U

a9y United States
12y Patent Application Publication o) Pub. No.: US 2014/0372814 Al

Oberlaender

> 20140372814A1

43) Pub. Date: Dec. 18, 2014

(54)

METHOD FOR TESTING A MEMORY AND
MEMORY SYSTEM

(71) Applicant: Infineon Technologies AG, Neubiberg
(DE)
(72) Inventor: Klaus Oberlaender, Neubiberg (DE)
(21) Appl. No.: 14/301,538
(22) Filed: Jun. 11, 2014
(30) Foreign Application Priority Data
Jun. 13,2013 (DE) ... 102013 211 077.4

Performing an error correction code check (ECC check)

Publication Classification

(51) Int.Cl.

GI11C 29/12 (2006.01)
(52) U.S.CL
CPC oo G11C 29/12 (2013.01)
USPC oo 714/719
(57) ABSTRACT

A method for testing a memory includes performing an error
correction code check (ECC check) on user data stored 1n the
memory, inverting the user data stored 1n the memory, per-
forming a further ECC check on the inverted user data stored
in the memory, and inverting the inverted user data stored 1n
the memory for restoring the user data 1n the memory.

100

,/

on user data stored in the memory. 10

103

Performing a further ECC check on the inverted user data 105
stored In the memory.

Inverting the inverted user data stored in the memory 107

for restoring the user data in the memory.

Patent Application Publication Dec. 18, 2014 Sheet 1 of 3 US 2014/0372814 Al

FIG 1 100
’/

Performing an error correction code check (ECC check)
on user data stored In the memory.

Inverting the user data stored in the memory.

Performing a further ECC check on the inverted user data
stored In the memaory.

Inverting the inverted user data stored in the memory
for restoring the user data in the memory.

101

103

105

107

Patent Application Publication Dec. 18, 2014 Sheet 2 of 3 US 2014/0372814 Al

FIG 2 200
Running an application based on the user data stored in
the memory, the user data being at least part of a program 001
code of the application or being accessed by at least
a part of the application.
Stopping the application or at least the part of the 003
application accessing the user data.
Performing an error correction code check (ECC check) e
on user data stored in the memory.
Inverting the user data stored in the memory. 103
Performing a further ECC check on the inverted user data 105
_ stored in the memory.
) Inverting the inverted user data stored in the memaory 107
for restoring the user data in the memory.
' (optional) Increasing the address of the memory to be L205
3 tested using a state machine. !
Continuing the application or the stopped part 007

of the application.

Patent Application Publication Dec. 18, 2014 Sheet 3 of 3 US 2014/0372814 Al

FIG 3

301 305

300

user data

controller

FIG 4 400
305 y~

301

MB/ST controller

o

application gata
FCC data

error
=CC controller tracking
reqister

controller 403

US 2014/0372814 Al

METHOD FOR TESTING A MEMORY AND
MEMORY SYSTEM

REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to German applica-
tion No. 10 2013 211 077.4 filed on Jun. 13, 2013.

DESCRIPTION

[0002] Embodiments of the present disclosure relate to a
method for testing a memory by performing an error correc-
tion code check. Further embodiments of the present disclo-
sure relate to a memory system comprising a controller which
1s configured to test a memory of the memory system.

BACKGROUND

[0003] SRAM memories in complicated micro controller
products have to be tested frequently 1n safety applications
during the application in order to detect, to correct and to
register resulting new hard errors and soft errors in the
memory. This 1s executed in short regular time slices and
takes a substantial amount of time of the actual application.
The shorter the time required for regularly testing the
memory, the more time and performance 1s available for the
actual application.

[0004] In conventional systems, SRAM modules are tested
by first of all functionally switching off modules whose
SRAM was to be tested and then making the memory acces-
sible via the bus and then transferring (copying) the actual
application content into a different memory which 1s still
empty and then testing the memory to be tested using a
predefined algorithm/physical occupation. After the test, the
actual content 1s copied back again.

[0005] Shifting the original user data via a bus 1s very
time-consuming. Likewise, the test frequently executed by
the CPU 1s often not really able to stmulate critical conditions
during active operation as the CPU accesses the memory via
a slow bus with waiting cycles during the test while the
module which uses the memory possibly accesses each cycle
one aiter the other.

SUMMARY

[0006] The present disclosure provides an improved
method for testing a memory and an improved memory sys-
tem.

[0007] Embodiments of the present disclosure relate to a
method for testing a memory. The method comprises per-
forming an error correction code check (ECC check) on user
data stored 1n the memory, and iverting the user data stored
in the memory. The method further comprises performing a
turther ECC check on the mnverted user data stored in the
memory, and mverting the inverted user data stored in the
memory for restoring the user data in the memory.

