a9y United States
12y Patent Application Publication o) Pub. No.: US 2013/0318315 Al

US 20130318315A1

Bacon et al. 43) Pub. Date: Nov. 28, 2013
(54) GARBAGE COLLECTION IMPLEMENTED IN (52) U.S. CL
HARDWARE USPC 711/162; 711/E12.103
(75) Inventors: David E Bacon, New York, NY (US);
Perry S. Cheng, Cambridge, MA (US); (57) ABSTRACT

(73)

(21)
(22)

(63)

(1)

Sunil K. Shukla, Tarry Town, NY (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 13/526,895
Filed: Jun. 19, 2012

Related U.S. Application Data

Continuation of application No. 13/478,614, filed on
May 23, 2012.

Publication Classification

Int. Cl.
GOl 12/16 (2006.01)
ADDRESS
ALLOCATED
7
3
READ REG
WRITE REG
PUSHPOP | oo
SNAPSHOT
oUsH VALUE| ENCINE

A method of garbage collection 1n a computing device 1s
provided. The method includes providing a memory module
having a memory implemented as at least one hardware cir-
cuit. The memory module uses a dual-ported memory con-
figuration. The method includes triggering a garbage collec-
tion signal by a sweep engine of the computing device. The
sweep engine 1s in communication with a memory module to
reclaim memory. The method includes receiving the garbage
collection signal by a root snapshot engine of the computing
device. The method includes taking a snapshot of roots from
at least one mutator by the root snapshot engine 11 the garbage

collection signal 1s recerved. The method includes receiving
roots from the root snapshot engine by a trace engine of the
computing device. The trace engine 1s in communication with
the memory module to recerve data.

30
ADDRESS
10
READ/ ~ POINTERTO
ALLOC WRITE WRITE (0

90 60 62

MEMORY MODULE A

70 POINTER VALUE 58 ADDRESS
TOFREE

ADDRESS TO CLEAR

136

TRACEENGINE | yiark gionar | SWEEP ENGINE

POP VALUE
26 GARBAGE COLLECTOR 160

US 2013/0318315 Al

Nov. 28, 2013 Sheet1 of 6

Patent Application Publication

| Ol

TYNDIS 99

d0L93T100 FOVELYD

091

INONIgIams | TTNIIS I qviang 3oyl

%)
dv419 01 55340aV

7l
ady
01 100%

334401
oo1d(dV 8¢ M1VA d3LNIOd 0.

IC IINCOW AOWIN

" 29 & 05 2l
LM JUdM 90Ty IR
0L ¥3LINIOd a{% SENTele)
SN
0¢

I
311VA dOd

INON3 JNTYAHSN

LOHSAVNS
1004

dOd/HS(a

J3d 1IdM
034 Avds

f\l\

Co

US 2013/0318315 Al

Nov. 28, 2013 Sheet2 0of 6

Patent Application Publication

\

0¢

oL (L
00TV 3n7wA

553d00Y 43N0

¢ Ol

Q3LY 011V 553400V

¢Y 09
JLEMOL FLIWAYIS

d3INIOd QL SS34aadv

85
1dd4

01 55J400v

94
JOTIV

Patent Application Publication Nov. 28, 2013 Sheet 3 of 6 US 2013/0318315 Al

WRITE REG 2EAD REG

O~
L]
l_
o)
D
Ll
o~
o~
O
=
—
_—

ROOT TOADD
114
92

POP VALUE

CY)

O
=
)
—

LL) l

—) |

<—|:' J

i

i

D)

|

0 _

0

-

0O

m‘-._—

)

‘o

GC

US 2013/0318315 Al

Nov. 28, 2013 Sheet4 of 6

Patent Application Publication

/

6C

XA
0vl

93y d4ldavd

G
_ 94}
Vi 0

aavoL 3NvA
1004 ¥3INIOc

O LLI
0 =

d4.IN

()
()
(5

UL

7 Ol

3Vl 0L d3.NIOd

¢9
3LIdM Ol

d4.NIOd

09
3 LIIWAYIY

0L 553400V

EDOOEOEDOO

Il
avih

AV

el
dv310

0L §0ady

US 2013/0318315 Al

Nov. 28, 2013 SheetSof 6

Patent Application Publication

g Ol

J3L1v90 11V SS3dday 9}

/1
43LNIOd
Q EEITE

COOEDOED OO

Il
avi w
NdVIN

0¢|. 69 N g
A WID Q00T 0TIV
17 OLSSTHAQY SSTHAQY

US 2013/0318315 Al

Nov. 28, 2013 Sheet 6 0of 6

Patent Application Publication

S39AIND0TD ONISIY E.L

NOILYT13d LI3443-35NV0 - N

9 Ol

Nl...........
IIIIHIIIIIIII
““I‘ --IIIII
IIII'
IIIIIIIG.H____
EEEEEEEERS III-‘
IIIIIIIIIIII

INOQ d33MS

ISYHd d33MS

INOQ HYYIA

ISYHd YoV

3SYHd LOHSYNS LOOY
INOQ LOOY aav

L14vLS 100Y aav

J9

US 2013/0318315 Al

GARBAGE COLLECTION IMPLEMENTED IN
HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 13/478,614, filed May 23, 2012, the
disclosure of which 1s incorporated by reference herein in 1ts
entirety.

