a9y United States
12y Patent Application Publication (o) Pub. No.: US 2015/0106419 Al

Davis et al.

US 20150106419A1

(54)

(71)

(72)

(73)

(21)
(22)

(1)

PERFORMING OPTIMIZED COLLECTIVE
OPERATIONS IN AN IRREGULAR
SUBCOMMUNICATOR OF COMPUTE
NODES IN A PARALLEL COMPUTER

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Kristan D. Davis, Rochester, MN (US);
Daniel A. Faraj, Rochester, MN (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 14/055,402
Filed: Oect. 16,2013

Publication Classification

Int. Cl.
HO4L 29/08 (2006.01)

43) Pub. Date: Apr. 16, 2015
(52) U.S.CL

@ Sl HO4L 67/10 (2013.01)
(57) ABSTRACT

In a parallel computer, performing optimized collective
operations 1n an 1irregular subcommunicator of compute
nodes may be carried out by: 1identitying, within the irregular
subcommunicator, regular neighborhoods of compute nodes;
selecting, for each neighborhood from the compute nodes of
the neighborhood, a local root node; assigning each local root
node to a node of a neighborhood-wide tree topology; map-
ping, for each neighborhood, the compute nodes of the neigh-
borhood to a local tree topology having, at 1ts root, the local
root node of the neighborhood; and performing a one way,
rooted collective operation within the subcommunicator
including: performing, 1n one phase, the collective operation
within each neighborhood; and performing, 1n another phase,
the collective operation amongst the local root nodes.

Operational

Group
132
Ethernet JTAG Global Combining Point-To-Point
e 104 Network 106 Network 108
! t
Service
Application
| 124
‘ e Parallel
110
Computer
‘ 100
Service
Application
Interface
Y 126
g g ittt User
Torminal . il 128
Pela Storage 2
_1_1_8_ NG LR

— e

Patent Application Publication Apr. 16, 2015 Sheet 1 of 15 US 2015/0106419 Al

ey - Ry ey - e -
e r *#*#*4-*4‘1-’-::‘1 e e T T :-:?l » e e T i—::il

"= T T TR - — "'TTT'T'T'T'T'?'?':""'
RN e . CRURU S
F ok kiR P)

W e o L . e ’ L O e ey
i »' . . C Al » d AN »

. | 3 .
A A S

e e e S e e LI T e e e i bl
- LR TR TR THE TREF R TR 7]

Operational
Group
132

Ethernet Global Combinin oint-To-Point

174 Network 106 Network 108

Service
plication
124

/0 Node /O Node Service Node Parallel
110 114 116 .
Computer

l
| ' 100

Service
Application

LAN 130 Interface

e e
e

1

1

Terminal

Printer
Data Storage 1op B .

o ooy X Xy XXy rr oy rxrrr oy rx il
) o aof ol N o Ml
I e e

i
i

o N aa ara aa)

[S ————— T
. _Jr"lr T e e e e e e e e e e e e e
ko
L]

P}
P
¥
P
¥
P}

ey e e e e e e e e e e e ey g
R e e e e e
E Attt o S e)
AENENENERENEAENENENEREN]

i
Fy
IS

Xy

Patent Application Publication

Apr. 16, 2015 Sheet 2 of 15

Compute Node 102

RAM 156

Operating System 162
Parallel Communications Library 161

Processing Cores
165

ALU
60

Memory Bus 155

Extension Bus 16

Point-To-Point
Network Adapler

Global Combining
Network Adapter
188

Ethernet

Adapter
172

US 2015/0106419 Al

Application 226
Node's List Of Logical Planes 230
List Of Unique Logical Planes In Subcommunicator 232

5 ~Y Children
8LV | 1 190
SN - X 4
Gigabit JTAG 18 185 F‘?geznt
Ethernet Master T, v . 7 194
2 178 183 186 %
\ } Global
Combining
Point To Point Network 106

Network 108

FIG. 2

Patent Application Publication

Apr. 16, 2015 Sheet 3 of 15

e
.r":*:":":*:":":*:":":":*: :":":*4- ":":":":":":":*:*:":*:":":*:":ﬂ
o N PR ke
W g N A Y
N e R b et e) PR o ak a a ak b e
TG I NN N N N N D D N NN N e NN N DE PR S DEpEpt N N D NN N N S L NN S0 S

e a e

Parent
192

N N NN NN NN N NN NN NN SN, LN NN NN NN
o A N NN
I e e I R P P]

) X el e e e T T

o T e e e e e e e e e T e e T e T :Jr:Jr:Jr:Jr:Jr:#:#:q-:#:#:q-:#:#:q-:#:#:q-:

o Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:#:#:#:#:#:#:#:#:#:Jr:#:’r Jr:lr xx Jr: Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:#:#:’r:#:#:’r:#:#:’r:#:’r‘_
A A N NN L M M e e M NN JE MM e NN e NN D RN NN D e M NN

x

i
¥
i

ety
P it
-i':-i'
o
X
X
X
¥
X
X
X
X
X
X
X
X
X
X
X
X
X
X
¥
X
X
X
X
X
X
X
X
X

|,

I
s

)
MRNNNRNNNNNNNNNNNNNNENNNNNNIN XNNIN BNNNNNNNNRNNNNNNNN NN
e e e e e o e e

o e o e e e e o e e e e e e e e e e e e e e o e e e

Global Combining
Network Adapter
188

Children
190

US 2015/0106419 Al

ompute Node 102

FIG. 3A

Compute Node 102

FIG. 3B

Patent Application Publication Apr. 16, 2015 Sheet 4 of 15 US 2015/0106419 Al

Dots Rpresent
Compute Nodes

~Y
102
184 -
-7
186
Point-To-Point Network, Organized As A FIG. 4

‘Torus' Or ‘Mesh' 108

Patent Application Publication Apr. 16, 2015 Sheet 5 of 15 US 2015/0106419 Al

Physical Root
202

Links
103

Branch

Nodes
204

b
J
r
r
¢
11
"
F i
]
¥ ’ | ¢ t ¥] $ 4 ¢ !
] [] ! » , L # 1 4 » i
i ’ L] i " » 4 L] [§ i r] | 1
B] I b ! L] ' ¥ ¢ b
¥ d L] i b ¥ [4 1 o |
»] LY ¢ b ’ ! ¢ + 4 % ea
' 1 | 4 ! ¥] | L 4]
» i | I % ' L
] i . d i] P

; :" "‘. :: v ¢ - Nodes

/ Dots Represent

Global Combining Network, Organized As Compute Nodes
A Binary Tree 106 102

FIG. 5

Patent Application Publication Apr. 16, 2015 Sheet 6 of 15 US 2015/0106419 Al

ldentify, Within The lrregular Subcommunicator, Regular Neighborhoods Of Compute Nodes 702

Each Node In The Subcommunicator 610 :

Establish, By A Plane Building Node, In A Positive Direction Of The First Dimension, All
Logical Planes That Include A Plane Building Node And Compute Nodes QOf The
Subcommunicator In A Positive Direction Of A Second Dimension 602

Establish, By The Plane Building Node, In A Negative Direction Of The First Dimension,
All Logical Planes That Include The Plane Building Node And Compute Nodes Of The
Subcommunicator In The Positive Direction Of The Second Dimension 604

Construct A Set Of Unigue Logical Planes Of The Subcommunicator In Dependence
Upon The Logical Planes Established By Each Node 606

Select, For Each Neighborhood From The Compute Nodes Of The
Neighborhood, A Local Root Node 704

Assign Each Local Root Node To A Node Of A Neighborhood-wide Tree
Topology 706

Map, For Each Neighborhood, The Compute Nodes Of The Neighborhood To
A Local Tree Topology Having, At lts Root, The Local Root Node Of The

Neighborhood 708

Perform A One Way, Rooted Collective Operation Within The
Subcommunicator 710

Perform, In One Phase, The Collective Operation Within Each
Netghborhood /12

Perform, In Another Phase, The Collective Operation Amangst The
Local Root Nodes 714

FIG. 6

Patent Application Publication Apr. 16, 2015 Sheet 7 of 15 US 2015/0106419 Al

Y-AXis

4
24. 25. 26. 27. 28. 29.
3 ® ©
18] 191 20f 211 22 23
2 ® ©
6 7
1
QP
0 ® O

Patent Application Publication

Apr. 16, 2015 Sheet 8 of 15

Y-AXiS

| _
2 2 8 P 08

US 2015/0106419 Al

28 29
3 - @
18 19 2] 22 23
2 .
16 17
1
10. 11
0 ® ©
| 4 5
0 1 2 3 4 5
FIG. 8A
Y-AXis

p .
24. 25. 26. 27. o

Patent Application Publication Apr. 16, 2015 Sheet 9 of 15 US 2015/0106419 Al

Y-AXis

4
ZJ-' 23.' Zé.' 2%" Zg.' 25.
3 @
23
2 @
17
1 @
11
¢ @
5
e oA
O 1 2 3 4 5
FIG. 9A
Y-AXis

4 _ '
24-' Zg.' Zé.. 2%.t 28‘.i 25'

18 bty 22 23

12 s 16 17
1 H

6 1&.' 1f.
Y ® O

0 4 5

Patent Application Publication Apr. 16, 2015 Sheet 10 of 15 US 2015/0106419 Al

Y-Axis

4 |
24. 25. 26. 27. 28. 29.

3 ® O
22 3

2 ® ©
6 7

1 ® O
0 1

0 o @

FIG. 10A
Y-Axis

4 _ '
24. 25. 26. 27. 28. 29.

