, RPC
parameters, RPC results, etc.), which are decoded by the
interpreter mnto a data form 910 that 1s useful for building a
model. The transformation from elements 901 to data 910 1s
controlled by a set of attributes 908 and/or 909, which may be
specific to each element. Each message may contain a vari-

able number of elements. For example, FI1G. 9 1llustrates four
elements 902, 903, 904, and 905.

[0089] A library 906 of attribute templates may be created
for each new protocol session by the protocol interpreter (e.g.,
TNS protocol interpreter 601 and/or TTC protocol interpreter
602). Library 906 may be created using pre-coded knowledge
ol the protocol 1n question, and may be selected as a subset of
a larger library of attribute templates, for example, for one or
more protocols available for all sessions. For a newly discov-
ered or i1dentified session, the template library 906 may be
mitially filled with a relatively small set of templates that
match broad groups of protocol messages and refer to groups
of more specific templates. Multiple templates 1n the library
of attribute templates may match any given message. Thus, 1n
an embodiment, templates may be ordered in the library such
that more exact matches are checked by the protocol inter-
preter before less exact ones. A more exact match will more
tully describe a message than a less exact match.

[0090] In an embodiment, templates provide characteriza-
tions of negotiated data types, RPC options, and client-server
architectures. These characterizations may all be used to
decode the individual fields of specific RPCs. This can be
especially usetul when the protocol 1s not fully specified or
secret, or when the initial negotiation for a session cannot be
observed. Among other things, template matching can be
used to determine which side of a connection (e.g., TCP

US 2015/0304184 Al

connection) 1s the client and which side of the connection 1s
the server, when the start of a communication cannot be
observed.

[0091] Each template in library 906 contains a list of one or
more attributes that may be applied to elements of a message
(e.g., an RPC request or response message). For example, a
template that matches example message 901 would apply to
the elements 902, 903, 904, and 905 of message 901. The
matching template can be used to decode message 901 1nto
data 910, which 1s usable by model generator 604. Each
template 1n library 906 may also contain one or more refer-
ences to additional templates or a reference to a list of addi-
tional templates.

[0092] Inanembodiment, a template may comprise a set of
dynamic runtime classes (e.g., written 1n C++ code). The
templates or “marshallers” are configured to pull specific
patterns of data out of the stream and compose valid data. One
example 1s a string template, which 1s configured to recognize
a string represented by a one-byte length field followed by
one or more data blocks 1n which the last data block has a
zero-byte length field. Such a template can be tested by
attempting to de-marshal a string using the template. For
example, 1f, while a reading a string, the interpreter ends up
attempting to read past the end of the available data 1n the
bundle, the template has failed to match. However, 1t should
be understood that this 1s simply one 1llustrative example.
Other templates may fail to match for simpler reasons. For
example, 11 a high bit 1s never expected to be set 1n a specific
byte location 1n a numeric format, 1t may be determined that
a template configured to detect a number in the numeric
format has failed to match 1f a high bit 1s detected 1n the
specific byte location.

[0093] One or more observable attributes 908 (e.g., RPC
field types and common markers) may be determined by
direct examination of the elements. Template(s) 907 may be
chosen by matching one or more of their attributes to observ-
able attributes 908. In other words observable attributes 908
may be compared to the attributes of one or more templates in
library 906 to identily the best matching template(s) 907 from
library 906. Once matching template(s) 907 have been 1den-
tified based on attributes observed from elements 902, other
attributes 909 may be inferred using template(s) 907.

[0094] FIG. 10 illustrates an embodiment of a process that
may be used by a protocol interpreter (e.g., TNS protocol
interpreter 601 and/or TTC protocol mterpreter 602) to find
matching template(s) 907 from template library 906, and
decode amessage 901 into a set of usetul data 910. At the start
1001 of processing message 901, all templates in library 906
are 1n the set of templates to be considered. The protocol
interpreter iterates through the templates i library 906 and
removes non-matching templates from further consideration.
Accordingly, in step 1002, 1t 1s determined whether any tem-
plates remain for consideration. If so, a previously unconsid-
ered template 1s selected 1n step 1003.

[0095] Each template comprises a set ol observable
attributes. Observable attributes may be those attributes
which are apparent or determinable from message 901 (e.g.,
from elements 902) or already known about message 901. As
cach new template 1s selected for consideration 1n step 1003,
cach attribute of that template may be placed in the set of
attributes to be checked or observed against message 901.
These attributes may comprise inferred attributes, 1.e.,
attributes which may not have been determinable from mes-
sage 901 or what was previously known about message 901

Oct. 22, 2015

without having first identified the template comprising the
inferred attributes. In step 1004, it 1s determined whether any
attributes remain to be checked. If so, an unchecked attribute
1s selected 1n step 1003.

[0096] The template indicates to which element of the mes-
sage each attribute within the template applies. In step 1006,
the start of the element, to which the attribute selected 1n step
1005 applies, 1s located in message 901. The start of the
clement may be located by using previously validated observ-
able or inferred attributes from the chosen template. For
example, the size of a previous element may be an inferred or
observed attribute, and this size may be used to locate the next
clement 1n the message.

[0097] In step 1007, the selected attribute (e.g., attribute
911) 1s checked against the located element (e.g., element
902). It this check 1s successiul (e.g., the located element
satisfies or corresponds to the selected attribute), the next
observable attribute in the selected template 1s selected and
checked. The process of steps 1004, 1005, 1006, and 1007

may repeat until all observable attributes have been checked.

[0098] If, instep 1007, an attribute fails to check against an
clement of message 901, the process may return to step 1002.
This process may repeat until all templates 1n the session’s
library 906 have been checked, and/or until 1t 1s otherwise
determined that no more templates must be checked. A check
may be unsuccessiul, for instance, if the element 1s not
present (e.g., due to packet loss, or due to the template not
being an appropriate match for message 901) or 11 the element
does not {it the form of the attribute (e.g., a data type or value
range). Furthermore, 11 no library template 1s found that suc-
cessiully checks against message 901, message 901 may be
marked as completely undecodable in step 1008. On the other
hand, 11 all observable and/or inferred attributes 1n a template
successiully check against message 901, the template 1s
added to a set of matched templates, or the attributes of the
template are added to a set of attributes, 1n step 1009.

