a9y United States
12y Patent Application Publication o) Pub. No.: US 2013/0091266 Al

US 20130091266A1

Bhave et al. 43) Pub. Date: Apr. 11, 2013
(54) SYSTEM FOR ORGANIZING AND FAST (52) U.S.CL
SEARCHING OF MASSIVE AMOUNTS OF 10) 2 IS 709/224
DAIA (57) ABSTRACT

(76) Inventors: Ajit Bhave, Pashan (IN); Arun

Ramachandran, Cupertino, CA (US);

Sai Krishnam Raju Nadimpalli,

Bangalore (IN); Sandeep Bele, Pune

(IN)

(21) Appl. No.: 13/200,996

(22) Filed: Oect.5, 2011

Publication Classification

(51) Int.Cl.
GO6F 15/16

DISPLAY
12z

INPUT DEVICE
114

CURSOR
CONTROL

116

(2006.01)

MAIN
MEMORY
106

PROCESSOR
104

ROM
108

BUS

A system to collect and analyze performance metric data
recorded 1n time-series measurements, converted 1nto uni-
code, and arranged 1nto a special data structure. The perfor-
mance metric data 1s collected by one or more probes running,
on machines about which data 1s being collected. The perfor-
mance metric data is also organized 1nto a special data struc-
ture. The data structure at the server where analysis 1s done

has a directory for every day of performance metric data
collected with a subdirectory for every resource type. Each
subdirectory contain text files of performance metric data
values measured for attributes in a group of attributes to
which said text file 1s dedicated. Each attribute has 1ts own
section and the performance metric data values are recorded
in time series as unicode hex numbers as a comma delimited
list. Analysis of the performance metric data 1s done using
regular expressions.

_“H—__-_—___"__—————-.-u_—“._—.___——“-ﬂ

I
STORAGE | SERVER
DE1\:|((]:E : 130
_— I 128

' fureane
I
I
I
I
I
| 126
I
I

COMMUNICATION |
| NETWORK LOCAL

'NTEE';ACE T K NETWORK
— : 122

| 120
I
I

—— — . T ey WY L m— — — — — — — — i b —

HOST
124

US 2013/0091266 A1l

Apr. 11, 2013 Sheet 1 of 11

Patent Application Publication

IIIIIIIIII'IIIII!IIIII'

|
|
\om_ _
:
|

221 — — —
AHOML3N il mo<wnmhz_ bt
IWI0T MHOMLIN NO YIS HOSS3004d TOHLINOD

HOSHNO
¢l

F

8¢l

bl

SMd _ 301A3A LNdNI

901

OLL
30IA3A AHOW3N

0E1 |
H3IAE3S
|

cht
AY1dSIA

49VHOLS NIVIA

illlllIIIIII]IIII'III'IIIII'II'EIII[

m . 891 991
Ol ireass] (D095

ool o] [o] [e] [fu] e
82201102 £2L01 102

US 2013/0091266 A1l

- 02.01102
= 12°2! & -C91 091
gl
S 8S 1 IDONVYWHO4H3d
7> . ,
e ¢ Ol
—
-
- 2o/13
=
g oG- 20:00:00

1102/ L/8

10:00:00

pG1 |

13 3DHNOS3Y L1102y 180

0St

¢Sl

Patent Application Publication

S Ol

US 2013/0091266 A1l

JHNLONHLS 300DINN
AHOLD3HIA NI ¥1¥Q OL SINMIVA 3114 diZ 2aou’
OIH13N "4H3d 03A0ON3I OIH13N " 4H3d SS3HAINODIA S

3Q0DINN FHOLS LHIANOD

Apr. 11, 2013 Sheet 3 of 11

081 0000ct - 826401102

Patent Application Publication

L Dl

0c¢

¢CC

812

SINIL
INVAI13H JHL ATINO
d0O4 31N8idL LV
INVAII3dY JHL
40 V1vad '443d 3HL
A INO DNINIVLINOD
ONIHLS M3IN Y a1INg

US 2013/0091266 A1l

S11NS3H NHNL3H ANV
AH3N0 NHO443d

3HNLONYLS
Ad0O103HIA
31VIHdOHddV
d0 JHOVD NOHA
viva d3d33N avoT

Ol ONIHLS M3N 3HL OL
vid3114D NOISS3HdX3
HVY1NY3IH JHL AddV

NI Si LI
Ad01034Idgns

¢lé 012
S30HNOS3H

JHOVO NI AQV3HTY

Apr. 11, 2013 Sheet4 of 11

v1vad a3a3an I%H¥>amzwkmwm_m_wz A1 3714
ATNO 50 dvIN
4133S OL SI V1vQa 40 3dAL 39HNOS Y zo_wuw@wmﬁ_oo
IHOVD MOIHD