[0008] Furthermore, further embodiments of the present
disclosure relate to a memory system comprising a memory
having stored thereon user data and a controller. The control-
ler 1s configured to test a memory by performing an error
correction code check (ECC check) on the user data stored 1n
the memory, and inverting the user data stored 1n the memory.
The controller 1s further configured to test the memory by
performing a further ECC check on the inverted user data
stored 1n the memory, and nverting the mverted user data
stored 1n the memory for restoring the user data in the
memory.

Dec. 18, 2014

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Embodiments of the present disclosure will be
described 1n more detail using the accompanying figures, 1n
which:

[0010] FIG. 1 shows atlow diagram of a method for testing
a memory according to an embodiment of the present disclo-
SUre;

[0011] FIG. 2 shows another flow diagram of a further
method for testing a memory according to an embodiment of
the present disclosure which 1s a possible implementation of
the method shown 1n FIG. 1;

[0012] FIG. 3 shows a block diagram of a memory system
according to an embodiment of the present disclosure; and
[0013] FIG. 4 shows a block diagram of a further memory

system according to an embodiment of the present disclosure,
which 1s a possible implementation of the memory system

shown 1n FIG. 3.

DETAILED DESCRIPTION

[0014] Before embodiments of the present disclosure are
described in more detail, 1t should be pointed out that in the
figures elements having the same or equal functionalities are
provided with the same reference numbers. Hence, descrip-
tions provided for elements having the same reference num-
bers are mutually exchangeable.

[0015] FIG. 1 shows a flow diagram of a method 100 for
testing a memory.

[0016] Themethod 100 comprises performing an error cor-
rection code check (ECC check) on user data stored in the
memory at 101.

[0017] Furthermore, the method 100 comprises inverting
the user data stored in the memory at 103.

[0018] Furthermore, the method 100 comprises performing
a Turther ECC check on the imnverted user data stored 1n the
memory at 103.

[0019] Furthermore, the method 100 comprises mverting
the inverted user data stored 1n the memory for restoring the
user data 1n the memory at 107.

[0020] The method 100 may be a non-destructive test for
SRAM 1n applications.

[0021] The mnventors have found that a very fast test of a
memory can be implemented, 1f a first ECC check 1s per-
formed on user data stored 1n a memory and a second ECC
check 1s performed on an mverted version of the user data
stored 1n the memory. It 1s an advantage of this procedure that
on the one hand so called hard stuck-at errors can be found
due to the performing of the first ECC check on the user data
as stored in the memory and the further ECC check on the
inverted user data. Furthermore, by inverting the user data
twice, 1t can be ensured that no copying of the user data to
another memory 1s necessary, as the content of the user data 1s
maintained although the ECC checks are actually performed
on the user data (which may part of a program code of an
application). Hence, 1n contrast to conventional systems no
predetermined error pattern has to be copied to the memory
on which the ECC checks are performed and no copying of
the user data (such as program codes or other user dependent
data) currently stored in the memory to another (safety)
memory has to be performed.

[0022] During the test of the memory one address of the
memory can be tested at a time, as this 1s also shown in
conjunction with FIG. 2. Hence, one address can be tested at
a time (read the user data from the address and ECC test 1t

US 2014/0372814 Al

while reading, then 1nvert 1t and write 1t back right away, then
read and ECC test the inverted user data, invert the inverted
user data and write 1t back to the address) and only then the
next address 1s tested, on which the same acts of reading and
inverting twice are performed with the user data stored at this
next address.

[0023] However, according to further embodiments also all
addresses (or at least a certain address range of the memory)
can be read and the ECC check can be performed at once for
the complete addresses read. Then all user data stored at this
addresses can be mverted and the further ECC test 1s per-
formed on the 1inverted user data stored at these (plurality of)
addresses. Afterwards the mverted user data 1s mverted and
written back to these addresses of the memory.

[0024] The concept of testing all addresses (or at least a
certain address range) of the memory has the advantage that
the test moves faster over the data (which 1s even better in
some ways) without writes 1n between.

[0025] Another advantage 1s that the method 100 can be
casily implemented using an (usually already available)
memory built 1n seli-test controller (MBIST controller) in
conjunction with an (usually already available) error correc-
tion check unit or controller (ECC controller).

[0026] FIG. 3 shows such a memory system 300 compris-
ing a memory 301. The memory 301 (which may be an
SRAM) has stored thereon user data 303. Furthermore, the
memory system 300 comprises a controller 305. The control-
ler 1s configured to test the memory 301 by, performing a
(first) error correction code check (ECC check) on the user
data 303 stored in the memory 301, mmverting the user data 303
stored 1in the memory 301 (after the ECC check has been
performed), performing a (second or) further ECC check on
the inverted user data (now) stored in the memory 301 and
inverting the mverted user data stored 1n the memory 301 for
restoring the user data 303 in the memory 301 (after the
turther ECC check has been performed). Hence the controller
305 1s capable of testing the memory 301 without any need for
copying the user data 303 to a safety memory, maintaining the
user data 303 and even finding hard stuck-at errors (due to the
principle of inverting twice).