BACKGROUND

[0002] The present invention relates to memory manage-
ment techniques, and more specifically, to a garbage collector
that 1s implemented 1in hardware.

[0003] Frequency scaling, which 1s the technique of ramp-
ing processor frequency to achieve enhance performance, has
led to other approaches for enhancing computing perfor-
mance. One example of another approach for enhancing per-
formance 1s multiple instruction, multiple data (MIMD) par-
allelism employing multiple processors. However, MIMD
parallelism may be relatively inefficient, and consumes a
relatively high amount of power. One alternative to MIMD
parallelism 1s reconfigurable hardware such as, for example,
field-programmable gate arrays (FPGA).

[0004] One drawback of FPGASs 1s programming method-
ology. The most common computer languages for FPGAs are
relatively low-level hardware description languages such as,
for example, very-high-speed integrated circuits hardware
description language (VHDL) and Verilog. These low-level
languages use abstractions that are bits, arrays of bits, regis-
ters, wires, and other hardware, which make programming,
FPGAs much more complex than conventional central pro-
cessing units (CPUs). Thus, there 1s a focus on raising the
level of abstraction and programmability of FPGAs to that of
higher-level software based programming languages. Some
examples of recent research are the Kiwi project, which auto-
matically translates C# programs mto FPGA circuits, or the
Liquid Metal project that has developed the Lime language.
One fundamental feature of high-level languages 1s automatic
memory management, in the form of garbage collection (1.¢.,
attempts to reclaim memory occupied by objects that are no
longer 1n use by a program). However, whether a low-level
language or a higher-level programming language 1s used, the
use of garbage collection in FPGAs and other types of recon-
figurable hardware structures 1s generally non-existent.

SUMMARY

[0005] According to one embodiment of the present mnven-
tion, a method of garbage collection 1n a computing device 1s
provided. The method includes providing a memory module
having a memory implemented as at least one hardware cir-
cuit. The memory module uses a dual-ported memory con-
figuration. The method includes triggering a garbage collec-
tion signal by a sweep engine of the computing device. The
sweep engine 1s in communication with a memory module to
reclaim memory. The method includes recerving the garbage
collection signal by a root snapshot engine of the computing
device. The method includes taking a snapshot of roots from
at least one mutator by the root snapshot engine if the garbage
collection signal 1s received. The method includes receiving
roots from the root snapshot engine by a trace engine of the
computing device. The trace engine 1s in communication with
the memory module to recerve data.

Nov. 28, 2013

[0006] Additional features and advantages are realized
through the techniques of the present ivention. Other
embodiments and aspects of the invention are described 1n
detail herein and are considered a part of the claimed 1nven-
tion. For a better understanding of the imnvention with the
advantages and the features, refer to the description and to the
drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0007] The subject matter which 1s regarded as the mven-
tion 1s particularly pointed out and distinctly claimed 1n the
claims at the conclusion of the specification. The forgoing and
other features, and advantages of the invention are apparent
from the following detailed description taken 1n conjunction
with the accompanying drawings 1n which:

[0008] FIG. 1 1s a block diagram of an exemplary field-
programmable gate array (FPGA) having a garbage collector
according to one aspect of the invention;

[0009] FIG. 2 1s a block diagram of a memory module
shown 1n FIG. 1 in accordance with an embodiment of the
present invention;

[0010] FIG. 3 1s a block diagram of a root snapshot engine
shown 1 FIG. 1 1n accordance with an embodiment of the
present invention;

[0011] FIG. 4 1s a block diagram of a trace engine shown 1n
FIG. 1 1n accordance with an embodiment of the present
invention;

[0012] FIG. S1s a block diagram of a sweep engine shown
in FIG. 1 1n accordance with an embodiment of the present
imnvention; and

[0013] FIG. 6 1s a timing diagram of the garbage collector
shown 1n FIG. 1 1n accordance with an embodiment of the

present 1nvention.

DETAILED DESCRIPTION

[0014] Anembodimentofa garbage collector implemented
in computer hardware (as opposed to previous hardware-
assist techniques) 1s disclosed. In one embodiment, a field-
programmable gate array (FPGA) and an on-chip memory are
disclosed. Utilizing a concurrent snapshot algorithm, the gar-
bage collector as disclosed provides single-cycle access to the
heap, and does not stall a mutator for a single cycle, thus
achieving a deterministic mutator utilization (MMU) of about
100%. In various embodiments, the garbage collector as dis-
closed does not consume more than about 2% of the logic
resources of a relatively high-end FPGA. In the embodiments
as disclosed, the garbage collector may 1nclude either a stop-
the-world or a fully concurrent configuration. However, when
implemented 1n hardware, real-time collection may achieve a
higher throughput, lower latency, lower memory usage, and
energy consumption when compared to the stop-the-world
configuration.