HOIHM 3ININH3.13d
OL A"3N0O MO3IHD

912 v1g

V J1V3HO

9 'Ol

FNN m_m mom
———) (

| {S}[ootr-08r] a x1 3DYSN NJD @ | U

Patent Application Publication

Patent Application Publication Apr. 11, 2013 SheetSof 11 US 2013/0091266 Al

MEGHA-PROBE DATA IMPORTER e 230

[__WAITS FOR NEXT
SCHEDULE TIME

DATA IMPORT SCHEDULER RUNS THE
DATA IMPORT OPERATION AT REGULAR

INTERVALS

232
CHECKS THE PROBE DATA FOLDER
FOR NEW DATA TO BE PROCESSED

234

NO

NEW DATA ARRIVED?

236
YES /

PARSES LISTOFFILES...TXT FILES TO GET
THE LIST OF CONFIGURATION AND
PERFORMANCE DATA FILES IN

SORTED ORDER

238

NO

HAS PERFORMANCE
DATA?

240

IMPORT PERFORMANCE DATA

242

NO

HAS CONFIGURATION
DATA?

FIG. 8A

Patent Application Publication Apr. 11, 2013 Sheet 6 of 11 US 2013/0091266 Al

MEGHA-PROBE DATA IMPORTER - PERFORMANCE DATA IMPORT

f 246
LIST OF PERFORMANCE DATA
FILES (SORTED)

248
CREATES FILE GROUPS BASED ON
PERFORMANCE COUNTER GROUP. ONE

FILE GROUP PER EACH PERFORMANCE
COUNTER GROUP

CREATES A THREAD POOL AND
PROCESSES THE FILE GROUPS IN
MULTIPLE THREADS

IN EACH THREAD:
READS FILES, FINDS RESOURCES AND
CREATES RESOURCE COUNTER GROUPS.
ONE RESOURCE COUNTER GROUP
PER EACH RESOURCE

CREATES ANOTHER THREAD POOL AND
PROCESSES THE RESOURCE COUNTER
GROUPS |

IN EACH THREAD:
PROCESSES EACH RESOURCE
COUNTER GROUP DATA, UPDATES
DATA STRUCTURES IN MEMORY.

COMMITS THE CHANGES TO NRDM

Patent Application Publication Apr. 11, 2013 Sheet 7 of 11 US 2013/0091266 Al

MEGHA-PROBE DATA IMPORTER - CONFIGURATION DATA IMPORT
| 260

LIST OF CONFIGURATION DATA
FILES (SORTED)

262

PARSES FILE, FINDS TIMESTAMP
AND RESOURCE SIGNATURE

264

YES RESOURCE FOUND IN

NRDB?

NO 266

CREATES RESOURCE IN
MINISNAPSHOT FILE IN NRDB

WITH AVAILABLE CONFIGURATION
DATA

268

CONFIGURATION CHANGES AND
EVENTS WILL BE SAVED IN
UPDATES FILE IN NRDB

270

REFRESHES IN-MEMORY
CONFIGURATION DATA BY
RELOADING IT FROM NRDB

Patent Application Publication Apr. 11, 2013 Sheet 8 of 11 US 2013/0091266 Al

MEGHA-NRDB ACCESS MANAGER
310 308

QUERY REQUEST HANDLER PROBE DATA IMPORTER

QUERIES QUERIES RESOURCE
CONFIGURATION DATA AND UPDATES
AND PERFORMANCE CONFIGURATION AND
DATA PERFORMANCE DATA
300 |
304

NRDB ACCESS MANAGER CACHE

CACHE IN
FILE SYSTEM

NRDB
CONFIGURATION DATA

PERFORMANCE DATA

\ 306

302

FIG. 9A

Patent Application Publication Apr. 11, 2013 Sheet 9 of 11 US 2013/0091266 Al

MEGHA-NRDB ACCESS MANAGER

310y 2 e e e —
NRDB ACCESS MANAGER

QUERY

PROCESS
HANDLER

. e D

CONFIGCACHEMANAGER:

CONFIGURATION
CACHE (IN-
MEMORY)

.l_

RETURNS DATA FROM
CONFIGURATION CACHE

312

PERFCACHEMANAGER:

314
PERFORMANCE

CACHE (IN-
MEMORY AND
FILE SYSTEM .-

PERF DATA IN~YES
CACH?

