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Hardware Optimization Flowchart

l Fetch an 1mcoming macro Imstruction sequence

dynamically using an mstruction fetch component
501

I

-w;ﬁ‘ansfer the fetched macro instructinli;tﬁ- a

decoding component for decoding Into micro
Instructions

902

;

Perform optimization processing by reordering the
micro instruction trace using an mstruction
Te0rdering component

304
Output the optimized micro instruction trace to the
L microprocessor pipeline for execution

504

:

lSture a copy of the optimized micro instruction trace
| 1nto a seguence cache for subsequent use apon a

subsequent it to that sequence
505

FIGURE 5
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Hardware Optimization Flowchart

Fetch an incoming macre Instruction sequence !
dynamically using an instruction fetch component

bo1

v

* Transfer the fetched 'I'n'écrn instructions to a
decoding component for decoding Into micto
instructions

b2

Store the decoded micro mstructions into sequences l
In a micro instruction sequence cache

I 603
Perfnnﬁﬁptimizatinn prncessmg by reordering the |
micro instruction trace using an Instruction

reordering component
04 .

Qutput the optimized micro instruction trace to the
micreprocessor pipeline for execution

605
ismre a COpy of the Uptimized micre instruction trace |

inte a sequence cache for subsequent use upon a
subsequent hit to that sequence

606

;

FIGURE ©
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1200 Software (ptimization Flowchart

Access an 1nput sequence of wstructions by using a software- I_E{”

based optimizer instantiated i memory

y TTTTRTITTTTTITRT T NTE UF T S SR T S S SR I T U S T AP R W I 0 ST TR o S PR m "

Populate a dependency matrix, using SIMD instractions, with | 1202
dependency mformation extracted from the mput sequence of

mstractions by using a sequence of SIMD compare nstructions

I Scan the rows of the dependency matrix from right to left for _503

the first match

| | Y .

1204
| Analyze the first matches to determine the type of the match ‘/

Hnalyze the first matches to determine the type of match. If the | 1205
first match is a blocking dependency renaming is performed for

this destinatiun_ to remove thfz t!luclfing_ m_atch |

Idenfify all first matches for each row of the matrix and move | 1206

the corresponding column for that match to the given -
dependency group

Repeat the scanning process several times to reorder LUT

instructions comprising the input sequence to produce an
optimized output sequence

Output the optimized ontput sequence to the remaining execution _EUB

pipeline of the microprocessor

store the nptrmlzeﬁ output sequence In a sequence cache for L4y
subsequent consumption (hot code)

FIGURE 12
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MICROPROCESSOR ACCELERATED CODLE
OPTIMIZER

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application 1s related to co-pending commonly

assigned US Patent Application serial number 2010/
0161948, titled “APPARATUS AND METHOD FOR PRO-

CESSING COMPLEX INSTRUCTION FORMATS IN A
MULTITHREADED ARCHITECTURE SUPPORTING
VARIOUS CONTEXT SWITCH MODES AND VIRTUAL-
[ZATION SCHEMES” by Mohammad A. Abdallah, filed on
Jan. 5, 2010, and which 1s incorporated herein 1n 1ts entirety.
[0002] This application 1s related to co-pending commonly
assigned US Patent Application serial number 2009/
0113170, titled “APPARATUS AND METHOD FOR PRO-
CESSING AN INSTRUCTION MATRIX SPECIFYING
PARALLEL IN DEPENDENT OPERATIONS” by Moham-
mad A. Abdallah, filed on Dec. 19, 2008, and which 1s incor-
porated herein 1n 1ts entirety.

[0003] This application 1s related to co-pending commonly
assigned U.S. Patent Application Ser. No. 61/384,198, titled
“SINGLE CYCLE MULTI-BRANCH PREDICTION
INCLUDING SHADOW CACHE FOR EARLY FAR
BRANCH PREDICTION” by Mohammad A. Abdallah, filed
on Sep. 17, 2010, and which 1s incorporated herein 1n 1ts
entirety.

[0004] This application 1s related to co-pending commonly
assigned U.S. Patent Application Ser. No. 61/467,944, titled
“EXECUTING INSTRUCTION SEQUENCE CODE
BLOCKS BY USING VIRTUAL CORES INSTANTIATED
BY PARTITIONABLE ENGINES” by Mohammad A.
Abdallah, filed on Mar. 25, 2011, and which 1s incorporated
herein 1n 1ts entirety.

FIELD OF THE INVENTION

[0005] The present invention i1s generally related to digital
computer systems, more particularly, to a system and method
for selecting instructions comprising an instruction sequence.

BACKGROUND OF THE INVENTION

[0006] Processors are required to handle multiple tasks that
are either dependent or totally independent. The internal state
of such processors usually consists of registers that might
hold different values at each particular instant of program
execution. At each mnstant of program execution, the internal
state 1mage 1s called the architecture state of the processor.
[0007] When code execution 1s switched to run another
function (e.g., another thread, process or program), then the
state of the machine/processor has to be saved so that the new
function can utilize the internal registers to build its new state.
Once the new function 1s terminated then its state can be
discarded and the state of the previous context will be restored
and execution resumes. Such a switch process 1s called a
context switch and usually includes 10’s or hundreds of
cycles especially with modern architectures that employ large
number of registers (e.g., 64, 128, 256) and/or out of order
execution.

[0008] In thread-aware hardware architectures, 1t 1s normal
for the hardware to support multiple context states for a
limited number of hardware-supported threads. In this case,
the hardware duplicates all architecture state elements for
cach supported thread. This eliminates the need for context
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switch when executing a new thread. However, this still has
multiple draw backs, namely the area, power and complexity
of duplicating all architecture state elements (1.e., registers)
for each additional thread supported in hardware. In addition,
if the number of software threads exceeds the number of
explicitly supported hardware threads, then the context
switch must still be performed.

[0009] This becomes common as parallelism1s needed ona
fine granularity basis requiring a large number of threads. The
hardware thread-aware architectures with duplicate context-
state hardware storage do not help non-threaded software
code and only reduces the number of context switches for
soltware that 1s threaded. However, those threads are usually
constructed for coarse grain parallelism, and result in heavy
soltware overhead for imtiating and synchronizing, leaving
fine grain parallelism, such as function calls and loops paral-
lel execution, without efficient threading initiations/auto gen-
eration. Such described overheads are accompanied with the
difficulty of auto parallelization of such codes using sate of
the art compiler or user parallelization techniques for non-
explicitly/easily parallelized/threaded software codes.

SUMMARY OF THE INVENTION

[0010] In one embodiment the present invention is 1mple-
mented as a method for accelerating code optimization 1n a
microprocessor. The method includes fetching an incoming
macroinstruction sequence using an mnstruction fetch compo-
nent and transierring the fetched macroinstructions to a
decoding component for decoding into microinstructions.
Optimization processing 1s performed by reordering the
microinstruction sequence nto an optimized microinstruc-
tion sequence comprising a plurality of dependent code
groups. The optimized microinstruction sequence 1s output to
a microprocessor pipeline for execution. A copy of the opti-
mized microinstruction sequence 1s stored into a sequence
cache for subsequent use upon a subsequent hit to the opti-
mized microinstruction sequence.

[0011] The foregoing i1s a summary and thus contains, by
necessity, simplifications, generalizations and omissions of
detail; consequently, those skilled 1n the art will appreciate
that the summary 1s 1llustrative only and 1s not intended to be
in any way limiting. Other aspects, iventive features, and
advantages of the present invention, as defined solely by the
claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention is 1illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and 1n which like reference numer-
als refer to similar elements.