[0015] Withreference now to FIG. 1, ablock diagram of an
exemplary field-programmable gate array (FPGA) 10 1s
shown having a memory module 20. The FPGA 10 includes
various programmable gates 12, which may be programmed
to 1clude one or more modules or engines. In the embodi-
ment as shown, the FPGA 10 includes a trace engine 22, a
sweep engine 24, and a root snapshot engine 26. The memory
module 20 may store configuration information, where a first
application interface 30 that 1s in communication with the
memory module 20, which receives programming instruc-

US 2013/0318315 Al

tions and communicates information to and from a host (not
shown). The memory module 20 1s also 1n communication
with the trace engine 22 and the sweep engine 24, where the
trace engine receives data from the memory module 20. A
second application interface 32 1s in communication with the
root snapshot engine 26. The root snapshot engine 26 1s in
communication with a host (not shown) over the second
application interface 32. The host may separately communi-
cate with the root snapshot engine 26 over the second appli-
cation interface 32. The trace engine 22 and the sweep engine
24 create a garbage collector 34.

[0016] Although FIG. 1 illustrates an FPGA, it 1s under-
stood that any type of computing device having a managed
memory implemented as one or more hardware circuits using
a hardware description language may be used as well such as,
for example, an application specific integrated circuit (ASIC)
having appropriate combinational logic gates or a program-
mable gate array (PGA). The FPGA 10 may be in communi-
cation with a client application that 1s written in a hardware
description language such as, for example, very-high-speed
integrated circuits hardware description language (VHDL)
and Verilog. The FPGA 10 may also be in communication
with a client application written in a higher-level software
based programming language such as, for example, C, C++,
SystemC, Perl, Python, C#, CUDA, Java, OpenCL, or a lan-
guage that 1s dertved therefrom, where a compiler (not 1llus-
trated) converts the higher-level software based programming
language 1nto the hardware description language.

[0017] In one embodiment, the FPGA 10 1s a program-
mable logic device having 4- or 6-mput look-up tables
(LUTs) which can be used to implement combinational logic,
and flip-tlops (not illustrated) which can be used to 1imple-
ment sequential logic. Specifically, several LUTs and flip-
flops may be combined together to form a unit called a slice,
which 1s the standard unmit in which resource consumption 1s
reported for FPGAs. The FPGA 10 also includes a clock
distribution network (not illustrated) for propagating a glo-
bally synchronized clock to allow for the use of conventional
clocked digital logic. In one embodiment, the global clock
may be used to implement an efficient single-cycle atomic
root snapshot. The FPGA 10 also contains a relatively large
amount of configurable routing resources for connecting the
slices, based on the data flow 1n a hardware description lan-
guage program. The routing resources are used by a place-
and-route (PAR) tool during hardware synthesis.

[0018] The FPGA 10 may employ block random access

memory (BRAM), which are specialized memory structures
that are usually available on FPGAs. For example, some types
of FPGAs may have a BRAM capacity of between 1.5 MB to
8 MB of BRAM. One feature of a BRAM type memory 1s that
BRAM may be organized in various form factors (i.e., analo-
gous to word sizes on a central processing unit). One com-
mercially available example of an FPGA 1s the Virtex®-5
FPGA manufactured by Xilinx Inc., headquartered in San
Jose, Calif. One feature of BRAM 1s that BRAM can be
organized in various form factors (analogous to word sizes on
a CPU). On the Virtex®-5, form factors ol 1, 2, 4, 9, 18, 36,
72, and so on are supported. For example,a36 KB BRAM can
also be used as two logically separate 18 KB BRAMSs. More-
over, a denser memory structure may be built by cascading
multiple BRAMSs horizontally, vertically or, in a hybrid con-
figuration. Any memory structure which 1s smaller than 18
KB would lead to quantization (1.e., 1n memory system par-

Nov. 28, 2013

lance, this 1s referred to as fragmentation). The quantization
may be considerable, depending on the logical memory struc-
ture 1n the design.

[0019] The BRAM may be used as a true dual-ported
(I'DP) RAM (shown in FIG. 2 as port A and port B) that
provides two fully independent read-write ports. A dual-
ported memory has ability to simultaneously read and write to
different memory cells at different addresses. Moreover, each
port on the BRAM memory supports either read, write, read-
before-write, and read-after-write operations. It should be
noted that the BRAM may also be configured for use as a first
in first out (FIFO) queues rather than a random access
memory, which 1s used 1n the trace engine 22.

