a9y United States
12y Patent Application Publication (o) Pub. No.: US 2015/0244795 Al

CANTWELL et al.

US 20150244795A1

43) Pub. Date: Aug. 27, 2015

(54)

(71)
(72)

(21)

(22)

(1)

DATA SYNCING IN A DISTRIBUTED SYSTEM
Applicant: SolidFire, Inc., Boulder, CO (US)

Inventors: Jared CANTWELL, Boulder, CO (US);
Bill MINCKLER, Broomfield, CO
(US); Joe ROBACK, Fort Collins, CO
(US); Jim WITTIG, Boulder, CO (US)

Appl. No.: 14/186,847

Filed: Feb. 21, 2014

Publication Classification

(52) U.S.CL
CPC HO4L 67/1095 (2013.01); GO6F 17/30575

(2013.01)

(57) ABSTRACT

Disclosed are systems, computer-readable mediums, and
methods for recerving a start replication message to replicate
a source volume to a replicated volume. A source system
forwards I/O requests to the replica server. A data structure
associated with the replicated volume 1s mitialized. A write
request 1s recerved from the source system. The write data 1s
written to the replicated volume and the data structure 1s
updated. Source metadata associated with the source volume
1s received. The source metadata 1s compared with prior meta-
data associated with a prior point-in-time 1mage of the source
volume to determine blocks of data that have changed since
the prior point-in-time 1mage of the source volume. A first
block 1s determined to not be retrieved based upon the data

Int. Cl. structure. A second block is determined to be retrieved based
HO4L 29/08 (2006.01) upon the data structure. The second block is received and
GOo6l 17/30 (2006.01) written to the replicated volume.
T8 prr g e -y
. Y f g - e e mnm e sy - e e e ;
; ; F ; i
Chent layver i E
vy S i Chient Client -
T wen
g E oy
e o rovs emmme e ek :
— e - il fufe e e Wt it ""-'H__‘_':._i--'- -
-'*“-.4___-.‘ |
_?_p“-""" e o . et e o o i g ppm ARk mik e wEa A 33 S T F¥R MY SAD WS Ve Lnms e e mnr A rd e i sae i
! S R e
KAsTadata fayer Wletabats server 1308 ; FAetadaty server 1100 5 Metzdata server 130
; i T I A S iy
104« T : . T S
A ﬁ“‘; L perfarmarce Carfirmangs i | P Partornanni i :- [T————————— |-i
§ ransget 1143 manager Llak 11 1 ¢ manager Ll | | SACKUD Server | 1 Backup Server ||
| | beemereeeed L s o et 5 0 1183 | 118n | :
S __ st e s _ |
J'*-;HJ' e
H‘*t-ﬁh Storage %
e 120
T ey o e o i iy -
Biork server fayer ' | L L . . 5 :
| : Bicek ; Blxrk Bioty g B P
106 < Seryer i Servar f Sarger | SEIVEF
/ 1174 Z 112k) iz | ; 112n .
: v 3
e A S a4 B
i’"*.-_.__ _____ B _ . ______'___fT‘__ o i ey wwr ia oas ame s s o - m—
e
v
A e
SYnrags "'*--;;:; ’,’_;'Zi;‘f::hh
. A S
i %
S T L

Aug. 27,2015 Sheet 1 of 6 US 2015/0244795 Al

Patent Application Publication

o o A —— .-L..l-l.Il . P .,
3 5 K
." - -
. 1,
- e
"] 1
[] 1
K] _ |)
-] 1
; P “ (}5 7
’ . |
1 L HJCEE N . Il-k _ AN n
m._.ﬁ...l o : “ P ...__.
“_
|

AN
Rl
P
b
b
P -ty
L5

Trae_ =t
S st

- N

g
'3 . ,-_“H._.ﬁ._.l.l.l.l.._L i ”.n._,m\.l ..___ .
H.i o T P = “. ._..
e

o
a |
=
A
' % nn
.
1
=]
L
i
T
13
o
el

.

o
o
niF
-
pE o mEr mwr mme sl sl AW S W WSS W W T T T e — —— el WA A e W T O T T .l.n.-_.r TP T CEE. T s e s rfe e AR A A, SR, RR e R LR e e e nE YT PR Ry Ay 7 T T/ ToTm T |m - .-.JIJ..
! o
, ; 3
-m.l-.lli. SR R - . o ._..l.‘_.l_rﬂ _l.i_.I cArEE: - e r——— —p—y—- o —— “_LL-. A_n K A ALK - | ..l.-.-.L-.-.l.-I "-" Fxan aansws m s e e . .ﬂ-w - “
C d “ ! ___“
F 3 i ;o ;
]
r ! ! 3] ¢ : ! “
2 " 1 . ”_ ML P R “ W N etk i “ ““
1 4 1 R ' n . n Fy ny - . . ; % :
o UZTT | Vi | AT ; “i L1 ; :
1 -l .n” o e b A - ' . A
- 1 4 |
b N ' .,m m_ __. g ﬁ T
L 1— " .- . . L A , Iy 1 I m] .-_ w 1]
- TR : (A . Ak 1 : LA : CO '
. y ,.:n______"._.__,._“,mm“ 3 _ R RN ' , Jt i L3l : g P = &
: | y
i, 1- .l ¥
w ' L J-. ".__) o 1...__1‘_ r .hl-Mﬂ_.l.H ™ m 1 _.Mn ln__u...u. _. ; .“ “
L 1 B #“ ’ A . mm _ & u.—_.. £ H T ' P .._uu“...u : ?
" .lm . 'I.‘-“ m _-..- p -lvt .rl\-m " b .._”) A “ [] u e -_ m s
I . 1 . 4 ! 4 ’
L} - 0 x
|
]
[]
[]
i
b

.EE1 mms wm
= m————
e
A
e e
e
LIAERL

Lardr o sl N B R L y - Y. essrs. Aresr P e smw— emme—

R] e M _rrirr o rEarT i rT A AT T - m mammEmmEmmypmEy F
[] - - - - — sk e 1

.
|

g P PR — S . el BN FFS VAF 4FR TAE TF1 T—— rE- rFT FEA —— —— - = kA AA rar U4 IEL EmE] AFE REE SN EE ‘A& SAS AEF AL EEF NS EEF mEXE mSE mm3 EE3 aar mms mar aml mm, WS WO SALF S ST OYT A S ST S Sy T 1
. - - — '

.
0T
BERIGIS

'I.
}.._.f
i "
RS
uuh.l
AN TN I TN S IS I I A EIET I ST DI A I I I T A I d i mmw wm— mme mmm- e e e e mms e e e e et o are ward T a e 1..!“— — prm cmmm cmmm e mmm cmme el mse ke ks ke FA EX. BFs XF. 'EF . FX- T — - ...I.._ -_.I-.l-l-_.‘l..._..l
— i N
L L | - ﬂ.
| | | : — _ :
1
- - ¥ ., . P e R — g i . el - Frrrr varva e r———— - ——— - " o e i e o S i S . M
C m IH‘ IW m m” Fl Iﬁ _ l “__1 1.1.-1...1.!1.-1..1.\.._1...1..1.._1.1.\.._-:..I.I.I.I.l.l.l.I.l.l y r - 1 m|-|1lll-|-lll.-l-ll.lll-ll.lll-lllll-lﬁﬁl-lﬁﬂl_.lihl-hl-.ihhlihuﬂ.ﬂl-‘-‘llb] -l...'.illElEE.lul.I.l.lul.'E.lu ”." ' m
, M ' b ’
| _ : ; ’ : : y ; _ “ s ;
.) , ; S YRR o G = SR pai ;4 R & LT Loy /
i - A a T PR e | Tl i : - - 3 N O .
|| JBA8Q dNYoBs JBAJDS AMoEY b Y edeass]] 1 51T sleunws | | ERIT AR - m
s s - 1 .
_ C :] . : “
— A . . - " =to wiy FIF AP ' . 1 1 -y [FE \ r i "
- —] . BB AGLIE L : ; _ LU et A " “ : T Ll k]] (i, {
- - n - 1 1 - g i . -
: ;o s . £ i 5 i L P L
- : ”m...-.\.\.ﬁ..\..\.-.{-..-_..\. 111111111 .-.u mm....__..iuk-u-__..__..uu_..H.uﬁ.__..Eh ||||||||||||||||||| “_. F-hl.ﬁ-t‘t.\t\t-n?‘nfﬁ‘t.\\\.ﬁ.\.\.ﬁ. IIIIIIIIIIIIIII oL “ "_"] ' ' '
!)] ; 5 { T
. g : s y : oy) .m_h_ P PTETBI S
A .1.u...1f.....-.ﬁw PR E A e Lm iy pa LA 4] Cpy e - - i LS L A R L ’ ’ F A L r TR EA TN R LV R ' : r of 'l g ..“...._Hh. oA wh
‘ R L JAtras EREIR N Ot g 2iEDE L[;o BT Amedak RN 1 ’
! ' h_ : : m m z
“ A P ;
.uw L ———anm —— e P s EarEA R 1 / AR, vaeEE, wwww. s — bttt D R L w
{ A
CHE W TR Y Y ey e mme e e ek et W S A TR T e s e o owe g S b L Aehe R e S AR RS R S SRR RS RS AR RS mEE s me om o == R
- -llulu
ﬁ.uﬂl
.-....lu
Il..l
.....i-li.lll.!
1‘.‘
.‘I. ¥ SR Iem SR Ry JJEW S s . e 2. At AL WA lﬁ..l- B e I L T e e e e B e S S iy i R TErEL o tEe It__ " ———— lull..flﬂ_
n a .n.L
o 1 3
“_ . - el N) - et “ - Mk B A .-.ttll.._w ; m
" ' T m
r n ! :
" “ : P
L] 1 r 1 u
¥ 1 ! u
v ..1|.”I1I.I-I-|1|._1|..".-\.._ “_ u..-_- ...- : .._ ”1_ m i
- S S ol ' n L o I
- i i ahtL L e - X s 1
’ g n_.._m_."...—u & - > m.n _f_.. 3 { "y o
5 : s n “n LEl
M " ¥ | ey m.“ -—- # “su FEAR _ \.-_.. - A’ oL
B K . o - y
. . . ")
; 2 varm_m*.m ; : .ﬁ.L. ..imrw_ !
2 - I s
) - = N - Xl W By A
;! : “ Jaty] s
“ n * » [RS
v q . -
w / m “ : w
4 1 u [r :
w N N N R T T Y P T e o - o e e - “ nf
_- il
+ n ! 1
m 5 k..\ﬁ ra_-Ln...l\... -.mlm w-u_ .m-
FRur mEma g o gmom, e rEr, Em FEE s wma e e mmid melk bkl mas N S AN W, W MO TR R T WY e ey syl 1- .II-I-_-_-I-r.I.. .-.l-..—.t] _ml.

