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TIME  Queue Change/Action . QUEUE SEL
T == QU QA=1, QP=3 QE=1 QD=2 Q0
T 1000 =»Q7  QA=l. QP=0.QE=]. QD=2 Q0

TI0000 = Q0 quantum expires, no queues at same or higher prioriy. continue Q0
T11.000 => Q! GA=1. QP=3, QE=1.QD=2 (Q0 quantum expired. switch) 01
121000 =>Ql quantum expired. swap to next queue of same priority Q0
124000 ==0Q2  QA=l. QP=8 QE=1.(QD=2 (highest priority) Q2
T28.000 =2 processes packet to wait on semaphore, switch to next avail Q]
T38.000 => Ql quantum expired, swap to next queue of priority level Q0
T40.000  => Q2 semaphore satisfied and Q2 ready (highest priority. pre-empt) Q2
T44.000 == Q2 queue & pipe empty, nxt quene of priority level 5 93
T46.000  =» 1 queue & pipe empty. nxt queue of prionty level 3 Q0
45000 =» (0 quene & pipe empty. nxt queue of prionity level O )7
T31.000 =2 Q2 becomes readv (highest prionily, pre-empt} J2

T35.000 =»Q3  QA=l. QP=10, QE=0.QD=0 (highest pre-enmpt) Q3

T36.000 =-Q4  QA=l, QP=10, QE~0. QD=0 Q3
T59.000  =» Q3 1ssues a packet resetung 18°s QP=10, enabling sweitch same prionty Q4
[66,000 =>4 issues a packet resetting Q3 QP=11. creating a higher priority queue Q3
T67.000  =>Q2 becomes ready —no action because not high priority (3
T70.000  => Q3 1ssues a packet resetting Q3 & Q4 to QP4 decreasiug prionty of 53 Q2
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POLICIES FOR SHADER RESOURCE
ALLOCATION IN A SHADER CORE

BACKGROUND
[0001] 1. Field of the Invention
[0002] The present invention i1s generally directed to com-

puting systems. More particularly, the present invention 1s
directed to arbitration policies for allocating graphic process-
ing unit resources among multiple pipeline iputs.

[0003] 2. Background Art

[0004] The desire to use a graphics processing unit (GPU)
for general computation has become much more pronounced
recently due to the GPU’s exemplary performance per unit
power and/or cost. The computational capabilities for GPUSs,
generally, have grown at a rate exceeding that of the corre-
sponding central processing unit (CPU) platforms. This
growth, coupled with the explosion of the mobile computing
market and 1ts necessary supporting server/enterprise sys-
tems, has been used to provide a specified quality of desired
user experience. Consequently, the combined use of CPUs
and GPUs for executing workloads with data parallel content
1s becoming a volume technology.

[0005] However, GPUs have traditionally operated 1n a
constrained programming environment, available only for the
acceleration of graphics. These constraints arose from the fact
that GPUs did not have as rich a programming ecosystem as
CPUs. Their use, therefore, has been mostly limited to two
dimensional (2D) and three dimensional (3D) graphics and a
tew leading edge multimedia applications, which are already
accustomed to dealing with graphics and video application
programming interfaces (APIs).

[0006] With the advent of multi-vendor supported
OpenCL® and DirectCompute®, standard APIs and support-
ing tools, the limitations of the GPUs 1n traditional applica-
tions has been extended beyond traditional graphics.
Although OpenCL and DirectCompute are a promising start,
there are many hurdles remaining to creating an environment
and ecosystem that allows the combination of the CPU and
GPU to be used as fluidly as the CPU for most programming
tasks.

[0007] Existing computing systems often include multiple
processing devices. For example, some computing systems
include both a CPU and a GPU on separate chips (e.g., the
CPU might be located on a motherboard and the GPU might
be located on a graphics card) or in a single chip package.
Both of these arrangements, however, still include significant
challenges associated with (1) separate memory systems, (11)
ellicient scheduling, (111) providing quality of service (QoS)
guarantees between processes, (1v) programming model, and
(v) compiling to multiple target instruction set architectures
(ISAs)—all while minimizing power consumption.

[0008] For example, the discrete chip arrangement forces
system and software architects to utilize chip to chip inter-
faces for each processor to access memory. While these exter-
nal interfaces (e.g., chip to chip) negatively affect memory
latency and power consumption for cooperating heteroge-
neous processors, the separate memory systems (1.€., separate
address spaces) and driver managed shared memory create
overhead that becomes unacceptable for fine grain offload.
[0009] Both the discrete and single chip arrangements can
limit the types of commands that can be sent to the GPU {for
execution. By way of example, computational commands
(e.g., physics or artificial intelligence commands) often can-
not be sent to the GPU for execution. This limitation exists
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because the CPU may relatively quickly require the results of
the operations performed by these computational commands.
However, because of the high overhead of dispatching work
to the GPU in current systems and the fact that these com-
mands may have to wait in line for other previously-i1ssued
commands to be executed first, the latency incurred by send-

ing computational commands to the GPU 1s often unaccept-
able.

[0010] Given that a traditional GPU may not efficiently
execute some computational commands, the commands must
then be executed within the CPU. Having to execute the
commands on the CPU 1increases the processing burden on the
CPU and can hamper overall system performance.

[0011] Although GPUs provide excellent opportunities for
computational oftfloading, traditional GPUs may not be suit-
able for system-software-driven process management that 1s
desired for ellicient operation 1n some multi-processor envi-
ronments. These limitations can create several problems.

[0012] For example, since processes cannot be efficiently
identified and/or preempted, a rogue process can occupy the
GPU hardware for arbitrary amounts of time. In other cases,
the ability to context switch off the hardware 1s severely
constramned—occurring at very coarse granularity and only at
a very limited set of points in a program’s execution. This
constraint exists because saving the necessary architectural
and microarchitectural states for restoring and resuming a
process 1s not supported. Lack of support for precise excep-
tions prevents a faulted job from being context switched out
and restored at a later point, resulting in lower hardware usage
as the faulted threads occupy hardware resources and sit 1dle
during fault handling.