PROBE
DATA
IMPORTER

318

—“_——-—-—__—_——n——_#-—_

LOADS DATA
FROM NRDB,
ADDS TO
CACHE

ONFIGURATION
AND
PERFORMANCE
DATA

321 NRDB
316 CONFIGURATION DATA
: PERFORMANCE DATA
RETURNS |
PERFORMANCE :
DATA |
|
|
UPDATE :
I
l
|
|

FLUSHES CHANGES TO
NRDB AND UPDATES

THE RESPECTIVE CACHE

320

F__--— _—_——_———————-—-—-__—-——-—-—H——_-

US 2013/0091266 Al
T
-
PTe
O
O
P
>
)
d.'.

V1vd 3ONVINHO4H3d

" “

_

| |

_ _

| v | akom__,mo §<3 _
- _ Vivad NOILVHNDIANOD R4 _ x._...\. viva 1INS3Y !
- 0| INION3 SO SRR :
o || 1HOJ3 e
- i . _ ol wx)
> Q! . | \\\._. | “
z O “ L7 " _¢F<Q 11N 34 |
N 1 - oz Ty ymmmmmr e

0l » _ \ x
¢t ,” | .
= b HOSSIOOH 4 _ /
2 ul 1S3n03- _ 7,
) 3l xgand . |)aHovo 1insay| | Rk
_ /

2 B "
< > — g | SNOILYDINddV

_
_ M “ mmmmnvw<z<§ - AlHvd QdiH1

300V 9GHN — ">

i < HITIOHINOD [~ /
S L) 1S3N03d
S 5)% _ | g, | HISMOHE 83M
= =, 00 a4 | AN
P i - 0LE 2 ctt 3 e ooomoos =
= e)
= _ 7y | _ (ONASY) _
E e . SANNISTHOAW ' 1S3N03Y IdV 1534 !
7= ST eerm o TEEEm e
= !
= TIVO ONASY !
ﬂ.n_v r....l llllllll -
=
e

Patent Application Publication Apr. 11, 2013 Sheet 11 of 11 US 2013/0091266 Al

MEGHA - QUERY REQUEST PROCESSOR (2)

——————————————— - "3

QUERY REQUEST PROCESSOR

320

|
|
1
|
PARSES SEARCH QUERY |
|
)
|
|

322 NRDB ACCESS

MANAGER

GETS ALL HIGH LEVEL RESOURCES |

]

{

|

|

l

|

|

I

|

|

|

i FOR THE TYPE SPECIFIED IN
i THE QUERY
i
|
|
|
l
|
|
|
l
I
l

324

CREATE THREAD POOL TO

PROCESS EACH RESOURCE

326 NRDB
CONFIGURATION DATA

APPLY FILTERS AS SPECIFIED
IN THE QUERY

PERFORMANCE DATA

331

DISCARD| NO
T

RESOURCE
QUALIFIED?

ANY SUB
PATHS?

NO
332

NO ~TOP LEVEL RESOURCE

QUALIFIED?

YES

US 2013/0091266 Al

SYSTEM FOR ORGANIZING AND FAST
SEARCHING OF MASSIVE AMOUNTS OF
DATA

BACKGROUND OF THE INVENTION

[0001] Inthe managementolIT systems and other systems
where large amounts of performance data 1s generated, there
1s a need to be able to gather, organize and store large amounts
of performance data and rapidly search 1t to evaluate manage-
ment 1ssues. For example, server virtualization systems have
many virtual servers running simultaneously. Management of
these virtual servers 1s challenging since tools to gather, orga-
nize, store and analyze data about them are not well adapted
to the task.