Patent Application Publication Aug. 27,2015 Sheet 2 of 6 US 2015/0244795 Al

2002

N,

k.
206
204 <
S i S, e AN T
o [er | [e2] [ea] [
o L : 202a | | 2026 202¢ 202 :
L o e e e e e e e e e e e o e o o o o — o — o —
Fils. 23
2080
28]
206

Patent Application Publication Aug. 27,2015 Sheet3 of 6 US 2015/0244795 Al

S00¢

iz, 2¢

Patent Application

300

Publication Aug. 27, 2015 Sheet 4 of 6

US 2015/0244795 Al

Retreve metadata for 3 volume

Creaste nitial backup of data biocks based on the meiadals

store a copy of the metadala

l

HRelrieve metadata for the volume

T 308

l

316

Analyze versions of melagata o getermine changed data
olocks

310

e

reate incremental backup of changed data bIocks

312

y

e o —————]

Siore a copy of the current metadala

Fita, 3

314

179] &

US 2015/0244795 Al

ST
3ERICIS

1I|IIIIIIIIIIII

IllIIIIlllJ

_ By . 2817
| |
|

JBAISS BOHdSNM 815AC 88e401g

Aug. 27,2015 Sheet5o0f 6

QU

Patent Application Publication

Patent Application Publication Aug. 27,2015 Sheet 6 of 6 US 2015/0244795 Al

200

N

Receaive start replication message 507
intialize write tracking data structure 504

I, A

» Determine which blocks of dats
nave changed

, l i

_.-"'"r’-f H A n
oo N

Receive Wrile 550 e 506

P
.:’E .
~ .
p

" Isdata block
% neaded? 7

Heceive Wrile SEZ

.,
~
S
-

-
-
l-.-.l..--
. -
s .
HH o m 5 Q 8
-, A
S
- o
. P
el o

|

Update wrile tracking data

siructure o4
Yes
rRequest gata block 510

Recaive and write requesiad
gdata block 512

FiG. 5

US 2015/0244795 Al

DATA SYNCING IN A DISTRIBUTED SYSTEM

BACKGROUND

[0001] The following description 1s provided to assist the
understanding of the reader. None of the information pro-

vided 1s admitted to be prior art.

[0002] In data storage architectures, a client’s data may be
stored 1n a volume. A unit of data, for example a file (or
object), 1s comprised of one or more storage units (e.g. bytes)
and can be stored and retrieved from a storage medium such
as disk or RAM 1n a variety of fashions. For example, disk
drives 1n storage systems are divided 1nto logical blocks that
are addressed using logical block addresses (LBAs). As
another example, an entire file can be stored 1n a contiguous
range of addresses on the storage medium and be accessed
given the offset and length of the file. Most modern file
systems store files by dividing them into blocks or extents of
a fixed size, storing each block 1n a contiguous section of the
storage medium, and then maintaiming a list or tree of the
blocks that correspond to each file. Some storage systems,
such as write-anywhere file layout (WAFL), logical volume
manager (LVM), or new technology file system (NTEFS),
allow multiple objects to refer to the same blocks, typically
through a tree structure, to allow for ellicient storage of pre-
vious versions or “snapshots™ of the file system. In some
cases, data for a single file or object may be distributed
between multiple storage devices, either by a mechanism like
RAID which combines several smaller storage media into one
larger virtual device, or through a distributed storage system
such as Lustre, General Parallel File System, or GlusterF'S.

[0003] At some point, it 1s desirable to backup data of the
storage system. Traditional backup methods typically utilize
backup software that operates independently of the data stor-
age system and manages the backup process. Backup meth-
ods exist to backup only the differences since the last full
backup (e.g., a differential backup) or to backup only the
changes since the last backup (e.g., an incremental backup).
However, due to inelliciency of backup software, many
administrators are shifting away from traditional backup pro-
cesses and moving towards data replication methods. With
replication comes the issue of replicating a mistake, for
example, a wrongly deleted file. High bandwidth 1s required
for both replication and backup solutions, and neither meth-
ods are particularly well suited to scale efficiently for long
term archiving.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The foregoing and other features of the present dis-
closure will become more fully apparent from the following
description and appended claims, taken 1n conjunction with
the accompanying drawings.

[0005] FIG. 1 depicts a simplified system for a storage
system 1n accordance with an 1llustrative implementation.

[0006] FIG. 2A depicts a hash tree 1n accordance with an
illustrative implementation.

[0007] FIG. 2B depicts the hash tree 1llustrated in FIG. 2A,

with updated node hashes, in accordance with an illustrative
implementation.

[0008] FIG. 2C depicts the hash tree 1llustrated in FIG. 2A,
with newly added leaves, 1n accordance with an illustrative
implementation.

Aug. 27,2015

[0009] FIG. 3 shows a flow diagram of an incremental
block level backup procedure 1n accordance with an illustra-
tive implementation.

[0010] FIG. 4 depicts a distributed storage system 1n accor-
dance with an 1llustrative implementation.

[0011] FIG. S shows a flow diagram for replicating data 1n
accordance with an illustrative implementation.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

L1l

Overview

[0012] Ingeneral, one innovative aspect of the subject mat-
ter described below can be embodied 1n methods for recerving
a start replication message from a source system to replicate
data of a source volume to a replicated volume on a replica
server. The replicated volume comprises a copy of data of the
source volume. The source system forwards input/output
(I/0) requests to the replica server after the start replication
message 1s sent. A data structure associated with units of data
of the replicated volume 1s initialized. A write request 1s
received from the source system that includes write data
associated a unit of data of the replicated volume. The source
system wrote the write data to the source volume based upon
the write request. The write data 1s written to the replicated
volume. The data structure i1s updated to indicate the write
data has been written after the receipt of the start replication
message. Source metadata associated with the source volume
1s recerved. The metadata includes an ordered list of block
identifiers for data blocks of the source volume. Each block
identifier 1s used to access a data block. The source metadata
1s compared with prior metadata associated with a prior point-
in-time 1mage of the source volume to determine blocks of
data that have changed since the prior point-in-time 1mage of
the source volume. A first block of the blocks of data 1s
determined to not be retrieved based upon the data structure.
A second block of the blocks of data 1s determined to be
retrieved based upon the data structure. The second block 1s
received from the source system and written to the replicated
volume. Other embodiments of this aspect include corre-
sponding systems, apparatuses, and computer-readable
media, configured to perform the actions of the method.

[0013] The foregoing summary 1s illustrative only and 1s
not mtended to be 1n any way limiting. In addition to the
illustrative aspects, implementations, and features described
above, further aspects, implementations, and features will
become apparent by reference to the following drawings and
the detailed description.

DETAILED DESCRIPTION

[0014] Described herein are techmiques for an incremental
block level backup system. In the following description, for
purposes ol explanation, numerous examples and specific
details are set forth in order to provide a thorough understand-
ing of various implementations. Particular implementations
as defined by the claims may include some or all of the
teatures 1n these examples alone or 1n combination with other
teatures described below, and may further include modifica-
tions and equivalents of the features and concepts described
herein.