[0013] Arbitration occurs at two different levels within a
computer system. One level relates to what job 1s being driven
at the front end of the GPU compute pipeline. The other level
relates to utilization of shared resources. Because there are
multiple tasks being executed simultaneously, these tasks
must be prioritized. Therelfore, a decision 1s required to deter-
mine how shared resources will be utilized. For example, how
will tasks be prioritized as they arrive at the beginning of the
dispatch pipeline and travel to the shader core.

SUMMARY

[0014] What 1s needed, therefore, are improved arbitration
methods and systems that resolve arbitration policies where a
system has multiple compute pipelines.

[0015] Although GPUs, accelerated processing units
(APUs), and general purpose use of the graphics processing
umt (GPGPU) are commonly used terms in this field, the
expression “accelerated processing device (APD)” 1s consid-
ered to be a broader expression. For example, APD refers to
any cooperating collection of hardware and/or software that
performs those functions and computations associated with
accelerating graphics processing tasks, data parallel tasks, or
nested data parallel tasks in an accelerated manner with
respect to resources such as conventional CPUs, conventional
GPUs, and/or combinations thereof.

[0016] Oneembodiment of the present invention provides a
method of determining priority within a APD that includes
compute pipelines. The method includes selecting a first
queue and a second queue from the compute pipeline pro-
cessing queues within each of the compute pipelines 1n accor-
dance with predetermined criteria and selecting one of the
first and second queues for processing in accordance with
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priority criteria. The selected queue 1s processed until a lapse
ol a time quantum occurs or a queue having a higher priority
becomes available.

[0017] Further features and advantages of the invention, as
well as the structure and operation of various embodiments of
the 1nvention, are described 1n detail below with reference to
the accompanying drawings. It 1s noted that the mvention 1s
not limited to the specific embodiments described herein.
Such embodiments are presented herein for illustrative pur-
poses only. Additional embodiments will be apparent to per-
sons skilled in the relevant art(s) based on the teachings
contained herein.

BRIEF DESCRIPTION OF TH.
DRAWINGS/FIGURES

T

[0018] The accompanying drawings, which are incorpo-
rated herein and form part of the specification, 1llustrate the
present invention and, together with the description, further
serve to explain the principles of the invention and to enable
a person skilled 1n the pertinent art to make and use the
invention. Various embodiments of the present invention are
described below with reference to the drawings, wherein like
reference numerals are used to refer to like elements through-
out.

[0019] FIG. 1A 1s an illustrative block diagram of a pro-
cessing system 1n accordance with embodiments of the
present invention;

[0020] FIG. 1B 1s an illustrative block diagram illustration
of the APD illustrated 1n FIG. 1A;

[0021] FIG. 2 1s a more detailed block diagram 1llustration
of the APD of FIG. 1B;

[0022] FIG. 3 1s more detailed block diagram 1llustration of
compute pipelines the illustration 1 FI1G. 2;

[0023] FIG. 4 1s an illustration of hardware descriptor
queues according to embodiments of the present mnvention;
[0024] FIG. § 1s a flowchart of an exemplary method of
practicing an embodiment of the present invention;

[0025] FIG. 6 1s an illustration of an exemplary method
according to embodiments of the present invention; and

[0026] FIG. 7 1s anillustration of other aspects of an exem-
plary method according to embodiments of the present inven-
tion.

DETAILED DESCRIPTION

[0027] Inthedetailed description that follows, references to
“one embodiment,” “an embodiment,” “an example embodi-
ment,” etc., indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic 1s
described in connection with an embodiment, 1t 1s submitted
that 1t 1s within the knowledge of one skilled in the art to affect
such feature, structure, or characteristic 1n connection with
other embodiments whether or not explicitly described.

[0028] The term “embodiments of the mvention” does not
require that all embodiments of the ivention include the
discussed feature, advantage or mode of operation. Alternate
embodiments may be devised without departing from the
scope of the invention, and well-known elements of the inven-
tion may not be described in detail or may be omitted so as not
to obscure the relevant details of the invention. In addition, the

e 1
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terminology used herein i1s for the purpose of describing
particular embodiments only and is not mntended to be limit-
ing of the invention. For example, as used herein, the singular
forms ““a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises,”
“comprising,” “includes” and/or “including,” when used
herein, specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components, and/or groups

thereof.

[0029] FIG. 1A 1s an exemplary illustration of a unified
computing system 100 including a CPU 102 and an APD 104.
CPU 102 can include one or more single or multi core CPUSs.
In one embodiment of the present invention, the system 100 1s
formed on a single silicon die or package, combining CPU
102 and APD 104 to provide a unified programming and
execution environment. This environment enables the APD
104 to be used as tluidly as the CPU 102 for some program-
ming tasks. However, 1t 1s not an absolute requirement of this
invention that the CPU 102 and APD 104 be formed on a
single silicon die. In some embodiments, it 15 possible for
them to be formed separately and mounted on the same or
different substrates.

[0030] Inoneexample, system 100 also includes a memory
106, an OS (OS) 108, and a communication infrastructure
109. The OS 108 and the communication infrastructure 109

are discussed 1n greater detail below.

[0031] The system 100 also includes a kernel mode driver
(KMD) 110, a software scheduler (SWS) 112, and a memory
management unit 116, such as input/output memory manage-
ment unit (IOMMU). Components of system 100 can be
implemented as hardware, firmware, software, or any com-
bination thereof. A person of ordinary skill in the art will
appreciate that system 100 may include one or more software,
hardware, and firmware components 1n addition to, or ditier-
ent from, that shown 1n the embodiment shown 1n FIG. 1A.

[0032] In one example, a driver, such as KMD 110, typi-
cally communicates with a device through a computer bus or
communications subsystem to which the hardware connects.
When a calling program invokes a routine in the driver, the
driver 1ssues commands to the device. Once the device sends
data back to the driver, the driver may invoke routines 1n the
original calling program. In one example, drivers are hard-
ware dependent and operating-system-specific. They usually
provide the interrupt handling required for any necessary
asynchronous time-dependent hardware interface. Device
drivers, particularly on modern Windows platiforms, can run
in kernel-mode (Ring 0) or 1n user-mode (Ring 3).