[0020] The FGPA 10 includes memory structures (e.g., the
memory 80 and 82 as illustrated 1n FIG. 2) that are typically
more uniform than conventional software heaps. Thus, the
memory structures in the FPGA 10 are organized into one or
more minitheaps, in which objects have a fixed size and shape
in terms of pointer and data fields. Each miniheap has an
interface allowing objects to be allocated (and freed when
using explicit memory management), and operations allow-
ing individual data fields to be read or written. Miniheaps with
one or two pointer fields and one or two data fields are gen-
erally employed. The quantization as described above may
impact eificiency of BRAM utilization. For example, for a
miniheap of size N=256, pointers are 8 bits wide, so a single
18 KB BRAM configured as 9 bits wide would be used.
However, this wastes 1 bit per entry, but also wastes 1.75K
entries, since only 256 (0.25K) entries are needed. The 1 bat
wasted per field 1s a form of internal fragmentation and the
1.73K wasted fields are a form of external fragmentation.

[0021] To reduce external fragmentation, multiple fields of
the same size may be implemented with a single BRAM set.
However, since BRAMSs are dual-ported, supporting more
than two fields would result 1n a loss of parallelism 1n terms of
field access. Furthermore, since one BRAM port 1s used for
initialization of fields when allocated, this effect comes 1nto
play even with two fields. The opposite approach 1s also
possible: multiple fields can be implemented with a single
BRAM set, resulting 1n a wider data width. In principle this
can reduce mternal fragmentation. However, 1n practice, this
actually can result 1n poorer resource allocation because 1t
reduces flexibility for the synthesis tools.

[0022] The memory module 20 receives an allocation
request 56, an address to free port 58, an address to read/write
port 60, and a pointer to write port 62. The allocation request
56 may be a one-bit signal that 1s used to implement a malloc
operation (e.g., dynamic allocation), and 1s recerved from a
host (not shown) through the first application interface 30.
The address to free port 58 1s 1n communication with the
sweep engine 24, and the address to read/write port 60 and the
pointer to write port 62 are in communication with a host (not
shown) through the first application interface 30. The
memory module 20 sends a pointer value 70 to the trace
engine 22.

[0023] A block diagram of the memory module 20 1s 1llus-
trated 1n FIG. 2, showing primary data and control fields.
Various approaches exist for implementing the miniheap as
described above. Fundamentally, the minitheap represents a
time/space (and sometimes power) trade-oil between the
number of available parallel operations, and the amount of
hardware resources consumed. Regarding the FPGA 10
shown 1n FIG. 1, a logical memory block with a desired data
width and number of entries 1s specified, and the synthesis

US 2013/0318315 Al

tools attempt to allocate the required number of 1individual
block RAMs as efliciently as possible, using various packing,
strategies. The BRAMSs for such a logical memory block are
referred to as a BRAM set. In the various embodiments as
described, one BRAM set 1s used for each field in the object.
For example, 1f there are two pointers and one data field, then
there are three BRAM sets. The non-pointer field has a natural
width associated with 1ts data type (e.g., 32 bits). However,
for a minitheap of size N, the pointer fields are [log,N] bits
wide. Thus, because data widths on the FPGA 10 are cus-
tomizable, the precise number of required bits are used. Thus,
a larger miniheap will increase 1n size not only because of the
number of entries, but because the pointer fields become
larger. It should be noted that the memory module 1s the same
as 1n software, where the pointer value O 1s reserved to mean
“null”, so a minitheap of size N can really only store N-1
objects.

[0024] For clarity, a single object field memory 80 1s 1llus-
trated 1n FIG. 2, which 1s of pointer type, and 1s stored 1n a
single BRAM set. A second set of memory 82 (e.g., a free
stack of memory) 1s also provided to store a stack of free
objects. Both the memories 80 and 82 include a dual-port
configuration (e.g., having a first port A and a second port B).

[0025] The allocation request 56 1s sent to a stack top reg-
ister 84, which 1s used to hold the value of a stack top of the
second set of memory 82. Assuming the value of the stack top
register 84 1s a non-zero value, the stack top register 84 1s
decremented and sent to port B of the memory 82, 1n read
mode. A resulting pointer 86 from the memory 82 1s also the
address allocated port 72. The resulting pointer 86 1s also sent
to port B of the memory 80, 1n write mode. A resulting write
value of the resulting pointer 86 1s hard wired to null (e.g.,
‘0007). To free an object a pointer (e.g., the address to free
signal 58) 1s presented to the memory module 20, and the
stack top register 84 1s used as the address for the memory 82
on port B, in write mode, with the data value of the address to
free signal 38. The stack top register 84 1s incremented, which
causes a pointer 90 to the freed object to be pushed onto the
freed stack of memory 82.

[0026] In order to read or write to a field 1n the pointer
memory 80, the address to read write signal 60 1s presented,
and 1f writing the pointer to write signal 62 1s presented. This
utilizes port A of the memory 80 1n either read or write mode,
resulting in the pointer value 70 1n the write mode. Thus, as
shown 1n FIG. 2, the memory module 20 can allow a read or
write to proceed in parallel, which 1s allowed by the duel-
ported memories 80 and 82.