[0027] In other words, 1f user data 1s used for testing, the
user data cannot be influenced like 1n a normal test (in which
certain test patterns are used) to have both polarities. Hence
bit errors would hide behind the user data 11 the stuck-at error
1s o1 the same polarity like the user data for each bit. Hence the
principle of mverting twice allows to test for both polarities,
without destroying the user data.

[0028] A possible implementation of the controller 305 1s
shown 1n F1G. 4 of the present application showing a memory
system 400 as a possible implementation of the memory
system 300 shown 1n FIG. 3. As can be seen, the controller

305 of the memory system 400 comprises the mentioned
MBIST controller 401 and the ECC controller 403.

[0029] The MBIST controller 401 1s configured to read the
user data 303 and the inverted user data from the memory 301.

[0030] Furthermore, the MBIST controller 401 1s config-
ured to write the inverted user data to the memory 303 and to
rewrite the user data 303 (in the original and not mmverted
version) back into the memory 301 (after the turther ECC
check has been performed). The ECC controller 403 1s con-
figured to perform the ECC check on the user data 303 read
from the memory 301 by the MBIST controller 401 and to
perform the further ECC check on the inverted user data read

from the memory 301 by the MBIST controller 401.

Dec. 18, 2014

[0031] Furthermore, as seen from FIG. 4, the memory sys-
tem 400 comprises an error tracking register 405. This error
tracking register 405 1s typically part of surrounding logic of
the memory system 400 or may be also part of the MBIST
controller 401. In such an error tracking register 405 errone-
ous addresses or user data words are marked or stored.

[0032] The ECC controller 403 1s configured to, during
performing the ECC check and the further ECC check correct
errors found 1n the user data 303 or to at least mark them as
errors 1n the error tracking register 405. As an example, hard
errors, such as stuck-at errors and other non-correctable
errors can be marked 1n the error tracking register 405, while
(correctable) soit errors can be corrected by the ECC control-
ler 403 before the inversion of the inverted user data by
correcting the error in the inverted user data (e.g by perform-
ing a simple bit tlip of the concerned bit). Hence the user data
restored 1n the memory will be free of (correctable) soft
CITOrS.

[0033] Hence, according to a further embodiment soft
errors which are correctable are removed to not accumulate
turther into multiple errors when not fixing them.

[0034] Nevertheless, this correction of soft errors can also
be omitted as it would be suificient to mark also this (correct-
able) soit errors 1n the error tracking register 405 (which can
be performed by turther embodiments of the present disclo-
sure), as applications accessing the memory would anyway
check the error tracking register 405 for errors in the memory.
Hence, according these embodiments, the restored user data
may still comprise the (correctable) soft errors but which are
marked 1n the error tracking register 405.

[0035] Embodiments of the present disclosure use the
MBIST controller 401 which may be present for testing pur-
poses anyway alter manufacturing. Further, for reliability
purposes 1t uses the (typically anyway existing) ECC control-
ler 403 (also designated as ECC detection and correction
unit). The ECC controller 403 corrects or shows one-bit and
two-bit errors during the operation. The ECC controller 403
together with the MBIST controller 401 form the controller
305 and, as has been found by the inventors, are i1deal 1n
combination for an online testing during the application.

[0036] Fornormal test purposes, the MBIST controller 401
in any case allows a fast write and read access to the memory
301 and the ECC controller 403 1s 1deal to detect possible
errors for any data words. In order to prevent time consuming
copying of the user code or user data 303, as 1t 1s performed 1n
conventional systems, the MBIST controller 401 may now
run to read across the complete memory content of the
memory 301 and uses the ECC controller 403 to find errors
possibly contained therein and then find and register errone-
ous words, e.g. 1n an error tracking register 405 1n which the
addresses of erroneous words are stored. This error tracking
register 405 or error tracking memory 403 can be, for
example, used as a kind of mini1 cache during testing the
memory 301 to mask by means of a software installation after
every boot cycle the erroneous SRAM words 1n this mini
cache.