Patent Application Publication Apr. 16, 2015 Sheet 11 of 15 US 2015/0106419 Al

Local Root Node
11043

Local Root
Neighborhood ﬁ%ied
110235

L ocal Root Node

1104b
Local Rookp=—# %
1104c | O8O 1102d
Neighborhood Neighborhood
1102b 1102¢

FIG. 11

Patent Application Publication Apr. 16, 2015 Sheet 12 of 15 US 2015/0106419 Al

Identify, Within The lrregular Subcommunicator, Regular Neighborhoods Of Compute Nodes
702

Select, For Each Neighborhood From The Compute Nodes Of The Neighborhood, A Local
Root Node 704

Assign Each Local Root Node To A Node Of A Neighborhood-wide Tree Topology 706

Map, For Each Neighborhood, The Compute Nodes Of The Neighborhood To A Local Tree
Topology Having, At lts Root, The Local Root Node Of The Neighborhood 708

Perform A One Way, Rooted Collective Operation Within The Subcommunicator 710

Perform A Gather Operation 1202

Perform, In One Phase, The Collective Operation Within Each Neighborhood 712

Perform A Gather Operation Within Each Neighborhood In A First Phase
1204

Perform, In Another Phase, The Collective Operation Amongst The Local Root
Nodes /14

Perform A Gather Operation Amongst The Local Root Nodes In A Second
Phase 1206

FIG. 12

Patent Application Publication Apr. 16, 2015 Sheet 13 of 15 US 2015/0106419 Al

Identify, Within The Irregular Subcommunicator, Regular Neighborhoods Of Compute Nodes
102

Select, For Each Neighborhood From The Compute Nodes Of The Neighborhood, A Local
Root Node 704

Assign Each Local Root Node To A Node Of A Neighborhood-wide Tree Topology 706

Map, For Each Neighborhood, The Compute Nodes Of The Neighborhood To A Local Tree

Topology Having, At its Root, The Local Root Node Of The Neighborhood 708

Perform A One Way, Rooted Collective Operation Within The Subcommunicator 710

Perform A Broadcast Operation 1302

Perform, In Another Phase, The Collective Operation Amongst The Local Root
Nodes 714

Perform A Broadcast Operation Amongst The Local Root Nodes In A First
Phase Beginning At The Root Node Of The Neighborhood-wide Tree
Topology 1304

Perform, In One Phase, The Collective Operation Within Each Neighborhood 712

Perform A Broadcast Operation Within Each Neighborhood In A Second

Phase Beginning, Within Each Neighborhood, At The Local Root Node Of
The Neighborhood 1306

FIG. 13

Patent Application Publication Apr. 16, 2015 Sheet 14 of 15 US 2015/0106419 Al

ldentify, Within The lrregular Subcommunicator, Regular Neighborhoods Of Compute Nodes

02

Select, For Each Neighborhood From The Compute Nodes Of The Neighborhood, A Local
Root Node 704

Assign Each Local Root Node To A Node Of A Neighborhood-wide Tree Topology /06

Map, For Each Neighborhood, The Compute Nodes Of The Neighborhood To A Local Tree
Topology Having, At Its Root, The Local Root Node Of The Neighborhood 708

Perform A One Way, Rooted Collective Operation Within The Subcommunicator 710

Perform A Reduce Operation 1402
Perform, In One Phase, The Caollective Operation Within Each Neighborhood 712

Perform A Reduce Operation Within Each Neighborhood In A First Phase,
Including Performing An Arithmetic Or Logical Function On Contribution
Data Of The Reduce Operation Within The Neighborhood 1404

Perform, In Another Phase, The Collective Operation Amongst The Local Root
Nodes 714

Perform A Reduce Operation Amongst The Local Root Nodes In A Second
Phase Including Performing The Arithmetic Or Logical Function On
Contribution Data Of The Reduce Operation Amongst The Local Root
Nodes 1406

FIG. 14

Patent Application Publication Apr. 16, 2015 Sheet 15 of 15 US 2015/0106419 Al

Identify, Within The Irregular Subcommunicator, Reqular Neighborhoods Of Compute Nodes
702

Select, For Each Neighborhood From The Compute Nodes Of The Neighborhood, A Local
Root Node 704

Assign Each Local Root Node To A Node Of A Neighborhood-wide Tree Topology 706

Map, For Each Neighborhood, The Compute Nodes Of The Neighborhood To A Local Tree

Topology Having, At Its Root, The Local Root Node Of The Neighborhood 708

Perform A One Way, Rooted Collective Operation Within The Subcommunicator 710
Perform A Reduce Operation 1402

Perfarm An Allgather Operation Perform An Allredcue Operation
including A Gather Operation Including A Reduce Operation
Followed By A Broadcast Operation | | Followed By A Broadcast Operation
1502 1904

Perform, In One Phase, The Collective Operation Within Each
Neighborhood 712

Perform, In Another Phase, The Collective Operation Amongst The Local
Root Nodes 714

FIG. 15

US 2015/0106419 Al

PERFORMING OPTIMIZED COLLECTIVE
OPERATIONS IN AN IRREGULAR
SUBCOMMUNICATOR OF COMPUTE
NODES IN A PARALLEL COMPUTER

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0001] This invention was made with Government support
under Contract No. B554431 awarded by the Department of
Energy. The Government has certain rights 1n this invention.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The field of the mvention 1s data processing, or,
more specifically, methods, apparatus, and products for per-
forming optimized collective operations 1n an 1rregular sub-
communicator of compute nodes in a parallel computer.

[0004] 2. Description of Related Art

[0005] The development of the EDVAC computer system
of 1948 1s often cited as the beginning of the computer era.
Since that time, computer systems have evolved into
extremely complicated devices. Today’s computers are much
more sophisticated than early systems such as the EDVAC.
Computer systems typically include a combination of hard-
ware and software components, application programs, oper-
ating systems, processors, buses, memory, input/output
devices, and so on. As advances 1n semiconductor processing
and computer architecture push the performance of the com-
puter higher and higher, more sophisticated computer soft-
ware has evolved to take advantage of the higher performance
of the hardware, resulting in computer systems today that are
much more powerful than just a few years ago.

[0006] Parallel computing 1s an area of computer technol-
ogy that has experienced advances. Parallel computing is the
simultaneous execution of the same task (split up and spe-
cially adapted) on multiple processors in order to obtain
results faster. Parallel computing 1s based on the fact that the
process of solving a problem usually can be divided into
smaller tasks, which may be carrnied out simultaneously with
some coordination.

SUMMARY OF THE INVENTION

[0007] Methods, apparatus, and products for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer are described in
this specification. Such methods include: identifying, within
the 1rregular subcommunicator, regular neighborhoods of
compute nodes; selecting, for each neighborhood from the
compute nodes of the neighborhood, a local root node;
assigning each local root node to a node of a neighborhood-
wide tree topology; mapping, for each neighborhood, the
compute nodes of the neighborhood to a local tree topology
having, at 1ts root, the local root node of the neighborhood;
and performing a one way, rooted collective operation within
the subcommunicator including: performing, in one phase,
the collective operation within each neighborhood and per-

forming 1n another phase, the collective operation amongst
the local root nodes.

[0008] The foregoing and other objects, features and
advantages of the invention will be apparent from the follow-
ing more particular descriptions of exemplary embodiments
of the invention as 1llustrated 1n the accompanying drawings

Apr. 16, 2015

wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 11illustrates an exemplary system for perform-
ing optimized collective operations in an irregular subcom-
municator of compute nodes in a parallel computer according
to embodiments of the present invention.

[0010] FIG. 2 sets forth a block diagram of an example
compute node of a parallel computer configured for perform-
ing optimized collective operations 1n an 1rregular subcom-
municator according to embodiments of the present inven-
tion.

[0011] FIG. 3A sets forth a block diagram of an example
Point-To-Point Adapter useful 1in systems for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer according to
embodiments of the present invention.

[0012] FIG. 3B sets forth a block diagram of an example
Global Combining Network Adapter useful 1n systems for
performing optimized collective operations 1n an irregular
subcommunicator of compute nodes 1n a parallel computer
according to embodiments of the present invention.

[0013] FIG. 4 sets forth a line drawing illustrating an
example data communications network optimized for point-
to-point operations useful 1n systems capable of performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1 a parallel computer according to
embodiments of the present invention.

[0014] FIG. 5 sets forth a line drawing illustrating an
example global combining network usetul in systems capable
of performing optimized collective operations 1n an rregular
subcommunicator of compute nodes 1n a parallel computer
according to embodiments of the present invention.

[0015] FIG. 6 sets forth a flow chart 1llustrating an example
method for performing optimized collective operations 1n an
irregular subcommunicator of compute nodes 1n a parallel
computer according to embodiments of the present invention.

[0016] FIG. 7 sets forth a line drawing illustrating an
example communicator and subcommunicator from which a
plurality of logical planes formed of compute nodes of the
subcommunicator may be identified according to embodi-
ments of the present invention.

[0017] FIG. 8A sets forth a line drawing illustrating another
example communicator and subcommunicator from which a
plurality of logical planes formed of compute nodes of the
subcommunicator may be identified according to embodi-
ments of the present mvention.

[0018] FIG. 8B sets forth a line drawing illustrating another
example communicator and subcommunicator from which a
plurality of logical planes formed of compute nodes of the
subcommunicator may be identified according to embodi-
ments of the present mvention.

[0019] FIG.9A sets forth a line drawing illustrating another
example communicator and subcommunicator from which a
plurality of logical planes formed of compute nodes of the
subcommunicator may be identified according to embodi-
ments of the present invention.

[0020] FIG. 9B sets forth a line drawing illustrating another
example communicator and subcommunicator from which a
plurality of logical planes formed of compute nodes of the
subcommunicator may be identified according to embodi-
ments of the present mvention.

US 2015/0106419 Al

[0021] FIG. 10A sets forth a line drawing illustrating
another example communicator and subcommunicator from
which a plurality of logical planes formed of compute nodes
of the subcommunicator may be 1dentified according to
embodiments of the present invention.

[0022] FIG. 10B sets forth a line drawing illustrating
another example communicator and subcommunicator from
which a plurality of logical planes formed of compute nodes
of the subcommunicator may be 1dentified according to
embodiments of the present invention.

[0023] FIG. 11 sets forth a line drawing illustrating an
example subcommunicator, remapped 1nto regular neighbor-
hoods of compute nodes and optimized for performing col-
lective operations according to embodiments of the present
invention.

[0024] FIG. 12 sets forth a flow chart illustrating another
example method for performing optimized collective opera-
tions 1n an irregular subcommunicator of compute nodes 1n a
parallel computer according to embodiments of the present
ivention.

[0025] FIG. 13 sets forth a flow chart illustrating another
example method for performing optimized collective opera-
tions 1n an 1irregular subcommunicator of compute nodes 1n a
parallel computer according to embodiments of the present
invention.

[0026] FIG. 14 sets forth a flow chart 1llustrating another
example method for performing optimized collective opera-
tions 1n an 1rregular subcommunicator of compute nodes 1n a
parallel computer according to embodiments of the present
invention.

[0027] FIG. 15 sets forth a flow chart illustrating another
example method for performing optimized collective opera-
tions 1n an irregular subcommunicator of compute nodes 1n a
parallel computer according to embodiments of the present
invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0028] Parallel computers execute parallel algorithms. A
parallel algorithm can be split up to be executed a piece at a
time on many different processing devices, and then put back
together again at the end to get a data processing result. Some
algorithms are easy to divide up 1nto pieces. Splitting up the
10b of checking all of the numbers from one to a hundred
thousand to see which are primes could be done, for example,
by assigning a subset of the numbers to each available pro-
cessor, and then putting the list of positive results back
together. In this specification, the multiple processing devices
that execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer 1s com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output ('I/O') nodes, and service
nodes.

[0029] Parallel algorithms are valuable because it 1s faster
to perform some kinds of large computing tasks via a parallel
algorithm than 1t 1s via a serial (non-parallel) algorithm,
because of the way modern processors work. It 1s far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel
algorithm has a serial part and so parallel algorithms have a

Apr. 16, 2015

saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-
head and cost.