[0033] A benefit of running a driver 1 user mode 1is
improved stability, since a poorly written user mode device
driver cannot crash the system by overwriting kernel memory.
On the other hand, user/kernel-mode transitions usually
impose a considerable performance overhead, thereby pro-
hibiting user mode-drivers for low latency and high through-
put requirements. Kernel space can be accessed by user mod-
ules only through the use of system calls. End user programs
like the UNIX shell or other graphical user interface (GUI)
based applications are part of the user space. These applica-
tions interact with hardware through kernel supported func-
tions.

[0034] CFU 102 can include (not shown) one or more of a
control processor, field programmable gate array (FPGA),
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application specific mtegrated circuit (ASIC), or digital sig-
nal processor (DSP). CPU 102, for example, executes the
control logic, including the OS 108, KMD 110, SWS 112, and
applications 111, that control the operation of computing
system 100. In this illustrative embodiment, CPU 102,
according to one embodiment, initiates and controls the
execution of applications 111 by, for example, distributing
the processing associated with that application across the
CPU 102 and other processing resources, such as the APD
104.

[0035] APD 104, among other things, executes commands
and programs for selected functions, such as graphics opera-
tions and other operations that may be, for example, particu-
larly suited for parallel processing. In general, APD 104 can
be frequently used for executing graphics pipeline operations,
such as pixel operations, geometric computations, and ren-
dering an 1mage to a display. In various embodiments of the
present invention, APD 104 can also execute compute pro-
cessing operations, based on commands or instructions
recerved from CPU 102.

[0036] Forexample, commands canbe considered a special
instruction that 1s not defined 1n the ISA and usually accom-
plished by a set of instructions from a given ISA or a unique
piece of hardware. A command may be executed by a special
processor such as a dispatch processor, CP, or network con-
troller. On the other hand, instructions can be considered, e.g.,
a single operation of a processor within a computer architec-
ture. In one example, when using two sets of ISAs, some
istructions are used to execute x86 programs and some
istructions are used to execute kernels on APU/APD com-
pute umnit.

[0037] In an illustrative embodiment, CPU 102 transmits
selected commands to APD 104. These selected commands
can include graphics commands and other commands ame-
nable to parallel execution. These selected commands, that
can also include compute processing commands, can be
executed substantially independently from CPU 102.

[0038] APD 104 can include 1ts own compute units (not
shown), such as, but not limited to, one or more single instruc-
tion multiple data (SIMD) processing cores. As referred to
herein, a SIMD 1s a math pipeline, or programming model,
where a kernel 1s executed concurrently on multiple process-
ing elements each with its own data and a shared program
counter. All processing elements execute a strictly 1dentical
set of instructions. The use of predication enables work-1tems
to participate or not for each 1ssued command.

[0039] In one example, each APD 104 compute unit can
include one or more scalar and/or vector floating-point units
and/or arithmetic and logic units (ALUs). The APD compute
unit can also include special purpose processing units (not
shown), such as inverse-square root units and sine/cosine
units. In one example, the APD compute units are referred to
herein collectively as shader core 122.

[0040] Having one or more SIMDs, in general, makes APD
104 1deally suited for execution of data-parallel tasks such as
are common 1n graphics processing.

[0041] Some graphics pipeline operations, such as pixel
processing, and other parallel computation operations, can
require that the same command stream or compute kernel be
performed on streams or collections of input data elements.
Respective mstantiations of the same compute kernel can be
executed concurrently on multiple compute units in shader
core 122 to process such data elements 1n parallel. As referred
to herein, for example, a compute kernel 1s a function con-
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taining mstructions declared 1n a program and executed on an
APU/APD compute umt. This function 1s also referred to as a
kernel, a shader, a shader program, or a program.

[0042] In one illustrative embodiment, each compute unit
(e.g., SIMD processing core) can execute a respective instan-
tiation of a particular work-item to process incoming data. A
work-item 1s one of a collection of parallel executions of a
kernel invoked on a device by a command. A work-1tem can
be executed by one or more processing elements as part of a
work-group executing on a compute unit. Work-items can
also be referred to as threads, lanes, or instances.

[0043] A work-item 1s distinguished from other executions
within the collection by 1ts global ID and local ID. In one
example, a subset of work-1tems 1n a workgroup that execute
simultaneously together on a single SIMD engine can be
referred to as a wavelront 136. The width of a wavelront 1s a
characteristic of the hardware SIMD engine. As referred to
herein, a workgroup 1s a collection of related work-1tems that
execute on a single compute unit. The work-items 1n the
group execute the same kernel and share local memory and

work-group barriers. Work groups can also be referred to as
thread groups or thread blocks.

[0044] All wavelronts from a workgroup are processed on
the same SIMD engine. Instructions across a waveiront are
1ssued one at a time, and when all work-1tems follow the same
control tlow, each work-item executes the same program. An
execution mask and work-1tem predication are used to enable
divergent control flow within a wavelront, where each indi-
vidual work-item can actually take a unique code path
through the kernel. Partially populated wavelronts can be
processed when a full set of work-1tems 1s not available at
wavelront start time. Wavelronts can also be referred to as
warps, vectors, or threads.

[0045] Commands can be 1ssued one at a time for the wave-
front. When all work-1tems follow the same control flow, each
work-item can execute the same program. In one example, an
execution mask and work-1tem predication are used to enable
divergent control tlow where each individual work-i1tem can
actually take a unique code path through a kernel driver.
Partial wavetronts can be processed when a full set of work-
items 1s not available at start time. For example, shader core
122 can simultaneously execute a predetermined number of
wavelronts 136, each wavelront 136 comprising a predeter-
mined number of work-items.

[0046] Within the system 100, APD 104 includes 1ts own
memory, such as graphics memory 130. Graphics memory
130 provides a local memory for use during computations in
APD 104. Individual compute umts (not shown) within
shader core 122 can have their own local data store (not
shown). In one embodiment, APD 104 includes access to
local graphics memory 130, as well as access to the memory
106. In another embodiment, APD 104 can include access to
dynamic random access memory (DRAM) or other such
memories (not shown) attached directly to the APD 104 and
separately from memory 106.