[0002] One prior art method for remote monitoring of serv-
ers, be they virtual servers or otherwise, 1s to establish a
virtual private network between the remote machine and the
server to be monitored. The remote machine to be used for
monitoring can then connect to the monitored server and
observe performance data. The advantage to this method 1s
that no change to the monitored server hardware or software
1s necessary. The disadvantage of this method 1s the need for
a reliable high bandwidth connection over which the virtual
private network sends its data. If the monitored server runs
solftware which generates rich graphics, the bandwidth
requirements go up. This can be a problem and expensive
especially where the monitored server 1s overseas 1n a data
center 1n, for example, India or China, and the monitoring
computer 1s 1n the U.S. or elsewhere far away from the server
being monitored.

[0003] Another method of monitoring a remote server’s
performance 1s to put an agent program on 1t which gathers
performance data and forward the gathered data to the remote
monitoring server. This method also suffers from the need for
a high bandwidth data link between the monitored and moni-
toring servers. This high bandwidth requirement means that
the number of remote servers that can be supported and moni-
tored 1s a smaller number. Scalability 1s also an 1ssue.

[0004] Other non IT systems generate large amount of data
that needs to be gathered, organized, stored and searched in
order to evaluate various 1ssues. For example, a bridge may
have thousands of stress and strain sensors attached to it
which are generating stress and strain readings constantly.
Evaluation of these readings by engineers 1s important to
managing safety 1ssues and i desigming new bridges or ret-
rofitting existing bridges.

[0005] Onceperformance data has been gathered, 11 there1s
a huge volume of it, analyzing it for patterns 1s a problem.
Prior art systems such as performance tools and event log
tools use relational databases (tables to store data that 1s
matched by common characteristics found 1n the dataset) to
store the gathered data. These are data warehousing tech-
niques. SQL queries are used to search the tables of time-
series performance data in the relational database.

[0006] Several limitations result from using relational data-
bases and SQL queries. First, there 1s a nipple that affects all
the other roews of existing data as new indexes are computed.
Another disadvantage 1s the amount of storage that 1s required
to store performance metric data gathered by the minute
regarding multiple attributes of one or more servers or other
resources. Storing performance data 1n a relational database
engenders an overhead cost not only 1in time but also money 1n
both storing 1t and storing it in an indexed way so that 1t can be
searched since large commercial databases can be required 11
the amount of data to be stored 1s large.

Apr. 11,2013

[0007] Furthermore, SQL queries are efficient when jo1in-
ing rows across tables using key columns from the tables. But
SQL queries are not good when the need i1s to check for
patterns 1n values of columns 1n a series of adjacentrows. This
requires custom programming in the form of “stored proce-
dures” which extract the desired mmformation programmati-
cally. This 1s burdensome, time consuming and expensive to
have to write a custom program each time a search for a
pattern 1s needed. As the pattern being searched for becomes
more complex, the complexity of the stored procedure pro-
gram also becomes more complex.

[0008] The other way of searching for a pattern requires
joining the table with itself M-1 number of times and using a
complex join clause. This becomes impractical as the number
of joins exceeds 2 or 3.

[0009] As noted earlier, the problems compound as the
amount of performance data becomes large. This can happen
when, for example, recerving performance data every minute
from a high number of sensors or from a large number of
agents monitoring different performance characteristics of
numerous monitored servers. The dataset can also become
very large when, for example, there 1s a need to store several
years of data. Large amounts of data require expensive, com-
plex, poweriul commercial databases such as Oracle.

[0010] There 1s at least one prior art method for doing
analysis of performance metric data that does not use data-
bases. It 1s popularized by the technology called Hadoop. In
this prior art method, the data 1s stored 1n file systems and
mampulated. The primary goal of Hadoop based algorithms
1s to partition the data set so that the data values can be
processed independent of each other potentially on different
machines thereby bring scalability to the approach. Hadoop
technique references are ambiguous about the actual pro-
cesses that are used to process the data.

[0011] Therelfore, a need has arisen for an apparatus and
method to reduce the amount of performance data that 1s
gathered so that more sensors or servers can be remotely
monitored with a data link of a given bandwidth. There 1s also
a need to organize and store the data without using a relational
database and to be able to search the data for patterns without
having to write stored procedure programs, or do table joins
and write complex join clauses.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 1s a block diagram of a typical server on
which the processes described herein for organizing, storing
and searching performance data can run.

[0013] FIG. 2 1s an example of a directory structure storing
one day’s performance data on a resource the performance of
which 1s being monitored remotely.

[0014] FIG. 3 1s another example of afile system containing
a separate directory for storing performance metric data for
three different days for three different resources, each
resource having two groups of attributes.