[0027] Turing back to FIG. 1, the root snapshot engine 26
may use a Yuasa-style snapshot-at-the-beginning algorithm
(1.e., an algorithm that uses the snapshot-at-the-beginning
strategy to preserve every reference at the beginning of gar-
bage collection, and new objects allocated during garbage
collection are also preserved). A root snapshot may be
obtained virtually without stopping an application while the
snapshot 1s taken. The root snapshot engine 26 takes two
types of roots from one or more mutators, those 1n the regis-
ters and those 1n the stack.

[0028] Referring now to FIG. 3, the root snapshotengine 26
1s 1llustrated with a single mutator stack 90 and a single
mutator register 92. The snapshot 1s controlled by a garbage
collector (GC) signal sent from the sweep engine 24 (shown
in FI1G. 1). The GC signal goes high for one clock cycle at the
beginning of collection. The snapshot of the roots 1s defined
as the state of memory at the beginning of a next cycle after

Nov. 28, 2013

the GC signal goes high. A snapshot ol the mutator register 92
1s obtained by using a shadow register 100. In the cycle after
the GC si1gnal goes high, the value of the mutator register 92
1s copied into the shadow register 100. This can happen even
if the mutator register 92 1s also written by the mutator 1n the
same cycle, since the new value will not be latched until the
end of the cycle.

[0029] The stack snapshot 1s obtained by having another
register 1n addition to a stack top register 102, which 1s
referred to as a scan pointer register 104. In the same cycle
that the GC signal goes high, the value of a stack top register
pointer 106 minus one 1s written 1nto the scan pointer register
104 (because the stack top points to the entry above the actual
top value). Beginning 1n the following cycle, the scan pointer
register 104 1s used as the source address to port B of the
mutator stack 90, and a pointer 110 1s read out, going through
a multiplexer 112 (MUX) and emerging on a root to add port
114 from the snapshot module. The scan pointer register 104
1s also decremented 1n preparation for the following cycle. It
should be noted that the mutator can continue to use the
mutator stack 90 via port A of the BRAM set, while the
snapshot uses port B of the mutator stack 90. Moreover,
because the mutator cannot pop values off the stack faster
than a collector can read the values, the property 1s preserved
that the snapshot contains exactly the roots that existed in the
cycle following the GC signal.

[0030] One feature omitted from FIG. 3 1s that a state
machine (not shown) 1s required to sequence the values from
the mutator stack 90 and the shadow register 100 through the
multiplexer 112 to the root to add port 114. It should be noted
that the values from the mutator stack 90 are processed first,
because the stack snapshot technique relies on staying ahead
of the mutator without any explicit synchronization. If mul-
tiple stacks are provided, then a shadow stack will be pro-
vided to hold values as they were read out before the mutator
could overwrite the hold wvalues, which could then be
sequenced onto the root to add port 114. As will be discussed
below, the GC signal 1s only triggered by an allocation request
by the mutator that causes free space to drop below a thresh-
old. Therefore, the generation of root snapshot logic only
needs to consider the hardware states 1n which this might
occur. Any register or stack not live in those states can be
sately 1gnored.

[0031] Turning back to FIG. 1, the trace engine 22 includes
a single pointer memory (shown in FI1G. 4 as reference num-
ber 120). The trace engine 22 provides the same mutator
interference as the malloc/free style memory management
approach of the memory module 20. In particular, referring to
both FIGS. 1 and 4, the trace engine 22 also includes an
address to read port 130, a pointer to write port 132, and a
pointer value port 70, except that instead of the address to free
port 58 (shown 1n FIG. 2), an address to clear port 136 1s
provided. Also, the root to add port 114 from the root snapshot
engine 26 1s provided.

[0032] Continuing to refer to FIG. 4, during execution,
there are three sources of pointers for the trace engine 22 to
trace: externally added roots from the snapshot (e.g., the root
to add port 114 from the snapshot engine 26), internally
traced roots from the pointer memory 120, and over-written
pointers from the pointer memory 120 (which 1s captured
with a Yuasa-style barrier to maintain the snapshot property).
The different pointer sources flow through a multiplexer 140,
and on each cycle a pointer 142 (e.g., pointer to trace) can be
presented to a mark map 146 (which 1s a dual-ported

US 2013/0318315 Al

memory), and contains one bit for each of the N memory
locations. Using the BRAM read-before-write mode, an old
mark value 1s read, and then the mark value 1s unconditionally
set to 1. If the old mark value 1s 0, this pointer has not yet been
traversed, so the negation of the old mark value (indicated by
the bubble 150) 1s used to control whether a pointer 152 1s
added to a mark queue 154 (note that this means that all values
in the mark queue 154 have been filtered, so at most N-1
values can flow through the queue). The mark queue 154 1s a

BRAM used 1n FIFO (rather than random access) mode.

[0033] Pointers from the mark queue 154 are presented as a
read address on port B of the pointer memory 120, and if
non-null values are fed to a multiplexer 155 back to the
marking step. The write barrier 1s implemented by using port
A of the pointer memory 120 BRAM 1n read-before-write
mode. When the mutator writes a pointer, the old value 1s read
out first and placed into a barrier register 156. This 1s subse-
quently fed through the multiplexer 140 and marked. Given
the three BRAMSs 1nvolved 1n the marking process, process-
ing one pointer requires 3 cycles. However, the marking
engine 1s implemented as a 3-stage pipeline, and 1s able to
sustain a throughput of one pointer per cycle.