[0037] The mventors found that by only checking the user
data 303 as i1s stored on the memory 301 so called hard
stuck-at errors may not be found, as the error may have the
same polarity as the user bit at this position. This 1s why with
a normal MBIST test several tests with different data content
and polarities are run across a memory to still find these
errors. As the user data 303 is not predictable or does not
tollow a certain scheme and especially should be maintained

US 2014/0372814 Al

in the memory 301, this principle 1s of course not possible
with the user data 303. This 1s why embodiments of the
present disclosure make use of the finding that the problem of
hard stuck-at errors can be found when a first ECC check 1s
performed on the user data and a further ECC check 1s per-
formed on the inverted user data. Hence, embodiments of the
present disclosure invert the complete user word when read-
ing and 1n the next cycle writes 1t back into the memory 301.
This can be executed for all words in the memory 301 in the
first run. Here, all errors of a certain polarity can be simulta-
neously found by the ECC controller 403. Now, the procedure
1s started a second time using the completely inverted
memory content (the inverted user data) and again all now
inverted words are read out using the MBIST controller 401
and the ECC controller 403 1s again used for error detection
and iverts the word for each address and writes 1t back 1n a
tully nverted way. After the second run now the original
content of the memory (the original user data 303 as stored 1n
the memory 301 before performing the first ECC check) has
been reproduced and still all hard and soft one- and two-bit
errors and depending on the algorithm even all three-bit stuck
at errors have been found (errors having both polarities) and
the memory content has thus been completely obtained.
Hence, after performing the two error correction code checks
on the user data 303 and the inverted user data the content of
the memory 301 1s still maintained as the user data has not
been changed. Hence, troublesome and time consuming
copying of the content of the memory 301 1s no longer nec-
essary as 1t 1s performed by conventional systems. Each
address 1s thus read exactly twice and written twice. More
time than that 1s not necessary and a very fast testing 1s
possible (e.g. a lotfaster than across a slow bus viaa CPU) and
hardware, area and power existing anyway for other purposes
can be used for performing the test according to the method
100. This procedure 1s 1deal for frequent regular testing of

memories during the application.

[0038] From FIG. 41tcan be seen that the user data 303 may
comprise application data and ECC data. The ECC data 1s
typically directly derived from the application data based on
a certain ECC code. In embodiments of the present disclosure
the ECC data can 1s on a symmetrical ECC code such that in
the case of an error free memory aresult of the ECC check on
the user data (which should be error free) and a result of the
turther error check on the mverted user data are equal.

[0039] In other words, embodiments of the present disclo-
sure use an ECC code which 1s symmetrical for the described
non-destructive test. Such an invertible code leads to the same
result (single fault, double fault) with both polarities. The
ECC code should have the characteristic that each codeword
when 1nverted bit-wise again becomes a codeword. This 1s
possible by a skiallful selection of the code and a possible
extension by one-bit, 1f required.

[0040] By inverting all bits stuck at failures with any kind of
user code/data (that we cannot influence compared to a nor-
mal MBIST test pattern) can be found. Hence using the sym-
metrical ECC code gives the possibility to invert the complete
user data, which enables to find also these stuck-at faults
which are there but not detectable (without inversion) due to
a masking of user data of the same polarity as the fault.

[0041] An example for such a symmetrical ECC code 1s the
symmetrical shortened Hsiao ECC code. Hence, at least some

embodiments of the present disclosure use the symmetrical
shortened Hsaio ECC code based on which the ECC check

and the further ECC check are performed.

Dec. 18, 2014

[0042] FIG. 2 shows a flow diagram of a method 200 for
testing a memory according to an embodiment of the present
disclosure. The method 200 shown in FIG. 2 1s a more
detailed example of the method 100 comprising additional
acts.

[0043] The method 200 shows how during the normal run
of an application a test of the memory which comprises user
data 303 which 1s part of a program code of the application
can be tested.

[0044] The method 200 comprises running an application
based on the user data (e.g. the user data 303) stored in the
memory 301, wherein the user data 303 1s at least part of the
program code of the application or the user data 303 1s
accessed by (at least a part of) the application at 201.

[0045] In a further act of the method 200 the application 1s
stopped at 203 or at least the part of the application 1s stopped
which accesses the part (address or address range) of the
memory which 1s to be tested before the (first) ECC check 1s
performed on the user data 303 at 101. After the application 1s
stopped or at least partly stopped the acts 101 to 107 (of
method 100) are performed on the user data 303 to test the
memory 301 at the address or addresses at which the user data
303 1s stored in the memory 301. Or 1n other words: It 1s not
necessary to completely shut down the application as 1t 1s
suificient to stop the core/peripheral which executes out from
such address or addresses of the memory 301 or SRAM to be
tested or to make the core perform some other application
from some other physical SRAM or other address of the
memory 301 not to be tested and then setup the test and start
and run 1t.

[0046] As already described, during performing the first
error correction code check at 101 on the user data 303 the
user data 303 can1s read using the MBIST controller 401 and
checked by the ECC controller 403.

[0047] Furthermore, during the mmverting the user data
stored 1n the memory at 103 the mverted user data 1s written
into the memory using the MBIST controller 401. It has been
found by the inventors that such an MBIST controller 401 can
be easily used for reading user data 303 from a memory 301
and for writing the user data 303 1n an inverted version back
to the memory 301 without the need for a time consuming
copying of the user data 303 to another (e.g. separate)
memory.