[0047] Intheexample shown, APD 104 also includes one or
(n) number of command processors (CPs) 124. CP 124 con-
trols the processing within APD 104. CP 124 also retrieves
commands to be executed from command buffers 125 1n

memory 106 and coordinates the execution of those com-
mands on APD 104.

[0048] In one example, CPU 102 mputs commands based
on applications 111 into appropriate command buflers 125.
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As referred to herein, an application 1s the combination of the
program parts that will execute on the compute unmts within

the CPU and APD.

[0049] A plurality of command buffers 125 can be main-
tained with each process scheduled for execution on the APD
104.

[0050] CP 124 can be implemented 1n hardware, firmware,

or software, or a combination thereof. In one embodiment, CP
124 1s implemented as a reduced instruction set computer
(RISC) engine with microcode for implementing logic
including scheduling logic.

[0051] APD 104 also includes one or (n) number of dis-
patch controllers (DCs) 126. In the present application, the
term dispatch refers to a command executed by a DC that uses
the context state to initiate the start of the execution of a kernel
for a set of work groups on a set of compute units. DC 126
includes logic to mitiate workgroups in the shader core 122.
In some embodiments, DC 126 can be implemented as part of
CP 124.

[0052] System 100 also includes a hardware scheduler
(HWS) 128 for selecting a process from a run list 150 for
execution on APD 104. HWS 128 can select processes from
run list 150 using round robin methodology, priority level, or
based on other scheduling policies. The prionty level, for
example, can be dynamically determined. HWS 128 can also
include functionality to manage the run list 150, for example,
by adding new processes and by deleting existing processes
from run-list 150. The run list management logic of HWS 128
1s sometimes referred to as a run list controller (RLC).
[0053] In various embodiments of the present invention,
when HWS 128 initiates the execution of a process from RLC
150, CP 124 begins retrieving and executing commands from
the corresponding command buifer 125. In some 1nstances,
CP 124 can generate one or more commands to be executed
within APD 104, which correspond with commands receirved
from CPU 102. In one embodiment, CP 124, together with
other components, implements a prioritizing and scheduling
of commands on APD 104 1n a manner that improves or
maximizes the utilization of the resources of APD 104 and/or
system 100.

[0054] APD 104 can have access to, or may include, an
interrupt generator 146. Interrupt generator 146 can be con-
figured by APD 104 to interrupt the OS 108 when interrupt
events, such as page faults, are encountered by APD 104. For
example, APD 104 can rely on interrupt generation logic
within IOMMU 116 to create the page fault interrupts noted
above.

[0055] APD 104 can also include preemption and context
switch logic 120 for preempting a process currently running
within shader core 122. Context switch logic 120, for
example, includes functionality to stop the process and save
its current state (e.g., shader core 122 state, and CP 124 state).

[0056] As referred to herein, the term state can include an
initial state, an intermediate state, and a final state. An 1nitial
state 1s a starting point for a machine to process an input data
set according to a program 1n order to create an output set of
data. There 1s an intermediate state, for example, that needs to
be stored at several points to enable the processing to make
torward progress. This intermediate state 1s sometimes stored
to allow a confinuation of execution at a later time when
interrupted by some other process. There 1s also final state that
can be recorded as part of the output data set

[0057] Preemption and context switch logic 120 can also
include logic to context switch another process into the APD
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104. The functionality to context switch another process nto
running on the APD 104 may include instantiating the pro-
cess, for example, through the CP 124 and DC 126 to run on
APD 104, restoring any previously saved state for that pro-
cess, and starting 1ts execution.

[0058] Memory 106 can include non-persistent memory
such as DRAM (not shown). Memory 106 can store, e.g.,
processing logic instructions, constant values, and variable
values during execution of portions of applications or other
processing logic. For example, in one embodiment, parts of
control logic to perform one or more operations on CPU 102
can reside within memory 106 during execution of the respec-
tive portions of the operation by CPU 102. The term “pro-
cessing logic” or “logic,” as used herein, refers to control flow
commands, commands for performing computations, and
commands for associated access to resources.

[0059] During execution, respective applications, OS func-
tions, processing logic commands, and system software can
reside in memory 106. Control logic commands fundamental
to OS 108 will generally reside in memory 106 during execu-
tion. Other software commands, including, for example, ker-
nel mode driver 110 and software scheduler 112 can also
reside 1n memory 106 during execution of system 100.

[0060] In this example, memory 106 includes command
butilers 1235 that are used by CPU 102 to send commands to
APD 104. Memory 106 also contains process lists and pro-
cess 1mformation (e.g., active list 152 and process control
blocks 154). These lists, as well as the information, are used
by scheduling software executing on CPU 102 to communi-
cate scheduling information to APD 104 and/or related sched-
uling hardware. Access to memory 106 can be managed by a
memory controller 140, which 1s coupled to memory 106. For
example, requests from CPU 102, or from other devices, for
reading from or for writing to memory 106 are managed by
the memory controller 140.

[0061] Referring back to other aspects of system 100,
IOMMU 116 1s a multi-context memory management unit.

[0062] As used herein, context (sometimes referred to as
process) can be considered the environment within which the
kernels execute and the domain 1n which synchronization and
memory management 1s defined. The context includes a set of
devices, the memory accessible to those devices, the corre-
sponding memory properties and one or more command-
queues used to schedule execution of a kernel(s) or operations
on memory objects. On the other hand, process can be con-
sidered the execution of a program for an application waill
create a process that runs on a computer. The OS can create
data records and virtual memory address spaces for the pro-
gram to execute. The memory and current state of the execu-
tion of the program can be called a process. The OS will
schedule tasks for the process to operate on the memory from
an 1nitial to final state.