[0034] For objects with two pointers, two trace engines
may be provided and paired together to maximize resource
usage (not shown). Since each trace engine only uses one port
of the mark map, both engines can mark concurrently. Fur-
thermore, the two mark queues are multiplexed together and
the next 1item to mark 1s always taken from the less full queue.
This allows the queues to be of size N/2. On each cycle, one
pointer 1s removed from the queue, and the two pointers in the
object retrieved are examined and potentially marked and
enqueued. The final optimization 1s that since there are now
two write barrier registers and two mark queues, the write
barrier values are not processed until there are two of them.
This means that the mark engines can make progress every
other cycle even 1f the application 1s performing one write per
cycle.

[0035] The termination protocol for marking 1s relatively
simple: once the last item from the mark queues 154 1s popped
(both mark queues become empty), 1t takes 2 or 3 cycles for
the trace engine 22 to finish the current pipeline. If the two
pointers returned by the heap are null, then the mark process
1s terminated in the 2nd cycle as there 1s no need to read the
mark bits 1n this case. Otherwise the mark bit for the non-null
pointers are read to ensure that both pointers are marked, in
which case the mark phase 1s terminated in the third cycle.

[0036] Write barrier values arriving after the first cycle of
termination can be ignored, since by the snapshot property
would either have to be newly allocated or else discovered by
tracing the heap. However, note that some data structures
(e.g., linked lists) will cause a pathological behavior, in which
a pointer 1s marked, removed from the queue, which will
appear empty, and then 2 cycles later the next pointer from the
linked list will be enqueued. So while the pipeline can sustain
marking one object per cycle, pipeline bubbles will occur
which reduce that throughput.

[0037] Turming back to FIG. 1, the sweep engine 24 1is
provided, where sweeping will begin during the next machine
cycle after the tracing 1n the trace engine 22 has been com-
pleted. During sweeping, memory 1s reclaimed. A mark sig-
nal 160 1s sent from the trace engine 22 to the sweep engine 24
to indicate that the tracing has been completed. Referring now
to F1G. 5, the sweep engine 24 recerves the allocation request
56 from the mutator. The sweep engine 24 handles the allo-

Nov. 28, 2013

cation request 36 and maintains a stack of pointers to a free
memory that 1s a free stack 164. The sweep engine 24 also

includes the mark map 146 of the trace engine 22 (shown 1n
FIG. 4).
[0038] When the allocation request 36 1s recerved, a stack

top register 166 1s used to remove a pointer to a free object
from the free stack 164, thereby decrementing a stack pointer
168. I the stack pointer 168 falls below a specified level then
the GC signal 1s triggered by raising the GC signal. Referring
to both FIGS. 1 and 4-5, the GC si1gnal 1s sent from the stack
top 166 of the sweep engine 24 to the root snapshot engine 26.
In one embodiment, the specified level of the stack pointer
168 1s about 25%, however 1t 1s to be understood that the
specified level may include other values as well. Specifically,
the specified level may be based on one or more application
and resource parameters such as, for example, allocation
rates, mutation rates, live data amount, and memory resource.
[0039] The address popped from the free stack 164 1is
returned to the mutator on an address allocated port 169. The
address 1s also used to set an object’s entry 1n a used map 170
to the value 01, which means “freshly allocated”. A value of
00 means “Ifree”, in which case the object 1s on the free stack

164

[0040] Sweeping 1s a simple linear scan. A sweep pointer
172 mitialized to 1 (since slot O 1s reserved for null), and on
every cycle (except when pre-empted by allocation) the
sweep pointer 1s presented to both the mark map 146 and the
used map 170. If an object 1s marked, the used map 170 entry
1s set to *10°. If an object 1s not marked and the used map 170
entry 1s ‘10’ (which 1s indicated by an and gate 180 in FIG. 5)
then the used map entry 1s set to 00. The resulting signal 1s
also used to control whether the current sweep pointer 172
address 1s going to be freed. If so, the sweep pointer 172 1s
pushed onto the free stack 164 and also output on the address
to clear port 136, which 1s connected to the mark engine (e.g.,
the mark map 146) so that the data values being freed are
zeroed out.

[0041] It should be noted that since clearing only occurs
during sweeping, there 1s no contention for port B of the
pointer memory 120 1n the trace engine 22 (FI1G. 4) between
clearing and marking. Furthermore, it should also be noted
that an allocation request and a free request may happen in the
same cycle (e.g., the stack top 84 as shown in FIG. 2 1s
accessed using read-before-write mode and returned as the
address allocated signal 72, and then the newly freed object 1s

pushed back).

[0042] When an object 1s allocated, the object 1s not
marked. Thus, the garbage collector 36 (shown in FIG. 1)
does not allocate black, which means that the tracing engine
22 may encounter newly allocated objects in the marking
pipeline (via newly installed pointers in the heap), albeit at
most once since the pointer will then be marked. This also
alfects worst-case execution time (WCET) analysis.