[0030] Parallel algorithms are designed also to optimize
one more resource the data communications requirements
among the nodes of a parallel computer. There are two ways
parallel processors communicate, shared memory or message
passing. Shared memory processing needs additional locking
for the data and imposes the overhead of additional processor
and bus cycles and also serializes some portion of the algo-
rithm.

[0031] Message passing processing uses high-speed data
communications networks and message buiters, but this com-
munication adds transter overhead on the data communica-
tions networks as well as additional memory need for mes-
sage bulfers and latency 1n the data communications among,
nodes. Designs of parallel computers use specially designed
data communications links so that the communication over-
head will be small but it 1s the parallel algorithm that decides
the volume of the traffic.

[0032] Many data communications network architectures
are used for message passing among nodes in parallel com-
puters. Compute nodes may be organized in a network as a
‘torus’ or ‘mesh,” for example. Also, compute nodes may be
organized 1n a network as a tree. A torus network connects the
nodes 1n a three-dimensional mesh with wrap around links.
Every node 1s connected to 1ts six neighbors through this torus
network, and each node 1s addressed by 1ts X,y,z coordinate in
the mesh. In such a manner, a torus network lends 1tself to
point to point operations. In a tree network, the nodes typi-
cally are connected into a binary tree: each node has a parent,
and two children (although some nodes may only have zero
children or one child, depending on the hardware configura-
tion). Although a tree network typically 1s inetficient 1n point
to point communication, a tree network does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an allgather opera-
tion. In computers that use a torus and a tree network, the two
networks typically are implemented independently of one
another, with separate routing circuits, separate physical

.

links, and separate message bullers.

[0033] Exemplary methods, apparatus, and products for
performing optimized collective operations 1n an irregular
subcommunicator ol compute nodes 1n a parallel computer 1n
accordance with the present invention are described with
reference to the accompanying drawings, beginming with
FIG. 1. FIG. 11llustrates an exemplary system for performing
optimized collective operations 1n an irregular subcommuni-
cator ol compute nodes 1 a parallel computer according to
embodiments of the present invention. The system of FIG. 1
includes a parallel computer (100), non-volatile memory for
the computer 1n the form of a data storage device (118), an
output device for the computer 1n the form of a printer (120),
and an mput/output device for the computer 1n the form of a
computer terminal (122).

[0034] The parallel computer (100) 1n the example of FIG.
1 includes a plurality of compute nodes (102). The compute
nodes (102) are coupled for data commumnications by several
independent data communications networks including a high
speed Ethernet network (174), a Joint Test Action Group
(‘JTAG’) network (104), a global combining network (106)
which 1s optimized for collective operations using a binary
tree network topology, and a point-to-point network (108),

US 2015/0106419 Al

which 1s optimized for point-to-point operations using a torus
network topology. The global combining network (106) 1s a
data communications network that includes data communi-
cations links connected to the compute nodes (102) so as to
organize the compute nodes (102) as a binary tree. Each data
communications network 1s implemented with data commu-
nications links among the compute nodes (102). The data
communications links provide data communications for par-
allel operations among the compute nodes (102) of the par-
allel computer (100).

[0035] The compute nodes (102) of the parallel computer
(100) are organized 1nto at least one operational group (132)
of compute nodes for collective parallel operations on the
parallel computer (100). Each operational group (132) of
compute nodes 1s the set of compute nodes upon which a
collective parallel operation executes. Each compute node 1n
the operational group (132) 1s assigned a unique rank that
identifies the particular compute node 1n the operational
group (132). Collective operations are implemented with data
communications among the compute nodes of an operational
group. Collective operations are those functions that involve
all the compute nodes of an operational group (132). A col-
lective operation 1s an operation, a message-passing com-
puter program instruction that 1s executed simultaneously,
that 1s, at approximately the same time, by all the compute
nodes 1n an operational group (132) of compute nodes. Such
an operational group (132) may include all the compute nodes
(102) 1n a parallel computer (100) or a subset all the compute
nodes (102). Collective operations are often built around
point-to-point operations. A collective operation requires that
all processes on all compute nodes within an operational
group (132) call the same collective operation with matching
arguments. A ‘broadcast’ 1s an example of a collective opera-
tion for moving data among compute nodes of an operational
group. A ‘reduce’ operation 1s an example of a collective
operation that executes arithmetic or logical functions on data
distributed among the compute nodes of an operational group
(132). An operational group (132) may be implemented as,
for example, an MPI ‘communicator’ or a subset of the com-
municator, called a subcommunicator.

[0036] °“MPTI refers to ‘Message Passing Interface,” a prior
art parallel communications library, a module of computer
program 1instructions for data communications on parallel
computers. Examples of prior-art parallel communications
libraries that may be improved for use 1n systems configured
according to embodiments of the present invention include
MPI and the ‘Parallel Virtual Machine” (*PVM’) library.
PVM was developed by the University of Tennessee, The Oak
Ridge National Laboratory and Emory University. MPI 1s
promulgated by the MPI Forum, an open group with repre-
sentatives from many organizations that define and maintain
the MPI standard. MPI at the time of this writing 1s a de facto
standard for communication among compute nodes running a
parallel program on a distributed memory parallel computer.
This specification sometimes uses MPI terminology for ease
of explanation, although the use of MPI as such 1s not a
requirement or limitation of the present invention.

[0037] Some collective operations have a single originating
Or rece1ving process runmng on a particular compute node 1n
an operational group (132). For example, 1n a ‘broadcast’
collective operation, the process on the compute node that
distributes the data to all the other compute nodes 1s an origi-
nating process. In a ‘gather’ operation, for example, the pro-
cess on the compute node that recerved all the data from the

Apr. 16, 2015

other compute nodes 1s a receiving process. The compute
node on which such an originating or recerving process runs
1s referred to as a logical root.

[0038] Most collective operations are variations or combi-
nations of four basic operations: broadcast, gather, scatter,
and reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined in the MPI standards. In a broadcast operation, all
processes specily the same root process, whose bulfer con-
tents will be sent. Processes other than the root specity receive
butilers. After the operation, all buffers contain the message
from the root process.

[0039] A scatter operation, like the broadcast operation, 1s
also a one-to-many collective operation. In a scatter opera-
tion, the logical root divides data on the root mto segments
and distributes a different segment to each compute node 1n
the operational group (132). In scatter operation, all processes
typically specily the same receive count. The send arguments
are only significant to the root process, whose butler actually
contains sendcount™N elements of a given datatype, where N
1s the number of processes in the given group of compute
nodes. The send buffer 1s divided and dispersed to all pro-
cesses (including the process on the logical root). Each com-
pute node 1s assigned a sequential identifier termed a ‘rank.”
After the operation, the root has sent sendcount data elements
to each process 1n increasing rank order. Rank 0 receives the
first sendcount data elements from the send buffer. Rank 1
receives the second sendcount data elements from the send
butter, and so on.

[0040] A gather operation 1s a many-to-one collective
operation that 1s a complete reverse of the description of the
scatter operation. That 1s, a gather 1s a many-to-one collective
operation 1n which elements of a datatype are gathered from
the ranked compute nodes 1nto a receive builer in a root node.
[0041] A reduction operation 1s also a many-to-one collec-
tive operation that includes an arithmetic or logical function
performed on two data elements. All processes specity the
same ‘count’ and the same arithmetic or logical function.
After the reduction, all processes have sent count data ele-
ments from compute node send butlers to the root process. In
a reduction operation, data elements from corresponding
send builer locations are combined pair-wise by arithmetic or
logical operations to yield a single corresponding element 1n
the root process’ receive buller. Application specific reduc-
tion operations can be defined at runtime. Parallel communi-
cations libraries may support predefined operations. MPI, for
example, provides the following predefined reduction opera-
tions:

MPI MAX MAaxmuin

MPI MIN MINIMUI

MPI SUM sum

MPI_PROD product
MPI_LAND logical and

MPIL BAND bitwise and
MPI_LOR logical or

MPIL_ _BOR bitwise or
MPI__LXOR logical exclusive or
MPI BXOR bitwise exclusive or

[0042] In addition to compute nodes, the parallel computer
(100) includes mput/output (‘I/0”) nodes (110, 114) coupled
to compute nodes (102) through the global combining net-
work (106). The compute nodes (102) 1n the parallel com-

US 2015/0106419 Al

puter (100) may be partitioned into processing sets such that
cach compute node 1n a processing set 1s connected for data
communications to the same I/0O node. Each processing set,
therefore, 1s composed of one I/0 node and a subset of com-
pute nodes (102). The ratio between the number of compute
nodes to the number of I/O nodes 1n the entire system typi-
cally depends on the hardware configuration for the parallel
computer (102). For example, 1n some configurations, each
processing set may be composed of eight compute nodes and
one I/O node. In some other configurations, each processing
set may be composed of sixty-four compute nodes and one
I/0 node. Such example are for explanation only, however,
and not for limitation. Each I/O node provides I/O services
between compute nodes (102) of 1ts processing set and a set of
I/O devices. In the example of FIG. 1, the I/O nodes (110,
114) are connected for data communications I/O devices

(118, 120, 122) through local area network (‘LAN") (130)
implemented using high-speed Ethernet.

[0043] The parallel computer (100) of FIG. 1 also includes
a service node (116) coupled to the compute nodes through
one of the networks (104). Service node (116) provides ser-
vices common to pluralities of compute nodes, administering,
the configuration of compute nodes, loading programs into
the compute nodes, starting program execution on the com-
pute nodes, retrieving results of program operations on the
compute nodes, and so on. Service node (116) runs a service
application (124) and commumnicates with users (128) through
a service application interface (126) that runs on computer

terminal (122).

[0044] The parallel computer (100) of FIG. 1 operates gen-
erally for performing optimized collective operations 1n an
irregular subcommunicator of compute nodes 1n a parallel
computer 1 accordance with embodiments of the present
invention. A communicator 1s an example of an operational
group, a set of compute nodes configured for data communi-
cations and collective operations. A subcommunicator 1s a
subset of the communicator. A communicator 1s generally
established 1n a regular data communications topology—a
mesh, grid, or torus for example. A regular topology 1s one in
which no gaps (disconnects 1n communication paths) exist
between nodes. Generally, a regular topology 1s axial, mean-
ing that the topology 1s defined among one or more axes, such
as an X axis, Y axis, and Z axis. An example of a communi-
cator having a regular topology 1s depicted 1n FIG. 7. In that
example, the commumnicator includes 30 nodes 1n a regular,
axial grid pattern.