[0099] If a template 1s chosen for the set of matched tem-
plates 1n step 1009 based on matched attributes, 1t 1s deter-
mined 1n step 1010 whether the chosen template contains an
inferred attribute that references an additional set of one or
more templates. For example, this additional set of one or
more templates may comprise more specific templates. The
additional set of one or more templates 1s added to the tem-
plate library 906 for the session 1n step 1011, and the process-
ing of message 901 1s continued in step 1002, based on the
supplemented template library 906.

[0100] Once all templates 1n template library 906, includ-
ing any referenced templates added in step 1011, have been
considered with respect to the elements of message 901,
message 901 1s decoded 1 step 1012 using one or more
matched templates. Message 901 may be decoded in step
1012 into data 910 by applying all of the attributes (e.g.,
observable attributes 908 and inferred attributes 909) from
the chosen template(s) 907 to the elements of message 901
(c.g., elements 902, 903, 904, and 905). In this manner, the
pattern of observable attributes 908 found 1in message 901
results in the 1dentification of a set of inferred attributes 909
by matching the observable attributes 908 to templates in
template library 906 that comprise both observable and
inferred attributes.

[0101] All of these attributes, 1.e., both observable

attributes 908 and inferred attributes 909, are applied together
to message 901 1n step 1012 to generate a decoded message in
step 1013. For instance, the process in step 1012 for decoding

US 2015/0304184 Al

clement 902 of message 901 comprises applying the com-
bined observable attributes (e.g., attributes 911 and 912) and
inferred attributes (e.g., attributes 913) to element 902 to
produce data 914. The other elements of message 901 (1.¢.,
clements 903, 904, and 905) may be decoded 1n a similar
manner.

[0102] Each type of attribute may imply or indicate i1ts own
form of transformation. As an 1illustrative, non-limiting
example, 1n the context of Oracle™ TTC protocol interpre-
tation, some examples of applicable attributes include the
basic type of data (e.g., string, numeric, date, interval, etc.),
the acceptable range of values, a specific value or bit pattern
(e.g., an operation code), the dynamic range of a value (e.g.,
how many bits are required to represent the full range of the
value), how many padding bits may be included 1n a message
and their possible values and locations, the encoding of a
value (e.g., endianness, character set, bit width, etc.), and/or
the internal structure of a value (e.g., simple array of charac-
ters with a single length, groups of characters with a length
field between each one, etc.).

[0103] Some elements of a message may contain bulk data
that 1s not of interest. Thus, 1n an embodiment, the transfor-
mation from element to data (e.g., from element 902 to data
914) 1n step 1012 may involve eliding or omitting some or all
of the actual data, leaving only a description of the data (e.g.,
the chosen attributes) for use 1n building a model. The bun-
dling mechanism (described 1n more detail elsewhere herein)
ensures that the high-level message boundaries are discemn-
able, even 1f part ol a message 1s skipped or omitted 1n this

fashion.

[0104] In an embodiment, template library 906, which 1is
used to decode a message, persists on a per-session basis. This
allows earlier messages 1n the session to inform the decoding
ol later messages 1n a session. This feature may be particu-
larly critical, for instance, in decoding messages 1n a session
in which the initial connection setup messages are missing.

[0105] While the embodiment 1llustrated 1n FIG. 6 uses a
TNS protocol interpreter 601 and TTC protocol interpreter
602, it should be understood that different interpreters (e.g.,
for protocols other than TNS and/or TTC) may be used 1n
addition to or instead of the illustrated interpreters and/or a
different number of mterpreters may be used (e.g., one, two,
three, four, etc.), depending on the particular protocol(s)
being interpreted.

[0106] In an embodiment, the data extracted from TNS
protocol interpreter 601 and/or TTC protocol iterpreter 602
or, 1n other contexts, Irom one or more other interpreters may
be passed to an operation filter 603. Operation filter 603 may
use application-level semantic data to filter operations that are
not of interest. Operations of interest or operations not of
interest may be defined or configured by a user. As an 1llus-
trative example, the application-level semantic data may
include a service name for a database. For instance, two
database instances named CRMPROD and CRMDEYV may
be present on or otherwise available from the same server and
use the same TCP port (e.g., port 1521) for RPC traific. A user
may specily that only operations ivolving CRMPROD are of
interest or that the operations mvolving CRMDEYV are not of
interest. In erther case, operation filter 603 may filter out
operations mvolving CRMDEYV from consideration prior to
analysis by model generator 604.

[0107] Atany of the interpreter or filter stages leading up to
model generator 604 (e.g., stages 601, 602, and/or 603), pro-
cessing of a bundle or group(s) of bundles 1n a session may be

Oct. 22, 2015

deferred, leaving the bundle(s) queued until a new bundle or
event 1s recerved for the session. This mechanism may be used
when information from subsequent bundles may be needed
by any of the stages or modules to interpret earlier bundles.
For instance, TTC protocol interpreter 602 may use this queu-
ing mechanism to defer processing of undecodable messages
in a session until its template library 1s more refined or devel-
oped. In addition, model generator 604 may use this queuing
mechanism to retain bundles while attempting to determine
which side of a connection 1s the server and which side of the
connection 1s the client.

[0108] Semantic Traflic Model

[0109] Referring again to FIG. 6, model generator 604 uses
the stream of data and events generated by one or more
protocol interpreters (e.g., TNS protocol interpreter 601 and
TTC protocol interpreter 602)—and, 1n an embodiment, {il-
tered by operation filter 603—+to build an abstracted semantic
traffic model 605 of the operations taking place between
network agent 102 and network agent 103. Model 605 may
comprise a sequence of verbs and backing data that pertains to
a single session (e.g., database session). Model 605 maintains
a collection of states for each session and transaction, and
describes the sequence of operations applied to that state.