[0013] FIG. 1 shows an overview diagram of an allocation/
1ssue stage of a microprocessor 1 accordance with one
embodiment of the present invention.

[0014] FIG. 2 shows an overview diagram 1illustrating an
optimization process in accordance with one embodiment of
the present invention.

[0015] FIG. 3 shows a multistep optimization process 1n
accordance with one embodiment of the present invention.

[0016] FIG. 4 shows a multistep optimization and instruc-
tion moving process 1n accordance with one embodiment of
the present invention.
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[0017] FIG. 5 shows a flowchart of the steps of an exem-
plary hardware optimization process 1n accordance with one
embodiment of the present invention.

[0018] FIG. 6 shows a flowchart of the steps of an alterna-
tive exemplary hardware optimization process in accordance
with one embodiment of the present invention.

[0019] FIG.7shows adiagram showing the operation of the
CAM matching hardware and the priority encoding hardware
of the allocation/issue stage 1n accordance with one embodi-
ment of the present invention.

[0020] FIG. 8 shows a diagram illustrating optimized
scheduling ahead of a branch in accordance with one embodi-
ment of the present invention.

[0021] FIG. 9 shows a diagram illustrating optimized
scheduling ahead of a store in accordance with one embodi-
ment of the present invention.

[0022] FIG. 10 shows a diagram of an exemplary software
optimization process in accordance with one embodiment of
the present invention.

[0023] FIG. 11 shows a flow diagram of a SIMD soltware-

based optimization process in accordance with one embodi-
ment of the present invention.

[0024] FIG. 12 shows a flowchart of the operating steps of
an exemplary SIMD software-based optimization process 1n
accordance with one embodiment of the present invention.

[0025] FIG. 13 shows a software based dependency broad-

cast process in accordance with one embodiment of the
present invention.

[0026] FIG. 14 shows an exemplary flow diagram that
shows how the dependency grouping of instructions can be
used to build variably bounded groups of dependent 1nstruc-
tions 1n accordance with one embodiment of the present
invention.

[0027] FIG. 15 shows a flow diagram depicting hierarchical

scheduling of instructions in accordance with one embodi-
ment of the present invention.

[0028] FIG. 16 showsa flow diagram depicting hierarchical
scheduling of three slot dependency group instructions in
accordance with one embodiment of the present invention.

[0029] FIG. 17 shows a flow diagram depicting hierarchical
moving window scheduling of three slot dependency group
istructions in accordance with one embodiment of the
present invention.

[0030] FIG. 18 shows how the variably sized dependent
chains (e.g., variably bounded groups) of instructions are
allocated to a plurality of computing engines in accordance
with one embodiment of the present invention.

[0031] FIG. 19 shows a flow diagram depicting block allo-
cation to the scheduling queues and the hierarchical moving
window scheduling of three slot dependency group instruc-
tions 1n accordance with one embodiment of the present
invention.

[0032] FIG. 20 shows how the dependent code blocks (e.g.,
dependency groups or dependency chains) are executed on
the engines 1n accordance with one embodiment of the
present invention.

[0033] FIG. 21 shows an overview diagram of a plurality of
engines and their components, including a global front end
tetch & scheduler and register files, global interconnects and
a fragmented memory subsystem for a multicore processor 1n
accordance with one embodiment of the present invention.

[0034] FIG. 22 shows a plurality of segments, a plurality of
segmented common partition schedulers and the interconnect
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and the ports mto the segments in accordance with one
embodiment of the present invention.

[0035] FIG. 23 shows a diagram of an exemplary micro-
processor pipeline 1n accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0036] Although the present invention has been described
in connection with one embodiment, the invention 1s not
intended to be limited to the specific forms set forth herein.
On the contrary, it 1s mtended to cover such alternatives,
modifications, and equivalents as can be reasonably included
within the scope of the invention as defined by the appended
claims.

[0037] Inthefollowingdetailed description, numerous spe-
cific details such as specific method orders, structures, ele-
ments, and connections have been set forth. It 1s to be under-
stood however that these and other specific details need not be
utilized to practice embodiments of the present invention. In
other circumstances, well-known structures, elements, or
connections have been omitted, or have not been described in
particular detail in order to avoid unnecessarily obscuring this
description.

[0038] References within the specification to “one embodi-
ment” or “an embodiment” are intended to indicate that a
particular feature, structure, or characteristic described in
connection with the embodiment 1s 1ncluded 1n at least one
embodiment of the present invention. The appearance of the
phrase “in one embodiment” 1n various places within the
specification are not necessarily all referring to the same
embodiment, nor are separate or alternative embodiments
mutually exclusive of other embodiments. Moreover, various
features are described which may be exhibited by some
embodiments and not by others. Similarly, various require-
ments are described which may be requirements for some
embodiments but not other embodiments.

[0039] Some portions of the detailed descriptions, which
follow, are presented 1n terms of procedures, steps, logic
blocks, processing, and other symbolic representations of
operations on data bits within a computer memory. These
descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. A
procedure, computer executed step, logic block, process, etc.,
1s here, and generally, conceived to be a self-consistent
sequence of steps or mstructions leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals of a
computer readable storage medium and are capable of being
stored, transierred, combined, compared, and otherwise
mampulated in a computer system. It has proven convenient
at times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

[0040] It should be borne 1n mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, 1t 1s appreciated that
throughout the present invention, discussions utilizing terms
such as “processing’ or “accessing’ or “writing” or “storing”
or “replicating” or the like, refer to the action and processes of
a computer system, or similar electronic computing device
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that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories and other computer readable media 1nto other
data similarly represented as physical quantities within the
computer system memories or registers or other such infor-
mation storage, transmission or display devices.

[0041] In one embodiment the present invention 1s imple-
mented as a method for accelerating code optimization 1n a
microprocessor. The method includes fetching an incoming,
microinstruction sequence using an instruction fetch compo-
nent and transferring the fetched macroinstructions to a
decoding component for decoding into microinstructions.
Optimization processing 1s performed by reordering the
microinstruction sequence mnto an optimized microinstruc-
tion sequence comprising a plurality of dependent code
groups. The optimized microinstruction sequence 1s output to
a microprocessor pipeline for execution. A copy of the opti-
mized microinstruction sequence 1s stored mto a sequence
cache for subsequent use upon a subsequent hit to the opti-
mized microinstruction sequence.

[0042] FIG. 1 shows an overview diagram of an allocation/
1ssue stage of a microprocessor 100 in accordance with one
embodiment of the present invention. As 1llustrated 1n FIG. 1,
the microprocessor 100 includes a fetch component 101, a
native decode component 102, and instruction scheduling and
optimizing component 110 and the remainming pipeline 105 of
the microprocessor.

[0043] In the FIG. 1 embodiment, macroinstructions are
fetched by a fetch component 101 and decoded into native
microinstructions by the native decode component 102,
which then provides the microinstructions to a microinstruc-
tion cache 121 and the mnstruction scheduling and optimizer
component 110. In one embodiment, the fetched macroin-
structions comprise a sequence ol instructions that 1s
assembled by predicting certain branches.

[0044] The macroinstruction sequence 1s decoded nto a
resulting microinstruction sequence by the native decode
component 102. This microinstruction sequence 1s then trans-
mitted to the instruction scheduling and optimizing compo-
nent 110 through a multiplexer 103. The instruction schedul-
ing and optimizer component Ifunctions by performing
optimization processing by, for example, reordering certain
instructions of the microinstruction sequence for more eifi-
cient execution. This results in an optimized microinstruction
sequence that 1s then transierred to the remaining pipeline
105 (e.g., the allocation, dispatch, execution, and retirement
stages, etc.) through the multiplexer 104. The optimized
microinstruction sequence results 1n a faster and more etfi-
cient execution of the instructions.