[0048] Furthermore, during performing the further (or sec-
ond) ECC check at 103, the inverted user data 1s read using the
same MBIST controller 401. The inverted user data 1s then
checked for errors using the ECC controller 403 at 105.

[0049] Furthermore, during inverting the inverted user data
at 107, the user data 1s rewritten into the memory using the
MBIST controller 401. Hence, after the first error correction
code check and the second error correction code check 1n
which the above mentioned soft errors and hard errors 1n the
user data 303 are found and eventually even corrected, the
memory content 1s retained without the need for any time
consuming copying of the user data.

[0050] FErrors found by the ECC controller 403 at acts 101
and 105 are corrected or at least marked (or registered) 1n the
error tracking register 405. Typically a solftware or applica-
tion accesses the error tracking register 405 and deals with the
marked errors and may even decide, 1f such errors are cor-
rectable.

[0051] According to further embodiments, also a masking
of the errors found can happen by means of the error tracking

US 2014/0372814 Al

register 405, such that an access to the faulty words 1n the
memory 1s masked and available redundancy data 1s used.

[0052] Furthermore, at 103 the inverted user data can be
written to the same address 1n the memory 301 where the user
data 303 was read from at 101. Furthermore, at 107 the user
data 303 is rewritten into the same address 1n the memory 301
where the user data 303 (and the 1inverted user data) was read
from.

[0053] Furthermore, the user data 303 1s typically stored at
a predetermined address or address range of the memory 301
to be tested

[0054] Foratestolthe complete memory 301 (all addresses
or the complete address range of the memory 301) the acts
101,103,105 and 107 are be repeated for a plurality of further
addresses or address ranges of the memory 301 to be tested.

[0055] In other words, typically the user data 303 tested 1n
one cycle of subsequent acts 101, 103, 105 and 107 1s asso-
ciated to a certain address or address range of the memory
301. After having tested this address or address range the
address of the memory 301 to be tested can be increased (e.g.
using a state machine 1n the MBIST controller 401), after
inverting the mverted user data at 107.

[0056] Hence, the method 200 may comprise an optional
act of increasing the address of the memory to be tested using
a state machine at 205. To summarize, the controller 305 can
be configured to subsequently test different addresses of the
(same) memory.

[0057] The MBIST controller 401 can be further config-
ured to read the user data 303 from a predetermined address in
the memory 301, to write the inverted user data to the prede-
termined address, to read the inverted data from the predeter-
mined address and to rewrite the user data 303 to the prede-
termined address. Hence, as already described above, the acts
101 to 107 performed subsequently are performed on the
same address of the memory 301. After these acts 101 to 107
have been performed and the memory 301 1s tested at the
predetermined address, the MBIST controller 401 may
increase the address of the memory 301 to be tested. For this
the MBIST controller 401 may comprise the above men-
tioned state machine for increasing the address after the user
data 303 was rewritten to the predetermined address. After the
increasing of the address of the memory 301 to be tested the
controller 305 can restart the test of the memory 301 for the
increased address of the memory 301 such that the acts 101,
103, 105 and 107 are performed again on the 1ncreased
address of the memory 301 This procedure may be repeated
until all addresses of the memory 301 have been tested.

[0058] Adter all addresses of the memory 301 have been
tested or at least after all addresses have been tested at which
user data 303 1s stored which 1s part of the program code of the
application or which are accessed by the application or the
stopped part of the application, the application or the stopped
part of the application can be continued. Hence, the user data
does not necessarily need be part of a program code of the
application, but can also be more complex data (as a program
code usually can be reloaded from non volatile Memory while
such data may not) which 1s accessed by the application.

[0059] Hence, the method 200 comprises continuing the
application at 207.

[0060] During the acts 101 and 103 of performing the ECC
check and the turther ECC check, the ECC controller 403 can
be configured to correct errors found 1n the user data 303 (and
in the inverted user data) as stored on the memory 301 or to at

Dec. 18, 2014

least (1f the errors cannot be corrected, e.g. as stuck at errors)
mark these errors in the error tracking register 403.

[0061] Furthermore, as already described 1nstead of using
certain error patterns based on which the ECC check and the
turther ECC check are performed, the user data 303 as stored
in the memory 301 1s used for performing the ECC check and
the further ECC check. Hence, there 1s no need for copying
the user data to another memory or another region of the
memory and to write a certain error pattern to the region in
which the user data 303 1s stored in the memory 301. Hence,
in contrast to conventional systems in which such a special
error pattern 1s used for performing the ECC check, a content
of the memory 301 1s maintained (and not replaced with a
certain error pattern) before performing the ECC check onthe
user data 303 stored 1n the memory. Hence, the ECC check
and the further ECC check can be performed on user data 303
based on which application ran before the ECC checks were
performed and based on which the application 1s continued
after the memory 1s tested. It 1s to be pointed out that for
several tests of the memory the user data 303 may change, as
the user data 303 1s user (or application) dependent and inde-
pendent from the ECC checks.