[0110] Additional models, including multiple layers of
models, may be built from semantic tratfic model 603, for
example, by detector 108. The details of these higher-level
models may be specific to the analysis engine built to use the
data of model 6035, and may vary based on the goals of the
application which will utilize model 605. In other words,
different users may build different higher-level models
depending on the task at hand. For example, for a security
application, a higher-level model may comprise structural
and parametric data that describe the normal behavior of an
application and expose outlying operations that may repre-
sent attacks. As another example, for a performance applica-
tion, the higher-level model may comprise data describing the
timing and size of verbs and their parameters. As a further
example, a database firewall may build a higher-level model
describing SQL statements and execution semantics sur-
rounding them. A web application firewall (WAF) or WAF-
like system may build a higher-level model from model 605
that shows Unmiform Resource Identifiers (URIs) and POST
parameters.

[0111] Model 605 may be built in main memory 205 and/or
cache memory 206, and written by file system driver 310 and
storage controller driver 311 (e.g., via memory controller
210, bus controller 203, and storage controller 207) to persis-
tent storage device 209. Specifically, in an embodiment, the
data of model 605 (e.g., events and metadata) may be queued
to model log buffers 606, which may be written to persistent
storage device 209.

[0112] The data of model 605, queued 1n model log buffers
606, may comprise a feed that 1s inputted 1nto one side of an
API to be used by the specific higher-level application (e.g.,
detector 108) providing the API to, for example, construct
higher-level models. For instance, for a security application,
RPCs being used 1n monitored sessions and the parameters
used in the RPCs, and/or SQL operations being used and the
rows and columns being modified by the SQL operations,
may be provided from model 605 via model log butifers 606 to
the security application via an API defined by the security
application. For a performance application, the types of
operations being used in monitored sessions may be provided
from model 605 via model log butters 606 to the performance

US 2015/0304184 Al

application via an API defined by the performance applica-
tion. Alternatively, 1t should be understood that the capture-
and-analysis modules 304 may define the API, and one or
more applications (e.g., detector 108 which may comprise
security application(s), performance application(s), and/or
other types of applications) may access the data of model 605
(e.g., stored in model log butters 606) via the API defined by

capture-and-analysis modules 304.
[0113] Vanations

[0114] The disclosed systems and methods may be applied
to any application-level protocol that 1s session synchronous.
Such protocols include, without limitation, database client-
server protocols used by Oracle™, Microsoft™ SQL,
Sybase™ IBM™ DB2, PostgreSQL, MySQL, MongoDB,
and other databases. Such protocols also include non-data-
base server protocols, such as HTTP, HI'TPS, Network File
System (NFS), Apple Filing Protocol (AFP), Server Message
Block (SMB), Domain Name System (DNS), Simple Mail
Transier Protocol (SMTP), Internet Message Access Protocol
(IMAP), Post Otfice Protocol (POP), and custom or propri-
ctary application protocols. In addition, the application pro-
tocols may be carried over transport mechanisms other than
TCP over IP version 4 (IPv4), including, without limitation,
User Datagram Protocol (UDP) over 1Pv4, UDP over IP
version 6 (IPv6), TCP over IPv6, Remote Desktop Protocol
(RDP) over IPv4, Internetwork Packet Exchange/Sequenced
Packet Exchange (IPX/SPX), Internet Control Message Pro-
tocol (ICMP) over IPv4, and ICMP over IPv6. The protocols
may be carried 1n any combination over Layer 2 bridges,
Network Address Translation (NAT) devices, Virtual Private
Network (VPN) tunnels, VLAN technologies, and
in-memory 1inter-process commumcation (IPC) arrange-
ments on Non-Uniform Memory Access (NUMA) and Uni-
form Memory Access (UMA) architectures.

[0115] The disclosed systems and methods may also be
applied to any packet-based or stream-based physical layers,
including arbitrary combinations of such layers within the
same system. These include physical transports over any sup-
ported media, including, without limitation, Fiber Distributed
Data Interface (FDDI), Token Ring, 100-megabit Ethernet,
10-megabit Ethernet over coaxial cables, 10-gigabit Ethernet,
and Digital Signal 1 (DS1)/Diagital Signal 3 (DS3) signaling.
[0116] The disclosed systems and methods may utilize any
capture mechanism that can make copies of the traflic
between network agents, and provide these copies to the
disclosed capture-and-analysis device 107 or modules 304.
Such capture mechanisms include, without limitation, elec-
trical-level taps, MII proxy taps, a NAT device which routes
traffic between network agents and transparently captures the
routed traffic, a virtual SPAN or mirror facility that may be
part of a Virtual Machine (VM) manager or hypervisor, a TCP
or IPC proxy running on any of the involved network agents,
and playback of previously captured traific (e.g., log) from a
storage device.

[0117] The disclosed systems and methods are not limited
to analyzing traific and building models for a single pair of
network agents. Rather, the systems and methods are able to
simultaneously monitor many sessions between many pairs
of network agents. Furthermore, traffic may be captured
simultaneously from a plurality of capture mechamisms 1n
real time or from a play-back. The systems and methods may
differentiate between network agents based on transport
addresses, as well as other attributes, such as MAC addresses,
IP addresses, TCP port numbers, VLAN tags, application-

Oct. 22, 2015

layer-specific identifiers (e.g., service name, SID {for
Oracle™ protocols, etc.), and/or physical ingress port tags.
[0118] It should be understood that the capture-and-analy-
s1s device 107 and/or mirror tap may be implemented entirely
in software executing 1n a VM environment. The components
of the system—including, without limitation, the capture
devices or mechamisms—may run in a distributed fashion on
a plurality of virtual or physical appliances and/or operating
system processes or drivers. Furthermore, the systems and
methods may be implemented on any operating system that
supports basic networking and file system capabilities. Alter-
natively, the systems and methods may be implemented on a
physical or virtual device without an operating system (e.g.,
incorporating required hardware drivers into an application,
which embodies the systems and methods, 1tselt).