[0043] Referring generally to FIGS. 1-5, the configuration
of the garbage collector 36 thus allows for mutation and
collection to occur unconditionally, 1n a single cycle. Thus,
the minmimum mutator utilization (MMU) 1s about 100%,
unless 1nsullicient resources are dedicated to the heap. Turn-
ing now to FIG. 6, a timing chart of the garbage collector 36

US 2013/0318315 Al

1s 1llustrated. As shown 1n FIG. 6, garbage collection 1s trig-
gered or imitiated by the GC signal sent from the sweep engine

24 (shown 1n FI1G. 1). Referring now to FIGS. 1 and 6, the GC

signal 1s triggered 11 the pointer 168 (of the sweep engine 24
shown 1n FIG. 5) falls below the specified level (e.g., in one
embodiment the specified level 1s 25%). The GC signal goes
high for one clock cycle at the beginning of garbage collec-
tion. The root snapshot module 26 receives the GC signal and
takes a snapshot of the roots from the mutator during the root
snapshot phase.

[0044] The root snapshot engine 26 sends the root to add
port 114 (e.g., the snapshot of the mutator) to the trace engine
22. Thus mnitiates a mark phase 1n the trace engine 22. The
trace engine 22 1s implemented as a 3-stage pipeline, having,
a throughput of one pointer per clock cycle. The mark signal
160 1s sent from the trace engine 22 to the sweep engine 24
during a mark done phase to indicate that the tracing has been
completed. The sweep phase then begins, where memory 1s
reclaimed (e.g., the address to free port 38 sent back to the
memory module 20). The GS signal triggered by the sweep
engine 24 cach time the pointer 168 (ol the sweep engine 24

shown 1n FIG. 5) falls below the specified level.

[0045] Unlike software-based garbage collectors, the gar-
bage collector as described in FIGS. 1-6 1s fully deterministic,
as 1t 1s possible to analyze the worst case behavior down to a
(machine) cycle. For example, given R 1s the maximum num-
ber of roots and N 1s the size of the heap, then the worst-case
time (1n cycles) for garbage collection 1s:

=15+ Al Al AT AT,

where T 1s the time to snapshot the roots, T, ,1s the time (in
cycles)tomark, T .1s the time to sweep, and T ;;-1s the time lost
to write barriers during marking, T, 1s the time lost to black-
cenming newly allocated objects during marking, and T , 1s time
lost to allocations during sweeping. In the worst case, without
any knowledge of the application, T,=R+2, T, =3N+3,T,~0
T,=0, and T ~=N.

[0046] The reasoming for these quantities will now be
explained. During the snapshot phase, one root into the mark
queue every cycle may be placed, plus one cycle to start and
finish the phase, accounting for R+2. During marking (e.g.,
performed by the trace engine 22), there could be N objects in
the heap, configured as a linked list which causes the mark
pipeline to stall for two cycles on each object, plus 3 cycles to
terminate. Sweeping (performed by the sweep engine 24) 1s
unaffected by application characteristics, and always takes N
cycles. Preemption of the collector by mutator write barriers
(T;,) does not factor into the worst-case analysis because the
write barrier work 1s overlapped with the collector stalls.
Extra mark operations to blacken newly allocated objects
(T,,) also simply fill stall cycles.

[0047] The garbage collector as described 1n the embodi-
ments shown 1 FIGS. 1-6 allows an allocation operation in
every cycle, but allocation pre-empts the sweep phase, mean-
ing that such an allocation rate can only be sustained 1n
relatively short bursts. The largest sustainable allocation rate

1s 0.5—otherwise the heap would be exhausted before sweep-
ing completed. Thus, T =N and T _ _=R+3N+5.

WOFSE
[0048] In one approach, real-time analysis may be per-
tormed where p 1s the average number of mutations per cycle
(u=1), a.1s the average number of allocations per cycle (<.

Nov. 28, 2013

5), and m 1s the maximum number of live data objects in the
heap at any one time (m<N). The following equations are
provided:

Ty =3m+ 3,
Ts =N
TW = ﬁm
Ty= ——N
A 1 —
[0049] It should be noted that both o and u can only be

averaged over a time window guaranteed to be less than or
equal to the phases which a and p influence, and m 1s a safe
window size. One maccuracy may be due to pipeline stalls
during marking, for which worst and average case behavior
can be very different. Thus, B 1s the number of pipeline stalls
(0=B=2m), so T, ~m+B+3. For a linked list, B=2m; for three
linked lists each with its own root, B=0. For a heap considered
as a forest without back-edges, B 1s bounded by the number of
levels of width 1 plus the number of levels of width 2 (when
the width 1s 3 or greater, there 1s enough parallelism to keep
the 3-stage pipeline full and avoid stalls).