[0045] An 1rregular topology 1s a topology in which gaps
ex1st between nodes 1n the same axis. Consider as an example,
the communicator in FIG. 7. The nodes 1n the communicator
of FIG. 7 that are coupled by links represent nodes of a
subcommunicator. As can be seen 1n FIG. 7, the subcommu-
nicator 1s an 1rregular topology. Node O for example, 1s sepa-
rated from node 2, both of which are 1n the same axis and part
of the same subcommunicator.

[0046] Some data communications optimizations oiten
rely on an underlying regular topology—axial or planar
topology—to be performed. A deposit bit optimization, for
example, generally enables fast communication along one or
more axes of a set of compute nodes. The deposit bit optimi-
zation enables a communications adapter of a first node to
receive a message and forward the message to the next node
in the same axis immediately as well as the next node 1n a next
(or orthogonal) axis, even before copying the message to local
memory for a process executing on the first compute node.

Apr. 16, 2015

The commumnication adapter of each compute node receiving
that message, can carry out exactly the same steps such thata
single message may be broadcast down a one or more axes
very quickly. When the compute nodes on one or more axes,
however, include one or more data communication gaps, the
bit deposit optimization fails.

[0047] To that end, parallel computer (100) of FIG. 1 oper-

ates generally for performing optimized collective operations
in an 1rregular subcommunicator of compute nodes 1n a par-
allel computer in accordance with embodiments of the
present invention. The parallel computer may be configured
to 1dentily, within the irregular subcommunicator, regular
neighborhoods of compute nodes. The term ‘neighborhood’
as used 1n this specification refers to a collection of compute
nodes of a subcommunicator that may be of a logical, regular
shape. One such shape may be a logical plane 1n 2-dimension
or planes 1n several dimensions. To that end, the parallel
computer may 1dentily regular neighborhoods of compute
nodes within the subcommunicator by 1dentifying a plurality
of logical planes formed of compute nodes of a subcommu-
nicator may be carried out by each node of the subcommuni-
cator.

[0048] The term ‘logical’ here refers to a topology that 1s
not a physical topology. Identifying a plurality of logical
planes formed of compute nodes of a subcommunicator may
be carried out by each node of the subcommunicator, in
parallel. That 1s, each compute node of the subcommunicator
may separately, and 1n parallel, 1dentity logical planes for
which that compute node 1s a part. Each compute node (re-
ferred to as a ‘plane building node” here when 1dentifying
logical planes for which the compute node 1s included) may,
for a plurality of dimensions beginning with a first dimension:
establish 1n a positive direction of the first dimension, all
logical planes that include the plane building node and com-
pute nodes of the subcommunicator 1n a positive direction of
a second dimension, where the second dimension 1s orthogo-
nal to the first dimension. Then the plane building node may
establish 1n a negative direction of the first dimension, all
logical planes that include the plane building node and com-
pute nodes of the subcommunicator in the positive direction
of the second dimension. Each step described here may be
carried out 1n an iterative fashion: for example, identifying a
first plane 1n the positive direction of the first dimension,
identifying a second plane 1n the positive direction of the first
dimension, and so on, until all planes including the compute
node 1n the positive direction of the first dimension have been

identified. Such an iterative process 1s described below 1n
detail with respect to FIGS. 7-11B.

[0049] Afdter i1dentifying the logical planes, or ‘regular
neighborhoods of compute nodes,” the parallel compute may
also select, for each neighborhood from the compute nodes of
the neighborhood, a local root node; assign each local root
node to a node of a neighborhood-wide tree topology; and
map, for each neighborhood, the compute nodes of the neigh-
borhood to a local tree topology having, at its root, the local
root node of the neighborhood. Then, to carry out optimized
collective operations within the subcommunicator, the paral-
lel compute may perform a one way, rooted collective opera-
tion within the subcommunicator by performing, i one
phase, the collective operation within each neighborhood and
performing, in another phase, the collective operation
amongst the local root nodes. A one way, rooted collective
operation includes any operation where contribution data for
the collective operation begins aroot of a logical tree or where

US 2015/0106419 Al

the contribution data for the collective operation 1s recerved,
as a final destination, at the root node. Examples of such one
way, rooted collective operations include a broadcast opera-
tion, a gather operation, a scatter operation, a reduce opera-
tion, an allreduce operation (consisting of a reduce operation
followed by a broadcast operation), and an allgather opera-
tion (consisting of a gather operation followed by a broadcast
operation).

[0050] As mentioned above, performing optimized collec-
tive operations 1n an irregular subcommunicator of compute
nodes 1n a parallel computer according to embodiments of the
present invention 1s generally implemented on a parallel com-
puter that includes a plurality of compute nodes organized for
collective operations through at least one data communica-
tions network. In fact, such parallel computers may include
thousands of such compute nodes. Each compute node 1s 1n
turn itself a kind of computer which may be composed of one
or more computer processing cores, 1ts own computer
memory, and 1ts own input/output adapters. For further expla-
nation, therefore, FIG. 2 sets forth a block diagram of an
example compute node (102) useful 1n a parallel computer
capable of performing optimized collective operations 1n an
irregular subcommunicator of compute nodes according to
embodiments of the present mvention. The compute node
(102) of FIG. 2 includes a plurality of processing cores (165)
as well as RAM (156). The processing cores (165) of FIG. 2
may be configured on one or more integrated circuit dies.
Processing cores (163) are connected to RAM (156) through
a high-speed memory bus (155) and through a bus adapter
(194) and an extension bus (168) to other components of the
compute node. Stored 1 RAM (156) 1s an application pro-
gram (226), a module of computer program instructions that
carries out parallel, user-level data processing using parallel
algorithms.

[0051] Also stored RAM (156) 1s a parallel communica-
tions library (161), a library of computer program instructions
that carry out parallel communications among compute
nodes, including point-to-point operations as well as collec-
tive operations. A library ol parallel communications routines
may be developed from scratch for use 1n systems according,
to embodiments of the present invention, using a traditional
programming language such as the C programming language,
and using traditional programming methods to write parallel
communications routines that send and receirve data among
nodes on two independent data communications networks.
Alternatively, existing prior art libraries may be improved to
operate according to embodiments of the present invention.
Examples of prior-art parallel communications libraries

include the ‘Message Passing Interface’ (*MPI’) library and
the ‘Parallel Virtual Machine’ (‘*PVM’) library.

[0052] The compute node (102) of FIG. 2 operates gener-
ally for performing optimized collective operations in an
irregular subcommunicator of compute nodes 1n a parallel
computer 1 accordance with embodiments of the present
invention. The communicator, of which the subcommunica-
tor 1s a part, may be a regular topology such as a grid or a
mesh. The parallel communications library (161) may be
coniigured to identity, within the 1rregular subcommunicator,
regular neighborhoods of compute nodes by identifying a
plurality of logical planes formed of compute nodes of a
subcommunicator in a parallel computer 1n accordance with
embodiments of the present invention. Identify such logical
planes may include carrying out the following steps itera-
tively for each of a plurality of dimensions beginning with a

Apr. 16, 2015

first dimension: establishing, by a plane building node (the
compute node 102 1n the example of FIG. 2), in a positive
direction of the first dimension, all logical planes that include
the plane building node and compute nodes of the subcom-
municator 1n a positive direction of a second dimension. In
this example, the second dimension 1s orthogonal to the first
dimension—the X dimension, for example may be the first
dimension, and the Y dimension may be the second dimen-
sion. Then, the plane building node (102) may establish, 1n a
negative direction of the first dimension, all logical planes
that include the plane building node and compute nodes of the
subcommunicator 1n the positive direction of the second
dimension. The logical planes established by the plane build-
ing node (1020 may be stored 1n a list of logical planes (230).

[0053] Because all compute nodes of the subcommunicator
separately and in parallel identity the logical planes of the
subcommunicator of which the compute node 1s included,
some compute nodes may 1dentily, separately, identical logi-
cal planes. To filter the duplicate planes identified by the
compute nodes of the subcommunicator, at least one compute
node 1n the subcommunicator may construct a set (232) of
unmique logical planes of the subcommunicator in dependence
upon the logical planes established by each node. Construct-
ing such a set (232) of unique logical planes of the subcom-
municator may be carried out 1n various ways. In one way, the
compute node may establish an list, add an entry 1n the list for
a logical plane i1dentified by a compute node, and belore
adding another entry for another logical plane determining
that the logical plane to be added 1s not already included 1n the
l1st. In this way, only unique entries are added to the last. Each
entry, for example, may be a vector of four coordinates:
coordinates of a compute node at the lower left of the plane,
coordinates of the compute node at the lower right of the
plane, coordinates of the compute node of at the upper left of
the plane, and coordinates of the compute node at the upper
right of the plane. Once the list 1s complete (all logical planes
established by the compute nodes of the subcommunicator
have been processed and only unique planes have been
included in the list), the list may be broadcast to all compute
nodes of the subcommunicator. Then, any subcommunicator
node may refer to the list of unique planes to transmit mes-
sages among the subcommunicator using optimizations that
rely on planar topologies.

[0054] Once regular neighborhoods are 1dentified, the com-
pute node may select, for each neighborhood from the com-
pute nodes of the neighborhood, a local root node and assign-
ing each local root node to a node of a neighborhood-wide
tree topology. The compute node may also map, for each
neighborhood, the compute nodes of the neighborhood to a
local tree topology having, at its root, the local root node of
the neighborhood. In this way, the compute nodes within each
neighborhood are configured 1n a loglcal tree topology and
the neighborhoods themselves are effectively configured as
nodes 1n another tree topology.

[0055] o take advantage of the two tree topologies, the
example compute node (102) of FIG. 2 may be configured to
perform a one way, rooted collective operation within the
subcommunicator. Such collective operations may be carried
out by performing, in one phase, the collective operation
within each neighborhood and performing, 1n another phase,
the collective operation amongst the local root nodes. Read-
ers of skill 1n the art will recognize that the order of the phases
depends upon the operation. A gather operation, for example,
may be carried out first within the neighborhoods (gathering

US 2015/0106419 Al

the contribution data at the local root nodes) then a second
gather operation can be performed to gather the data from the
local root nodes. By contrast, a broadcast operation may be
carried out by first broadcasting contribution data to the local
root nodes of all neighborhoods, followed by a second broad-
cast operation within each neighborhood.

[0056] Also stored in RAM (156) 1s an operating system
(162), a module of computer program 1nstructions and rou-
tines for an application program’s access to other resources of
the compute node. It 1s typical for an application program and
parallel communications library in a compute node of a par-
allel computer to run a single thread of execution with no user
login and no security 1ssues because the thread 1s entitled to
complete access to all resources of the node. The quantity and
complexity of tasks to be performed by an operating system
on a compute node 1n a parallel computer therefore are
smaller and less complex than those of an operating system on
a serial computer with many threads running simultaneously.
In addition, there 1s no video I/O on the compute node (102)
of FIG. 2, another factor that decreases the demands on the
operating system. The operating system (162) may therefore
be quite lightweight by comparison with operating systems of
general purpose computers, a pared down version as it were,
or an operating system developed specifically for operations
on a particular parallel computer. Operating systems that may
usetully be improved, simplified, for use 1n a compute node
include UNIX™, [1nux™, Windows XPT™_ ATXT™ [BM’s
15/0OS™ and others as will occur to those of skill in the art.