[0119] Datfferent hardware architectures may act as the base
for the mirror tap or the capture-and-analysis device 107.
These architectures include, without limitation, multiple-
CPU-core systems and any supported network or storage
peripherals and controllers which support the performance
requirements of the system. Any stored program or CPU
architecture (e.g., Harvard CPU architecture) may support the
disclosed systems and methods.

[0120] The reassembly and protocol decoding or interpre-
tation systems and methods described herein may be imple-
mented with different layering than described. For example,
the Ethernet, VLAN, IP, and/or TCP reassembly modules
may be a single module or entity, and may not support items
such as IP fragmentation or VL AN header parsing. The reas-
sembler may use control flags (e.g., ACK, “finish” (FIN),
“reset” (RST), etc.) to help determine message boundaries
and other exceptional conditions.

[0121] Semantic model 605 may be stored on persistent
storage on differing storage architectures. Such storage archi-
tectures include, without limitation, network file systems,
Storage Area Network (SAN) storage, Redundant Array of
Independent Disks (RAID) storage, and/or tlash memory.
Alternatively, model 605 may not be stored in persistent
storage at all. Rather, model 605 may be consumed by the
ultimate, destination application (e.g., via an API) and dis-
carded.

[0122] It should be understood that the destination applica-
tion of semantic model 605 may use model 605 of traflic to
perform other tasks than just those tasks discussed elsewhere
herein. Such tasks may include, without limitation, informing
a block proxy when to hold and when to release tratfic flowing
through the capture-and-analysis device 107 so that 1t may act
similarly to an Intrusion Prevention System (IPS), and acting
as an application-level proxy and modifying or locally satis-
tying operations for performance or security purposes (e.g.,
to implement a database accelerator).

[0123] The disclosed systems and methods may handle
extreme conditions. Such conditions may include, without
limitation, a pertect plurality of tratfic copies received due to
the utilized capture architecture, a pertectloss of traffic in one
direction between a pair of network agents, and new versions
ol application protocols that are completely unspecified.

[0124] In an embodiment, there may be channels of com-
munication which push data, notifications, indications, or
other information “backwards” down the analysis chain.
Such channels may include, without limitation, notification
from the TTC layer to the TNS layer regarding message
boundaries or asynchronous signal notifications, and/or mes-
sages from TNS protocol interpreter 601 to bundler 508 and/

US 2015/0304184 Al

or reassemblers 507 and/or 506 to eliminate the need for a
timeout to determine the end of a message (e.g., a message to
bundler 508 or reassemblers 507 or 506 comprising an 1ndi-
cation that the end of the message has been determined). Such
channels may be implemented to allow modules (e.g., inter-
preters, filters, etc.), further along the analysis chain, to
“peek’ at the data and assist modules, earlier in the analysis
chain. For example, this assistance, provided by later mod-
ules to earlier modules 1n the analysis chain, may comprise
the determination of message boundaries.

[0125] In an embodiment, during analysis, bundler 508
and/or one or both of reassemblers 506 and 507 may elide
blocks of data that are of no use to the application layers. The
clided data may be significant in some instances, and may
include, without limitation, bulk row data and bind param-
eters. For example, all data not required for an application at
hand may be elided or redacted. The data to be elided may be
predetermined (e.g., by user-defined parameters stored in a
configuration file). For instance, for a database firewall that 1s
not processing the contents of return row data, the application
may elide result row payloads and/or all parameter data.

[0126] In an embodiment, bundler 508 and/or one or both
of reassemblers 506 and 507 may implement a streaming
protocol such that data 1s delivered to the protocol 1nterpreters

without the need to buffer the data or completely butler the
data.

[0127] Attributes for protocol message elements, such as
TTC protocol message elements, may be inferred directly
from clues which are 1ntrinsic to the message or from other
clues. These other clues may include, without limitation,
known architectures and/or version numbers of the network
agents mvolved 1n the interaction. For example, these archi-
tectures and/or version numbers may be known via configu-
ration or caching of data from a previous message or session.

[0128] In embodiments, the search of attribute elements,
such as TTC attribute elements, may be elided for a subset of
one or more elements. For instance, 1n an embodiment, 1f
clues provided from an earlier part of the connection estab-
lishment protocol indicate that certain templates are not
needed, they may be excluded from consideration for perfor-
mance reasons. As an illustrative example, certain RPC struc-
tures may never be used after a given version of an Oracle™
client library. Thus, 11 the connection setup determines that a
newer library version 1s in use, the interpreters can refrain
from attempting to match any templates that solely support
older library versions. Additionally, the results of a search for
attribute elements may be cached to improve performance.

[0129] Generation of the per-session template library 906
may be mnformed by the results of related sessions. For
example, 11 a template library 1s selected for a first connection
from client A to server B, this previously selected library may
be reused as a starting point for a second and subsequent
connection from client A to server B, since there may be a
good chance that the second connection 1s from the same
application as the first connection. Furthermore, protocol
attribute templates may be excluded or included 1n library 906
based on attributes outside of the immediate protocol mes-
sages, such as TINS protocol headers, configuration inputs
(e.g., manually defined by a user), IP header fields, rows or
bind payload data, TCP header fields, transport layer header

fields, etc.

[0130] In an embodiment, additional or alternative heuris-
tic methods, than those described elsewhere herein, may be
used to determine at least some of the attributes of the data

Oct. 22, 2015

clements for a given message and/or a set of templates that are
in the scope of a particular session. For example, information
acquired from a session setup negotiation may be used to
directly determine one or more attributes. For instance, a
“book™ of templates for given server version numbers or
client library versions and server types may be used to provide
a starting point for the template library search. The time to
search all possible combinations of templates can be signifi-
cant. Thus, reducing the search space can be valuable, for
example, 1n terms of improving performance. In addition, the
disclosed bundling mechanism may be generalized and used
for other purposes than those described elsewhere herein. For
example, the bundling mechanism may be used to determine
semantics of TNS marker messages, determine performance-
related statistics 1n the model builder, decode row data, char-
acterize row data, etc.