[0050] Using these application-specific estimates, the
WCET of collection 1s expressed as:

1 2
Tmm=R+(](—m+N]+B+S
l—aA2—-u

[0051] Once the worst-case execution time for collection 1s
known, the minimum heap size 1n which the collector can run
with real-time behavior (zero stalls) 1s determined, where m
objects are available for the live data. While a collection
taking time T, _ takes place, another aT, . objects can be
allocated (the so-called floating garbage). However, there
may be a1, _ floating garbage when a collection starts, and
then another aTmax objects will be allocated during that
collection. Thus the minimum heap size 1s:

N, ..=m+2af, .

[0052] If the non-size-dependent portionof T, .
previous equation 1s denoted as:

from the

| 2
K:R+(](m]+B+5,
l—aA2—-u

and the following 1s solved:

Npin =m+ 2aT1,..

min

Nopin :m+2ﬂf(+K)

|l -«

= (m +2 K)(1_&]
mfﬂ m {'-’E 1_3{'-}{

[0053] A micro-benchmark was performed with three dif-
ferent types of memory management implementations, an
explicit (e.g., malloc/iree) memory management, real-time

US 2013/0318315 Al

collection, and a stop-the-world collector. The comparison
was performed using the Virtex®-5 FPGA. It should be noted
that when implemented 1n hardware, the real-time collector 1s
faster, has lower latency, can run more eifectively in less
space, and consumes less energy when compared to a stop-
the-world collector.

[0054] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present mvention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident soitware, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present mven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.
[0055] The terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an” and *“the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises™ and/
or “comprising,” when used in this specification, specily the
presence of stated features, integers, steps, operations, ¢le-
ments, and/or components, but do not preclude the presence
or addition of one more other features, integers, steps, opera-
tions, element components, and/or groups thereol.

[0056] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function 1n combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention 1n the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated

[0057] The flow diagrams depicted herein are just one
example. There may be many variations to this diagram or the
steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be
performed 1n a differing order or steps may be added, deleted
or modified. All of these variations are considered a part of the
claimed 1nvention.

[0058] While the preferred embodiment to the invention
had been described, 1t will be understood that those skilled in
the art, both now and in the future, may make various
improvements and enhancements which fall within the scope
ol the claims which follow. These claims should be construed
to maintain the proper protection for the invention first

described.
What 1s claimed 1s:

1. A method of garbage collection in a computing device,
comprising;

Nov. 28, 2013

providing a memory module having a memory 1mple-
mented as at least one hardware circuit, the memory
module using a dual-ported memory configuration;

triggering a garbage collection signal by a sweep engine of
the computing device, the sweep engine 1n communica-
tion with a memory module to reclaim memory;

recerving the garbage collection signal by a root snapshot
engine ol the computing device;

taking a snapshot of roots from at least one mutator by the

root snapshot engine 1f the garbage collection signal 1s
recerved; and

receving roots from the root snapshot engine by a trace

engine of the computing device, the trace engine 1n
communication with the memory module to recerve
data.

2. The method of claim 1, comprising triggering the gar-
bage collection signal 1t a stack pointer of the sweep engine
talls below a specified level.

3. The method of claim 2, comprising receiving an alloca-
tion request by a stack top register of the sweep engine,
wherein the stack top register 1s used to remove a pointer to a
free object from a free stack that decrements the stack pointer.

4. The method of claim 2, wherein the specified level 1s
based on at least one of an allocation rate, a mutation rate, a
live data amount, and a memory resource.

5. The method of claim 1, comprising providing an address
to free port to the sweep engine, wherein the memory module
1s 1n communication with the sweep engine by the address to
free port.

6. The method of claim 1, comprising providing a shadow
register and a mutator register of the root snapshot engine.

7. The method of claim 6, comprising having the garbage
collection signal going high for one clock cycle.

8. The method of claim 7, comprising copying a value of
the mutator register into the shadow register after the garbage
collection signal goes high.

9. The method of claim 8, comprising sending the shadow
register and a mutator through a multiplexer of the root snap-
shot engine, wherein a pointer that 1s read from the mutator
stack emerges from the multiplexer as the snapshot of roots
from the at least one mutator.

10. The method of claim 1, comprising sending a pointer
value from the memory module to the trace engine.

11. The method of claim 1, comprising allowing a read and
a write operation to proceed 1n parallel by the dual-ported
memory configuration of the memory module.

12. The method of claim 1, comprising communicating
with the computing device with a client application that 1s
written 1n a hardware description language.

13. The method of claim 12, wherein the hardware descrip-
tion language 1s one of a very-high-speed integrated circuits
hardware description language (VHDL) and Verilog.

14. The method of claim 1, comprising communicating
with the computing device by a client application that 1s
written 1n a software based programming language.

15. The method of claim 14, wherein the software based
programming language 1s one of C, C++, System(C, Perl,
Python, C#, CUDA, OpenCL, Java, and a language that is
derived therefrom, and wherein a compiler converts the sofit-
ware based programming language into a hardware descrip-
tion language.

	Front Page
	Drawings
	Specification
	Claims