[0057] Theexample compute node (102) of FIG. 2 includes
several communications adapters (172, 176, 180, 188) for
implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as USB, through data communications networks
such as IP networks, and in other ways as will occur to those
of skill i the art. Communications adapters implement the
hardware level of data communications through which one
computer sends data communications to another computer,
directly or through a network. Examples of communications
adapters useful 1n apparatus useful for constructing a logical,
regular axis topology from an irregular topology of a subcom-
municator’s compute nodes 1n a parallel computer include
modems for wired communications, Ethernet (IEEE 802.3)
adapters for wired network communications, and 802.11b
adapters for wireless network communications.

[0058] The data communications adapters in the example
of FIG. 2 include a Gigabit Ethernet adapter (172) that
couples example compute node (102) for data communica-
tions to a Gigabit Ethernet (174). Gigabit Ethernet 1s a net-
work transmission standard, defined in the IEEE 802.3 stan-
dard, that provides a data rate of 1 billion bits per second (one
gigabit). Gigabit Ethernet 1s a variant of Ethernet that operates
over multimode fiber optic cable, single mode fiber optic
cable, or unshielded twisted patr.

[0059] The data communications adapters in the example
of FIG. 2 include a JTAG Slave circuit (176) that couples
example compute node (102) for data communications to a
JTAG Master circuit (178). JTAG 1s the usual name used for
the IEEE 1149.1 standard entitled Standard Test Access Port
and Boundary-Scan Architecture for test access ports used for
testing printed circuit boards using boundary scan. JTAG 1s so
widely adapted that, at this time, boundary scan 1s more or
less synonymous with JTAG. JTAG i1s used not only for
printed circuit boards, but also for conducting boundary scans

Apr. 16, 2015

of mtegrated circuits, and 1s also useful as a mechanism for
debugging embedded systems, providing a convenient alter-
native access point into the system. The example compute
node of FIG. 2 may be all three of these: It typically includes
one or more mtegrated circuits installed on a printed circuit
board and may be implemented as an embedded system hav-
ing 1ts own processing core, 1ts own memory, and 1ts own I/O
capability. JTAG boundary scans through JTAG Slave (176)
may elliciently configure processing core registers and
memory 1n compute node (102) for use 1n dynamically reas-
signing a connected node to a block of compute nodes useful
in systems for performing optimized collective operations 1n
an irregular subcommunicator of compute nodes 1n a parallel
computer according to embodiments of the present invention.

[0060] The data communications adapters in the example
of FIG. 2 include a Point-To-Point Network Adapter (180)
that couples example compute node (102) for data commu-
nications to a network (108) that 1s optimal for point-to-point
message passing operations such as, for example, a network
configured as a three-dimensional torus or mesh. The Point-
To-Point Adapter (180) provides data communications 1n six
directions on three communications axes, X, v, and z, through
s1X bidirectional links: +x (181), —x (182), +v (183), -y (184),
+7 (185), and -z (186).

[0061] The data communications adapters in the example
ol F1G. 2 include a Global Combining Network Adapter (188)
that couples example compute node (102) for data commu-
nications to a global combinming network (106) that 1s optimal
for collective message passing operations such as, for
example, a network configured as a binary tree. The Global
Combining Network Adapter (188) provides data communi-
cations through three bidirectional links for each global com-
bining network (106) that the Global Combining Network
Adapter (188) supports. In the example of FIG. 2, the Global
Combining Network Adapter (188) provides data communi-
cations through three bidirectional links for global combining
network (106): two to children nodes (190) and one to a
parent node (192).

[0062] The example compute node (102) includes multiple
arithmetic logic units (|ALUs’). Each processing core (165)
includes an ALU (166), and a separate ALU (170) 1s dedi-
cated to the exclusive use of the Global Combining Network
Adapter (188) for use 1n performing the arithmetic and logical
functions of reduction operations, including an allreduce
operation. Computer program instructions of a reduction rou-
tine 1n a parallel communications library (161) may latch an
instruction for an arithmetic or logical function nto an
instruction register (169). When the arithmetic or logical
function of a reduction operation 1s a ‘sum’ or a ‘logical OR;’
for example, the collective operations adapter (188) may
execute the arithmetic or logical operation by use of the ALU

(166) 1n the processing core (163) or, typically much faster,
by use of the dedicated ALU (170) using data provided by the

nodes (190, 192) on the global combining network (106) and
data provided by processing cores (165) on the compute node
(102).

[0063] Often when performing arithmetic operations in the
global combining network adapter (188), however, the global
combining network adapter (188) only serves to combine data
received from the children nodes (190) and pass the result up
the network (106) to the parent node (192). Similarly, the
global combining network adapter (188) may only serve to

transmit data recerved from the parent node (192) and pass the
data down the network (106) to the children nodes (190). That

US 2015/0106419 Al

1s, none of the processing cores (165) on the compute node
(102) contribute data that alters the output of ALU (170),
which 1s then passed up or down the global combining net-
work (106). Because the AL U (170) typically does not output
any data onto the network (106) until the ALU (170) recerves
input from one of the processing cores (165), a processing
core (165) may 1nject the 1identity element into the dedicated
ALU (170) for the particular arithmetic operation being per-
form 1n the ALU (170) 1n order to prevent alteration of the
output of the ALU (170). Injecting the identity element into
the ALU, however, olten consumes numerous processing
cycles. To further enhance performance in such cases, the
example compute node (102) includes dedicated hardware
(171) for injecting 1dentity elements into the ALU (170) to
reduce the amount of processing core resources required to
prevent alteration of the ALU output. The dedicated hardware
(171) 1njects an 1identity element that corresponds to the par-
ticular artthmetic operation performed by the ALU. For
example, when the global combining network adapter (188)
performs a bitwise OR on the data received from the children
nodes (190), dedicated hardware (171) may 1nject zeros into
the ALU (170) to improve performance throughout the global
combining network (106).

[0064] For further explanation, FIG. 3A sets forth a block
diagram of an example Point-To-Point Adapter (180) usetul
in systems for performing optimized collective operations 1n
an irregular subcommunicator of compute nodes 1n a parallel
computer according to embodiments of the present invention.
The Point-To-Point Adapter (180) 1s designed for use in a data
communications network optimized for point-to-point opera-
tions, a network that organizes compute nodes in a three-
dimensional torus or mesh. The Point-To-Point Adapter (180)
in the example of FIG. 3A provides data communication
along an x-axis through four unidirectional data communica-
tions links, to and from the next node in the —x direction (182)
and to and from the next node 1n the +x direction (181). The
Point-To-Point Adapter (180) of FIG. 3A also provides data
communication along a y-axis through four unidirectional
data communications links, to and from the next node 1n the
—y direction (184) and to and from the next node in the +y
direction (183). The Point-To-Point Adapter (180) of FIG. 3A
also provides data communication along a z-axis through four
unidirectional data communications links, to and from the

next node 1n the -z direction (186) and to and from the next
node 1n the +z direction (185).

[0065] For further explanation, FIG. 3B sets forth a block
diagram of an example Global Combinming Network Adapter
(188) usetul 1n systems for performing optimized collective
operations in an irregular subcommunicator of compute
nodes 1n a parallel computer according to embodiments of the
present invention. The Global Combining Network Adapter
(188) 1s designed for use 1n a network optimized for collective
operations, a network that organizes compute nodes of a
parallel computer in a binary tree. The Global Combining,
Network Adapter (188) in the example of FIG. 3B provides
data communication to and from children nodes of a global
combining network through four unidirectional data commu-
nications links (190), and also provides data communication
to and from a parent node of the global combining network
through two unidirectional data communications links (192).

[0066] For further explanation, FIG. 4 sets forth a line
drawing 1llustrating an example data communications net-
work (108) optimized for point-to-point operations usetul in
systems capable of performing optimized collective opera-

Apr. 16, 2015

tions 1n an irregular subcommunicator of compute nodes 1n a
parallel computer according to embodiments of the present
invention. In the example of FIG. 4, dots represent compute
nodes (102) of a parallel computer, and the dotted lines
between the dots represent data communications links (103)
between compute nodes. The data communications links are
implemented with point-to-point data communications
adapters similar to the one 1llustrated for example 1n FI1G. 3 A,
with data commumnications links on three axis, X, y, and z, and
to and fro 1n si1x directions +x (181), —x (182), +y (183), -y
(184), +z (185), and -z (186). The links and compute nodes
are organized by this data communications network opti-
mized for point-to-point operations into a three dimensional
mesh (105). The mesh (1035) has wrap-around links on each
axis that connect the outermost compute nodes 1n the mesh
(105) on opposite sides of the mesh (105). These wrap-around
links form a torus (107). Each compute node 1n the torus has
a location 1n the torus that 1s uniquely specified by a set of x,
y, z coordinates. Readers will note that the wrap-around links
in the y and z directions have been omitted for clarity, but are
configured 1n a stmilar manner to the wrap-around link 1llus-
trated 1n the x direction. For clarnty of explanation, the data
communications network of FI1G. 4 1s 1llustrated with only 27
compute nodes, but readers will recognize that a data com-
munications network optimized for point-to-point operations
in a parallel computer according to embodiments of the
present invention may contain only a few compute nodes or
may contain thousands of compute nodes. For ease of expla-
nation, the data communications network of FIG. 4 1s 1llus-
trated with only three dimensions, but readers will recognize
that a data communications network optimized for point-to-
point operations for use in performing optimized collective
operations in an irregular subcommunicator of compute
nodes 1n a parallel computer 1n accordance with embodiments
of the present invention may in facet be implemented in two
dimensions, four dimensions, five dimensions, and so on.
Several supercomputers now use five dimensional mesh or
torus networks, including, for example, IBM’s Blue Gene

QTM ‘

[0067] For further explanation, FIG. 5 sets forth a line
drawing illustrating an example global combining network
(106) useful in systems capable of performing optimized
collective operations 1 an irregular subcommunicator of
compute nodes 1n a parallel computer according to embodi-
ments of the present mmvention. The example data communi-
cations network of FIG. 5 includes data communications
links (103) connected to the compute nodes so as to organize
the compute nodes as a tree. In the example of FIG. 5, dots
represent compute nodes (102) of a parallel computer, and the
dotted lines (103) between the dots represent data communi-
cations links between compute nodes. The data communica-
tions links are implemented with global combining network
adapters similar to the one 1llustrated for example in FIG. 3B,
with each node typically providing data communications to
and from two children nodes and data communications to and
from a parent node, with some exceptions. Nodes in the
global combining network (106) may be characterized as a
physical root node (202), branch nodes (204), and leal nodes
(206). The physical root (202) has two children but no parent
and 1s so called because the physical root node (202) 1s the
node physically configured at the top of the binary tree. The
leal nodes (206) each has a parent, but leaf nodes have no
children. The branch nodes (204) each has both a parent and

two children. The links and compute nodes are thereby orga-

US 2015/0106419 Al

nized by this data communications network optimized for
collective operations 1nto a binary tree (106). For clarity of
explanation, the data communications network of FIG. 5 1s
illustrated with only 31 compute nodes, but readers will rec-
ognize that a global combining network (106) optimized for
collective operations for use 1n a parallel computer 1n accor-
dance with embodiments of the present invention may con-
tain only a few compute nodes or may contain thousands of
compute nodes.