[0131] Example Processing Device

[0132] FIG. 11 1s a block diagram 1illustrating an example
wired or wireless system 550 that may be used 1n connection
with various embodiments described herein. For example the
system 350 may be used as or in conjunction with one or more
of the mechanisms or processes described above, and may
represent components of capture-and-analysis device(s) 107,
network agents 102 and/or 103, network switch 101, and/or
other devices described herein. The system 350 can be a
server or any conventional personal computer, or any other
processor-enabled device that 1s capable of wired or wireless
data communication. Other computer systems and/or archi-
tectures may be also used, as will be clear to those skilled in
the art.

[0133] The system 350 preferably includes one or more
processors, such as processor 560. Additional processors may
be provided, such as an auxiliary processor to manage mnput/
output, an auxiliary processor to perform floating point math-
ematical operations, a special-purpose microprocessor hav-
ing an architecture suitable for fast execution of signal
processing algorithms (e.g., digital signal processor), a slave
processor subordinate to the main processing system (e.g.,
back-end processor), an additional microprocessor or con-
troller for dual or multiple processor systems, or a coproces-
sor. Such auxiliary processors may be discrete processors or
may be mtegrated with the processor 560. Examples of pro-
cessors which may be used with system 550 1include, without
limitation, the Pentium® processor, Core 17® processor, and
Xeon® processor, all of which are available from Intel Cor-
poration of Santa Clara, Calif.

[0134] The processor 560 is preferably connected to a com-
munication bus 555. The communication bus 355 may
include a data channel for facilitating information transfer
between storage and other peripheral components of the sys-
tem 5350. The communication bus 555 further may provide a
set of signals used for communication with the processor 560,
including a data bus, address bus, and control bus (not
shown). The communication bus 555 may comprise any stan-
dard or non-standard bus architecture such as, for example,
bus architectures compliant with industry standard architec-
ture (ISA), extended industry standard architecture (EISA),
Micro Channel Architecture (MCA), peripheral component
interconnect (PCI) local bus, or standards promulgated by the
Institute of Electrical and Electronics Engineers (IEEE)

including IEEE 488 general-purpose interface bus (GPIB),

IFEE 696/S-100, and the like.

[0135] System 550 preferably includes a main memory 565
and may also include a secondary memory 570. The main

US 2015/0304184 Al

memory 565 provides storage of instructions and data for
programs executing on the processor 560, such as one or more
of the functions and/or modules discussed above. It should be
understood that programs stored 1n the memory and executed
by processor 560 may be written and/or compiled according,
to any suitable language, including without limitation C/C++,
Java, JavaScript, Perl, Visual Basic, .NET, and the like. The
main memory 563 1s typically semiconductor-based memory
such as dynamic random access memory (DRAM) and/or
static random access memory (SRAM). Other semiconduc-
tor-based memory types 1nclude, for example, synchronous
dynamic random access memory (SDRAM), Rambus
dynamic random access memory (RDRAM), ferroelectric
random access memory (FRAM), and the like, including read
only memory (ROM).

[0136] The secondary memory 570 may optionally include
an mternal memory 573 and/or a removable medium 580, for
example a tloppy disk drive, a magnetic tape drive, a compact
disc (CD) drive, a digital versatile disc (DVD) drive, other
optical drive, a flash memory drive, etc. The removable
medium 580 1s read from and/or written to 1n a well-known
manner. Removable storage medium 580 may be, for
example, a tloppy disk, magnetic tape, CD, DVD, SD card,
etc.

[0137] The removable storage medium 580 1s a non-transi-
tory computer-readable medium having stored thereon com-
puter executable code (i.e., soltware) and/or data. The com-
puter soltware or data stored on the removable storage
medium 580 1s read nto the system 550 for execution by the
processor 560.

[0138] Inalternative embodiments, secondary memory 570
may 1nclude other similar means for allowing computer pro-
grams or other data or instructions to be loaded into the
system 530. Such means may include, for example, an exter-
nal storage medium 595 and an interface 590. Examples of
external storage medium 5935 may include an external hard
disk drive or an external optical drive, or and external mag-
neto-optical drive.

[0139] Other examples of secondary memory 370 may
include semiconductor-based memory such as programmable
read-only memory (PROM), erasable programmable read-
only memory (EPROM), electrically erasable read-only
memory (EEPROM), or flash memory (block-oriented
memory similar to EEPROM). Also included are any other
removable storage media 580 and communication interface
590, which allow software and data to be transferred from an
external medium 593 to the system 550.

[0140] System 550 may include a communication interface
590. The communication interface 590 allows software and
data to be transierred between system 350 and external
devices (e.g. printers), networks, or information sources. For
example, computer software or executable code may be trans-
ferred to system 550 from a network server via communica-
tion iterface 590. Examples of communication interface 590
include a built-in network adapter, network interface card
(NIC), Personal Computer Memory Card International Asso-
ciation (PCMCIA) network card, card bus network adapter,
wireless network adapter, Universal Serial Bus (USB) net-
work adapter, modem, a network interface card (NIC), a
wireless data card, a communications port, an infrared inter-
tace, an IEEE 1394 fire-wire, or any other device capable of
interfacing system 350 with a network or another computing

device.

Oct. 22, 2015

[0141] Communication interface 390 preferably 1mple-
ments industry promulgated protocol standards, such as Eth-
ernet IEEE 802 standards, Fiber Channel, digital subscriber
line (DSL), asynchronous digital subscriber line (ADSL),
frame relay, asynchronous transier mode (ATM), integrated
digital services network (ISDN), personal communications
services (PCS), transmission control protocol/Internet proto-
col (TCP/IP), serial line Internet protocol/point to point pro-
tocol (SLIP/PPP), and so on, but may also implement cus-
tomized or non-standard interface protocols as well.