[0062] Embodiments of the present disclosure therefore
implement a twice time inverting (of the user data 303) when
reading and a subsequent immediate mverted write-back.
Furthermore, embodiments of the present disclosure can
make use of an existing MBIST controller 401 and an existing
ECC controller 403 and user code/user data for the online test
during the application with a full user data acquirement and
without swapping out or swapping in the user data. Further-
more, embodiments of the present disclosure enable the find-
ing of hard and sofit one-, two- and three-bit errors and option-
ally may also enable a correction of soft errors, for example
by additional software and error tracking registers, such as the
error tracking register 405 which may anyway exist in safety
applications.

[0063] In contrast to the concept of copying user data and
user code a very fast test can be achieved, as no swapping or
copying of the user data 1s needed at all. Embodiments of the
present disclosure are therefore 1deal for safety applications
with a frequent testing of the memory during the application
for acquiring a normal CPU performance. Furthermore,
according to some embodiments of the present disclosure an
invertible symmetrical ECC code 1s used which, when 1invert-

ing data word and codeword, leads to the same result in the
ECC controller or ECC decoder 403 (for single fault and

double fault).

[0064] The functionality of the memory system 400 and of
the methods 100 and 200 can be summarized as the following.
The MBIST controller 401 controls the memory 301 using
the state machine (as an example, a counter would be a simple
implementation to generate consecutive addresses at the
memory) and the ECC controller or ECC decoder 403 detects
errors during reading the memory 301 (the user data 303 from
the memory 301). Erroneous addresses are written into the
error tracking register 405. Furthermore, the user data 1s
mverted and written back. This process of reading and
inverted writing 1s to be repeated so that 1n the end the original
data (the original user data 303) 1s stored in the memory 301.
As an example, symmetrical shortened Hsiao ECC code 1s
advantageous to detect both polarities of errors and with any
given user data. Hence, embodiments of the present disclo-
sure may implement such a symmetrical shortened Hsiao

ECC code.

US 2014/0372814 Al

[0065] Furthermore, the user data (e.g. program code or
user specific stored data) are preserved, without the need for
swapping the user data before testing the memory. Hence, the
test 1s very fast as one does not have to move user data/code to
another place first and then test 1t. Hence, embodiments
enable a full speed hardware test with no big setup tasks
betfore and after test by moving user data back and forth and
by not loosing full speed test (which 1s important for finding,
tailures which only show up 1n the application at full speed)
with using only soiftware test 1n the application. In other
words, 1n embodiments of the present disclosure the memory
1s read as fast as 1n the normal application which enables that
even the failures are found which only show up with full
speed, back to back as fast as the normal application accesses.
This would not be possible via the bus from a central control-
ler and 1s enabled by embodiments of the present disclosure
using the MBIST controller which allows full speed access as
fast as normal application or surrounding hardware.

[0066] According the further embodiments the methods
100, 200 may be extended by turther ECC tests of the memory
to achieve an even higher test coverage. As an example the
methods may comprise 1mverting every even bit of the user
data, performing a third ECC check on the user data with
inverted even bits, and mnverting the user data with imverted
even bits for restoring the user data in the memory. The
method further comprises inverting every odd bit of the user
data, performing a fourth ECC check on the user data with
inverted odd bits, and inverting the user data with inverted odd
bits for restoring the user data 1n the memory.

[0067] Here 1t does not matter 1f the odd bits or the even bits
are 1nverted and tested first.

[0068] Hence, also further test neighboring relationships
(like normal MBIST test do with various patterns) are pos-
sible as described e.g. by mverting only every second bit
(even), performing the ECC check and then inverting back
and then doing the same on every other bit (odd). This
improves the coverage even further to not just find simple
stuck-at errors, but also more complex neighboring relation-
ship (e.g. influenced by Crosstalk or with capacitance or
shortages between bits, etc.). Hence, 1n this case 4 runs are
performed (complete inversion twice, then only inverting
even bits twice and then only inverting odd bits twice).

[0069] Further this concept can be extended based on the
principle of performing a twice time inversion of the user data
or of parts of the user data.

[0070] In other words, this can certainly be refined further
with more runs (still much faster and non destructive), e.g.
like inverting only every second word completely and invert-
ing back. Hence, an almost as good coverage as very simple
real test patterns can be achieved. Furthermore more errors
can found than with simple SCAN tests.

[0071] Themethods 100, 200 may be supplemented by any
of the features and functionalities described herein with
respect to the apparatus, and may be implemented using the
hardware components of the apparatus.