[0015] Storage System

[0016] FIG. 1 depicts a simplified system for incremental
block level backup of a storage system 100 1n accordance

US 2015/0244795 Al

with an 1llustrative implementation. System 100 includes a
client layer 102, a metadata layer 104, a block server layer
106, storage 116, and storage 120.

[0017] In general, client layer 102 includes one or more
clients 1084-1087%. Clients 108 include client processes that
may exist on one or more physical machines. When the term
“client” 1s used 1n the disclosure, the action being performed
may be performed by a client process. A client process 1s
responsible for storing, retrieving, and deleting data in system
100. A client process may address pieces of data depending
on the nature of the storage system and the format of the data
stored. For example, the client process may reference data
using a client address. The client address may take different
forms. For example, 1n a storage system that uses {ile storage,
client 108 may reference a particular volume or partition, and
a file name. With object storage, the client address may be a
unique object name. For block storage, the client address may
be a volume or partition, and a block address. Clients 108
communicate with metadata layer 104 using different proto-
cols, such as small computer system interface (SCSI), Inter-
net small computer system interface (ISCSI), fibre channel
(FC), common Internet file system (CIFS), network file sys-
tem (NFS), hypertext transfer protocol (HTTP), hypertext
transfer protocol secure (HTTPS), web-based distributed
authoring and versioning (WebDAV), or a custom protocol.

[0018] Metadata layer 104 includes one or more metadata
servers 110a-110n. Performance managers 114 may be
located on metadata servers 110a-1107. Block server layer
106 includes one or more block servers 112a-112#z. Block
servers 112a-112» are coupled to storage 116, which stores
volume data for clients 108. Each client 108 may be associ-
ated with a volume. In one implementation, only one client
108 accesses data 1n a volume; however, multiple clients 108
may access data 1n a single volume.

[0019] Storage 116 can include multiple solid state drives
(SSDs). In one implementation, storage 116 can be a cluster
of individual drives coupled together via a network. When the
term ““cluster” 1s used, 1t will be recognized that cluster may
represent a storage system that includes multiple disks that
may not be networked together. In one implementation, stor-
age 116 uses solid state memory to store persistent data. SSDs
use microchips that store data 1n non-volatile memory chips
and contain no moving parts. One consequence of this 1s that
SSDs allow random access to data in different drives 1n an
optimized manner as compared to drives with spinning disks.
Read or write requests to non-sequential portions of SSDs can
be performed 1n a comparable amount of time as compared to
sequential read or write requests. In contrast, if spinning disks
were used, random read/writes would not be efficient since
iserting a read/write head at various random locations to
read data results 1n slower data access than if the data 1s read
from sequential locations. Accordingly, using electrome-
chanical disk storage can require that a client’s volume of data
be concentrated 1n a small relatively sequential portion of the
cluster to avoid slower data access to non-sequential data.
Using SSDs removes this limitation.

[0020] In various implementations, non-sequentially stor-
ing data in storage 116 1s based upon breaking data up into
one more storage units, €.g., data blocks. A data block, there-
fore, 1s the raw data for a volume and may be the smallest
addressable unit of data. The metadata layer 104 or the client
layer 102 can break data into data blocks. The data blocks can
then be stored on multiple block servers 112. Data blocks can
be of a fixed size, can be 1nitially a fixed si1ze but compressed,

Aug. 27,2015

or can be of a variable si1ze. Data blocks can also be segmented
based on the contextual content of the block. For example,
data of a particular type may have a larger data block size
compared to other types of data. Maintaining segmentation of
the blocks on a write (and corresponding re-assembly on a
read) may occur in client layer 102 and/or metadata layer 104.
Also, compression may occur in client layer 102, metadata
layer 104, and/or block server layer 106.

[0021] In addition to storing data non-sequentially, data
blocks can be stored to achieve substantially even distribution
across the storage system. In various examples, even distri-
bution can be based upon a unique block identifier. A block
identifier can be an identifier that 1s determined based on the
content of the data block, such as by a hash of the content. The
block identifier 1s unique to that block of data. For example,
blocks with the same content have the same block identifier,
but blocks with different content have different block 1denti-
fiers. To achieve even distribution, the values of possible
umque 1dentifiers can have a uniform distribution. Accord-
ingly, storing data blocks based upon the unique i1dentifier, or
a portion of the unique identifier, results in the data being
stored substantially evenly across drives 1n the cluster.

[0022] Because client data, e.g., a volume associated with
the client, 1s spread evenly across all of the drives 1n the
cluster, every drive 1n the cluster 1s involved 1n the read and
write paths of each volume. This configuration balances the
data and load across all of the drives. This arrangement also
removes hot spots within the cluster, which can occur when
client’s data 1s stored sequentially on any volume.

[0023] Inaddition, having data spread evenly across drives
in the cluster allows a consistent total aggregate performance
of a cluster to be defined and achieved. This aggregation can
be achieved, since data for each client 1s spread evenly
through the drives. Accordingly, a client’s I/O will involve all
the drives 1n the cluster. Since, all clients have their data
spread substantially evenly through all the drives in the stor-
age system, a performance of the system can be described 1n
aggregate as a single number, e.g., the sum of performance of
all the drives 1n the storage system.

[0024] Block servers 112 and slice servers maintain a map-
ping between a block identifier and the location of the data
block 1n a storage medium of block server 112. A volume
includes these unique and umiformly random 1dentifiers, and
so a volume’s data 1s also evenly distributed throughout the
cluster.

[0025] Metadata layer 104 stores metadata that maps
between client layer 102 and block server layer 106. For
example, metadata servers 110 map between the client
addressing used by clients 108 (e.g., file names, object names,
block numbers, etc.) and block layer addressing (e.g., block
identifiers) used in block server layer 106. Clients 108 may
perform access based on client addresses. However, as
described above, block servers 112 store data based upon
identifiers and do not store data based on client addresses.
Accordingly, a client can access data using a client address
which 1s eventually translated into the corresponding unique
identifiers that reference the client’s data 1n storage 116.

[0026] Although the parts of system 100 are shown as being
logically separate, entities may be combined in different fash-
ions. For example, the functions of any of the layers may be
combined into a single process or single machine (e.g., a
computing device) and multiple functions or all functions
may exist on one machine or across multiple machines. Also,
when operating across multiple machines, the machines may

US 2015/0244795 Al

communicate using a network interface, such as a local area
network (LAN) or a wide area network (WAN). In one imple-
mentation, one or more metadata servers 110 may be com-
bined with one or more block servers 112 or backup servers
118 in a single machine. Entities 1n system 100 may be
virtualized entities. For example, multiple virtual block serv-
ers 112 may be included on a machine. Entities may also be
included 1n a cluster, where computing resources of the clus-
ter are virtualized such that the computing resources appear
as a single entity.

[0027] Block Level Incremental Backup

[0028] One or more backup servers 118a-118» can inter-
face with the metadata layer 104. Backup servers 118 can
interface directly with block servers 112. Backup servers
118a-118# are coupled to storage 120, which stores backups
of volume data for clients 108. Storage 120 can include mul-
tiple hard disk drives (HDDs), solid state drives (SSDs),
hybrid drives, or other storage drives. In one implementation,
storage 120 can be a cluster of individual drives coupled
together via a network. Backup servers 118 can store backup
copies of the data blocks of storage 116 according to any
number of formats in storage 120, and translation from the
format of the data blocks of storage 116 may occur. Data may
be transierred to and from backup servers 118 using different
protocols, such as small computer system interface (SCSI),
Internet small computer system interface (ISCSI), fibre chan-
nel (FC), common Internet file system (CIFS), network {ile
system (NFS), hypertext transier protocol (HTTP), hypertext
transier protocol secure (HTTPS), web-based distributed
authoring and versioning (WebDAV), or a custom protocol.
Compression and data de-duplication may occur 1n backup

servers 118a-118x.

[0029] As discussed above, the servers of metadata layer
104 store and maintain metadata that maps between client
layer 102 and block server layer 106, where the metadata
maps between the client addressing used by clients 108 (e.g.,
file names, volume, object names, block numbers, etc.) and
block layer addressing (e.g., block 1dentifiers) used 1n block
server layer 106. In one embodiment, the metadata includes a
l1st of block 1dentifiers that identifies blocks 1n a volume. The
list may be structured as an ordered list corresponding to a list
of blocks. The list may also be structured as the leaves of a
hash tree. The block 1dentifiers of the metadata are the same
block identifiers as used throughout system 100 as described
above. The block 1dentifiers may be hexadecimal numbers,
but other representations may be used. Additional metadata
may also be included, such as inode numbers, directory point-
ers, modification dates, file size, client addresses, list details,
etc. The block identifiers uniquely 1dentity the data of a block
and are a hash based on the content of the data block. Backup
servers 118 are generally configured to create backups of
block level data of a volume that 1s stored 1n storage 116 of
block server layer 106. Backup servers 118 may create back-
ups of all of the volume data of block server layer 106 or
backup servers 118 may create backups of one or more par-
ticular volumes (e.g., a volume of a client 108). Backups may
be tull backups of all data, or they may be incremental back-
ups (e.g., data that has changed since a previous backup).