[0045] In one embodiment, the macroinstructions can be
instructions from a high level mstruction set architecture,
while the microinstructions are low level machine instruc-
tions. In another embodiment, the macroinstructions can be

guest instructions from a plurality of different instruction set
architectures (e.g., CISC like, x86, RISC like, MIPS, SPARC,

ARM, virtual like, JAVA, and the like), while the microin-
structions are low level machine instructions or instructions
of a different native mstruction set architecture. Similarly, 1n
one embodiment, the macroinstructions can be native instruc-
tions of an architecture, and the microinstructions can be
native microinstructions of that same architecture that have
been reordered and optimized. For example X86 macro
mstructions and X86 micro-coded microinstructions.
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[0046] Inone embodiment, to accelerate the execution per-
formance of code that 1s frequently encountered (e.g., hot
code), copies of frequently encountered microinstruction
sequences are cached in the microinstruction cache 121 and
copies of frequently encountered optimized microinstruction
sequences are cached within the sequence cache 122. As code
1s fetched, decoded, optimized, and executed, certain opti-
mized microinstruction sequences can be evicted or fetched
in accordance with the size of the sequence cache through the
depicted eviction and fill path 130. This eviction and fill path
allows for transfers of optimized microinstruction sequences
to and from the memory hierarchy of the microprocessor
(e.g., L1 cache, L.2 cache, a special cacheable memory range,

or the like).

[0047] It should be noted that in one embodiment, the
microinstruction cache 121 can be omitted. In such an
embodiment, the acceleration of hot code 1s provided by the
storing of optimized microinstruction sequences within the
sequence cache 122. For example, the space saved by omit-
ting microinstruction cache 121 can be used to implement a
larger sequence cache 122, for example.

[0048] FIG. 2 shows an overview diagram illustrating an
optimization process in accordance with one embodiment of
the present invention. The left-hand side of FIG. 2 shows an
incoming microinstruction sequence as received from, for
example, the native decode component 102 or the microin-
struction cache 121. Upon first recerving these instructions,
they are not optimized.

[0049] One objective of the optimization process 1s to
locate and 1dentily istructions that depend upon one another
and move them 1nto their respective dependency groups so
that they can execute more efficiently. In one embodiment,
groups ol dependent instructions can be dispatched together
so that they can execute more efficiently since their respective
sources and destinations are grouped together for locality. It
should be noted that this optimization processing can be used
in both an out of order processor as well as an in order
processor. For example, within an 1n order processor, instruc-
tions are dispatched in-order. However, they can be moved
around so that dependent instructions are placed in respective
groups so that groups can then execute independently, as
described above.

[0050] For example, the mmcoming instructions include
loads, operations and stores. For example, instruction 1 com-
prises an operation where source registers (e.g., register 9 and
register 9) are added and the result stored 1n register 5. Hence,
register 5 1s a destination and register 9 and register S are
sources. In this manner, the sequence of 16 instructions
includes destination registers and source registers, as shown.

[0051] The FIG. 2 embodiment implements the reordering
ol 1nstructions to create dependency groups where instruc-
tions that belong to a group are dependent upon one another.
To accomplish this, an algorithm 1s executed that performs
hazard checks with respect to the loads and stores of the 16
incoming instructions. For example, stores cannot move past
carlier loads without dependency checks. Stores cannot pass
carlier stores. Loads cannot pass earlier stores without depen-
dency checks. Loads can pass loads. Instructions can pass
prior path predicted branches (e.g., dynamically constructed
branches) by using a renaming technique. In the case of
non-dynamically predicted branches, movements of mnstruc-
tions need to consider the scopes of the branches. Each of the
above rules can be implemented by adding virtual depen-
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dency (e.g., by artificially adding virtual sources or destina-
tions to mstructions to enforce the rules).

[0052] Retferring still to FIG. 2, as described above, an
objective of the optimization process 1s to locate dependent
instructions and move them into a common dependency
group. This process must be done 1n accordance with the
hazard checking algorithm. The optimization algorithm 1s
looking for mstruction dependencies. The instruction depen-
dencies further comprise true dependencies, output depen-
dencies and anti-dependencies.

[0053] The algorithm begins by looking for true dependen-
cies first. To 1dentily true dependencies, each destination of
the 16 nstruction sequence 1s compared against other subse-
quent sources which occur later in the 16 1nstruction
sequence. The subsequent instructions that are truly depen-
dent on an earlier instruction are marked “__17 to signity their
true dependence. This 1s shown 1n FIG. 2 by the instruction
numbers that proceed from left to right over the 16 instruction
sequence. For example, considering instruction number 4, the
destination register R3 1s compared against the subsequent
instructions’ sources, and each subsequent source 1s marked
“_1” to indicate that instruction’s true dependence. In this
case, 1nstruction 6, instruction 7, instruction 11, and instruc-
tion 15 are marked <17,

[0054] The algorithm then looks for output dependencies.
To 1dentity output dependencies, each destination 1s com-
pared against other subsequent instructions’ destinations.
And for each of the 16 instructions, each subsequent destina-
tion that matches 1s marked “1_"" (e.g., sometimes referred to
as a red one).

[0055] The algorithm then looks for anti-dependencies. To
identily anti-dependencies, for each of the 16 instructions,
cach source 1s compared with earlier instructions’ sources to
identify matches. I a match occurs, the instruction under
consideration marks 1ts seltf “1_" (e.g., sometimes referred to
as a red one).

[0056] In this manner, the algorithm populates a depen-
dency matrix of rows and columns for the sequence of 16
instructions. The dependency matrix comprises the marks
that indicate the different types of dependencies for each of
the 16 instructions. In one embodiment, the dependency
matrix 1s populated 1n one cycle by using CAM matching,
hardware and the appropriate broadcasting logic. For
example, destinations are broadcasted downward through the
remaining instructions to be compared with subsequent
istructions’ sources (e.g., true dependence) and subsequent
istructions’ destinations (e.g., output dependence), while
destinations can be broadcasted upward through the previous
instructions to be compared with prior mstructions’ sources
(e.g., ant1 dependence).

[0057] The optimization algorithm uses the dependency
matrix to choose which mstructions to move together into
common dependency groups. It 1s desired that instructions
which are truly dependent upon one another be moved to the
same group. Register renaming 1s used to eliminate anti-
dependencies to allow those anti-dependent instructions to be
moved. The moving 1s done 1n accordance with the above
described rules and hazard checks. For example, stores can-
not move past earlier loads without dependency checks.
Stores cannot past earlier stores. Loads cannot pass earlier
stores without dependency checks. Loads can pass loads.
Instructions can pass prior path predicted branches (e.g.,
dynamic the constructed branches) by using a renaming tech-
nique. In the case of non-dynamically predicted branches,
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movements of istructions need to consider the scopes of the
branches. Note for the description

[0058] Inoneembodiment, a priority encoder can be imple-
mented to determine which instructions get moved to be
grouped with other istructions. The priority encoder would
function 1n accordance with the information provided by the
dependency matrix.

[0059] FIG. 3 and FIG. 4 show a multistep optimization
process 1n accordance with one embodiment of the present
invention. In one embodiment, the optimization process 1s
iterative, 1n that after instructions are moved 1n a first pass by
moving their dependency column, the dependency matrix 1s
repopulated and examined again for new opportunities to
move 1structions. In one embodiment, this dependency
matrix population process 1s repeated three times. This 1s
shown 1n FIG. 4, which show instructions that have been
moved and then examined again looking for opportunities to
move other instructions. The sequence of numbers on the
right hand side of each of the 16 instructions shows the group
that the mstruction was 1n that 1t began the process with and
the group that the instruction was in at the finish of the
process, with the mtervening group numbers in between. For
example, FIG. 4 shows how 1nstruction 6 was 1nitially 1n
group 4 but was moved to be in group 1.