[0068] In the example of FIG. 5, each node 1n the tree 1s
assigned a unit 1dentifier referred to as a ‘rank’ (250). The
rank actually identifies a task or process that 1s executing a
parallel operation according to embodiments of the present
invention. Using the rank to identify a node assumes that only
one such task 1s executing on each node. To the extent that
more than one participating task executes on a single node,
the rank 1dentifies the task as such rather than the node. A rank
uniquely 1dentifies a task’s location 1n the tree network foruse
in both point-to-point and collective operations 1n the tree
network. The ranks 1n this example are assigned as integers
beginning with 0 assigned to the root tasks or root node (202),
1 assigned to the first node in the second layer of the tree, 2
assigned to the second node in the second layer of the tree, 3
assigned to the first node in the third layer of the tree, 4
assigned to the second node in the third layer of the tree, and
so on. For ease of 1llustration, only the ranks of the first three
layers of the tree are shown here, but all compute nodes 1n the
tree network are assigned a unique rank.

[0069] For further explanation, FIG. 6 sets forth a flow
chart illustrating an example method for performing opti-
mized collective operations 1n an irregular subcommunicator
of compute nodes 1n a parallel computer. The method of FIG.
6 1s carried out 1n a parallel computer 1n which the subcom-
municator mncludes a subset of a communicator’s compute
nodes and the communicator’s compute nodes are organized
into a regular topology that includes a plurality of axial
dimensions. In some embodiments the regular topology 1s a
torus network topology that includes N-dimensions, where N
1s an 1nteger greater than one—a five dimensional torus net-
work topology for example.

[0070] The method of FIG. 6 includes 1dentifying (702),
within the irregular subcommunicator, regular neighbor-
hoods of compute nodes. In the method of FIG. 6 identifying
(702) regular neighborhoods of compute nodes includes 1den-
tifying a plurality of logical planes formed of compute nodes
of a subcommunicator 1n a parallel computer by carrying out
several steps separately and 1n parallel by each compute node
(610) of the subcommunicator. Those steps are also carried
out iteratively, for a plurality of dimensions beginning with a
first dimension. One of those steps includes establishing
(602), by a plane building node, 1n a positive direction of the
first dimension, all logical planes that include the plane build-
ing node and compute nodes of the subcommunicator 1n a
positive direction of a second dimension. In some embodi-
ments of the present invention, the second dimension 1s
orthogonal to the first dimension. Establishing (602), 1n a
positive direction of the first dimension, all logical planes that
include the plane building node and compute nodes of the
subcommunicator i a positive direction of a second dimen-
s1ion may 1nclude assigning the plane building node to be the
lower left node of a logical plane of the subcommunicator.
After assigning the plane building node as the lower left node,
the following steps may be carried out iteratively, beginning,
with a node one hop away from the lower left node 1n a

Apr. 16, 2015

positive direction of the first dimension until a node at a next
hop away from the lower left node i1s not included 1n the
subcommunicator. First, the plane building node may assign
a node at a next hop away from the lower leit node in the
positive direction of the first dimension to be the lower right
node of the logical plane of the subcommunicator. Next, the
plane building node, may iteratively, beginning with nodes
one hop away from the lower left node and lower right node 1n
a positive direction of a second dimension until a node at a
next hop away from the lower left or lower right node 1s not
included 1n the subcommumnicator: assign a node at a next hop
away from the lower left node 1n the positive direction of the
second dimension to be the upper leit node of the logical
plane and assigning a node at a next hop away from the lower
right node 1n the positive direction of the second dimension to
be the upper right node of the logical plane. The steps
described here include nested iterative loops. The outer itera-
tive loop adds a node 1n the same, first dimension as the plane
building node as part of the plane. Then, within the outer
iterative loop, the plane building node 1teratively adds nodes
in the second dimension to form planes.

[0071] For purposes of explanation FIGS. 8A, 8B, 9A, and
9B, set forth iterations of the nested 1terative loops described
above. In FIG. 8A, the compute node 7 (the plane building
node for this example), assigns 1tself to be the lower left node
of a logical plane of the subcommunicator. Then, the plane
building node assigns a node at anext hop away (node 8) from
the lower leit node 1n the positive direction of the first dimen-
sion (the X-dimension) to be the lower right node of the
logical plane of the subcommunicator. Note, as mentioned
above, that this 1s step 1s carried out only if the node at a next
hop away 1s also included 1n the subcommunicator. That 1s, 1T
node 8 were not included 1n the subcommunicator, no planes
in the positive direction of the X-dimension could be formed
that include node 7. Next, node 7 assigns a node at a next hop
away (node 13) from the lower left node 1n the positive
direction of the second dimension (the Y-dimension) to be the
upper left node of the logical plane. Again, this step 1s carried
out only 1f the node 1s also in the same subcommunicator.
Then, node 7 assigns a node at a next hop away from the lower
right node (node 14) in the positive direction of the second
dimension to be the upper right node of the logical plane.
Again, this step 1s carried out only if the node 1s also 1n the
same subcommunicator. At this point, node 7 has 1dentified a
plane that includes node 7, node 8, node 13, and node 14.

[0072] While maintaining node 7 as the lower leit node and
node 8 as the lower right node, node 7 then proceeds, 1n FIG.
8B, with a second 1teration of establishing a plane in the
positive direction of the second dimension by adding nodes of
the same subcommunicator an additional hop away from the
previous upper leit and upper right nodes to the subcommu-
nicator. In the example of FIG. 8B, nodes 19 and 20 are
included 1n the subcommunicator and as such are set as the
upper leit and upper right nodes of a second logical plane of
which node 7 1s a part. At this point, node 7 has established

two logical planes: the one described 1n FIG. 8 A and the plane
formed of nodes 7, 8, 19, and 20 in FIG. 8B.

[0073] Becauseneithernode 235 nor 26 (nodes an additional
hop away from the previously assigned upper left and right
nodes) are not part of the subcommunicator, node 7 ceases
iteratively adding nodes in the positive direction of the Y

dimension to logical planes. Instead, a second 1teration of the
outer 1terative loop begins as depicted in F1IG. 9A. In FIG. 9A,
node 7 assigns a node that 1s included 1in the subcommunicator

US 2015/0106419 Al

and 1s also an additional hop away from the previous lower
right node 1n the positive direction of the X-dimension to be
the lower right node. In the example of FIG. 9A, node 9 1s
assigned as the lower right node. Then, in a manner similar to
the example of FIG. 8A, node 7 assigns node 13 (the node a
next hop away from node 7 in the Y-dimension) to be the
upper leftnode and assigns node 15 (the node a nexthop away
from the lower right node 1n the Y-dimension) to be the upper
right node.

[0074] FIG.9B, depicts the second iteration in the'Y dimen-
s1on. In this example, node 7 assigns node 19 (the node a next
hop away from the previous upper left node) to be the upper
left node and node 21 (the node a next hop away from the
previous upper right node) to be the upper right node.
[0075] As can be seen from FIGS. 8 A-9B, the plane build-
ing node eflectively establishes logical planes beginming one
hop away 1n the positive X dimension, then iteratively one
hop away 1n the positiveY dimension. Then the plane building
node begins again another hop away 1n the positive X dimen-
s1ons, followed by iterations one hop away 1n the positive Y
dimension. Any iteration that encounters a node one hop away
that 1s not included 1n the subcommunicator, causes the estab-
lishment of planes to cease.

[0076] Insomeembodiments, the plane building node also
establishes planes 1n the negative direction of the second
dimension 1n a manner similar to that described above. That
1s, after establishing planes in the positive direction of the first
dimension and the positive direction o the second dimension,
the plane building node may establish in the positive direction
of the first dimension, all logical planes that include the plane
building node and compute nodes of the subcommunicator in
a negative direction of the second dimension. Further, after
establishing planes 1n the negative direction of the first
dimension and positive direction of the second dimension, the
plane building node may also establish in the negative direc-
tion of the first dimension, all logical planes that include the
plane building node and compute nodes of the subcommuni-
cator 1n the negative direction of the second dimension. In this
way, each node may 1dentily in each direction of each plane,
all logical planes of which the node 1s a part.

[0077] Returning now to FIG. 6: the method of FIG. 6 also
includes establishing (604), by the plane building node, 1n a
negative direction of the first dimension, all logical planes
that include the plane building node and compute nodes of the
subcommunicator in the positive direction of the second
dimension. Establishing (604) 1n a negative direction of the
first dimension, all logical planes that include the plane build-
ing node and compute nodes of the subcommunicator 1n the
positive direction of the second dimension may be carried out
in various ways, including in a manner similar to that
described above for the positive direction of the first dimen-
sion. The plane building node may assign itself to be the lower
right node of a logical plane of the subcommunicator and
iteratively, beginning with a node one hop away from the
lower right node 1n the negative direction of the first dimen-

Apr. 16, 2015

sion until a node at a next hop away from the lower right node
1s not included in the subcommunicator: assign a node at a
next hop away from the lower right node in the negative
direction of the first dimension to be the lower left node of the
logical plane of the subcommunicator. Further, as part of that
iteration, the plane building node may carry out a second
iterative loop beginning with a node one hop away from the
lower right node and a node one hop away from the lower lett
node 1n the positive direction of the second dimension until a
node at a next hop away from the lower right or lower left
node 1s not included 1n the subcommunicator. Such 1iterations
may include assigning a node at a next hop away from the
lower right node 1n the positive direction of the second dimen-
sion to be the upper right node of the logical plane and
assigning a node at a next hop away from the lower left node
in the positive direction of the second dimension to be the
upper lett node of the logical plane.