[0030] During an 1nmitial backup operation, a backup server
118 retrieves a copy of metadata from metadata server 110 for
a client volume. The metadata includes a list of block identi-
fiers associated with data blocks of the volume. In an 1imple-
mentation, the metadata includes an ordered list structure of
block identifiers. In another implementation, the ordered list

Aug. 27,2015

1s structured as the leaves of a hash tree (e.g., a Merkle tree,
ctc.) and the metadata includes the hash tree. The metadata 1s
used by backup server 118 to retrieve a copy of all of the data
blocks of the client volume 1n order to create an 1nitial backup
of the data blocks. The data blocks are retrieved from storage
116 by sending a request for the data to a metadata server 110.
The requested data 1s based on the data block identifiers. A
request may include a list of the block identifiers of blocks
desired to be backed up. In one implementation, backup
server 118 may calculate the LBAs of blocks desired to be
backed up. For example, because each block identifier can
represent a known amount of data (e.g., a 4k block, etc.), an
LLBA of a block can be calculated based on the location of the
block 1dentifier 1n the ordered list of block 1dentifiers associ-
ated with the volume. For example, the position of a block
identifier in the ordered list can be used along with the block
s1ze to determine the LBA of the data block. As described
below, the tree structure can also be used to determine the data
blocks that have changed after a previous backup. In this
example, the number of leaf nodes to the left of a changed leaf
node can be used to calculate the LBA of the data block. In
implementations where LBAs are calculated, a request from
backup server 118 may include a list of LBAs of blocks to be
backed up. The metadata server 110 routes the request to a
block server 112, which provides the requested data to meta-
data server 110. Metadata server 110 then routes the
requested data to the backup server 118. This arrangement
allows the servers of metadata layer 104 to facilitate data
transmission between block server layer 106 and the backup
servers 118. In another implementation, backup servers 118
may be configured to communicate directly with servers of
block server layer 106. Upon retrieval of the requested data,
the backup server 118 stores the data in storage 120. The data
may be stored 1n storage 120 according to any of the methods
discussed herein. Backup server 118 may create and maintain
statistics and snapshot data corresponding to a particular
backup operation. The snapshot data may be used later during
a data restoration operation, or during a future backup opera-
tion. Backup server 118 can also store a copy of the metadata
used during a particular backup operation. In another embodi-
ment, the metadata 1s not stored on the backup server 118.
Rather, the metadata 1s stored on another storage device, for
example, one or more metadata servers, one or more block
servers, or one or more devices remote from the backup
system. As a result of the mitial backup operation, a complete
backup of the data of a client volume 1s created and stored 1n
storage 120.

[0031] During an incremental backup operation, a backup
server 118 retrieves the current metadata from metadata
server 110 for a client volume. The backup server 118 can
then compare the current metadata from metadata server 110
with a version of stored metadata on backup server 118 (e.g.,
the version of metadata stored during the most recent backup
operation, or the 1nitial version of the metadata stored during
the 1nitial backup, etc.). In an implementation where the
metadata includes an ordered list of block identifiers, the
backup server 118 can compare the block identifiers of the
two versions of metadata node-by-node. For example, the
current list node corresponding to a first block of data 1s
compared to the stored list node corresponding to the first
block of data, and each node of the ordered list 1s traversed
and compared. Since the block identifiers are hashes based on
content of a corresponding data block, a difference in hash
values for corresponding nodes indicates that the data of the

US 2015/0244795 Al

block has been changed/updated since the prior backup. As
the block identifiers are integral to storage system 100 and
maintained as described herein, the block identifiers can be
compared 1n their native format and immediately used with-
out the need to compute the hash values. In an implementation
where the metadata includes a hash tree and the ordered list of
block identifiers are structured as the leaves of the hash tree,
additional performance gains may be realized. Such a hash
tree 1s generally a tree data structure 1n which every non-leaf
node includes the hash of 1ts children nodes. This structure 1s
particularly useful because 1t allows efficient determination
of which data blocks have been updated since a prior backup,
without the need to compare every node of the list of block
identifiers. The determination of changed data blocks by
using a hash tree will be discussed in further detail below with
reference to FIGS. 2a-b. Upon determination of which par-
ticular blocks of data have changed since the previous
backup, backup server 118 can retrieve the updated blocks of
data from storage 116 by sending a request for the changed
data block to the metadata server 110. As discussed above, the
metadata server 110 can facilitate the transter of data from the
block server layer 106. Upon retrieval of the requested
changed data blocks, the backup server 118 stores the data in
storage 120. The backup server 118 also stores the current
metadata from metadata server 110 used 1n the incremental
backup operation. As a result of the incremental backup
operation, only the data of a volume that has changed since a
previous backup operation 1s backed up again. This provides
a number of advantages, including increasing the efliciency
of the data backup procedure, and decreasing the overall
amount of data being transferred during the backup proce-
dure. Further, any number of incremental backup operations
may be performed, during which the current metadata from
metadata server 110 may be compared to previously stored
metadata on backup server 118 (e.g., the stored metadata
from a prior backup operation).

[0032] Backup servers 118 may also provide an application
programming interface (API) 1n order to allow clients 108 or
traditional data backup software to interface with the backup
systems described herein. For example, the API may allow
backup servers 118 to send statistics related to backed up data
and backup operations to and from clients 108 or traditional
backup software. As another example, the API may allow
backup servers 118 to recerve a request to mitiate a backup
operation. The API can also allow for backup operations to be
scheduled as desired by clients 108 or as controlled by data
backup software. Other API functionality 1s also envisioned.

[0033] Referring to FIG. 2a, a hash tree 200a 1s shown 1n
accordance with an illustrative implementation. The hash tree
200a may be a hash tree that 1s provided by a metadata server
110 to a backup server 118 1n an mitial or incremental backup
operation as discussed above. Although depicted as a binary
hash tree, hash tree 200a (and hash trees described herein)
may have any number of child nodes/branches. Hash tree
200a represents the data of a particular volume, and can be
provided along with additional metadata describing details
related to the tree structure. For example, the metadata may
include statistics regarding node counts, leaf-node counts,
tree-depth, indexes to sub-trees, etc. Backup server 118 may
store the additional metadata for future use. Hash tree 200qa
includes leaves 202a-d, internal nodes 204a-b, and root node
206. Leaves 202a-d store block identifies B1-B4, respec-
tively. In an implementation, leaves 202a-d may be structured
as an ordered list that 1s indexed by its parent nodes, which 1n

Aug. 27,2015

this example are internal nodes 204. Block 1dentifiers B1-B4
are 1dentifiers as described herein (e.g., a hash of the corre-
sponding data block’s content), and each uniquely 1dentify a
particular data block of the volume. Hash tree 200a further
includes non-leaf internal nodes 204a-b6 and non-leaf root

node 206. The value stored by each non-leat node 1s the hash
of that node’s children values. For example, hash H1 1s the
hash of block identifiers B1 and B2, hash H2 is the hash of
block 1identifiers B3 and B4, and hash H3 1s the hash of hashes
H1 and H2. During an initial backup operation, backup server
118 can walk the tree, or traverse the ordered list of leaves
202a-d to determine that the data blocks corresponding to
block identifiers B1-B4 should be retrieved to be backed up.
A copy of hash tree 200a (and any accompanying metadata)
1s stored by backup server 118 when a backup operation 1s
performed.

[0034] Referring to FIG. 25, the hash tree 200a of FI1G. 2a
1s shown at a later time instance, as hash tree 20054. For
example, hash tree 200a may have been provided by metadata
server 110 during an mnitial backup operation and stored by
the backup server 118, and hash tree 2006 may have been
provided by metadata server 110 during a subsequent incre-
mental backup operation. Both hash trees 200a-b represent
the data stored on a particular volume. As depicted, the block
identifier B3 of leal node 202¢ has changed to become block
identifier B3' at some time since the previous backup. For
example, new or updated data may have been written to the
block referenced by block identifier B3. Because of the struc-
ture of the hash tree, the change of block identifier from B3 to
B3' causes updates 1n hashes to propagate upward through the
parent node to the root node. Specifically, hash H2 1s recal-
culated to become H2', and hash H3 1s recalculated to become
to H3'. During a backup operation, backup server 118 may
walk the hash tree 2005, and compare the nodes of hash tree
2005 to corresponding nodes of hash tree 200a. A difference
between corresponding non-leaf node hashes indicates that a
block identifier (and therefore block data) below that non-leat
node has changed. If the hashes of corresponding non-leaf
nodes are equal, this indicates that the block 1dentifiers below
that non-leal node have not changed (and therefore corre-
sponding block data has also not changed). Thus, the subtree
of nodes below an unchanged non-leafl node can be skipped
from further processing. In this manner, a performance
increase may be realized as the entire hash tree does not need
to be traversed in every backup operation. As an example with
reference to FIG. 2b, backup server 118 may compare hash
tree 2000 to hash tree 200aq as follows (although analysis
performed by backup server 118 1s not limited to the follow-
ing operations or order of operations):

[0035] 1. Node 206 1s analyzed to determine that hash

H3' 1s different from 1ts previous value of H3, and there-
fore hash trees 200a-b need to be further analyzed.