[0060] In this manner, FIGS. 2 through 4 illustrate the
operation ol an optimization algorithm 1n accordance with
one embodiment of the present invention. It should be noted
that although FIGS. 2 through 4 illustrate an allocation/issue
stage, this functionality can also be implemented 1n a local
scheduler/dispatch stage.

[0061] FIG. 5 shows a flowchart of the steps of an exem-
plary hardware optimization process 300 in accordance with
one embodiment of the present invention. As depicted in FIG.
5, the tlowchart shows the operating steps of a optimization
process as implemented 1n an allocation/issue stage of a
microprocessor 1 accordance with one embodiment of the
present 1nvention.

[0062] Process 500 begins 1n step 301, where an incoming
macroinstruction sequence 1s fetched using an instruction
tetch component (e.g., fetch component 20 from FIG. 1). As
described above, the fetched instructions comprise a
sequence that 1s assembled by predicting certain instruction
branches.

[0063] Instep 502, the fetched macroinstructions are trans-
terred to a decoding component for decoding into microin-
structions. The macroinstruction sequence 1s decoded 1nto a
microinstruction sequence 1n accordance with the branch pre-
dictions. In one embodiment, the microinstruction sequence
1s then stored 1nto a microinstruction cache.

[0064] In step 503, optimization processing 1s then con-
ducted on the microinstruction sequence by reordering the
microinstructions comprising sequence into dependency
groups. The reordering 1s implemented by an instruction reor-
dering component (e.g., the mstruction scheduling and opti-
mizer component 110). This process 1s described 1n the FIGS.

2 through 4.

[0065] In step 304, the optimized microinstruction
sequence 1s an output to the microprocessor pipeline for
execution. As described above, the optimized microinstruc-
tion sequence 1s forwarded to the rest of the machine for
execution (e.g., remaining pipeline 105).

[0066] And subsequently, 1 step 505, a copy of the opti-
mized microinstruction sequence 1s stored into a sequence
cache for subsequent use upon a subsequent hit to that
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sequence. In this manner, the sequence cache enables access
to the optimized microinstruction sequences upon subse-
quent hits on those sequences, thereby accelerating hot code.

[0067] FIG. 6 shows a flowchart of the steps of an alterna-
tive exemplary hardware optimization process 600 in accor-
dance with one embodiment of the present mvention. As
depicted 1n FIG. 6, the flowchart shows the operating steps of
a optimization process as implemented 1n an allocation/issue
stage ol a microprocessor 1n accordance with an alternative
embodiment of the present invention.

[0068] Process 600 begins 1n step 601, where an incoming
macroinstruction sequence 1s fetched using an instruction
tetch component (e.g., fetch component 20 from FIG. 1). As
described above, the {fetched instructions comprise a
sequence that 1s assembled by predicting certain 1nstruction
branches.

[0069] Instep 602, the fetched macroinstructions are trans-
terred to a decoding component for decoding into microin-
structions. The macroinstruction sequence 1s decoded 1nto a
microinstruction sequence 1n accordance with the branch pre-
dictions. In one embodiment, the microinstruction sequence
1s then stored into a microinstruction cache.

[0070] In step 603, the decoded micro instructions are
stored 1nto sequences 1n a micro nstruction sequence cache.
Sequences 1n the micro mstruction cache are formed to start 1n
accordance with basic block boundaries. These sequences are
not optimized at this point.

[0071] In step 604, optimization processing 1s then con-
ducted on the microinstruction sequence by reordering the
microinstructions comprising sequence into dependency
groups. The reordering 1s implemented by an instruction reor-
dering component (e.g., the mstruction scheduling and opti-

mizer component 110). This process 1s described in the FIGS.
2 through 4.

[0072] In step 605, the optimized microinstruction
sequence 1s an output to the microprocessor pipeline for
execution. As described above, the optimized microinstruc-
tion sequence 1s forwarded to the rest of the machine for
execution (e.g., remaining pipeline 105).

[0073] And subsequently, 1 step 606, a copy of the opti-
mized microinstruction sequence 1s stored mto a sequence
cache for subsequent use upon a subsequent hit to that
sequence. In this manner, the sequence cache enables access

to the optimized microinstruction sequences upon subse-
quent hits on those sequences, thereby accelerating hot code.

[0074] FIG. 7 shows a diagram showing the operation of the
CAM matching hardware and the priornity encoding hardware
of the allocation/issue stage 1n accordance with one embodi-
ment of the present invention. As depicted 1n FIG. 7, destina-
tions of the mnstructions are broadcast into the CAM array
from the left. Three exemplary instruction destinations are
shown. The lighter shaded CAMs (e.g. green) are for true
dependency matches and output dependency matches, and
thus the destinations are broadcast downward. The darker
shaded CAMs (e.g. blue) anti-dependency matches, and thus
the destinations are broadcast upward. These matches popu-
late a dependency matrix, as described above. Priority encod-
ers are shown on the right, and they function by scanning the
row of CAMS to find the first match, eithera*“ 1”7 ora“1_”.
As described above 1n the discussions of FIGS. 2-4, the pro-
cess can be implemented to be iterative. For example, if a
“ 17 1s blocked by a *“1_7, then that destination can be
renamed and moved.
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[0075] FIG. 8 shows a diagram illustrating optimized
scheduling istructions ahead of a branch in accordance with
one embodiment of the present invention. As 1llustrated 1n
FIG. 8, a hardware optimized example 1s depicted alongside
a traditional just-in-time compiler example. The left-hand
side of FIG. 8 shows the original un-optimized code including,
the branch biased untaken, “Branch C to LL1”. The middle
column of FIG. 8 shows a traditional just-in-time compiler
optimization, where registers are renamed and instructions
are moved ahead of the branch. In this example, the just-in-
time compiler mnserts compensation code to account for those
occasions where the branch biased decision 1s wrong (e.g.,
where the branch is actually taken as opposed to untaken). In
contrast, the rnight column of FIG. 8 shows the hardware
unrolled optimization. In this case, the registers are renamed
and 1nstructions are moved ahead of the branch. However, it
should be noted that no compensation code 1s mnserted. The
hardware keeps track of whether branch biased decision 1s
true or not. In case of wrongly predicted branches, the hard-
ware automatically rolls back 1t’s state 1n order to execute the
correct mstruction sequence. The hardware optimizer solu-
tion 1s able to avoid the use of compensation code because 1n
those cases where the branch 1s miss predicted, the hardware
mumps to the original code in memory and executes the correct
sequence from there, while flushing the miss predicted
instruction sequence.