[0072] Although some aspects have been described in the
context of an apparatus, 1t 1s clear that these aspects also
represent a description of the corresponding method, where a
block or device corresponds to a method act or a feature of a
method act. Analogously, aspects described 1n the context of
a method step also represent a description of a corresponding
block or item or feature of a corresponding apparatus. Some
or all of the method acts may be executed by (or using) a
hardware apparatus, like for example, a microprocessor, a

Dec. 18, 2014

programmable computer or an electronic circuit. In some
examples, some one or more of the most important method
acts may be executed by such an apparatus.

[0073] Depending on certain implementation require-
ments, examples can be implemented 1n hardware or 1n soft-
ware. The implementation can be performed using a non-
transitory digital storage medium, for example a floppy disk,
a DVD, a Blue-Ray, a CD, a ROM, a PROM, an EPROM, an
EEPROM or a FLASH memory, having electromically read-
able control signals stored thereon, which cooperate (or are
capable of cooperating) with a programmable computer sys-
tem such that the respective method 1s performed. Therefore,
the digital storage medium may be computer readable.

[0074] Some examples comprise a data carrier having elec-
tronically readable control signals, which are capable of
cooperating with a programmable computer system, such that
one of the methods described herein 1s performed.

[0075] Generally, examples can be implemented as a com-
puter program product with a program code, the program
code being operative for performing one of the methods when
the computer program product runs on a computer. The pro-
gram code may for example be stored on a machine readable
carrier.

[0076] Other examples comprise the computer program for
performing one of the methods described herein, stored on a
machine readable carrier.

[0077] In other words, an implementation of the example
method 1s, therefore, a computer program having a program
code for performing one of the methods described herein,
when the computer program runs on a computer.

[0078] A further implementation of the example method is,
therefore, a data carrier (or a digital storage medium, or a
computer-readable medium) comprising, recorded thereon,
the computer program for performing one of the methods
described herein. The data carrier, the digital storage medium
or the recorded medium are typically tangible and/or non-
transitory.

[0079] A further implementation of the example method is,
therefore, a data stream or a sequence of signals representing
the computer program for performing one of the methods
described herein. The data stream or the sequence of signals
may, for example, be configured to be transferred via a data
communication connection, for example, via the Internet.

[0080] A further example comprises a processing means,
for example a computer, or a programmable logic device,
configured to or adapted to perform one of the methods
described herein.

[0081] A further example comprises a computer having
installed thereon the computer program for performing one of
the methods described herein.

[0082] A further example comprises an apparatus or a sys-
tem configured to transfer (for example, electronically or
optically) a computer program for performing one of the
methods described herein to a recerver. The recerver may, for
example, be a computer, a mobile device, a memory device or
the like. The apparatus or system may, for example, comprise
a file server for transierring the computer program to the
recelver.

[0083] In some examples, a programmable logic device
(for example a field programmable gate array) may be used to
perform some or all of the functionalities of the methods
described herein. In some examples, a field programmable
gate array may cooperate with a microprocessor 1n order to

US 2014/0372814 Al

perform one of the methods described herein. Generally, in
one embodiment the methods are performed by any hardware
apparatus.

[0084] The above described examples are merely 1llustra-
tive. It 1s understood that modifications and variations of the

arrangements and the details described herein will be appar-
ent to others skilled 1n the art. It 1s the 1intent, therefore, to be

limited only by the scope of the impending patent claims and
not by the specific details presented by way of description and
explanation of the examples herein.

[0085] Although each claim only refers back to one single
claim, the disclosure also covers any conceivable combina-
tion of claims.

1. A method for testing a memory, the method comprising:

performing an error correction code check (ECC check) on
user data stored 1n the memory;

inverting the user data stored in the memory;

performing a further ECC check on the inverted user data
stored 1n the memory; and

inverting the iverted user data stored 1n the memory for
restoring the user data in the memory.

2. The method according to claim 1, further comprising:

running an application based on the user data stored 1n the
memory, the user data being at least part of a program
code of the application or being accessed by at least a
part of the application.

3. The method according to claim 2,

wherein the application 1s stopped betore the ECC check 1s
performed on the user data or at least the part of the
application 1s stopped which accesses the user code
betore the ECC check 1s performed on the user data; and

wherein the application or the stopped part of the applica-
tion 1s continued after the user data 1s restored.

4. The method according to claim 1,

wherein the user data comprises application data and ECC
data, wherein the ECC data 1s based on a symmetrical

ECC code such that 1n the case of an error free memory
a result of the ECC check on the user data and a result of

the turther ECC check on the inverted user data are
equal.

5. The method according to claim 1,

wherein the user data comprises application data and ECC

data, wherein the ECC data 1s based on a symmetrical
shortened Hsi1ao ECC code.