[0142] Software and data transierred via communication
interface 590 are generally 1n the form of electrical commu-
nication signals 605. These signals 605 are preferably pro-
vided to communication interface 390 via a communication
channel 600. In one embodiment, the communication channel
600 may be a wired or wireless network, or any variety of
other communication links. Communication channel 600 car-
ries signals 605 and can be implemented using a variety of
wired or wireless communication means including wire or
cable, fiber optics, conventional phone line, cellular phone
link, wireless data communication link, radio frequency
(“RE”) link, or infrared link, just to name a few.

[0143] Computer executable code (1.e., computer programs
or software) 1s stored 1n the main memory 565 and/or the
secondary memory 570. Computer programs can also be
received via communication interface 590 and stored in the
main memory 565 and/or the secondary memory 570. Such
computer programs, when executed, enable the system 550 to
perform the various functions of the present invention as
previously described.

[0144] In this description, the term “computer readable
medium™ 1s used to refer to any non-transitory computer
readable storage media used to provide computer executable
code (e.g., software and computer programs) to the system
550. Examples of these media include main memory 565,
secondary memory 370 (including internal memory 575,
removable medium 580, and external storage medium 595),
and any peripheral device communicatively coupled with
communication interface 590 (including a network 1informa-
tion server or other network device). These non-transitory
computer readable mediums are means for providing execut-
able code, programming instructions, and software to the
system 350.

[0145] In an embodiment that 1s implemented using sofit-
ware, the software may be stored on a computer readable
medium and loaded into the system 550 by way of removable
medium 580, I/O interface 585, or communication interface
590. In such an embodiment, the software 1s loaded into the
system 550 1n the form of electrical communication signals
605. The software, when executed by the processor 560,
preferably causes the processor 560 to perform the inventive
features and functions previously described herein.

[0146] In an embodiment, I/O interface 585 provides an
interface between one or more components of system 350 and
one or more mput and/or output devices. Example input
devices include, without limitation, keyboards, touch screens
or other touch-sensitive devices, biometric sensing devices,
computer mice, trackballs, pen-based pointing devices, and
the like. Examples of output devices include, without limita-
tion, cathode ray tubes (CRTs), plasma displays, light-emit-
ting diode (LED) displays, liquid crystal displays (LCDs),
printers, vacuum tlorescent displays (VFDs), surface-con-
duction electron-emitter displays (SEDs), field emission dis-

plays (FEDs), and the like.

US 2015/0304184 Al

[0147] The system 3550 also includes optional wireless
communication components that facilitate wireless commu-
nication over a voice and over a data network. The wireless
communication components comprise an antenna system
610, a radio system 615 and a baseband system 620. In the
system 550, radio frequency (RF) signals are transmitted and
received over the air by the antenna system 610 under the
management of the radio system 615.

[0148] In one embodiment, the antenna system 610 may
comprise one or more antennae and one or more multiplexors
(not shown) that perform a switching function to provide the
antenna system 610 with transmit and receive signal paths. In
the receive path, received RF signals can be coupled from a
multiplexor to a low noise amplifier (not shown) that ampli-
fies the received RF signal and sends the amplified signal to
the radio system 615.

[0149] In alternative embodiments, the radio system 6135
may comprise one or more radios that are configured to com-
municate over various Ifrequencies. In one embodiment, the
radio system 615 may combine a demodulator (not shown)
and modulator (not shown) 1n one 1ntegrated circuit (IC). The
demodulator and modulator can also be separate components.
In the incoming path, the demodulator strips away the RF
carrier signal leaving a baseband receive audio signal, which
1s sent from the radio system 615 to the baseband system 620.

[0150] If the received signal contains audio information,
then baseband system 620 decodes the signal and converts 1t
to an analog signal. Then the signal 1s amplified and sent to a
speaker. The baseband system 620 also receives analog audio
signals from a microphone. These analog audio signals are
converted to digital signals and encoded by the baseband
system 620. The baseband system 620 also codes the digital
signals for transmission and generates a baseband transmit
audio signal that 1s routed to the modulator portion of the
radio system 615. The modulator mixes the baseband trans-
mit audio signal with an RF carrier signal generating an RF
transmit signal that i1s routed to the antenna system and may
pass through a power amplifier (not shown). The power
amplifier amplifies the RF transmit signal and routes 1t to the
antenna system 610 where the signal 1s switched to the
antenna port for transmission.

[0151] The baseband system 620 1s also communicatively
coupled with the processor 560. The central processing unit
560 has access to data storage areas 565 and 570. The central
processing unit 560 1s preferably configured to execute
instructions (1.e., computer programs or software) that can be
stored 1n the memory 565 or the secondary memory 570.
Computer programs can also be received from the baseband
processor 610 and stored 1n the data storage area 563 or in
secondary memory 370, or executed upon receipt. Such com-
puter programs, when executed, enable the system 550 to
perform the various functions of the present mvention as
previously described. For example, data storage arcas 565
may include various software modules (not shown).

[0152] Various embodiments may also be implemented pri-
marily 1n hardware using, for example, components such as
application specific integrated circuits (ASICs), or field pro-
grammable gate arrays (FPGAs). Implementation of a hard-
ware state machine capable of performing the functions
described herein will also be apparent to those skilled 1n the
relevant art. Various embodiments may also be implemented
using a combination of both hardware and software.

[0153] Furthermore, those of skill in the art will appreciate
that the various 1illustrative logical blocks, modules, circuits,

Oct. 22, 2015

and method steps described in connection with the above
described figures and the embodiments disclosed herein can
often be implemented as electronic hardware, computer sofit-
ware, or combinations of both. To clearly illustrate this inter-
changeability of hardware and software, various 1illustrative
components, blocks, modules, circuits, and steps have been
described above generally 1n terms of their functionality.
Whether such functionality 1s implemented as hardware or
soltware depends upon the particular application and design
constraints imposed on the overall system. Skilled persons
can implement the described functionality in varying ways
for each particular application, but such implementation deci-
s1ions should not be interpreted as causing a departure from
the scope of the mvention. In addition, the grouping of func-
tions within a module, block, circuit or step 1s for ease of
description. Specific functions or steps can be moved from
one module, block or circuit to another without departing
from the mvention.