[0015] FIG. 4 1s a diagram of the directory structure of an
example of data collected by a probe.

[0016] FIG. 5 1s a flowchart of the high level process the

monitoring server performs to receive probe data and stored 1t
in the directory structure for search and analysis.

[0017] FIG. 6 1s a template for a regular expression used to
explain the syntax of a typical regular expression query.

[0018] FIG. 7 1s a flowchart of one embodiment of the
Query Request Handler module.

US 2013/0091266 Al

[0019] FIG. 8, comprised of FIGS. 8A through 8C, 1s a
flowchart of the processing of the probe data importer.

[0020] FIG.9, comprised of FIGS. 9A and 9B, 1s a diagram

of the modules in the system and a flowchart of the processing
of the NRDB Access manager module.

[0021] FIG.101sablock diagram of one embodiment of the

overall system including the major functional modules 1n the
central server called Megha, where the query request process-
ing for analysis of performance metric data occurs and where
the NDRB stores the performance metric data and configu-
ration data.

[0022] FIG. 11 1s a flowchart of the processing by one
embodiment of the Query Request Processor.

DETAILED DESCRIPTION OF THE VARIOUS
EMBODIMENTS

[0023] There 1s disclosed herein apparatus and processes
for infrastructure performance data analysis (and analysis of
other large amounts of performance data) which uses search
techniques 1nstead of relational databases to store and orga-
nize data. Data 1s stored in a special folder and directory
structure with one directory for every day’s worth of data.
This allows data to be collected, processed and stored at a
faster rate. Performance data 1s stored 1n a file system having
one directory for each day. All the performance data collected
from one or more resources 1n an IT environment or one or
more sensors in some other environment on the day corre-
sponding to the directory 1s stored 1n files within the directory.
There 1s a subdirectory for each resource where the directory
name 1s the signature for that resource. There 1s one file for a
group of attributes. Each attribute file has N sections, one for
cach attribute defined to be 1n the group. Each section has M
values, where M values comprise the entire times series of
values for that attribute for the entire day corresponding to the
resource.

[0024] The result 1s that all the collected performance data
1s stored as patterns; the patterns being data from many
sources which are sorted and stored in a time series 1n the
special directory structure described above; so all data from
all sources for a particular day 1s stored in one directory
structure. This data structure allows the data set to be searched
with time as one axis and each data element as the other axis.

[0025] Attribute values are stored either as band values or
delta values. Each value for an attribute for a particular read-
ing on a particular day 1s stored as Java UTF-8 encoded string
with each value encoded a single Unicode character. In other
words, the numbers of each performance metric value are
converted to letters of a Java UTF-8 encoded string. This
allows searching using standard regular expressions the syn-
tax of which 1s known and comprises a form of formal lan-
guage. The various elements of syntax can be used to con-
struct search queries which search through the performance
data for patterns. Regular expressions can only search text
and not numbers and that 1s why the performance metric
readings or values have their numbers converted to text before
storage.

[0026] The syntax of regular expression 1s rich with tools
that allow complex searches and pattern analysis simply by
writing an expression of the proper syntax thereby eliminat-
ing the time consuming need to write a custom program or
“stored procedure” in SQL to do the same thing in searching
the data of a relational database.

Apr. 11,2013

[0027] Unicode 1s a computing industry standard for the
consistent encoding, representation and handling of text
expressed 1n most of the world’s writing systems. It 1s a set of
approximately 1 million characters that span from hex 0O to
hex 10FFFF. There are enough unicode characters to devote a
single one to every symbol in the Japanese and Chinese
languages and all the alphabets 1n the world and all the num-
bers 1n which performance metrics are expressed. Each per-
formance metric value received from an agent i1s converted to
one of these unicode characters.

[0028] Secarching the performance data with regular
expressions defining particular patterns of data from certain
resources which satisty certain conditions expressed in the
regular expressions 1s analogous to searching large amounts
of text for keywords and reporting only those portions of the
text which fit a certain semantic usage.

[0029] The performance metric data 1s automatically con-
verted by the system to Unicode strings of alphabetic char-
acters from the set of 109,000 characters 1in the Unicode
Standard.