[0078] For further explanation, consider the example pro-
vided 1n FIGS. 10A and 10B. In FIG. 10A, the plane building
node (node 7) assigns 1tself to be the lower right node. Then,
the plane building node sets a node one hop away in the
negative direction of the X-dimension to be the lower left
node only 11 that node 1s included 1n the subcommunicator. I
that node 1s not included 1n the subcommunicator no planes
can be built in the negative direction of the X-dimension that
include node 7. In this example, however, node 6 1s included
in the subcommumnicator and 1s assigned to be the lower left
node. Then, node 7 assigns node 12 (a node one hop away
from the lower left node) to be the upper left node and assigns
node 13 (a node one hop away from the lower right node) to
be the upper right node of a plane. Thus, a first plane 1s
established. It 1s noted, again, that if either of node 12 or node
13 were not 1included 1n the subcommunicator, a plane could
not be established and node 7 would cease attempting to
establish logical planes 1 the negative direction of the X-di-
mension. In FIG. 10B, node 7 proceeds with a second itera-
tion 1n the positive direction of the Y-dimension while main-
taining the lower left node at node 6. In this example, node 7
assigns node 18 (a node one hop away from the previous
upper left node) to be the upper lett node and assigns node 19
(a node one hop away from the previous upper right node) to
be the upper right node. Thus, a second plane 1s established.
At this point, there 1s no node in the subcommunicator
included one hop away from the node 18 and node 19 and, as
such, node 7 ceases attempting to establish logical planes 1n
the positive direction of the Y-dimension.

[0079] Readers of skill in the art will recognize that two
dimensions are utilized 1 FIGS. 7-10B as means for expla-
nation only, not limitation. The steps set forth above may be
applied for each of any number of dimensions. Further, these
steps may be extended for higher-dimensional shapes than
planes. Consider, for example, that while a plane 1s defined by
four nodes, a cube may be defined by eight.

[0080] Thefollowing pseudocode is yet another example of
the steps 602 and 604 of the method of FIG. 6:

/ll=lower left, Ir=lower right, ul=upper right, ur=upper right
// given N dimensions

O<=m=<N

//coordinate of each node 1s expressed as node.coords[array of size (N)]

// each plane building node separately and in parallel may execute the following:
form = 0to N-1{

BuildPositivePlane(PBN, m);

BuildNegativePlane(PBN, m);

US 2015/0106419 Al

-continued

h

BuildPositivePlane (node__ll, m)

1

let node_ul =node_ ll; // node’s coordinates
et node_ ur =node_ ll;

for (d=1;d <length_of(m); d++)

Apr. 16, 2015

let node__Ir = node__ll; //initialize each node’s coordinates to be the plane building

1
node_ Ir.coords[m] = node__ll.coords[m] + d;
node__ur.coords[m] = node__ll.coords[m] + d;
if (node__Ir 1s 1n subcommunicator)
1
for (1=0;1<length of(next dimension); 1++)
{
node_ ul.coords[next_dimension] += i;
node_ ur.coords[next_ dimension] += i;
if (node__ul && node_ ur are in the linear communicator)
create a plane spanning nodes (11, Ir, ul, ur);
h
h
else break;
h
h
BuildNegativePlane (node_ Ir, m)
{
let node__ Il =node__Ir; // initialize each node’s coordinates to be the plane building
let node ul =node lIr;// node’s coordinates
let node__ur = node__lIr;
for (d =1;d <length_of(m); d++)
{
node_ ll.coords[m] = node__ lr.coords[m] — d
node__ur.coords[m] = node__lr.coords[m] - d
if (node__ll 1s 1n linear communicator)
1
for (1=0; 1 <length of(next_ dimension); 1++)
{
node_ ul.coords[next_dimension] += i;
node_ur.coords[next_ dimension] += i;
if (node_ ul && node_ ur are in the linear communicator)
create a plane spanning nodes (11, Ir, ul, ur)
h
h
else break;
h
h
[0081] Returning now to the method of FIG. 6, the method

also includes constructing (606) a set of umique logical planes
of the subcommunicator in dependence upon the logical
planes established by each node.

[0082] The method of FIG. 6 also includes selecting (704),
tor each neighborhood from the compute nodes of the neigh-
borhood, a local root node. Selecting (704) a local root node
from each neighborhood may be carried out by a single com-
pute node in the subcommunicator and in various ways
including, for example, by selecting the compute node from
cach neighborhood having the lowest rank or 1n other ways.

[0083] The method of FIG. 6 also includes assigning (706)

cach local root node to a node of a neighborhood-wide tree
topology. Assigning (706) each local root node to a node of a
neighborhood-wide tree topology may be carried out by vari-
ous tree-building algorithms such as binary tree building
algorithms, binomial tree building algorithms, k-nary tree
building algorithms, and others.

[0084] The method of FIG. 6 also includes mapping (708),
for each neighborhood, the compute nodes of the neighbor-
hood to a local tree topology having, at 1ts root, the local root
node of the neighborhood. Mapping (708) the compute nodes

of a neighborhood to a local tree topology may be carried out
in accordance with a similar tree-building algorithm as that
mentioned above.

[0085] The method of FIG. 6 also includes performing

(710) a one way, rooted collective operation within the sub-
communicator. In the method of FIG. 6, performing (710) a
one way, rooted collective operation within the subcommu-
nicator 1s carried out by performing (712), 1n one phase, the
collective operation within each neighborhood; and perform-
ing (714), 1n another phase, the collective operation amongst
the local root nodes. Readers will understand that the order of
the phases depends on the collective operation being per-
formed. In some embodiments performing (712) the collec-
tive operation within each neighborhood 1s carried out 1n a
phase prior to performing (714) the collective operation
amongst the local root nodes.

[0086] For further explanation, FIG. 11 sets forth a line

drawing 1llustrating an example subcommunicator, remapped
into regular neighborhoods of compute nodes and optimized
for performing collective operations according to embodi-

ments of the present mvention. In the example of FIG. 11,
regular neighborhoods (1102a, 1102, 1102¢, 1102d) of com-
pute nodes have been 1dentified within an 1rregular subcom-

US 2015/0106419 Al

municator. Then, a local root node (1104a, 11045, 1104c,
1104d) was selected for each neighborhood.

[0087] Eachlocal rootnode (1104)was assignedto aneigh-
borhood-wide tree topology. In this example, the local root
node (1104a) 1s a parent for all other local root nodes.
[0088] The compute nodes of each neighborhood (1102) 1n
the example of FIG. 11 have also been mapped to a local tree
topology. In this way, a subcommunicator with an irregular
topology can be reorganized, logically, so that collective
operations configured for efficient execution 1n a tree topol-
ogy can be performed 1n an optimized manner. Moreover, as
mentioned above, the communications amongst the compute
nodes within the same neighborhood, while performing the
operation, may utilize the communication techniques opti-
mized for regular shaped topologies such as the hardware
optimized, deposit bit hint techniques.

[0089] For further explanation, FIG. 12 sets forth a flow
chart illustrating another example method for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer according to
embodiments ol the present invention. The method of FI1G. 12
1s similar to the method of FIG. 6 1n that the method of FIG.
6 includes 1dentitying (702) regular neighborhoods of com-
pute nodes; selecting (704) a local root node; assigning (706)
cach local root node to a node of a neighborhood-wide tree
topology; mapping (708) the compute nodes of each neigh-
borhood to a local tree topology; and performing (710) a one
way, rooted collective operation within the subcommunica-
tor

[0090] The method of FIG. 12 differs from the method of
FIG. 6, however, 1n that in the method of FIG. 12 performing
(710) a one way, rooted collective operation within the sub-
communicator mcludes performing (1202) a gather opera-
tion. In a gather operation, contribution data 1s gathered at a
root node. Consider the example subcommunicator depicted
in FIG. 11. A gather operation carried out 1n such a subcom-
municator would result in the local root node (1104a) receiv-
ing from all other compute nodes 1n the subcommunicator,
contribution data.

[0091] To that end, performing (712) the collective opera-
tion within each neighborhood 1n the example of FIG. 12 1s
carried out by performing (1204) a gather operation within
cach neighborhood 1n a first phase. And performing (714), 1n
another phase, the collective operation amongst the local root
nodes 1s carried out by performing (1206) a gather operation
amongst the local root nodes 1n a second phase.

[0092] For further explanation, FIG. 13 sets forth a flow
chart illustrating another example method for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer according to
embodiments ol the present invention. The method of FI1G. 13
1s similar to the method of FIG. 6 1n that the method of FIG.
6 includes 1dentitying (702) regular neighborhoods of com-
pute nodes; selecting (704) a local root node; assigning (706)
cach local root node to a node of a neighborhood-wide tree
topology; mapping (708) the compute nodes of each neigh-
borhood to a local tree topology; and performing (710) a one
way, rooted collective operation within the subcommunica-
tor

[0093] The method of FIG. 13 differs from the method of
FIG. 6, however, 1n that in the method of FIG. 13 performing
(710) a one way, rooted collective operation within the sub-
communicator includes performing (1302) a broadcast opera-
tion. In a broadcast operation, contribution data 1s sent from a

Apr. 16, 2015

root node to all other nodes 1n the subcommunicator. Con-
sider the example subcommunicator depicted in FIG. 11. In
such an example subcommunicator, a broadcast operation
will effect a transmission of contribution from the root node
(1104a) to all other nodes 1n the subcommunicator.

[0094] 'To that end, performing (714), in another phase, the
collective operation amongst the local root nodes 1s carried
out by performing (1304) a broadcast operation amongst the
local root nodes 1n a first phase. And performing (712) the
collective operation within each neighborhood 1n the example
of FIG. 12 1s carried out by performing (1306) a broadcast
operation within each neighborhood 1n a second phase, begin-
ning with the local root node of the neighborhood.

[0095] For further explanation, FIG. 14 sets forth a flow

chart illustrating another example method for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer according to
embodiments of the present invention. The method of FIG. 14
1s similar to the method of FIG. 6 in that the method of FIG.
6 includes 1dentitying (702) regular neighborhoods of com-
pute nodes; selecting (704) a local root node; assigning (706)
cach local root node to a node of a neighborhood-wide tree
topology; mapping (708) the compute nodes of each neigh-
borhood to a local tree topology; and performing (710) a one
way, rooted collective operation within the subcommunica-
tor

[0096] The method of FIG. 14 differs from the method of
FIG. 6, however, 1n that in the method of FIG. 14 performing
(710) a one way, rooted collective operation within the sub-
communicator mcludes performing (1402) a reduce opera-
tion. In a reduce operation, each compute node performs a
function, arithmetic or logical on data and passes the result as
contribution up the tree and eventually to the root node.

[0097] o that end, performing (712) the collective opera-
tion within each neighborhood 1n the example of FIG. 12 1s
carried out by performing (1404) a reduce operation within
cach neighborhood 1n a first phase. The reduce operation
includes performing an arithmetic or logical function on the
contribution data. And performing (714), in another phase,
the collective operation amongst the local root nodes 1s car-
ried out by performing (1406) a reduce operation amongst the
local root nodes 1n a second phase. The reduce operation
includes performing an arithmetic or logical function on the
contribution data.