[0063] Referring back to the example shown 1n FIG. 1A,
IOMMU 116 includes logic to perform virtual to physical
address translation for memory page access for devices
including APD 104. IOMMU 116 may also include logic to
generate 1nterrupts, for example, when a page access by a
device such as APD 104 results 1n a page fault. IOMMU 116
may also include, or have access to, a translation lookaside
buifer (TLB) 118. TLB 118, as an example, can be imple-
mented 1 a content addressable memory (CAM) to acceler-
ate translation of logical (1.e., virtual) memory addresses to
physical memory addresses for requests made by APD 104
for data 1n memory 106.
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[0064] In the example shown, communication infrastruc-
ture 109 interconnects the components of system 100 as
needed. Communication infrastructure 109 can include (not
shown) one or more of a peripheral component 1nterconnect
(PCI) bus, extended PCI (PCI-E) bus, advanced microcon-
troller bus architecture (AMBA) bus, accelerated graphics
port (AGP), or such communication infrastructure. Commu-
nications infrastructure 109 can also include an Ethernet, or
similar network, or any suitable physical communications
infrastructure that satisfies an application’s data transfer rate
requirements. Communication infrastructure 109 includes
the functionality to interconnect components icluding com-
ponents ol computing system 100.

[0065] In this example, OS 108 includes functionality to
manage the hardware components of system 100 and to pro-
vide common services. In various embodiments, OS 108 can
execute on CPU 102 and provide common services. These
common services can include, for example, scheduling appli-
cations for execution within CPU 102, fault management,
interrupt service, as well as processing the input and output of
other applications.

[0066] In some embodiments, based on interrupts gener-
ated by an interrupt controller, such as iterrupt controller
148, OS 108 invokes an approprate interrupt handling rou-
tine. For example, upon detecting a page fault interrupt, OS
108 may mnvoke an interrupt handler to initiate loading of the
relevant page into memory 106 and to update corresponding,
page tables.

[0067] OS 108 may also include functionality to protect
system 100 by ensuring that access to hardware components
1s mediated through OS managed kernel functionality. In
elfect, OS 108 ensures that applications, such as applications
111, run on CPU 102 1n user space. OS 108 also ensures that
applications 111 invoke kernel functionality provided by the
OS to access hardware and/or input/output functionality.
[0068] By way of example, applications 111 include vari-
ous programs or commands to perform user computations
that are also executed on CPU 102. The unification concepts
can allow CPU 102 to seamlessly send selected commands
tor processing on the APD 104. Under this unified APD/CPU
framework, input/output requests from applications 111 will
be processed through corresponding OS functionality.

[0069] In one example, KMD 110 implements an API
through which CPU 102, or applications executing on CPU
102 or other logic, can invoke APD 104 functionality. For
example, KMD 110 can enqueue commands from CPU 102
to command builers 125 from which APD 104 will subse-
quently retrieve the commands. Additionally, KMD 110 can,
together with SWS 112, perform scheduling of processes to
be executed on APD 104. SWS 112, for example, can include

logic to maintain a priornitized list of processes to be executed
on the APD.

[0070] In other embodiments of the present invention,
applications executing on CPU 102 can entirely bypass KMD
110 when enqueuing commands.

[0071] In some embodiments, SWS 112 maintains an

active list 152 1n memory 106 of processes to be executed on
APD 104. SWS 112 also selects a subset of the processes in

active list 152 to be managed by HWS 128 1n the hardware.
Information relevant for running each process on APD 104 1s

communicated from CPU 102 to APD 104 through process
control blocks (PCB) 154.

[0072] Processing logic for applications, OS, and system
software can include commands specified 1in a programming
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language such as C and/or in a hardware description language
such as Verilog, RTL, or netlists, to enable ultimately config-
uring a manufacturing process through the generation of
maskworks/photomasks to generate a hardware device
embodying aspects of the mvention described herein.

[0073] A person of skill in the art will understand, upon
reading this description, that computing system 100 can
include more or fewer components than shown 1n FIG. 1A.
For example, computing system 100 can include one or more
iput interfaces, non-volatile storage, one or more output
interfaces, network interfaces, and one or more displays or
display interfaces.

[0074] FIG. 1B 1s an embodiment showing a more detailed
illustration of APD 104 shown in FIG. 1A. InFIG. 1B, CP 124
can 1nclude CP pipelines 124q, 1245, and 124¢. CP 124 can
be configured to process the command lists that are provided
as mputs from command buffers 125, shown in FIG. 1A. In
the exemplary operation of FIG. 1B, CP input 0 (124a) 1s
responsible for driving commands into a graphics pipeline
162. CP inputs 1 and 2 (1245 and 124¢) forward commands to
a compute pipeline 160. Also provided 1s a controller mecha-
nism 166 for controlling operation of HWS 128.

[0075] In FIG. 1B, graphics pipeline 162 can include a set
of blocks, referred to herein as ordered pipeline 164. As an
example, ordered pipeline 164 includes a vertex group trans-
lator (VGT) 164a, a primitive assembler (PA) 1645, a scan
converter (SC) 164¢, and a shader-export, render-back unit
(SX/RB) 176. Each block within ordered pipeline 164 may
represent a different stage of graphics processing within
graphics pipeline 162. Ordered pipeline 164 can be a fixed
function hardware pipeline. Although other implementations
that would be within the spirit and scope of the present inven-
tion can be used.

[0076] Although only a small amount of data may be pro-
vided as an input to graphics pipeline 162, this data will be
amplified by the time 1t 1s provided as an output from graphics
pipeline 162. Graphics pipeline 162 also includes DC 166 for
counting through ranges within work-1tem groups recerved
from CP pipeline 124a. Compute work submitted through DC
166 1s semi-synchronous with graphics pipeline 162.

[0077] Compute pipeline 160 includes shader DCs 168 and
170. Each of the DCs are configured to count through com-
pute ranges within work groups received from CP pipelines
1245 and 124c.

[0078] The DCs 166, 168, and 170, 1llustrated in FIG. 1B,

receive the iput ranges, break the ranges down 1nto work-
groups, and then forward the workgroups to shader core 122.