[0030] The use of regular expressions allows complex pat-
terns ol performance data to be searched without having to
write complex, custom programs called “stored procedures™
which would be necessary 1f a relational database was used to
store the data and SQL was used to search the database.
[0031] The system of the mvention allows users to draft
their search queries as regular expressions. The user must
know the syntax of regular expressions 1 order to do this
unless the user wishes to only use predefined searches which
some embodiments of the system of the invention provide for
selection and execution by a user. A regular expression pro-
vides a concise and flexible means for matching strings of
text, such as particular characters, words, or patterns of char-
acters.

[0032] A regular expression 1s written 1n a formal language
that can be mterpreted by a regular expression processor, a
program that either serves as a parser generator or examines
text and 1dentifies parts that match the provided specification.
[0033] Storning the Unicode characters encoding the perfor-
mance metric data in the special directory structure described
herein eliminates the need for use of an expensive database
system such as Oracle even where very large amounts of data
are collected and stored.

[0034] The performance data 1s collected by agent pro-
grams which are coupled to the sensors or are programmed on
the I'T resources being monitored. These agent programs col-
lect, compress and send the performance data over the data
link to the remote monitoring server which collects 1t, con-
verts 1t to Unicode and stores 1t 1n the directory structure
defined above. The remote monitoring server also provides an
interface for a user to compose regular expression search
queries and also provided “canned” searches which can be
run by a user, each canned search being a predefined regular
expression which the user may modity slightly to suit his or
her purposes.

[0035] The process and apparatus for collecting, storing
and processing performance metric data differs from SQL
Database technology 1n at least two ways. First, the partition
algorithm stored performance data based upon time slices.
Data1s stored in file systems sorted by time slices. A time slice
represents a point 1n time and over time, and there are many
such slices. Unlike a traditional database, this technique
allows the inventors to not impact the overall database when
new data for a time slice 1s introduced or a new time slice 1s
created. That 1s, there 1s no ripple effect.

US 2013/0091266 Al

[0036] Storing the data 1in time slices 1n the special direc-
tory structure, examples of which are shown 1n FIGS. 2 and 3,
allows the data to be searched with time as one axis and each
data element as the other axis. This 1s analogous to searching
a large amount of text for keywords and then reporting only
those portions of text that fit a certain semantic usage.
[0037] The second difference 1s that the method of analysis
and search of the performance data 1s based upon regular
expressions which are used to search Unicode encoded text
where the performance metric numbers have been converted
to Unicode text characters. Regular expressions have a fixed,
predefined syntax and semantics (together considered a
grammar) and a variety of expressions can be formed using
this syntax and semantics to search the performance data for
patterns that meet criteria expressed 1n the regular expres-
sions composed for the custom search. Regular expressions
can be derived for all different kinds of search to limit the
search to particular resources, particular attributes of those
resources, particular days or particular time intervals during
particular days, etc. Great flexibility 1s provided without the
complexity and labor of having to write custom programs 1n
the form of stored procedures to find the right data and ana-
lyze it.

[0038] The processes described here to search and analyze

performance metric data are imspired by and somewhat simi-
lar to XPATH technology. XPATH 1s a technique used to

traverse XML document data. XPATH-like techniques are
used here to analyze infrastructure performance metric data
and changes to that data over time. The processes described
herein extend the XPATH notions to the search and analysis of
data organized and stored by time slice which makes the
search and analysis techniques taught herein efficient and
fast. Search and analysis of the performance data i1s done
using path-based techniques. A graph 1s created that repre-
sents the data. The graph G 1s a representation of vertex and
edges (V,E). An edge connects two vertices and vertex has the
ability to evaluate an expression and then, based on the
expression, allow for a traversal through an appropriate edge.

[0039] FIG. 1 1s a block diagram of a typical server on
which the processes described herein for organizing, storing,
and searching performance data can run. Computer system
100 1ncludes a bus 102 or other communication mechanism
for communicating information, and a processor 104 coupled
with bus 102 for processing information. Computer system
100 also includes a main memory 106, such as a random
access memory (RAM) or other dynamic storage device,
coupled to bus 102 for storing information and instructions to
be executed by processor 104. Main memory 106 also may be
used for storing temporary variables or other intermediate
information during execution of 1nstructions to be executed
by processor 104. Computer system 100 further usually
includes a read only memory (ROM) 108 or other static
storage device coupled to bus 102 for storing static informa-
tion and 1nstructions for processor 104. A storage device 110,
such as a magnetic disk or optical disk, 1s provided and
coupled to bus 102 for storing information and 1nstructions.
Usually the performance data is stored in special directory
structures on storage device 110.