[0036] 2. Node 204a 1s analyzed to determine that hash
H1 has not changed, and the subtree of node 204a (leaf
nodes 202a-b) may be skipped from further analysis.

[0037] 3. Node 2045 1s analyzed to determine that hash
H2' 1s different from 1ts previous value of H2, therefore
the subtree of node 2045 (leal nodes 202¢-d) must be
analyzed.

[0038] 4. Leal node 202¢ 1s analyzed to determine that
block identifier B3' is different from its previous value of
B3. Thus, the data block corresponding to block 1denti-

US 2015/0244795 Al

fier B3' needs to be backed up by backup server 118,
since 1ts data as changed since the previous backup
operation.

[0039] 5. Leaf node 2024 1s analyzed to determine that
block identifier B4 has not changed, and traversal of
hash trees 200a-b 1s complete.

[0040] Adfter performing the above sample analysis, backup
server 118 may proceed to retrieve the data based on the block
identifier(s) that indicate data has changed, and has not yet
been backed up. In this example, backup server 118 may send
a request to a metadata server 110 for the data block identified
by blockidentifier B3'. Upon receipt of the data block, backup
server 118 stores the data block as a backup, and stores hash
tree 20056 (along with any accompanying metadata) for use in
tuture backup and/or restoration operations.

[0041] In one implementation using trees, backup server
118 may retrieve the metadata from a metadata server 110 by
requesting only child nodes whose parent node has changed.
For example, starting with the root, 1 the root node has
changed the children of the root node can then be requested.
These nodes can then be compared to corresponding nodes 1n
the previously stored tree to determine 11 those have changed.
Children of any node that has changed can then be retrieved.
This process can be repeated until leal nodes are retrieved.
For example, with reference to FIGS. 2A-B hash tree 20056
may be the current metadata from metadata server 110, and
hash tree 200a may be stored metadata from a previous
backup operation. Backup server 118 may first retrieve root
node 206 and analyze i1t to determine that hash H3' 1s different
from 1ts previous value of H3. Inresponse, backup server 118
may then request nodes 204a-b from 1nterior node level 204.
Node 204a 1s analyzed to determine that hash H1 has not
changed, and leaf nodes 202a-b6 may be skipped from further
requests/analysis. Node 2045 1s analyzed to determine that
hash H2' 1s different from its previous value of H2, and thus
backup server 118 may proceed to request appropriate nodes
of leaf level 202 (leaves 202¢-d). Analysis may then continue
as described above to determine that block identifier B3' 1s
different from its previous value of B3 and that the data block
corresponding to block identifier B3' needs to be backed up.
This implementation may allow for performance increases by
mimmizing data that 1s transmitted between backup server
118 and metadata server 110 during the retrieval of metadata.

[0042] At some point, 1t may be desirable by clients 108 or
an administrator of system 100 to increase the volume size
assigned to a client 108 by adding more data blocks of storage
space. In this situation, with backup servers 118 implemen-
tations configured to utilize metadata of an ordered list of
block identifiers, any newly added block 1dentifiers (corre-
sponding to the new data blocks) may be appended to the end
of the ordered list. Thus, during a backup operation, i a
backup server 118 receives metadata of an ordered list that
has more elements than that of metadata from a prior backup
operation, backup server 118 can determine the newly added
data blocks that must be backed up based on the additional list
clements. The backup operation may proceed as described
above with respect to the remaining elements.

[0043] FIG. 2C depicts the result of an increased volume

s1ze Tor implementations configured to utilize metadata of a
hash tree. Hash tree 200c¢ 1s based on hash tree 200a (which 1s

included as a subtree and 1s denoted by a dashed box). Leaves
202e-f have been newly added to the hash tree and include
block i1dentifiers B5-B6, which correspond to the newly
added data blocks of the increased volume size. As a result of

Aug. 27,2015

the volume increase, hash tree 2004 1s restructured such that
root node 206 becomes internal node 2064, and a new root
node 208 1s created. Further, internal nodes 2065 and 204¢ are
added to maintain the tree structure. Hashes H4-Hé6 are cal-
culated based on the respective child values as described
above. After such a restructuring of a hash tree, a backup
operation may proceed as described above. However, backup
server 118 can determine the newly added data blocks that
must be backed up based on a new root node or additional
leaves. Also, an implementation may make use of additional
metadata that includes the indexes of the root nodes of pre-
viously stored trees. In this manner, backup server 118 may
access the indexes to locate and compare the root node of a
prior tree with the corresponding internal node of the current
tree (e.g., root node 206 can be compared to internal node
2064.). If the comparison indicates that the hashes have not
changed, then backup server 118 may skip analyzing the
subtree of the internal node, and a performance gain may be
realized.

[0044] At some point, 1t may be desirable by clients 108 or
an administrator of system 100 to reduce the volume size
assigned to a client 108 by removing data blocks of storage
space. In this situation, with backup server 118 implementa-
tions configured to utilize metadata of an ordered list of block
identifiers, any removed block 1dentifiers (corresponding to
removed data blocks) may be removed from the end of the
ordered list. Thus, during a backup operation, if a backup
server 118 receives metadata of an ordered list that has fewer
clements than that of metadata from a prior backup operation,

backup server 118 can determine the backed up data blocks
that may be removed based on the additional list elements in
the stored list from the prior backup. The backup operation
may proceed as described above with respect to the remaining
clements. With backup server 118 implementations config-
ured to utilize metadata of a hash tree including leaves that are
a list of block 1dentifiers, the backup server 118 may compare
the trees (e.g. depth of the trees, leal node count, etc.) to
determine that there has been a change 1n volume size. In
another implementation the size of the volume can be part of
the metadata received by the backup servers, and this meta-
data can be compared to a previously received volume size to
determine that a change 1n volume has occurred. The backup
server may then determine the position of the current tree
within the stored hash tree. After locating the position of the
current root node, the leaf nodes (and corresponding parent
nodes) that are not within the subtree of the current root node
can be 1gnored. Once the corresponding root nodes have been
determined, the backup operation may then proceed as
described above with respect to the remaining nodes.

[0045] FIG. 3 shows a simplified flow diagram of an incre-
mental block level backup procedure 300, 1n accordance with
an embodiment. Additional, fewer, or different operations of
the procedure 300 may be performed, depending on the par-
ticular embodiment. The procedure 300 can be implemented
on a computing device. In one implementation, the procedure
300 1s encoded on a computer-readable medium that contains
istructions that, when executed by a computing device,
cause the computing device to perform operations of the
procedure 300. According to different embodiments, at least
a portion of the various types of functions, operations,
actions, and/or other features provided by the incremental
block level backup procedure may be implemented at one or
more nodes and/or volumes of the storage system. In an
operation 302, metadata for a particular volume 1s retrieved

US 2015/0244795 Al

(c.g., Irom a metadata server). For example, a backup sever
may 1nitiate a backup operation and retrieve mnitial metadata
as described above. In an alternative embodiment, the backup
server may be responding to a request to initiate a backup
operation. For example, a client or backup soiftware may
submit a request via an API to perform a backup at a certain
time. Alternatively, the backup server may be performing a
backup according to a schedule (e.g., mightly backups,
weekly backups, client-specified backups, etc.). In an opera-
tion 304, the iitial backup of the data blocks of the volume 1s
created. The metadata provides the block identifiers corre-
sponding to the volume. The metadata may include an
ordered list of block identifiers, a hash tree based on block
identifiers, and other related data. The block identifiers are
used to retrieve the corresponding data blocks to be backed
up. For example, the backup server may analyze the metadata
in order to request the transmaission of and retrieve particular
data blocks to be backed up. The request may be sent to the
metadata server, which can facilitate the transmission of data
from a block server. In an alternative embodiment, the backup
server may retrieve the data blocks directly from the block
server. The imitial backup 1s a backup of all of the data of the
volume as specified by the metadata. In an operation 306, the
metadata used for the mnitial backup is stored for future use. In
an operation 308, an incremental backup of the volume 1s
mitiated by retrieving the current metadata. For example,
sometime after the creation of the initial backup, the backup
server may retrieve updated metadata, which has been main-
tained by the metadata server to be current with the data
blocks of the volume. As another example, metadata may be
retrieved from a remote storage device. In an operation 310,
the current metadata 1s compared to other metadata (e.g., the
metadata from the immediately preceding backup operation,
the metadata from the 1nitial backup operation, the metadata
from a remote device, etc.). For example, the backup server
may analyze the metadata to determine changes in block
identifiers as discussed above. Based on any changed block
identifiers found during the analysis, 1n an operation 312, an
incremental backup 1s created. For example, based on the
identifiers of the changed data blocks, the backup server may
retrieve only the changed data blocks to be backed up. The
backup server may store recerved data blocks as described
herein. In an operation 314, the metadata used for the incre-
mental backup 1s stored for future use. The backup server may
also generate additional metadata related to the backup pro-
cedure, mcluding statistics to the amount of data backed up,
the elapsed time of the backup process, etc. This process may
repeat any number of times to create any number of incre-
mental backups, as indicated by operation 316.