[0154] Moreover, the various 1illustrative logical blocks,
modules, functions, and methods described in connection
with the embodiments disclosed herein can be implemented
or performed with a general purpose processor, a digital sig-
nal processor (DSP), an ASIC, FPGA, or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereot designed to
perform the functions described herein. A general-purpose
processor can be a microprocessor, but 1n the alternative, the
processor can be any processor, controller, microcontroller,
or state machine. A processor can also be implemented as a
combination of computing devices, for example, a combina-
tion of a DSP and a microprocessor, a plurality of micropro-
CEssOrs, one or more microprocessors n conjunction with a
DSP core, or any other such configuration.

[0155] Additionally, the steps of a method or algorithm
described 1n connection with the embodiments disclosed
herein can be embodied directly in hardware, 1n a software
module executed by a processor, or in a combination of the
two. A software module can reside in RAM memory, flash
memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of storage medium including a network
storage medium. An exemplary storage medium can be
coupled to the processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium can be inte-
gral to the processor. The processor and the storage medium
can also reside 1 an ASIC.

[0156] Any of the software components described herein
may take a variety of forms. For example, a component may
be a stand-alone software package, or it may be a software
package incorporated as a “tool” 1n a larger software product.
It may be downloadable from a network, for example, a
website, as a stand-alone product or as an add-in package for
installation 1n an existing soitware application. It may also be
available as a client-server software application, as a web-
cnabled software application, and/or as a mobile application.

[0157] The above description of the disclosed embodi-
ments 1s provided to enable any person skilled in the art to
make or use the invention. Various modifications to these
embodiments will be readily apparent to those skilled 1n the
art, and the general principles described herein can be applied
to other embodiments without departing from the spirit or
scope of the invention. Thus, it 1s to be understood that the
description and drawings presented herein represent a pres-

US 2015/0304184 Al

ently preferred embodiment of the invention and are therefore
representative of the subject matter which 1s broadly contem-
plated by the present invention. It 1s further understood that
the scope of the present mvention fully encompasses other
embodiments that may become obvious to those skilled 1n the
art and that the scope of the present invention 1s accordingly
not limaited.

What 1s claimed 1s:

1. A method for generating a semantic description of opera-
tions between network agents, the method comprising, using,
at least one hardware processor:

capturing packet-level tratiic between a first network agent

and a second network agent;

bundling the packet-level traffic into one or more mes-

sages, wherein each of the one or more messages com-
prises one or more elements;

for each of the one or more messages,

matching one or more of the one or more elements of the
message to one or more attributes, and

decoding the message into message data based on the
matched one or more attributes; and

generating a semantic description of operations between

the first network agent and the second network agent
based on the message data.

2. The method of claim 1, wherein capturing packet-level
traific between a first network agent and a second network
agent comprises receving copies ol packets from a switch
positioned on a communicative path between the first net-
work agent and the second network agent.

3. The method of claim 2, wherein the switch 1s a virtual
switch.

4. The method of claim 1, wherein capturing packet-level
traffic between a first network agent and a second network
agent comprises recerving copies ol packets from a network
tap positioned on a communicative path between the first
network agent and the second network agent.

5. The method of claim 4, wherein the network tap 1s a
virtual network tap.

6. The method of claim 1, wherein bundling the packet-
level traflic into one or more messages comprises, iteratively,
for each of one more sessions:

receiving a packet transmitted between the first network

agent and the second network agent;

determining whether a boundary condition has occurred,

wherein the boundary condition indicates an end of a
message;
if 1t 1s determined that the boundary condition has not
occurred, queuing the recerved packet in memory; and,

if 1t 1s determined that the boundary condition has
occurred, bundling one or more packets queued 1n the
memory 1nto a message.

7. The method of claim 6, wherein determining whether a
boundary condition has occurred comprises one or more of:

detecting control information indicating an end of a mes-

sage;

detecting a change 1n direction of communication between

the first network agent and the second network agent
based on the received packet; and

detecting that a timeout has occurred since reception of a

packet.

8. The method of claim 1, wherein matching one or more of
the one or more elements of the message to one or more
attributes comprises, for each template 1n a set of one or more

templates:

Oct. 22, 2015

selecting the template, wherein the template comprises one
or more attributes;

comparing one or more of the one or more attributes of the
template to one or more of the one or more elements of
the message; and

determiming whether the template matches the message
based on the comparison.

9. The method of claim 8, further comprising selecting the
set of one or more templates from a plurality of templates.

10. The method of claim 9, wherein the set of one or more
templates 1s selected based on startup information for a con-
nection between the first network agent and the second net-
work agent.

11. The method of claim 9, wherein the set of one or more
templates 1s selected based on a stored set of one or more
templates used for a prior connection between the first net-
work agent and the second network agent.

12. The method of claim 8, further comprising, for each of
the one or more messages:

selecting one or more templates that match the message
from the set of one or more templates; and

decoding the message based on the one or more attributes
of the selected one or more templates.

13. The method of claim 8, wherein the set of one or more
templates comprises one or more templates corresponding to
one or more of Transmission Control Protocol (TCP), Internet
Protocol (IP), Hypertext Transfer Protocol (HTTP), File
Transter Protocol (FTP), Sequenced Packet Exchange proto-
col (SPX), Address Resolution Protocol (ARP), Transparent
Network Substrate protocol (TINS), Tabular Data Stream pro-
tocol (TDS), Symmetric Multiprocessing protocol (SMP),
Two Task Common protocol (1TTC), Network File System
protocol (NFS), Apple Filing Protocol (AFP), Server Mes-
sage Block protocol (SMB), Domain Name System protocol
(DNS), Simple Mail Transfer Protocol (SMTP), Internet
Message Access Protocol (IMAP), and Post Office Protocol
(POP).