[0076] FIG. 9 shows a diagram illustrating optimized
scheduling a load ahead of a store in accordance with one
embodiment of the present invention. As 1llustrated 1n FI1G. 9,
a hardware optimized example 1s depicted alongside a tradi-
tional just-in-time compiler example. The left-hand side of
FIG. 9 shows the original un-optimized code including the
store, “R3<—LD [R5]”. The middle column of FIG. 9 shows a
traditional just-in-time compiler optimization, where regis-
ters are renamed and the load 1s moved ahead of the store. In
this example, the just-in-time compiler 1nserts compensation
code to account for those occasions where the address of the
load instruction aliases the address of the store instruction
(e.g., where the load movement ahead of the store 1s not
appropriate). In contrast, the right column of FI1G. 9 shows the
hardware unrolled optimization. In this case, the registers are
renamed and the load 1s also moved ahead of the store. How-
ever, 1t should be noted that no compensation code 1s 1nserted.
In a case where moving the load ahead of the store 1s wrong,
the hardware automatically rolls back 1t’s state 1n order to
execute the correct instruction sequence. The hardware opti-
mizer solution 1s able to avoid the use of compensation code
because 1n those cases where the address alias-check branch
1s miss predicted, the hardware jumps to the original code 1n
memory and executes the correct sequence from there, while
flushing the miss predicted instruction sequence. In this case,
the sequence assumes no aliasing. It should be noted that in
one embodiment, the functionality diagrammed 1n FIG. 9 can
be mmplemented by instruction scheduling and optimizer
component 110 of FIG. 1. Similarly, 1t should be noted that 1in
one embodiment, the functionality diagrammed in FIG. 9 can
be implemented by the software optimizer 1000 described in

FIG. 10 below.

[0077] Additionally, with respect to dynamically unrolled
sequences, 1t should be noted that instructions can pass prior
path predicted branches (e.g., dynamically constructed
branches) by using renaming. In the case ol non-dynamically
predicted branches, movements of instructions should con-
sider the scopes of the branches. Loops can be unrolled to the
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extent desired and optimizations can be applied across the
whole sequence. For example, this can be implemented by
renaming destination registers of nstructions moving across
branches. One of the benefits of this feature 1s the fact that no
compensation code or extensive analysis of the scopes of the
branches 1s needed. This feature thus greatly speeds up and
simplifies the optimization process.

[0078] Additional information concerning branch predic-
tion and the assembling of instruction sequences can be found
in commonly assigned U.S. Patent Application Ser. No.
61/384,198, ftitled “SINGLE CYCLE MULTI-BRANCH
PREDICTION INCLUDING SHADOW CACHE FOR
EARLY FAR BRANCH PREDICTION” by Mohammad A.

Abdallah, filed on Sep. 17, 2010, which 1s incorporated herein
in its entirety.

[0079] FIG. 10 shows a diagram of an exemplary software
optimization process 1n accordance with one embodiment of
the present invention. In the FIG. 10 embodiment, the mnstruc-
tion scheduling and optimizer component (e.g., component

110 of FIG. 1) 1s replaced by a software-based optimizer
1000.

[0080] Inthe FIG. 10 embodiment, the software optimizer
1000 performs the optimization processing that was per-
formed by the hardware-based instruction scheduling and
optimizer component 110. The software optimizer maintains
a copy ol optimized sequences 1n the memory hierarchy (e.g.,
L1, L2, system memory). This allows the software optimizer
to maintain a much larger collection of optimized sequences
in comparison to what 1s stored 1n the sequence cache.

[0081] It should be noted that the software optimizer 1000
can comprise code residing 1in the memory hierarchy as both
input to the optimization and output from the optimization
process.

[0082] It should be noted that in one embodiment, the
microinstruction cache can be omitted. In such an embodi-

ment, only the optimized microinstruction sequences are
cached.

[0083] FIG. 11 shows a flow diagram of a SIMD software-
based optimization process 1n accordance with one embodi-
ment of the present invention. The top of FIG. 11 shows how
the software-based optimizer examines each instruction of an
input instruction sequence. FIG. 11 shows how a SIMD com-
pare can be used to match one to many (e.g., SIMD byte
compare a first source “Srcl” to all second source bytes
“Src2”). In one embodiment, Srcl contains the destination
register of any 1nstruction and Src2 contains one source from
cach other subsequent instruction. Matching 1s done for every
destination with all subsequent 1instruction sources (e.g., true
dependence checking). This i1s a pairing match that indicates
a desired group for the instruction. Matching 1s done between
cach destination and every subsequent instruction destination
(e.g., output dependence checking). This 1s a blocking match
that can be resolved with renaming. Matching 1s done
between each destination and every prior istruction source
(e.g., ant1 dependence checking). This 1s a blocking match
that can be resolved by renaming. The results are used to
populate the rows and columns of the dependency matrix.

[0084] FIG. 12 shows a flowchart of the operating steps of
an exemplary SIMD software-based optimization process
1200 1n accordance with one embodiment of the present
invention. Process 1200 1s described 1in the context of the flow

diagram of FIG. 9.
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[0085] In step 1201, an mput sequence of instructions 1s
accessed by using a soltware-based optimizer instantiated
memory.

[0086] In step 1202, a dependency matrix 1s populated,
using SIMD instructions, with dependency information
extracted from the mput sequence of mstructions by using a
sequence ol SIMD compare instructions.

[0087] In step 1203, the rows of the matrix are scanned
from right to lett for the first match (e.g., dependency mark).
[0088] In step 1204, each of the first matches are analyzed
to determine the type of the match.

[0089] In step 1205, 11 the first marked match 1s a blocking
dependency, renaming 1s done for this destination.

[0090] In step 1206, all first matches for each row of the
matrix are i1dentified and the corresponding column for that
match 1s moved to the given dependency group.

[0091] In step 1207, the scanning process 1s repeated sev-
eral times to reorder instructions comprising the input
sequence to produce an optimized output sequence.

[0092] In step 1208, the optimized instruction sequence 1s
output to the execution pipeline of the microprocessor for
execution.

[0093] In step 1209, the optimized output sequence 1is
stored 1n a sequence cache for subsequent consumption (e.g.,
to accelerate hot code).

[0094] Itshould benoted that the software optimization can
be done serially with the use of SIMD instructions. For
example, the optimization can be implemented by processing
one nstruction at a time scanning instructions’ sources and
destinations (e.g., from earlier instructions to subsequent
instructions 1n a sequence). The software uses SIMD 1nstruc-
tions to compare in parallel current instruction sources and
destinations with prior instruction sources and destinations 1n
accordance with the above described optimization algorithm
and SIMD nstructions (e.g. to detect true dependencies, out-
put dependencies and anti-dependencies).

[0095] FIG. 13 shows a software based dependency broad-
cast process in accordance with one embodiment of the
present invention. The FIG. 13 embodiment shows a tlow
diagram of an exemplary software scheduling process that
processes groups of mstructions without the expense of a full
parallel hardware implementation as described above. How-
ever, the FIG. 13 embodiment can still use SIMD to process
smaller groups of 1nstructions 1n parallel.

[0096] The software scheduling process of FIG. 13 pro-
ceeds as follows. First, the process 1nitializes three registers.
The process takes instruction numbers and loads them into a
first register. The process then takes destination register num-
bers and loads them into a second register. The process then
takes the values 1n the first register and broadcasts them to a
position 1n the third result register 1n accordance with a posi-
tion number 1n the second register. The process then over
writes, going from left to right 1n the second register, the
lettmost value will overwrite a right value 1n those instances
where broadcast goes to the same position 1n the result reg-
ister. Positions in the third register that have not been written
to are bypassed. This information 1s used to populate a depen-
dency matrix.

[0097] The FIG. 13 embodiment also shows the manner 1n
which an mput sequence of instructions can be processed as a
plurality of groups. For example, a 16 instruction input
sequence can be processed as a first group of 8 1nstructions
and a second group of 8 mstructions. With the first group,
instruction numbers are loaded into the first register, mstruc-
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tion destination numbers are loaded into the second register,
and the values 1n the first register are broadcast to positions 1n
the third register (e.g., the result register) in accordance with
the position number 1n the second register (e.g., a group
broadcast). Positions 1n the third register that have not been
written to are bypassed. The third register now becomes a
base for the processing of the second group. For example, the
result register from group 1 now becomes the result register
tor the processing of group two.