[0098] For further explanation, FIG. 15 sets forth a flow
chart illustrating another example method for performing
optimized collective operations 1n an irregular subcommuni-
cator of compute nodes 1n a parallel computer according to
embodiments of the present invention. The method of FI1G. 15
1s similar to the method of FIG. 6 in that the method of FIG.
6 includes 1dentitying (702) regular neighborhoods of com-
pute nodes; selecting (704) a local root node; assigning (706)
cach local root node to a node of a neighborhood-wide tree
topology; mapping (708) the compute nodes of each neigh-
borhood to a local tree topology; and performing (710) a one
way, rooted collective operation within the subcommunica-
tor

[0099] The method of FIG. 15 differs from the method of
FIG. 6, however, 1n that in the method of FIG. 15 performing
(710) a one way, rooted collective operation within the sub-
communicator may include performing a two-part collective
operation. Such two-part collective operations may include
allgather operations or allreduce operations. These collective
operations are said to be ‘two-part’ because the collective

US 2015/0106419 Al

operations may 1nclude two or more independent collective
operations to eflect the single operation. An allgather, for
example, includes gathering contribution data and then
broadcasting the gathered result to all compute nodes. An
allreduce, 1n a stmilar manner, includes reducing contribution
data (by performing arithmetic and or logical functions on the
contribution data while passing the data up the tree to the root
node) then broadcasting the result to all of the compute nodes.
As such, performing (710) the one way, rooted collective
operation 1n the method of FIG. 15 may include performing
(1502) an allgather operation comprising a gather operation
tollowed by a broadcast operation or performing (1504) an
allreduce operation comprising a reduce operation followed
by a broadcast operation. Fach independent operation mak-
ing up the two-part collective operations are described above.

[0100] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present mvention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident soitware, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

[0101] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable transmission medium or a com-
puter readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having,
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0102] A computer readable transmission medium may
include a propagated data signal with computer readable pro-
gram code embodied therein, for example, 1n baseband or as
part of a carrier wave. Such a propagated signal may take any
of a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable transmission medium may be any com-
puter readable medium that 1s not a computer readable stor-
age medium and that can communicate, propagate, or trans-
port a program for use by or 1n connection with an 1nstruction
execution system, apparatus, or device.

[0103] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.

Apr. 16, 2015

[0104] Computer program code for carrying out operations
for aspects of the present mvention may be written 1n any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

[0105] Aspects of the present invention are described above
with reference to tlowchart illustrations and/or block dia-
grams ol methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks 1n
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram

block or blocks.

[0106] These computer program instructions may also be
stored 1n a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored 1n the computer readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified 1n the flowchart and/or block
diagram block or blocks.

[0107] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0108] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, 1n some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted 1n the figures. For example, two blocks shown
n succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed 1in the reverse
order, depending upon the functionality mvolved. It will also
be noted that each block of the block diagrams and/or flow-

US 2015/0106419 Al

chart 1llustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

[0109] Itwill be understood from the foregoing description
that modifications and changes may be made 1n various
embodiments ol the present invention without departing from
its true spirit. The descriptions 1n this specification are for
purposes of 1llustration only and are not to be construed 1n a
limiting sense. The scope of the present invention 1s limited
only by the language of the following claims.

What 1s claimed 1s:

1. A method of performing optimized collective operations
in an 1rregular subcommunicator of compute nodes 1n a par-
allel computer, the method comprising:

identifying, within the irregular subcommunicator, regular

neighborhoods of compute nodes;

selecting, for each neighborhood from the compute nodes

of the neighborhood, a local root node;

assigning each local root node to a node of a neighborhood-

wide tree topology;
mapping, for each neighborhood, the compute nodes of the
neighborhood to a local tree topology having, at 1ts root,
the local root node of the neighborhood; and

performing a one way, rooted collective operation within
the subcommunicator including: performing, in one
phase, the collective operation within each neighbor-
hood and performing 1n another phase, the collective
operation amongst the local root nodes.

2. The method of claim 1, wherein:

performing the one way, rooted collective operation further

comprises performing a gather operation; performing
the collective operation within each neighborhood fur-
ther comprises performing a gather operation within
cach neighborhood 1n a first phase; and

performing the collective operation amongst the local root

nodes further comprises performing a gather operation
amongst the local root nodes 1n a second phase.

3. The method of claim 1, wherein:

performing the one way, rooted collective operation further
comprises performing a broadcast operation;

performing the collective operation amongst the local root
nodes further comprises performing a broadcast opera-
tion amongst the local root nodes 1n a first phase begin-
ning at the root node of the neighborhood-wide tree
topology; and

performing the collective operation within each neighbor-
hood further comprises performing a broadcast opera-
tion within each neighborhood 1n a second phase begin-
ning, within each neighborhood, at the local root node of
the neighborhood.

4. The method of claim 1, wherein:

performing the one way, rooted collective operation further
comprises performing a reduce operation;

performing the collective operation within each neighbor-
hood further comprises performing a reduce operation
within each neighborhood 1n a first phase, including
performing an arithmetic or logical function on contri-
bution data of the reduce operation within the neighbor-
hood; and

performing the collective operation amongst the local root
nodes further comprises performing a reduce operation
amongst the local root nodes 1n a second phase including

Apr. 16, 2015

performing the arithmetic or logical function on contri-
bution data of the reduce operation amongst the local
root nodes.

5. The method of claim 1, wherein performing the one way,
rooted collective operation further comprises performing an
allgather operation comprising a gather operation followed
by a broadcast operation.

6. The method of claim 1, wherein performing the one way,
rooted collective operation further comprises performing an
allreduce operation comprising a reduce operation followed
by a broadcast operation.

7. An apparatus for performing optimized collective opera-
tions 1n an irregular subcommunicator of compute nodes 1n a
parallel computer, the apparatus comprising a computer pro-
cessor, a computer memory operatively coupled to the com-
puter processor, the computer memory having disposed
within 1t computer program instructions that, when executed,
cause the apparatus to carry out the steps of:

identitying, within the irregular subcommunicator, regular

neighborhoods of compute nodes;

selecting, for each neighborhood from the compute nodes

of the neighborhood, a local root node;

assigning each local root node to a node of a neighborhood-

wide tree topology;

mapping, for each neighborhood, the compute nodes of the
neighborhood to a local tree topology having, at 1ts root,
the local root node of the neighborhood; and

performing a one way, rooted collective operation within
the subcommunicator including: performing, in one
phase, the collective operation within each neighbor-
hood and performing 1n another phase, the collective
operation amongst the local root nodes.

8. The apparatus of claim 7, wherein:

performing the one way, rooted collective operation further
comprises performing a gather operation;

performing the collective operation within each neighbor-
hood further comprises performing a gather operation
within each neighborhood 1n a first phase; and

performing the collective operation amongst the local root
nodes further comprises performing a gather operation
amongst the local root nodes 1n a second phase.

9. The apparatus of claim 7, wherein:

performing the one way, rooted collective operation further
comprises performing a broadcast operation;

performing the collective operation amongst the local root
nodes further comprises performing a broadcast opera-
tion amongst the local root nodes 1n a first phase begin-
ning at the root node of the neighborhood-wide tree
topology; and

performing the collective operation within each neighbor-
hood further comprises performing a broadcast opera-
tion within each neighborhood 1n a second phase begin-
ning, within each neighborhood, at the local root node of

the neighborhood.
10. The apparatus of claim 7, wherein:

performing the one way, rooted collective operation further
comprises performing a reduce operation;

performing the collective operation within each neighbor-
hood further comprises performing a reduce operation
within each neighborhood 1n a first phase, including
performing an arithmetic or logical function on contri-
bution data of the reduce operation within the neighbor-

hood; and

US 2015/0106419 Al

performing the collective operation amongst the local root
nodes further comprises performing a reduce operation
amongst the local root nodes 1n a second phase including
performing the arithmetic or logical function on contri-
bution data of the reduce operation amongst the local
root nodes.

11. The apparatus of claim 7, wherein performing the one
way, rooted collective operation further comprises perform-
ing an allgather operation comprising a gather operation fol-
lowed by a broadcast operation.

12. The apparatus of claim 7, wherein performing the one
way, rooted collective operation further comprises perform-
ing an allreduce operation comprising a reduce operation
tollowed by a broadcast operation.

13. A computer program product for performing optimized
collective operations 1 an irregular subcommumnicator of
compute nodes 1n a parallel computer, the computer program
product disposed upon a computer readable medium, the
computer program product comprising computer program
instructions that, when executed, cause a computer to carry
out the steps of:

identifying, within the irregular subcommunicator, regular

neighborhoods of compute nodes;

selecting, for each neighborhood from the compute nodes

of the neighborhood, a local root node;

assigning each local root node to a node of a neighborhood-

wide tree topology;
mapping, for each neighborhood, the compute nodes of the
neighborhood to a local tree topology having, at 1ts root,
the local root node of the neighborhood; and

performing a one way, rooted collective operation within
the subcommunicator including: performing, i one
phase, the collective operation within each neighbor-
hood and performing 1n another phase, the collective
operation amongst the local root nodes.

14. The computer program product of claim 13, wherein:

performing the one way, rooted collective operation further

comprises performing a gather operation;

performing the collective operation within each neighbor-

hood further comprises performing a gather operation
within each neighborhood 1n a first phase; and

Apr. 16, 2015

performing the collective operation amongst the local root
nodes further comprises performing a gather operation
amongst the local root nodes 1n a second phase.

15. The computer program product of claim 13, wherein:

performing the one way, rooted collective operation further
comprises performing a broadcast operation;

performing the collective operation amongst the local root
nodes further comprises performing a broadcast opera-
tion amongst the local root nodes 1n a first phase begin-
ning at the root node of the neighborhood-wide tree
topology; and

performing the collective operation within each neighbor-
hood further comprises performing a broadcast opera-
tion within each neighborhood 1n a second phase begin-
ning, within each neighborhood, at the local root node of
the neighborhood.

16. The computer program product of claim 13, wherein:

performing the one way, rooted collective operation further
comprises performing a reduce operation;

performing the collective operation within each neighbor-
hood further comprises performing a reduce operation
within each neighborhood 1n a first phase, including
performing an arithmetic or logical function on contri-
bution data of the reduce operation within the neighbor-

hood; and

performing the collective operation amongst the local root
nodes further comprises performing a reduce operation
amongst the local rootnodes 1n a second phase including
performing the arithmetic or logical function on contri-
bution data of the reduce operation amongst the local
root nodes.

17. The computer program product of claim 13, wherein
performing the one way, rooted collective operation further
comprises performing an allgather operation comprising a
gather operation followed by a broadcast operation.

18. The computer program product of claim 13, wherein
performing the one way, rooted collective operation further
comprises performing an allreduce operation comprising a
reduce operation followed by a broadcast operation.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