[0046] Inanotherembodiment, the retrieval of the metadata
and the comparison of the metadata to other metadata 1s
performed by a device other than the backup server (e.g., by
one or more devices of the storage system). For example, a
storage device remote from the backup server may access
metadata on the storage device, or may retrieve the metadata
from another device, for example, from the metadata server.
The storage device may analyze the metadata to determine
changes 1n block 1dentifiers as discussed above. Based on any
changed block identifiers found during the analysis, an incre-
mental backup can be created by transierring data to the
backup server. For example, based on the identifiers of the
changed data blocks, the storage device may transier only the
changed data blocks to the backup serverto be backed up. The
backup server may store recerved data blocks as described

Aug. 27,2015

herein. The metadata used for the incremental backup can be
stored by the storage device or can be transierred to another
device (e.g., the metadata server) to be stored for future use.

[0047] Data Syncing 1n a Distributed System

[0048] Invarious embodiments, data can synced/replicated
to another location. For example, data from a source system
can be copied to a replica server. Data can be replicated
locally, to another volume 1n 1ts cluster, to another cluster, to
a remote storage device, etc. Data that can be replicated
includes, but 1s not limited to, block server data, metadata
server data, etc. Replicated data 1s a representation of the data
on the source system at a particular point in time. To reduce
impact on the source system during replication, the replica-
tion process does not stop incoming I/O operations. To allow
I/O operations to continue during a replication, writes that
occur during the replication must be properly handled to
avoid mismatches 1n data between the live data and the cor-
responding replicated data.

[0049] FIG. 4 depicts a distributed storage system 400 1n
accordance with an illustrative implementation. The storage
system 400 stores live client data and may be configured as
discussed above regarding system 100 (e.g., including client
layer 102, metadata layer 104, block server layer 106, and
storage). The storage system 400 can also include one or more
replica servers 418a-418r. Replica servers 418a-418% can
interface with the metadata and/or block servers of the storage
system 400 1n order to maintain synchronized (replicated)
copies of data stored by the storage system 400. Replica
servers 418a-418n are coupled to storage 420, which may
store backups of volume data (e.g., backups of block level
data of a client volume), synchronized data of client volume,
snapshots of a client volume, and associated metadata. Stor-
age 420 may include multiple hard disk drives (HDDs), solid
state drives (SSDs), hybrid drives, or other storage drives. In
one 1mplementation, storage 420 can be a cluster of 1ndi-
vidual drives coupled together via a network. Replica servers
418 can store backup copies of the data blocks of storage
system 400 according to any number of formats in storage
420, and translation from the format of the data blocks may
OCCUL.

[0050] Inoneembodiment, areplicaserver 418 maintains a
live synchronized copy of data blocks of a client volume (e.g.,
a mirror copy of the client volume). To maintain synchroni-
zation, requests to write data that are provided by a client to
storage system 400 may also be transmitted to the replica
server 418. In this manner, data written to storage system 400
can be synchronized and stored on replica server 418 1n
real-time or semi real-time. Synchronization of volume data
on replica server 418 includes synchronizing the metadata of
storage system 400 that identifies blocks 1n a client volume.
As discussed above, metadata servers of the storage system
store metadata that includes a list of block 1dentifiers that
identifies blocks 1n a volume. The block 1dentifiers may be
hexadecimal numbers, and other representations may be
used. Additional metadata may also be included (e.g., mnode
numbers, directory pointers, modification dates, file size, cli-
ent addresses, list details, etc.). The block identifiers uniquely
identify the data of a block and are a hash based on the content
ofthe data block. In an embodiment, the metadata includes an
ordered list structure of block 1dentifiers. In another embodi-
ment, the ordered list 1s structured as the leaves of a hash tree
(e.g., a Merkle tree, etc.) and the metadata includes the hash
tree. In an implementation utilizing a tree, when a write
request 1s recerved and data 1s written to a block of a volume,

US 2015/0244795 Al

values of the leaves (and inner nodes) of the tree change to
corresponding to the changes of the block. Thus, replica
server 418 can maintain a live synchronization tree that 1s
updated to parallel the a tree maintained by a metadata server
of storage system 400 for a particular client volume.

[0051] FIG. 5 shows a tlow diagram for replicating data in
accordance with an illustrative implementation. Replication
begins with a replica server receiving a start replication mes-
sage from a source system (502). Upon receipt of the start
replication message, the replica server 1nitiates a data struc-
ture that will be used to track writes that occur during the
replication process (504). In one embodiment, the data struc-
ture 1s a bit field where each bit represents a single unit of
information, e€.g., a block, a sub-block, etc. Each bit 1n the bat
field represents if a particular unit has been written to after the
start of the replication processes. In this embodiment, the bit
field will be mitialized to 0. At some point after sending the
start replication message, the source system sends over rep-
lication data to the replica server. Similar to the block level
backup embodiments, merkle trees can be used to minimize
the amount of data that 1s required to be transterred between
the source system and the replica server.

[0052] While the replication data 1s being sent to the replica
server, data writes can be received at the source system. For
example, a user may be writing new data to a file or metadata
related to a user volume could be updated. The source system
will handle the writes and while the replication process 1s
active will also send the writes to the replica server. For
example, the replica server can receive an I/0 request to write

a block of data (550). Upon receipt, the replica server can
write the block of data (552) and will also update the bit

associated with the block 1n the bit field to 1 (554). After the
bit 1s set, the data write on the replica server 1s complete.

[0053] As part of the replication process, the replica server
determines which blocks of data are needed from the source
system (506). For example, a merkle tree comparison as
described above can be used to determine blocks of data that
have changed since a previous point-in-time 1mage. One or
more of the changed blocks of data, however, may have been
changed again since the start of the replication process.
Accordingly, the data will have already been sent to the rep-
lica server and requesting this data again 1s unneeded. Before
requesting the block of data from source system, the bit field
can be checked to determine 1f the block has already been
received (508). IT the block has not been updated, then the
block of data 1s requested from the source system (510). The
block 1s recerved (512) and written to storage. If the block has
been updated, then no request for that block of data needs to
be sent to the source system. This continues until there are no
longer any data blocks that are needed from the source sys-
tem. Once there are no longer any data blocks, the volume has
been replicated. The replication system can send a message to
the source system 1ndicating that replication 1s complete.
Upon receipt, the source system can stop forwarding 1/0 to
the replication system.

[0054] In one embodiment, a block 1s the smallest amount
of data that 1s written to storage 1n a single write operation. A
block, however, can be divided into smaller sub-blocks, such
that each unit of a block can be written to separately. As an
example, a block can be 4 kilobytes 1n si1ze and broken down
into sixteen 256 byte sub-blocks. In this embodiment, the data
structure corresponds to the sub-blocks and not the blocks.
While replication 1s being done, a write to a sub-block can be
received. The write command can include the data for the

Aug. 27,2015

entire block or just the sub-block of data. The write can update
a cache that 1s associated with the sub-block or could write the
sub-block to storage. When only a sub-block is received in the
write request, the block that contains the sub-block 1s
retrieved and the sub-block 1s updated appropriately. Later
during replication, the Merkle tree comparison can be used to
determine that the block with the updated sub-block needs to
be retrieved from the source system. For example, another
sub-block may have been update from the previous replica-
tion. The entire block can be retrieved. The corresponding
block on the replica server 1s retrieved and updated. To update
the corresponding block on the replica server, the data struc-
ture 1s used to update each sub-block from the block retrieved
from the source system. For sub-blocks where the data struc-
ture indicates that the sub-block has been updated during the
replication process, the sub-block i1s not updated since 1t
already has the latest data. If the data structure indicates that
a sub-block has not been updated, that sub-block 1s updated
with the corresponding sub-block received from the source
system. To reduce unnecessary data transters, before the rep-
lica server requests a block, the replica server can determine
if all the sub-blocks of a block have been updated during the
replica process. In this case, the replica server has already
replicated this block and there 1s no need to request that block
of data from the source system.

[0055] As described above, replica servers 418a-418# can
be configured to create point-in-time 1mages of components
of the data of storage system 400. In one embodiment, each
point-in-time 1mage includes corresponding metadata (e.g., a
hash tree) that identifies the blocks of the point-in-time
image. The hash tree of a point-in-time 1mage 1s based on the
block identifiers of the data stored for the point-in-time
image. A replica server 418 may create one or more point-in-
time 1mages of a component of the data of storage system 400,
and each point-in-time 1mage may be created according a
defined schedule, or on demand (e.g., 1n response to a client
demand, or as demanded by an administrator of storage sys-
tem 400, etc.). The source system may also create various
copies/replicas of a volume locally. For example, every day a
replica of a volume can be scheduled. A remote replication
system may only replicate a subset of the replicas that are
local to the source system. For example, a remote replication
system can request a single local copy every week rather than
cach of the daily local replicas. In another embodiment, the
remote replication system can make a replica of the current
live volume and 1gnore any other local replicas of the volume.