[0098] With the second group, instruction numbers are
loaded 1nto the first register, mstruction destination numbers
are loaded 1nto the second register, and the values in the first
register are broadcast to positions in the third register (e.g.,
the result register) 1n accordance with the position number in
the second register. Positions in the third register can over
write the result that was written during the processing of the
first group. Positions in the third register that have not been
written to are bypassed. In this manner, the second group
updates the base from the first group, and thereby produces a
new base for the processing of a third group, and so on.

[0099] Instructions in the second group can inherit depen-
dency information generated in the processing of the first
group. It should be noted that the entire second group does not
have to be processed to update dependency in the result reg-
ister. For example, dependency for instruction 12 can be
generated 1n the processing of the first group, and then pro-
cessing 1nstructions in the second group up to instruction 11.
This updates the result register to a state up to instruction 12.
In one embodiment, a mask can be used to prevent the updates
for the remaining instructions of the second group (e.g.,
istructions 12 through 16). To determine dependency for
istruction 12, the result register 1s examined for R2 and R5.
RS will be updated with instruction 1, and R2 will be updated
with instruction 11. It should be noted that 1n a case where all
of group 2 1s processed, R2 will be updated with instruction

15.

[0100] Additionally, 1t should be noted that all the mstruc-
tions of the second group (e.g., instructions 9-16) can be
processed independent of one another. In such case, the
instructions of the second group depend only on the result
register of the first group. The instructions of the second
group can be processed 1n parallel once the result register 1s
updated from the processing of the first group. In this manner,
groups ol 1nstructions can be processed 1n parallel, one after
another. In one embodiment, each group 1s processed using a
SIMD 1nstruction (e.g., a SIMD broadcast instruction),
thereby processing all instructions of said each group 1n par-

allel.

[0101] FIG. 14 shows an exemplary flow diagram that
shows how the dependency grouping of instructions can be
used to build variably bounded groups of dependent instruc-
tions 1n accordance with one embodiment of the present
invention. In the descriptions of FIGS. 2 through 4, the group
s1zes were constrained, 1n those cases three instructions per
group. FIG. 14 shows how instructions can be reordered into
variably sized groups, which then can be allocated to a plu-
rality of computing engines. For example, FIG. 14 shows 4
engines. Since the groups can be variably sized depending on
their characteristics, engme 1 can be allocated a larger group
than, for example, engine 2. This can occur, for example, 1n a
case where engine 2 has an instruction that 1s not particularly
dependent upon the other instructions in that group.

[0102] FIG. 15 shows a flow diagram depicting hierarchical
scheduling of instructions in accordance with one embodi-
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ment of the present mvention. As described above, depen-
dency grouping of instructions can be used to build variably
bounded groups. FIG. 15 shows the feature wherein various
levels of dependency exist within a dependency group. For
example, instruction 1 does not depend on any other mstruc-
tion within this instruction sequence, therefore making
instruction 1 an LO dependency level. However, instruction 4
depends on 1nstruction 1, therefore making instruction 4 an
L1 dependency level. In this manner, each of the instructions
of an 1nstruction sequence 1s assigned a dependency level as
shown.

[0103] The dependency level of each instruction 1s used by
a second-level hierarchical scheduler to dispatch instructions
in such a manner as to ensure resources are available for
dependent instructions to execute. For example, 1 one
embodiment, O instructions are loaded into instruction
queues that are processed by the second-level schedulers 1-4.
The LO mstructions are loaded such that they are in front of
cach of the queues, the L1 mnstructions are loaded such that
they follow in each of the queues, L2 mstructions follow
them, and so on. This 1s shown by the dependency levels, from
[.LO to Ln 1n FIG. 15. The hierarchical scheduling of the
schedulers 1-4 advantageously utilizes the locality-in-time
and the mstruction-to-nstruction dependency to make sched-
uling decisions 1 an optimal way.

[0104] In this manner, embodiments of the present mven-
tion intimate dependency group slot allocation for the instruc-
tions of the 1nstruction sequence. For example, to implement
an out of order microarchitecture, the dispatching of the
instructions of the mstruction sequence 1s out of order. In one
embodiment, on each cycle, istruction readiness 1s checked.
An instruction 1s ready if all instructions that it depends upon
have previously dispatched. A scheduler structure functions
by checking those dependencies. In one embodiment, the
scheduler 1s a unified scheduler and all dependency checking
1s performed in the unified scheduler structure. In another
embodiment, the scheduler functionality 1s distributed across
the dispatch queues of execution units of a plurality of
engines. Hence, 1n one embodiment the scheduler 1s unified
while 1n another embodiment the scheduler 1s distributed.
With both of these solutions, each instruction source 1s
checked against the dispatch nstructions’ destination every
cycle.

[0105] Thus, FIG. 15 shows the hierarchical scheduling as
performed by embodiments of the present mvention. As
described above, instructions are first grouped to form depen-
dency chains (e.g., dependency groups). The formation of
these dependency chains can be done statically or dynami-
cally by software or hardware. Once these dependency chains
have been formed, they can be distributed/dispatched to an
engine. In this manner, grouping by dependency allows for
out of order scheduling of 1n order formed groups. Grouping
by dependency also distributes entire dependency groups
onto a plurality of engines (e.g., cores or threads). Grouping
by dependency also facilitates hierarchical scheduling as
described above, where dependent instructions are grouped 1n
a first step and then scheduled in a second step.

[0106] It should benoted that the functionality diagrammed
in the FIGS. 14-19 can function mdependently from any
method by which instructions are grouped (e.g., whether the
grouping functionality 1s implemented in hardware, soitware,
etc.). Additionally, the dependency groups shown 1n FIGS.
14-19 can comprise a matrix of independent groups, where
cach group further comprises dependent instructions. Addi-
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tionally, 1t should be noted that the schedulers can also be
engines. In such embodiment, each of the schedulers 1-4 can
be imncorporated within 1ts respective engine (e.g., as shown in
FIG. 22 where each segment includes a common partition

scheduler).

[0107] FIG. 16 showsa flow diagram depicting hierarchical
scheduling of three slot dependency group instructions in
accordance with one embodiment of the present invention. As
described above, dependency grouping of instructions can be
used to build variably bounded groups. In this embodiment,
the dependency groups comprise three slots. FIG. 16 shows
the various levels of dependency even within a three slot
dependency group. As described above, instruction 1 does not
depend on any other instruction withuin this instruction
sequence, therefore making instruction 1 an LO dependency
level. However, instruction 4 depends on instruction 1, there-
fore making instruction 4 an L1 dependency level. In this
manner, each of the instructions of an 1nstruction sequence 1s
assigned a dependency level as shown.

[0108] As described above, the dependency level of each
instruction 1s used by a second-level hierarchical scheduler to
dispatch mstructions in such a manner as to ensure resources
are available for dependent instructions to execute. LO
instructions are loaded 1nto instruction queues that are pro-
cessed by the second-level schedulers 1-4. The LO instruc-
tions are loaded such that they are in front of each of the
queues, the L1 instructions are loaded such that they follow 1n
cach of the queues, L2 instructions follow them, and so on, as
shown by the dependency levels, from LO to Ln in FIG. 16. It
should be noted that group number four (e. 2. the fourth group
from the top) begins at L2 even though 1t 1s a separate group.
This 1s because 1nstruction 7 depends from instruction 4,
which depends from instruction 1, thereby giving instructions
7 an L2 dependency.

[0109] In this manner, FIG. 16 shows how every three
dependent instructions are scheduled together on a given one
of the schedulers 1-4. The second-level groups 1t scheduled
behind the first level groups, then the groups are rotated.