6. The method according to claim 1,

wherein during performing the ECC check and the turther
ECC check errors found are stored 1n an error tracking
register.

7. The method according to claim 1,

wherein during performing the ECC check, the user data 1s
read using a memory-built-in-selif-test controller

(MBIST controller);

wherein during inverting the user data the mverted user
data 1s written 1nto the memory using the MBIST con-
troller;

wherein during performing the further ECC check the
inverted user data 1s read using the MBIST controller;
and

wherein during inverting the inverted user data the user
data 1s rewritten ito the memory using the MBIST
controller.

Dec. 18, 2014

8. The method according to claim 7,
wherein the verted user data 1s written to the same
address 1in the memory where the user data was read
from:; and
wherein the user data 1s rewritten into the same address 1n
the memory, where the user data was read from.
9. The method according to claim 1,
wherein the user data 1s stored at a predetermined address
of the memory which 1s to be tested; and
wherein performing of the error correction code check,
iverting of the user data, performing of the further ECC
check and inverting of the inverted user data are repeated
for a plurality of further addresses of the memory to be
tested.
10. The method according to claim 9, further comprising:
increasing the address of the memory to be tested using a
state machine, after the inverting of the inverted user
data.
11. The method according to claim 1,
wherein a content of the memory 1s maintained before
performing the ECC check on the user data stored in the
memory.
12. The method according to claim 1,
wherein during performing the ECC Check and the turther
ECC check errors found 1n the user data as stored on the
memory are corrected or at least marked 1n an error
tracking register.
13. A memory system, comprising:
a memory having stored therein user data; and
a controller;
wherein the controller 1s configured to test the memory by:
performing an error correction code (ECC) check on the
user data stored 1n the memory;
inverting the user data stored in the memory;
performing a further ECC check on the inverted user
data stored 1n the memory; and
inverting the mverted user data stored in the memory for
restoring the user data in the memory.

14. The memory system according to claim 13,

wherein the controller comprises an memory-built-in-seli-
test (MBIST) controller and an ECC controller;

wherein the MBIST controller 1s configured to read the
user data and the inverted user data from the memory;
and

wherein the ECC controller 1s configured to perform the

ECC check on the user data read from the memory by the

MBIST controller and to perform the further ECC check
on the mmverted user data read from the memory by the
MBIST controller.

15. The memory system according to claim 14,

wherein the controller 1s configured to subsequently test
different addresses of the memory; and

wherein the MBIST controller 1s further configured to read
the user data from a predetermined address in the
memory, to write the inverted user data to the predeter-
mined address, to read the inverted user data from the
predetermined address and to rewrite the user data to the
predetermined address.

16. The memory system according to claim 15,

wherein the MBIST controller turther comprises a state
machine for increasing the address after the user data
was rewritten to the predetermined address; and

wherein the controller 1s configured to perform the error
correction code check, the inverting of the user data, the

US 2014/0372814 Al Dec. 18, 2014

7
further ECC check and the mnverting of the mverted user memory, mvert the mverted user data and rewrite the
data on user data stored at the increased address 1n the user data to the predetermined address of the memory;
Mmemory. wherein the ECC controller 1s configured to perform an

17. The memory system according to claim 13, ECC check on the user data read from the memory by the

wherein the user data is part of a program code of an MBIST controller and to perform a further ECC check

application stored on the memory on the mverted user data read from the memory by the
' MBIST controller; and

18. The memory system according to claim 13,

wherein the user data comprises application data and ECC

wherein the user data comprises application data and ECC data, wherein the ECC data is based on a symmetrical
data, wherein the ECC data 1s based on a symmetrical ECC code such that 1n the case of an error free memory
ECC code such that 1n the case of an error free memory a result ot the ECC check on the user data and a result of
a result of the ECC check on the user data and a result of the further ECC check on the inverted user data are
the further ECC check on the inverted user data are equal.
equal. 20. A non-transitory storage medium having stored thereon
19. A memory system, comprising: a computer program having a program code for performing,
a memory having stored therein user data, the user data when running on a computer, a method for testing a memory,
being part of a program code of an application stored on the method comprising:
the memory; performing an error correction code check (ECC check) on
an memory-built-in-self-test (MBIST) controller; and user data stored 1n the memory;

inverting the user data stored in the memory;
performing a further ECC check on the mverted user data

stored 1n the memory; and
inverting the mverted user data stored 1in the memory for

restoring the user data in the memory.

an error correction code (ECC) controller;

wherein the MBIST controller 1s configured to read the
user data from a predetermined address of the memory,
invert the user data, write the inverted user data to the
predetermined address of the memory, read the inverted
user data from the predetermined address of the S I

	Front Page
	Drawings
	Specification
	Claims