[0056] In the instance that a replica server 418 goes oftline
(e.g., due to a failure, being manually taken offline, or other-
wise), the replica server 418 may be brought back online and
resume synchronizing volume data with storage system 400.
However, due to the period of time that the replica server 418
was oflline, the data of replica server 418 may be out of sync
with the volume data of storage system 400. Accordingly,
replica server 418 may retrieve the data that 1s needed from
storage system 400 to re-synchronize with the live volume
data of storage system 400. In one embodiment, replica server
418 may implement one or more techniques of the block level
incremental backup process to synchronize the volume data.
For example, replica server 418 can retrieve the metadata for
a live volume (e.g., a tree corresponding to the live volume as
maintained by a metadata server). Replica server 418 may
then analyze versions of metadata (e.g., comparing the out-
of-date synchronization tree of replica server 418 and the
retrieved live volume tree). Based on this analysis, replica

US 2015/0244795 Al

server 418 can determine changed data blocks of the volume
and what blocks needs to be retrieved from storage system
400 to synchronize the volume data. The replica server 418
may request any changed data blocks from storage system
400 and the retrieved blocks may be stored. As replica server
418 1s synchronizing 1ts volume data, write requests may still
be recerved and the point-in-time 1image can still be created. In
the instance that a new point-in-time 1mage 1s being created
and the volume data of replica server 418 1s not fully synchro-
nized with the live volume data of storage system 400, a data
block may not yet be available in the data of replica server 418
to be stored in the new point-in-time 1mage. For example,
referring to the new point-in-time 1mage creation process
discussed above, the comparison of the metadata of the new
tree with the metadata of the live tree may indicate that a block
identifier (and therefore block data) has changed. However,
the changed block may not yet be synchronized in the volume
data of replica server 418. In this scenario, replica server 418
may retrieve the changed block data directly from the storage
system 400 (as opposed to pointing to or retrieving the
changed block data from the synchronized volume data of
replica server 418 as discussed above).

[0057] Adter replication of a volume has completed, the
replication can be verified. In one embodiment, this 1s done by
the source system sending to the replica system one or more
merkle tree nodes. The replica system can then compare the
received merkle tree nodes with the corresponding merkle
tree nodes of the replicated copy of the source volume. If any
corresponding nodes do not match, the data was not properly
replicated between the source system and the replica system.
In this embodiment, the merkle tree on the replica side 1s
updated as blocks of data are written to cached data structures
and/or storage. Accordingly, the merkle tree 1s being updated
on the replica system 1n a similar way as the merkle tree was
updated on the source side. In one embodiment, the top level
node of the merkle tree 1s compared. In other embodiments,
the top two, three, etc., layers of the merkle tree are compared.
For this comparison to work properly, the source side and the
replica side must be in sync 1n regard to any data that 1s to be
written. For example, 11 data 1s written on the source side, the
replica side must also handle that write prior to the verifica-
tion step. In one embodiment, this 1s accomplished through
messaging between the source and replica systems. Once the
replication 1s complete, the replica server can send a message
requesting verification data. The source system can pause
handling write requests until the verification data, e.g., the
merkle tree nodes, are sent to the replica side. The replica side
receiving the verification data handles any queued write
requests prior to comparing the received verification data
with local data. Once verification 1s done, the replica system
can send a message and the I/O can continue. In another
embodiment, the replica side can queue any receirved 1/0
requests from the source side. This allows the source side to
begin handling I/O as soon as the verification data has been
sent to the replica system. Once the verification 1s done, the
replica system can handle any queued I/O requests. Verifica-
tion can be done at any point during the replication process.
The only requirement is that the source and replica side be 1n
sync 1n regard to handling write requests. For example, after
a certain number of blocks have been replicated or after a
predetermined amount of time has passed, the replica server
can request verification data from the source system.

[0058] Replication data between different systems can
impact the performance of both systems. Quality of service

Aug. 27,2015

can be implemented on both the source system and the replica
system to ensure adequate service 1s provided based upon
quality of service provisions. Embodiments of quality of ser-
vice provisions that can be used 1n replication are described in
U.S. application Ser. No. 13/856,958, which 1s incorporated
by reference in its entirety. The quality of service allocated for
I/O for a particular volume can be different on the source
system compared to the replica system. For example, the
replica system may have allocated 1,000 mnput output per
second (IOPs), while the source system has allocated 5,000
IOPs for a particular volume. In this situation, the source
system could overload the replica system’s ability to handle
the I0Ps associated with replicating the volume from the
source system to the replica system. Once the IOPs threshold
has been reached on the replica system, the handling of 1I/O
can be paused. A timer can be used to monitor how long I/0
has been paused. If the timer exceeds some threshold, the
replication of the source volume can be stopped and reported.

[0059] Toreducereplications from being stopped, volumes
that are to be replicated can be sorted based upon quality of
service ((QoS) parameters associated with the volumes. In one
embodiment, sorting 1s done on the sum of QoS parameters
from the source system and the replica system. This sum can
represent a relative importance of a volume, with higher QoS
parameters being more important than lower level QoS
parameter volumes. In another embodiment, the ratio of the
replica QoS parameter to the source QoS parameter 1s used to
sort the volumes. Volumes with higher ratios indicate that the
replication of those volumes are likely to successiully finish.
Volumes whose ratios fall below a threshold amount can be
flagged as volumes whose replication may not successiully
finish due to QoS provisions. For example, 11 the ratio 1s less
than one, the source side’s QoS provisions could force the
replica side to throttle I/O to the point that the replica side
terminates the replication as described above. In another
embodiment, the volumes can be sorted based upon the rep-
lica system’s QoS parameter only. This allows volumes to be
given high replication priority by increasing the QoS provi-
sions of the volume on the replica server, without having to
modily the source side’s QoS provisions. Accordingly, a rep-
lication of a volume can be assured to successtully complete
based upon a high QoS parameter on the replica side. In
another embodiment, the volumes can be sorted based upon
the source system’s QoS parameter only. Once the volumes
have been sorted, replication can begin 1n an ordered fashion
based upon the sorting. Warnings can be generated for any
volume that 1s below some threshold, e.g., ratio below a
threshold, sum 1s below a threshold, etc. The warnings can
provide mformation regarding the replication and the QoS
parameters, such that the QoS parameters can be modified to
remove future warnings.

[0060] One or more flow diagrams have been used herein.
The use of flow diagrams 1s not meant to be limiting with
respect to the order of operations performed. The herein-
described subject matter sometimes illustrates different com-
ponents contained within, or connected with, different other
components. It 1s to be understood that such depicted archi-
tectures are merely exemplary, and that 1n fact many other
architectures can be implemented which achieve the same
functionality. In a conceptual sense, any arrangement of com-
ponents to achieve the same functionality 1s effectively “asso-
ciated” such that the desired functionality 1s achieved. Hence,
any two components herein combined to achieve a particular
functionality can be seen as “associated with” each other such

US 2015/0244795 Al

that the desired functionality 1s achieved, irrespective of
architectures or intermedial components. Likewise, any two
components so associated can also be viewed as being “oper-
ably connected,” or “operably coupled,” to each other to
achieve the desired functionality, and any two components
capable of being so associated can also be viewed as being
“operably couplable” to each other to achieve the desired
functionality. Specific examples of operably couplable
include but are not limited to physically mateable and/or
physically interacting components and/or wirelessly inter-
actable and/or wirelessly interacting components and/or logi-
cally interacting and/or logically interactable components.

[0061] With respect to the use of substantially any plural
and/or singular terms herein, those having skill 1n the art can
translate from the plural to the singular and/or from the sin-
gular to the plural as 1s appropniate to the context and/or
application. The various singular/plural permutations may be
expressly set forth herein for sake of clanty.