[0110] FIG. 17 shows a flow diagram depicting hierarchical
moving window scheduling of three slot dependency group
instructions in accordance with one embodiment of the
present invention. In this embodiment, the hierarchical sched-
uling for the three slot dependency groups 1s implemented via
a unified moving window scheduler. A moving window
scheduler processes the istructions 1n the queues to dispatch
instructions 1n such a manner as to ensure resources are avail-
able for dependent instructions to execute. As described
above, L0 1nstructions are loaded 1nto mstruction queues that
are processed by the second-level schedulers 1-4. The LO
instructions are loaded such that they are 1n front of each of
the queues, the L1 instructions are loaded such that they
tollow 1n each of the queues, L2 instructions follow them, and
so on, as shown by the dependency levels, from LO to Ln 1n
FIG. 17. The moving window 1llustrates how LO instructions
can be dispatched from each of the queues even though they
may be more 1n one queue than another. In this manner, the
moving window scheduler dispatches instructions as the
queues flow from left to right as illustrated i FIG. 17.

[0111] FIG. 18 shows how the variably sized dependent
chains (e.g., variably bounded groups) of instructions are
allocated to a plurality of computing engines in accordance
with one embodiment of the present invention.

[0112] As depicted in FIG. 18, the processor includes an
instruction scheduler component 10 and a plurality of engines
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11-14. The mstruction scheduler component generates code
blocks and inheritance vectors to support the execution of
dependent code block (e.g., variably bound group) on their
respective engines. Each of the dependent code blocks can
belong to the same logical core/thread or to different logical
cores/threads. The instruction scheduler component will pro-
cess the dependent code blocks to generate and respective
inheritance vectors. These dependent code blocks and respec-
tive inheritance vectors are allocated to the particular engines
11-14 as shown. A global interconnect 30 supports a neces-
sary communication across each of the engines 11-14. It
should be noted that the functionality for the dependency
grouping of instructions to build variably bounded groups of
dependent instructions as described above 1n the discussion

FIG. 14 1s implemented by the mstruction scheduler compo-
nent 10 of the FIG. 18 embodiment.

[0113] FIG. 19 shows a flow diagram depicting block allo-
cation to the scheduling queues and the hierarchical moving
window scheduling of three slot dependency group instruc-
tions 1n accordance with one embodiment of the present
invention. As described above, the hierarchical scheduling for
the three slot dependency groups can be implemented via a
unified moving window scheduler. FIG. 19 shows how depen-
dency groups become blocks that are loaded into the sched-
uling queues. In FIG. 19 embodiment, two independent
groups can be loaded 1n each queue as half blocks. This 1s
shown at the top of FIG. 19 where group 1 forms one half
block and group 4 forms another half block that 1s loaded 1nto
the first scheduling queue.

[0114] Asdescribed above, moving window scheduler pro-
cesses the instructions 1n the queues to dispatch instructions
in such a manner as to ensure resources are available for
dependent instructions to execute. The bottom of FIG. 19
shows how L0 1nstructions are loaded 1nto instruction queues
that are processed by the second-level schedulers.

[0115] FIG. 20 shows how the dependent code blocks (e.g.,
dependency groups or dependency chains) are executed on
the engines 11-14 1n accordance with one embodiment of the
present invention. As described above, 1nstruction scheduler
component generates code blocks and inheritance vectors to
support the execution of dependent code blocks (e.g., vanably
bound group, three slot group, etc.) on their respective
engines. As described above in F1G. 19, FI1G. 20 further shows
how two independent groups can be loaded nto each engine
as code blocks. FIG. 20 shows how these code blocks are
dispatched to the engines 11-14, where the dependent instruc-
tions execute on the stacked (e.g., serially connected) execu-
tion units of each engine. For example, in the first dependency
group, or code block, on the top leit of FIG. 20, the mstruc-
tions are dispatched to the engine 11 wherein they are stacked
on the execution unit 1n order of their dependency such that
L0 1s stacked on top of L1 which 1s further stacked on L2. In
so doing, the results of LO to flow to the execution unit of L1
which can then flow to the execution of L2.

[0116] In thus manner, the dependency groups shown 1n
FIG. 20 can comprise a matrix of independent groups, where
cach group further comprises dependent instructions. The
benellt of the groups being mndependent 1s the ability to dis-
patch and execute them 1n parallel and the attribute whereby
the need for communication across the interconnect between
the engines 1s minimized. Addltlonally, it should be noted that
the execution units shown in the engines 11-14 can comprise

a CPU or a GPU.




US 2015/0039859 Al

[0117] In accordance with embodiments of the present
invention, 1t should be appreciated that instructions are
abstracted 1nto dependency groups or blocks or instruction
matrices 1n accordance with their dependencies. Grouping,
instructions 1n accordance with their dependencies facilitates
a more simplified scheduling process with a larger window of
istructions (e.g., alarger input sequence of instructions). The
grouping as described above removes the instruction varia-
tion and abstracts such variation uniformly, thereby allowing
the implementation of simple, homogenous and uniform
scheduling decision-making. The above described grouping
functionality increases the throughput of the scheduler with-
out increasing the complexity of the scheduler. For example,
in a scheduler for four engines, the scheduler can dispatch
four groups where each group has three istructions. In so
doing, the scheduler only handles four lanes of super scaler
complexity while dispatching 12 instructions. Furthermore,
cach block can contain parallel independent groups which
turther increase the number of dispatched instructions.

[0118] FIG. 21 shows an overview diagram of a plurality of
engines and their components, including a global front end
tetch & scheduler and register files, global interconnects and
a fragmented memory subsystem for a multicore processor 1n
accordance with one embodiment of the present invention. As
depicted 1n FIG. 21, four memory fragments 101-104 are
shown. The memory fragmentation hierarchy 1s the same
across each cache hierarchy (e.g., L1 cache, L2 cache, and the
load store butier). Data can be exchanged between each of the
[.1 caches, each of the .2 caches and each of the load store
butfers through the memory global interconnect 110a.

[0119] The memory global interconnect comprises a rout-
ing matrix that allows a plurality of cores (e.g., the address
calculation and execution units 121-124) to access data that
may be stored at any point 1n the fragmented cache hierarchy
(e.g., L1 cache, load store buifer and L2 cache). FIG. 21 also
depicts the manner whereby each of the fragments 101-104
can be accessed by address calculation and execution units
121-124 through the memory global interconnect 110aq.

[0120] The execution global interconnect 1105 similarly
comprises a routing matrix allows the plurality of cores (e.g.,
the address calculation and execution units 121-124) to
access data that may be stored at any of the segmented register
files. Thus, the cores have access to data stored in any of the
fragments and to data stored in any of the segments through
the memory global interconnect 110a or the execution global
interconnect 1105.

[0121] FIG. 21 further shows a global front end fetch &
scheduler which has a view of the entire machine and which
manages the utilization of the register files segments and the
fragmented memory subsystem. Address generation com-
prises the basis for fragment definition. The global front end
Fetch & scheduler functions by allocating instruction
sequences to each segment.

[0122] FIG. 22 shows a plurality of segments, a plurality of
segmented common partition schedulers and the interconnect
and the ports mto the segments 1n accordance with one
embodiment of the present invention. As depicted in FIG. 22,
cach segment 1s shown with a common partition scheduler.
The common partition scheduler functions by scheduling
instructions within 1ts respective segment. These mstructions
were 1n turn recerved from the global front end fetch and
scheduler. In this embodiment, the common partition sched-
uler 1s configured to function 1n cooperation with the global
front end fetch and scheduler. The segments are also shown
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with 4 read write ports that provide read/write access to the
operand/result bulfer, threaded register file, and common par-
tition or scheduler.