[0079] Since graphics pipeline 162 1s generally a fixed
function pipeline, 1t 1s difficult to save and restore 1ts state, and
as a result, the graphics pipeline 162 1s difficult to context
switch. Therefore, in most cases context switching, as dis-
cussed herein, does not pertain to context switching among
graphics processes. The exception 1s for graphics work 1n
shader core 122, which can be context switched.

[0080] Shader core 122 can be shared by graphics pipeline
162 and compute pipeline 160. Shader core 122 can be a
general processor configured to run wavefronts.

[0081] In one example, all work within compute pipeline
160 15 processed within shader core 122. Shader core 122 runs
programmable soitware code and includes various forms of
data, such as state data. Compute pipeline 160, however, does
not send work to graphics pipeline 162 for processing. After
processing ol work within graphics pipeline 162 has been
completed, the completed work 1s processed through a render
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back unit 176, which does depth and color calculations, and
then writes 1ts final results to graphics memory 130.

[0082] FIG. 2 1s a more detailed block diagram illustration
of exemplary APD 104 shown 1n FIG. 1B. As shown 1n FIG.
1B., APD 104 includes compute pipeline 160, which provides
inputs 1 and mnput 2 to the Shader core 122. The exemplary
APD 1illustrated 1n FIG. 2 includes eight compute pipelines
CS Pipe 0-CS Pipe 7 (CS PO-CS P7). This configuration 1s
configured to process multiple compute tasks through mul-
tiple compute pipelines. The multiple compute pipelines
within APD 200 facilitate a flexible resource allocation
among compute workloads. Although the exemplary APD
200 1llustrates e1ght compute pipelines, one of ordinary skill
in the art will appreciate that other numbers of compute and
graphics inputs can be used.

[0083] o efficiently process data from multiple compute
inputs, arbitration occurs between pipeline queues within
compute pipelines CS P0-CS P7, as illustrated 1n greater
detail in FIG. 3. More specifically, arbitration policies 1n
accordance with embodiments of the present invention allo-
cate APD resources among the multiple pipeline inputs. A
shader mnput block (SPI) 202 provides an arbitration scheme
for submitting wavelronts between compute pipelines CS
P0O-CS P7 and graphics pipeline 204. Wave dispatchers 206
are connected from two compute pipelines alternate to for-
ward the wavelronts to shader core 208. Shader core 208
executes the wavetronts.

[0084] FIG. 3 1s a more detailed block diagram 1llustration
of compute pipelines CS P0-CS P7 shown 1n FIG. 2. These
cight compute pipelines participate 1n arbitration for access to
the shared shader core 208. Each compute pipeline CS P0-CS
P7, for example, includes a hardware queue descriptor HQD.
Compute pipeline CS PO 1s associated with HQDO0, compute

pipeline CS P1 1s associated with HQD1 and so on, to CS P7
and HQD7. Each hardware queue descriptor HQD includes
an associated queue of eight memory queues. As shown 1n
FIG. 4, for example, CS PO 1s associated with queues Q0-Q7.
Similarly, CS P1 1s associated with queue (Q8-Q135, and so on
through CS Pipe 7 queues Q56-Q63. A CP multithreaded
microprocessor engine ME 301 and grid DCs Cntr0-Cntr3 are
provided to process thread groups.

[0085] As discussed above, hardware scheduler HWS 128
1s configured to select a scheduled process from RLC 150 for
execution on the APD. For example, HWS 128 supports
scheduling techniques applied to RLC 150, based upon pri-
ority level, or based on other arbitration scheduling critena.
Additionally, KMD 110, together with SWS 112, can perform
scheduling of processes to be executed on the APD. The OS
SWS 112, for example, can include logic to maintain a pri-
oritized list ol processes to be executed on APD 200 as aresult
ol arbitration.

[0086] In another illustrative embodiment, arbitration
between compute pipelines CS P0-CS P7 hardware queue
descriptors HQDO0-HQD7 of each pipeline 1s resolved using a
multilevel scheduling process. In implementations with mul-
tiple compute mputs, multilevel scheduling can be used to
control resource allocation among multi-level priority queues
where each compute mput 1s associated with jobs of similar
priority.

[0087] The OS can schedule the queues (Q0-Q7 for process-
ing by compute pipeline hardware queue descriptors HQDO-
HQD7 by programming the hardware queue descriptors. Any
of the eight hardware queue descriptors HQD can contain an
active queue. The queues associated with one compute pipe-
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line may be independent processes or can represent an 1mple-
mentation of a subset of processes. For example, any system
established in one pipeline can interact with queues or sets of
queues irom other compute pipelines through synchroniza-
tion established 1n one or more of the shared memories, such
as L2 R/W Cache 174, graphics or memory 130 1llustrated 1n
FIGS. 1A and 1B

[0088] The hardware queue descriptor HQD associated
with each queue can provide the ability for the OS to pre-empt
an active process from dispatching any more work groups that
have not yet allocated any shader resources. Any queue that 1s
removed from the hardware can be rescheduled for continu-
ation at a later time or terminated 11 desired by the OS.

[0089] FEach of the hardware queue descriptors HQDO-
HQD7 can include a memory queue descriptor address
MQDA of the OS allotted memory queue descriptor MQD.
The OS can use the MQD to store the permanent status of the
queue and provide the MQDA address to the HQD so the
hardware can update to select fields of the memory queue
descriptor. When the memory queue descriptor i1s discon-
nected from a HQD, the hardware will use a portion of the
MQD to store necessary persistent data temporarily during
any pre-emption. A subset of the space can also be used for
synchronization coordination between the OS and the HQD.

(Queue Arbitration

[0090] FIG. 5 1s a flowchart of an exemplary method of
practicing an embodiment of the present invention. In step
502 of FIG. 5, a ready queue and an active queue are selected
from among the eight hardware queue descriptors HQDO-

HQD7 queues for each compute pipeline CS P0-CS P7. By
way ol example, the selection can be performed 1n parallel

and independently by each compute pipeline.