14. The method of claim 1, further comprising discarding
at least a portion of one or both of the packet-level traffic and
message data, based on one or more filters, prior to generating
the semantic description of operations.

15. The method of claim 1, wherein the one or more mes-
sages comprise one or more of a request message for a remote
procedure call (RPC) and a response message foran RPC, and
wherein decoding each of the one or more messages 1nto
message data comprises extracting one or more of verbs,
parameters, and result payloads for an RPC.

16. The method of claim 1, wherein the capturing is per-
formed by a capture module, wherein the bundling, matching,
decoding, and generating 1s performed by an analysis mod-
ule, and wherein the method further comprises passing the
packet-level traific from the capture module to the analysis
module using at least one application programming interfaces

(API).
17. The method of claim 16, wherein the capture module
and analysis module are executed on separate machines.

18. The method of claim 16, wherein the capture module
and analysis module are executed on one machine.

19. A system for generating a semantic description of
operations between network agents, the system comprising:

at least one hardware processor; and

at least one executable software module that, when
executed by the at least one hardware processor,

US 2015/0304184 Al

captures packet-level traffic between a first network
agent and a second network agent,
bundles the packet-level traflic into one or more mes-
sages, wherein each of the one or more messages
comprises one or more elements,
for each of the one or more messages,
matches one or more of the one or more elements of
the message to one or more attributes, and
decodes the message into message data based on the
matched one or more attributes, and
generates a semantic description of operations between
the first network agent and the second network agent
based on the message data.

20. The system of claim 19, wherein capturing packet-level
traffic between a first network agent and a second network
agent comprises receiving copies ol packets from a switch
positioned on a communicative path between the first net-
work agent and the second network agent.

21. The system of claim 20, wherein the switch 1s a virtual
switch.

22. The system of claim 19, wherein capturing packet-level
traffic between a first network agent and a second network
agent comprises recerving copies ol packets from a network
tap positioned on a communicative path between the first
network agent and the second network agent.

23. The system of claim 22, wherein the network tap 1s a
virtual network tap.

24. The system of claim 19, wherein bundling the packet-
level trailic into one or more messages comprises, iteratively,
for each of one more sessions:

receiving a packet transmitted between the first network

agent and the second network agent;

determining whether a boundary condition has occurred,

wherein the boundary condition indicates an end of a
message;
if 1t 1s determined that the boundary condition has not
occurred, queuing the recerved packet 1n memory; and,

if 1t 1s determined that the boundary condition has
occurred, bundling one or more packets queued 1n the
memory 1nto a message.

25. The system of claim 24, wherein determiming whether
a boundary condition has occurred comprises one or more of:

detecting control information indicating an end of a mes-

sage;

detecting a change 1n direction of communication between

the first network agent and the second network agent
based on the recerved packet; and

detecting that a timeout has occurred since reception of a

packet.

26. The system of claim 19, wherein matching one or more
of the one or more elements of the message to one or more
attributes comprises, for each template 1n a set of one or more
templates:

selecting the template, wherein the template comprises one

or more attributes;

comparing one or more ol the one or more attributes of the

template to one or more of the one or more elements of
the message; and

Oct. 22, 2015

determining whether the template matches the message

based on the comparison.

277. The system of claim 26, wherein the at least one execut-
able software module selects the set of one or more templates
from a plurality of templates.

28. The system of claim 27, wherein the set of one or more
templates 1s selected based on startup information for a con-
nection between the first network agent and the second net-

work agent.

29. The system of claim 27, wherein the set of one or more
templates 1s selected based on a stored set of one or more
templates used for a prior connection between the first net-

work agent and the second network agent.
30. The system of claim 26, wherein the at least one execut-

able software module, for each of the one or more messages:
selects one or more templates that match the message from
the set of one or more templates; and

decodes the message based on the one or more attributes of

the selected one or more templates.

31. The system of claim 26, wherein the set of one or more
templates comprises one or more templates corresponding to
one or more of Transmission Control Protocol (TCP), Internet
Protocol (IP), Hypertext Transfer Protocol (HTTP), File
Transier Protocol (F'TP), Sequenced Packet Exchange proto-
col (SPX), Address Resolution Protocol (ARP), Transparent
Network Substrate protocol (TINS), Tabular Data Stream pro-
tocol (TDS), Symmetric Multiprocessing protocol (SMP),
Two Task Common protocol (TTC), Network File System
protocol (NFS), Apple Filing Protocol (AFP), Server Mes-
sage Block protocol (SMB), Domain Name System protocol
(DNS), Simple Mail Transfer Protocol (SMTP), Internet
Message Access Protocol (IMAP), and Post Office Protocol
(POP).

32. The system of claim 19, wherein the at least one execut-
able software module discards at least a portion of one or both
of the packet-level trailic and message data, based on one or
more filters, prior to generating the semantic description of
operations.

33. The system of claim 19, wherein the one or more
messages comprise one or more of a request message for a
remote procedure call (RPC) and a response message for an
RPC, and wherein decoding each of the one or more messages
into message data comprises extracting one or more of verbs,
parameters, and result payloads for an RPC.

34. The system of claim 19, wherein the capturing 1s per-
formed by a capture module, wherein the bundling, matching,
decoding, and generating 1s performed by an analysis mod-
ule, and wherein the capture module passes the packet-level
traffic to the analysis module using at least one application
programming interface (API).

35. The system of claim 34, wherein the system further
comprises a first machine and a second machine, and wherein
the capture module 1s hosted on the first machine and the
analysis module 1s hosted on the second machine.

36. The system of claim 35, wherein the system further
comprises a single machine that comprises the at least one
hardware processor, the capture module, and the analysis
module.

	Front Page
	Drawings
	Specification
	Claims