[0123] In one embodiment, a non-centralized access pro-
cess 1s implemented for using the interconnects and the local
interconnects employ the reservation adder and a threshold
limiter control access to each contested resource, 1n this case,
the ports into each segment. In such an embodiment, to access
a resource, a core needs to reserve the necessary bus and
reserve the necessary port.

[0124] FIG. 23 shows a diagram of an exemplary micro-
processor pipeline 2300 1n accordance with one embodiment
of the present invention. The microprocessor pipeline 2300
includes a fetch module 2301 that implements the function-
ality of the process for 1dentifying and extracting the instruc-
tions comprising an execution, as described above. In the
FIG. 23 embodiment, the fetch module 1s followed by a
decode module 2302, an allocation module 2303, a dispatch
module 2304, an execution module 2305 and a retirement
module 2306. It should be noted that the microprocessor
pipeline 2300 1s just one example of the pipeline that imple-
ments the functionality of embodiments of the present inven-
tion described above. One skilled 1n the art would recognize
that other microprocessor pipelines can be implemented that
include the functionality of the decode module described
above.

[0125] For purposes of explanation, the foregoing descrip-
tion refers to specific embodiments that are not intended to be
exhaustive or to limit the current invention. Many modifica-
tions and variations are possible consistent with the above
teachings. Embodiments were chosen and described in order
to best explain the principles of the invention and 1ts practical
applications, so as to enable others skilled 1n the art to best
utilize the invention and its various embodiments with vari-
ous modifications as may be suited to their particular uses.

What 1s claimed 1s:
1. In a microprocessor, a method for accelerating code
optimization, comprising:
fetching an incoming microinstruction sequence using an
instruction fetch component;

transierring the fetched macro instructions to a decoding
component for decoding into microinstructions;

performing optimization processing by reordering the
microinstruction sequence ito an optimized microin-
struction sequence comprising a plurality of dependent
code groups;

outputting the optimized microinstruction sequence to a
microprocessor pipeline for execution; and

storing a copy of the optimized microinstruction sequence
into a sequence cache for subsequent use upon a subse-
quent hit optimized microinstruction sequence.

2. The method of claim 1, wherein a copy of the decoded
microinstructions are stored 1n a microinstruction cache.

3. The method of claim 1, wherein the optimization pro-
cessing 1s performed using an allocation and 1ssue stage of the
MmICroprocessor.

4. The method of claim 3, wherein the allocation and 1ssue
stage further comprises an instruction scheduling and opti-
mizer component that reorders the microinstruction sequence
into the optimized micro instruction sequence.

5. The method of claim 1, wherein the optimization pro-
cessing further comprises dynamically unrolling microin-
struction sequences.
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6. The method of claim 1, wherein the optimization pro-
cessing 1s implemented through a plurality of iterations.

7. The method of claim 1, wherein the optimization pro-
cessing 1s implemented through a register renaming process
to enable the reordering.

8. A microprocessor, comprising:

an instruction fetch component for fetching an mncoming,
microinstruction sequence;

a decoding component coupled to the instruction fetch
component to recerve the fetched macro instruction
sequence and decode into a microinstruction sequence;

an allocation and 1ssue stage coupled to the decoding com-
ponent to recerve the microinstruction sequence perform
optimization processing by reordering the microinstruc-
tion sequence 1nto an optimized microinstruction
sequence comprising a plurality of dependent code
gToupSs;

a microprocessor pipeline coupled to the allocation and
1ssue stage to recerve and execute the optimized micro-
instruction sequence; and

a sequence cache coupled to the allocation and 1ssue stage
to receive and store a copy of the optimized microin-
struction sequence for subsequent use upon a subse-
quent hit on the optimized microinstruction sequence.

9. The microprocessor of claim 8, wherein a copy of the
decoded microinstructions are stored 1n a microinstruction
cache.

10. The microprocessor of claim 8, wherein the optimiza-
tion processing 1s performed using an allocation and 1ssue
stage of the microprocessor.

11. The microprocessor of claim 10, wherein the allocation
and 1ssue stage further comprises an instruction scheduling
and optimizer component that reorders the microinstruction
sequence 1nto the optimized micro mstruction sequence.

12. The microprocessor of claim 8, wherein the optimiza-
tion processing further comprises dynamically unrolling
microinstruction sequences.

13. The microprocessor of claim 8, wherein the optimiza-
tion processing 1s implemented through a plurality of itera-
tions.

14. The microprocessor of claim 8, wherein the optimiza-
tion processing 1s implemented through a register renaming,
process to enable the reordering.

15. In a microprocessor, a method for accelerating code
optimization, comprising;
accessing an nput microinstruction sequence by using a
soltware-based optimizer instantiated 1n memory;

using SIMD 1nstructions to populate a dependency matrix
with dependency mformation extracted from the input
microinstruction sequence;

scanning a plurality of rows of the dependency matrix to
perform optimization processing by reordering the
microinstruction sequence into an optimized microin-
struction sequence comprising a plurality of dependent
code groups;

outputting the optimized microinstruction sequence to a
microprocessor pipeline for execution; and
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storing a copy of the optimized microinstruction sequence
into a sequence cache for subsequent use upon a subse-
quent hit optimized microinstruction sequence.

16. The method of claim 135, wherein optimization process-
ing further includes scanning the plurality of rows of the
dependency matrix to identily matching instructions.

17. The method of claim 16, wherein optimization process-
ing further includes analyzing the matching instructions to
determine whether the matching instructions comprise a
blocking dependency, and wherein renaming 1s performed to
remove the blocking dependency.

18. The method of claim 17, wherein instructions corre-

sponding to first matches of each row of the dependency
matrix are moved 1nto a corresponding dependency group.

19. The method of claim 135, wherein copies of the opti-
mized microinstruction sequences are stored 1n a memory
hierarchy of the microprocessor.

20. The method of claim 19, wherein the memory hierarchy
comprises an L1 cache and an L2 cache.

21. The method of claim 20, wherein the memory hierarchy
for further comprises a system memory.

22. A microprocessor, comprising:

an 1nstruction fetch component for fetching an incoming,

microinstruction sequence;
a decoding component coupled to the instruction fetch

component to recerve the fetched macro instruction
sequence and decode into a microinstruction sequence;

an allocation and 1ssue stage coupled to the decoding com-
ponent to recerve the microinstruction sequence perform
optimization processing by reordering the microinstruc-
tion sequence 1nto an optimized microinstruction
sequence comprising a plurality of dependent code
groups;

a microprocessor pipeline coupled to the allocation and
1ssue stage to recerve and execute the optimized micro-
istruction sequence;

a sequence cache coupled to the allocation and 1ssue stage
to receive and store a copy ol the optimized microin-
struction sequence for subsequent use upon a subse-
quent hit on the optimized microinstruction sequence;
and

a hardware component for moving instructions 1n the
Incoming microinstruction sequence.

23. The microprocessor of claim 22, wherein at least one
register 1s renamed and at least one instruction 1s moved ahead
of the branch without inserting compensation code.

24. The microprocessor of claim 23, wherein the hardware
component keeps track of whether a branch biased decision 1s
true, and wherein 1n case of a wrongly predicted branch, the
hardware component automatically rolls back state in order to
execute a correct imstruction sequence.

235. The microprocessor of claim 24, wherein the hardware
component jumps to original code 1n memory to execute the
correct 1nstruction sequence in case of a wrongly predicted
branch.

26. The microprocessor of claim 25 wherein the harder
component causes a flushing of a miss predicted instruction
sequence 1n the case of a wrongly predicted branch.
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