[0091] 1n one embodiment of the present imnvention, the
following register controls are provided per wavelront queue
packet:

[0092] 1). Queue Active (1 bit),

[0093] 2). Queue priority (4 bits 0-15—L-H), 3),

[0094] 3). Quantum Duration (5 bits in units 5000 clks),
[0095] 4). Quantum Enable (1 bat),

[0096] 5). Pipe Priority (2 bits), and

[0097] 6). Ready (A “Ready” indicates that the queue is

active AND (not empty, OR dispatch pipe not empty) AND
queue not stalled.

[0098] In step 504, the queue with the highest queue prior-
ity that 1s determined to be ready for processing 1s selected.
Once selected, for example, a queue remains selected until
one of the following conditions occurs:

[0099] 1). a higher priority queue becomes ready,

[0100] 2). a quantum i1s enabled, such as the processing
duration 1s exceeded and another queue of the same priority 1s
ready for processing,

[0101] 3). a quantum 1s disabled and a wavetront packet 1n
the current queue writes any other queue priority register and
another queue of same priority 1s ready,

[0102] 4). the current queue wavelront packet pre-empts
the queue from the compute pipeline and schedules, for
example, a smart wait on specific conditions such as timer
expiration,

[0103] 3). a current queue and compute pipeline DC 206
become empty and any other queue in the same compute
pipeline 1s ready, and

[0104] 6). the OS requests the current queue to pre-empt.
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[0105] At step 506, the queue arbiter at the top of the
compute pipeline signals a respective CP ME 301 thread to
stop on the next packet boundary when the arbiter determines
a better queue 1s ready for processing. If 1t 1s determined that

a better queue 1s not available, the processes continues at step
508.

[0106] Atstep 510, CP ME 301 performs a context switch-
ing routine and signals the fetcher to stop fetching queue data
and the DC to stop dispatching waveironts for the current
queue. CP ME 301 can store the restart thread group 1d of the
respective grid DC Contr 0-Contr 3.

[0107] At step 512, the switching compute pipeline’s cur-
rent persistent state 1s stored 1n the respective memory queue
descriptor MQD at a pre-defined offset to be used for state
pre-load prior to restarting the queue. An end of process
(EOP) fence event can be inserted that targets a MQD with an
end of pipe stored word current final read address. In the event
the queue 1s removed from the hardware while work 1s out-
standing 1n the shader complex, the HQD final read address 1s
be stored 1n the MQD. Then the low level driver can determine
when all outstanding work for the queue has been completed
by comparing the top of pipe final read address and the end of
pipe final read address, when they match all work has finished

[0108] Atstep 514, the state of the previous queue 1s sched-
uled to be saved and pre-fetched data 1s scheduled to be
discarded. The CP ME can release the fetcher to select the
next queue for processing. If the next queue has first time state
bit set, the fetcher will mnsert a load of the stored persistent
state from the MQD followed by the queue read/write point-
ers setup for queue fetch. In an embodiment, the expected
time of a switch can be approximately 500 clocks until CP
ME begins processing the next queue.

[0109] Consider the following example illustrated 1n FIG.
6, where, T<n>=time, and n=clk number,

[0110] QA=Quecue Active,

[0111] QP=Queue Prionty,

[0112] QE=Quantum Enable, and

[0113] QD=Quantum Duration umts of 3000 elks. Time

increases vertically, for eight queues Q0-Q7 of a single com-
pute pipeline.

[0114] As illustrated 1n FIG. 6, for each prionty level, the
compute pipeline maintains a last queue executed scoreboard.
A return to that prionty level will process the next ready
queue. If only one queue 1s ready 1n a prionty level, 1t will
resume.

[0115] The pipes can order the queues from zero to seven,
and at reset the previous queue will be set to seven, resulting
in Q0—Q7 as the native ordering. If Q0, Q3, Q7 become
ready with a queue priority 7 at a quantum enabled just after
reset, the queues would process 1n the following order QO0,
Q3, Q7, Q0 etc. It Q35 showed up with the same queue priority
level (7), 1t would get executed after Q3 and before Q7 during
the next cycle.

[0116] I1Q1 and Q4 then arrives with a priority 10 during a
Q5 quantum, Q1 preempts Q35, and the system switches on a
quantum between Q4 and Q1 repeatedly until the queues
become empty or another queue 1s scheduled for processing.
When Q1 and Q4 become empty the process returns to Q7
since Q3 was previously processed at priority 7 level.

[0117] FIG. 6 1s an 1llustration of an exemplary method
according to embodiments of the present invention. In the
example illustrated in FIG. 6, the compute pipeline uses one
of two primary methods to yield the pipe to other queues. The
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first method 1s 1n response to the time quantum expiration and
the second 1s the writing to a queue priority register.

[0118] As discussed above, a queue with the time quantum
enabled and exceeded will enable pre-emption due to an
ex1sting queue of the same priority or an arriving queue of the
same or higher priority. If the queue 1s the only highest pri-
ority queue, the queue will retain ownership of the compute
pipeline until a queue of the same or higher priority becomes
ready.

[0119] In an alternative embodiment, an arbitration event
can be created for any write to queue priority register of the
compute pipeline. This method can enable a user to control
the amount of work 1ssued prior to enabling other queues of
the pipe to make progress. Additionally this alternative
embodiment can enable a privileged queue per CP ME.

Arbitration Across Compute Pipelines

[0120] Once the highest priority queue has been resolved
within each compute pipeline hardware descriptor queue, the
next point of arbitration has to resolve which waveiront from
the compute pipeline with the highest pipe priority will be
submitted to the shader core for processing. Because two
compute pipelines share a common DC 1n an alternating
manner, atter priority 1s determined, the shared circuits allo-
cate which compute pipeline 1s submitted to the shader core.

[0121] For example, the participating pipelines can be any
of the graphics pipelines, HP3D task (LS, HS, ES, GS, VS,
PS) and GFX task (LS, HS, ES, GS, VS, PS, CS), and four of
the eight compute pipelines. The compute pipelines can have

one of the following pipe prionities: CS_HIGH—above
HP3D, CS_MEDIUM—between HP3D and GFX

CS_LOW—below GFX.