[0062] It will be understood by those within the art that, 1n
general, terms used herein, and especially 1n the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes™ should be interpreted as “includes but 1s not lim-
ited to,” etc.). It will be further understood by those within the
art that 11 a specific number of an introduced claim recitation
1s intended, such an intent will be explicitly recited in the
claim, and 1n the absence of such recitation no such intent 1s
present. For example, as an aid to understanding, the follow-
ing appended claims may contain usage of the introductory
phrases “at least one” and “one or more” to mtroduce claim
recitations. However, the use of such phrases should not be
construed to imply that the itroduction of a claim recitation
by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to mven-
tions containing only one such recitation, even when the same
claim includes the introductory phrases “one or more™ or “at
least one” and indefinite articles such as “a” or “an” (e.g., “a”
and/or “an” should typically be interpreted to mean ““at least
one” or “one or more”); the same holds true for the use of
definite articles used to introduce claim recitations. In addi-
tion, even 1f a specific number of an mtroduced claim recita-
tion 1s explicitly recited, those skilled in the art will recognize
that such recitation should typically be interpreted to mean at
least the recited number (e.g., the bare recitation of “two
recitations,” without other modifiers, typically means at least
two recitations, or two or more recitations). Furthermore, in
those instances where a convention analogous to ““at least one
of A, B, and C, etc.” 1s used, in general such a construction 1s
intended 1n the sense one having skill 1n the art would under-
stand the convention (e.g., “a system having at least one of A,
B, and C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to “at least
one of A, B, or C, etc.” 1s used, 1n general such a construction
1s intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of A, B, or C” would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two

Aug. 27,2015

or more alternative terms, whether 1n the description, claims,
or drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be under-
stood to include the possibilities of “A” or “B” or “A and B.”
[0063] The foregoing description of illustrative implemen-
tations has been presented for purposes of 1llustration and of
description. It1s not intended to be exhaustive or limiting with
respect to the precise form disclosed, and modifications and
variations are possible 1n light of the above teachings or may
be acquired from practice of the disclosed implementations. It
1s intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

What 1s claimed 1s:
1. A system comprising:
a replica server comprising one or more processors config-
ured to:
receive a start replication message from a source system
to replicate data of a source volume to a replicated
volume on the replica server, wherein the replicated

volume comprises a copy of data of the source vol-
ume, and wherein the source system forwards mput/

output (I/0) requests to the replica server after the
start replication message 1s sent;

initiate a data structure associated with units of data of
the replicated volume;

receive, from the source system, a write request com-
prising write data associated a unit of data of the
replicated volume, wherein the source system wrote
the write data to the source volume based upon the
write request;

write the write data to the replicated volume;

update the data structure to indicate the write data has
been written after the receipt of the start replication
message;

receive source metadata associated with the source vol-
ume, wherein the metadata comprises an ordered list
of block 1dentifiers for data blocks of the source vol-
ume, and wherein each block identifier 1s used to
access a data block;

compare the source metadata with prior metadata asso-
ciated with a prior point-in-time 1mage of the source
volume to determine blocks of data that have changed
since the prior point-in-time 1image of the source vol-
ume;

determine a first block of the blocks of data should notbe
retrieved based upon the data structure;

determine a second block of the blocks of data should be
retrieved based upon the data structure;

retrieve the second block from the source system; and
write the second block to the replicated volume.

2. The system of claim 1, wherein the one or more proces-
sors are fTurther configured to send a replication complete
message to the source system, wherein the source system no
longer forwards I/0 to the replica server based upon receipt of
the replication complete message.

3. The system of claim 1, wherein the one or more proces-
sors are Turther configured to:

request verification data from the source system;
recerve the verification data from the source system; and

compare the recerved verification data with corresponding,
verification data of the replica volume to determine the
replication was successiul.

US 2015/0244795 Al

4. The system of claim 1, wherein a umt of data 1s a
sub-block, wherein a block consists of a plurality of sub-
blocks, and wherein to write the second block the one or more
processors are further configured to:

determine which sub-blocks have been updated since the

receipt of the start replication message based upon the
data structure; and

write sub-blocks of the second block based upon on the

sub-block not being updated since the receipt of the start
replication message.

5. The system of claim 1, further comprising a data server,
wherein the data server comprising one or more processors
configured to:

request quality of service parameters for the replicated

volume:

request quality of service parameters for the source vol-
ume;

determine 1f the replication of the source volume to the
replicated volume will succeed based upon the quality of
service parameters of the replicated volume and the
source volume.

6. The system of claim 5, wherein the data server compris-
ing one or more processors are further configured to deter-
mine a ratio of the quality of service parameters for the
replicated volume to the quality of service parameters for the
source volume, wherein the replication of the source volume
will succeed 11 the ratio 1s greater than one.

7. The system of claim 1, wherein the data blocks of the
replicated volume are randomly and evenly distributed across
a cluster contaiming the replicated volume.

8. A method comprising:

receiving, at a replica server, a start replication message
from a source system to replicate data of a source vol-

ume to a replicated volume on the replica server,
wherein the replicated volume comprises a copy of data
of the source volume, and wherein the source system

forwards imnput/output (I/0) requests to the replica server
alter the start replication message 1s sent;

initiating a data structure associated with units of data of
the replicated volume;

receiving, from the source system, a write request compris-
ing write data associated a unit of data of the replicated
volume, wherein the source system wrote the write data
to the source volume based upon the write request;

writing the write data to the replicated volume;

updating the data structure to indicate the write data has
been written aiter the receipt of the start replication
message;

receiving source metadata associated with the source vol-
ume, wherein the metadata comprises an ordered list of
block i1dentifiers for data blocks of the source volume,

and wherein each block 1dentifier 1s used to access a data
block;

comparing the source metadata with prior metadata asso-
ciated with a prior point-in-time 1mage of the source
volume to determine blocks of data that have changed
since the prior point-in-time 1image of the source vol-
ume;

determining, using a processor, a first block of the blocks of
data should not be retrieved based upon the data struc-
ture;

determining a second block of the blocks of data should be
retrieved based upon the data structure;

Aug. 27,2015

retrieving the second block from the source system; and

writing the second block to the replicated volume.

9. The method of claim 8, further comprising sending a
replication complete message to the source system, wherein
the source system no longer forwards 1/O to the replica server
based upon receipt of the replication complete message.

10. The method of claim 8, further comprising:

requesting verification data from the source system;

recerving the verification data from the source system; and

comparing the received verification data with correspond-
ing verification data of the replica volume to determine
the replication was successiul.

11. The method of claim 8, wherein a unit of data 1s a
sub-block, wherein a block consists of a plurality of sub-
blocks, and wherein the method further comprises:

determining which sub-blocks have been updated since the

receipt of the start replication message based upon the
data structure; and

writing sub-blocks of the second block based upon on the

sub-block not being updated since the receipt of the start
replication message.

12. The method of claim 8, turther comprising

requesting quality of service parameters for the replicated
volume;

requesting quality of service parameters for the source
volume;

determining 1f the replication of the source volume to the
replicated volume will succeed based upon the quality of
service parameters of the replicated volume and the
source volume.

13. The method of claim 12, further comprising determin-
ing a ratio of the quality of service parameters for the repli-
cated volume to the quality of service parameters for the
source volume, wherein the replication of the source volume
will succeed 11 the ratio 1s greater than one.

14. The method of claim 8, wherein the data blocks of the
replicated volume are randomly and evenly distributed across
a cluster containing the replicated volume.

15. A non-transitory computer-readable medium having
instructions stored thereon, the istructions comprising;:

instructions to recerve a start replication message from a
source system to replicate data of a source volume to a
replicated volume on the replica server, wherein the
replicated volume comprises a copy of data of the source
volume, and wherein the source system forwards mput/
output (I/0) requests to the replica server after the start
replication message 1s sent;

instructions to initiate a data structure associated with units
of data of the replicated volume;

instructions to receive, from the source system, a write
request comprising write data associated a unit of data of
the replicated volume, wherein the source system wrote
the write data to the source volume based upon the write
request;

instructions to write the write data to the replicated volume;

instructions to update the data structure to indicate the
write data has been written after the receipt of the start
replication message;

instructions to receive source metadata associated with the
source volume, wherein the metadata comprises an
ordered list of block identifiers for data blocks of the
source volume, and wherein each block identifier 1s used
to access a data block;

US 2015/0244795 Al

istructions to compare the source metadata with prior
metadata associated with a prior point-in-time 1mage of
the source volume to determine blocks of data that have
changed since the prior point-in-time image of the
source volume;

instructions to determine a first block of the blocks of data

should not be retrieved based upon the data structure;
instructions to determine a second block of the blocks of
data should be retrieved based upon the data structure;
instructions to retrieve the second block from the source
system; and

instructions to write the second block to the replicated

volume.

16. The non-transitory computer-readable medium of
claim 15, wherein the instructions further comprise mstruc-
tions to send a replication complete message to the source
system, wherein the source system no longer forwards 1/O to
the replica server based upon receipt of the replication com-
plete message.

17. The non-transitory computer-readable medium of
claim 15, wherein the instructions further comprise istruc-
tions to:

instructions to request verification data from the source

system:

instructions to recerve the verification data from the source

system; and

instructions to compare the received verification data with

corresponding verification data of the replica volume to
determine the replication was successiul.

Aug. 27,2015

18. The non-transitory computer-readable medium of
claim 15, wherein a unit of data 1s a sub-block, wherein a
block consists of a plurality of sub-blocks, and wherein the
instructions to write the second block comprise:

instructions to determine which sub-blocks have been
updated since the receipt of the start replication message
based upon the data structure; and

instructions to write sub-blocks of the second block based
upon on the sub-block not being updated since the
receipt of the start replication message.

19. The non-transitory computer-readable medium of

claim 15, wherein the 1nstructions further comprise istruc-
tions to:

instructions to request quality of service parameters for the
replicated volume;

instructions to request quality of service parameters for the
source volume;

instructions to determine if the replication of the source
volume to the replicated volume will succeed based
upon the quality of service parameters of the replicated
volume and the source volume.

20. The non-transitory computer-readable medium of
claim 15, wherein the data blocks of the replicated volume are
randomly and evenly distributed across a cluster containing
the replicated volume.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