[0122] Toresolve atie between multiple compute pipelines
of the same pipe priority level, for example, a least recently
1ssued or least recently used circuit, such as a totem pole
circuit can be employed. Each time a pipeline 1s selected to
1ssue any work to the shader core, the pipeline will be moved
to bottom of the least recently 1ssued circuit assigning that
pipeline the lowest prionity of the pipeline priorities until
another pipeline of the same priority 1ssues a wavelront. This
special circuit will be used to help foster fairness 1n 1ssuing
work groups of the same priority.

[0123] Coming out of reset, the least recently 1ssued list
will be PO0—=P7 with pipe 0 the most favored initially for the
given pipe priority.

[0124] FIG. 7 1s an illustration of an exemplary pipeline
arbitration policy. Of the five prionty levels of CS HIGH,

HP3D, CS MEDIUM, GFX, CS_LOW, from highest to low-
est priority levels the best winner will be chosen.

[0125] 1n the example, “bold” pipelines are considered for
wavelront launch and “bold and underlined” pipelines are
selected for wavelront launch.

[0126] The table 1llustrated in FIG. 7 shows an exemplary
totem pole arrangement from left to right. In the example,
compute pipelines CS P0—CS P7 are represented by Pn,
where n 1s the compute pipeline providing the wavetront and
the (-) means none=no work. H represents—pipe priority
High, M—represents pipe priority medium and L repre-
sents—pipe priority Low. For each time period, four of the
eight compute pipelines that survive compute pipeline pair
arbitration by the DC are shown in “bold” and the “bold
underlined” compute pipeline is the pipe that pipe arbitration
will select of the 6 pipelines that are competed.
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CONCLUSION

[0127] The Summary and Abstract sections may set forth
one or more butnot all exemplary embodiments of the present
invention as contemplated by the inventor(s), and thus, are not
intended to limit the present mvention and the appended
claims 1n any way.

[0128] The present invention has been described above
with the aid of functional building blocks illustrating the
implementation of specified functions and relationships
thereof. The boundaries of these functional building blocks
have been arbitrarily defined herein for the convenience of the
description. Alternate boundaries can be defined so long as
the specified functions and relationships thereol are appro-
priately performed.

[0129] The foregoing description of the specific embodi-
ments will so fully reveal the general nature of the invention
that others can, by applying knowledge within the skill of the
art, readily modity and/or adapt for various applications such
specific embodiments, without undue experimentation, with-
out departing from the general concept of the present mnven-
tion. Therefore, such adaptations and modifications are
intended to be within the meaning and range of equivalents of
the disclosed embodiments, based on the teaching and guid-
ance presented herein. It 1s to be understood that the phrase-
ology or terminology herein 1s for the purpose of description
and not of limitation, such that the terminology or phraseol-
ogy ol the present specification 1s to be interpreted by the
skilled artisan 1n light of the teachings and guidance.

[0130] The breadth and scope of the present invention
should not be limited by any of the above-described exem-
plary embodiments, but should be defined only 1n accordance
with the following claims and their equivalents.

What 1s claimed 1s:

1. A method of determining priority within an accelerated
processing device (APD) including compute pipelines, com-
prising:

selecting a first queue and a second queue from the com-

pute pipeline processing queues within each of the com-
pute pipelines in accordance with predetermined crite-
ria; and

selecting one of the first and second queues for processing

in accordance with priority criteria;

wherein the selected queue 1s processed until at least one

from the group including (1) lapse of a time quantum and

(1) a queue having a higher priority becomes available.

2. The method of claim 1, wherein processing the selected
queue comprises preempting the selected queue.

3. The method of claim 2, wherein preempting the selected
queue comprises performing a context switching operation
on the selected queue.

4. The method of claim 2, further comprising 1nitiating,
processing of a second queue after the preempting.

5. The method of claim 1, further comprising determining,
a relative priority of each of the compute pipelines.
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6. The method of claim 5, wherein the relative priornity of
cach of the compute pipelines 1s determined using a least
recently 1ssued circuit.

7. The method of claim 6, wherein the least recently 1ssued
circuit 1s a totem pole circuit.

8. The method of claim 6, further comprising assigning the
compute pipeline having the lowest priority to the bottom the
circuit.

9. The method of claim 1, wherein the first queue 1s a ready
queue.

10. The method of claim 1, wherein the second queue 1s an
active queue.

11. The method of claim 1, wherein the predetermined
criteria 1include (1) a queue priority, (11) a queue quantum
duration, and (111) a queue ready control.

12. A system, comprising:

a memory; and

an accelerated processing device (APD) including com-

pute pipelines coupled to the memory, wherein the com-
pute pipelines are configured to, based on an mstruction
stored 1n memory,
select a first queue and a second queue from compute
pipeline processing queues within each of the compute
pipelines 1n accordance with predetermined criteria;

select one of the first and second queues for processing in
accordance with priority criteria; and

process the selected queue until at least one from the group

including (1) lapse of a time quanta and (1) a queue
having a higher priority becomes available.

13. The system of claim 12, wherein the compute pipelines
are configured to preempt processing the selected queue.

14. The system of claim 13, wherein the compute pipelines
are configured to context the selected queue during the pre-
empting.

15. The system of claim 13, wherein the compute pipelines
are configured to 1nitiate processing of a second queue after
the preempting.

16. The system of claim 12, further comprising a shader
input block coupled to the compute pipelines and configured
to determine a relative priority of each of the compute pipe-
lines.

17. The system of claim 16, wherein the relative priority of
cach of the compute pipelines 1s determined using a least
recently 1ssued circuit.

18. The system of claim 17, wherein the least recently
1ssued circuit 1s a totem pole circuit.

19. The system of claim 17, further comprising assigning
the compute pipeline having the lowest priority to the bottom
of the circuat.

20. The method of claim 12, wherein the first queue 1s a
ready queue.

21. The method of claim 12, wherein the second queue 1s an
active queue.

22. The method of claim 12, wherein the predetermined
criteria include (1) a queue priority, (1) a queue quantum
duration, and (111) a queue ready control.
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