[0040] Computer system 100 may be coupled viabus 102 to
a display 112, such as a cathode ray tube (CRT) of flat screen,
for displaying information to a computer user who 1s analyz-
ing the performance data. An mput device 114, including
alphanumeric and other keys, 1s coupled to bus 102 for com-
municating information and command selections to proces-
sor 104. Another type of user iput device 1s cursor control
116, such as a mouse, a trackball, a touchpad or cursor direc-

Apr. 11,2013

tion keys for communicating direction information and com-
mand selections to processor 104 and for controlling cursor
movement ondisplay 112. This input device typically has two
degrees of freedom 1n two axes, a first axis (e.g., X) and a
second axis (e.g., v), that allows the device to specily posi-
tions 1n a plane.

[0041] The processes described herein to organize, store
and search performance data uses computer system 100 as 1ts
hardware platform, but other computer configurations may
also be used such as distributed processing. According to one
embodiment, the process to receiwve, organize, store and
search performance data 1s provided by computer system 100
in response to processor 104 executing one or more sequences
ol one or more structions contained 1n main memory 106.
Such instructions may be read into main memory 106 from
another computer-readable medium, such as storage device
110. Execution of the sequences of 1nstructions contained 1n
main memory 106 causes processor 104 to perform the pro-
cess steps described herein. One or more processors 1n a
multi-processing arrangement may also be employed to
execute the sequences of instructions contained in main
memory 106. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware mstructions to implement the invention. Thus, embodi-
ments ol the invention are not limited to any specific
combination of hardware circuitry and software.

[0042] The term “computer-readable medium” as used
herein refers to any medium that participates 1in providing
instructions to processor 104 for execution. Such a medium
may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media. Non-
volatile media include, for example, optical or magnetic
disks, such as storage device 110.

[0043] Volatile media include dynamic memory, such as
main memory 106. Transmission media include coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 102. Transmission media can also take the form
ol acoustic or light waves, such as those generated during
radio frequency (RF) and infrared (IR) data communications.
Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

[0044] Various forms of computer readable media may be
involved 1n supplying one or more sequences ol one or more
instructions to processor 104 for execution. For example, the
instructions may initially be borne on a magnetic disk of a
remote computer. The remote computer can load the 1nstruc-
tions 1nto 1ts dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on a telephone line or broad-
band link and use an 1nfrared transmitter to convert the data to
an infrared signal. An infrared detector coupled to bus 102 can
receive the data carried in the infrared signal and place the
data on bus 102. Bus 102 carries the data to main memory
106, from which processor 104 retrieves and executes the
instructions. The instructions recerved by main memory 106
may optionally be stored on storage device 110 eirther before
or after execution by processor 104.

US 2013/0091266 Al

[0045] Computer system 100 also includes a communica-
tion nterface 118 coupled to bus 102. Communication inter-
face 118 provides a two-way data communication coupling to
a network link 120 that 1s connected to a local network 122.
For example, communication interface 118 may be an inte-
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding,
type of broadbank link to the internet. As another example,
communication interface 118 may be a local area network
(LAN) card to provide a data communication connection to a
compatible LAN. Wireless links may also be implemented. In
any such implementation, communication interface 118
sends and recerves electrical, electromagnetic or optical sig-
nals that carry digital data streams representing various types
of information.

[0046] Network link 120 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 1n turn provides data communication services
through the worldwide packet data communication network,
now commonly referred to as the “Internet” 128. Local net-
work 122 and Internet 128 both use electrical, electromag-
netic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net-
work link 120 and through communication interface 118,
which carry the digital data to and from computer system 100,
are exemplary forms of carrier waves transporting the infor-
mation.

[0047] Computer system 100 can send messages and
receive data, including program code, through the network
(s), network link 120, and communication interface 118. In
the Internet example, a server 130 which 1s having its perfor-
mance data monitored might transmit performance data via
an agent program that collects 1t through Internet 128, ISP
126, local network 122 and communication interface 118 to
computer system 100. The received performance data is
stored and can be searched by the processes described later
herein.

[0048] The system according to the teachings of the mven-
tion has on the software and data side the following compo-

nents which are executed and stored on the hardware platform
described above or similar.

[0049] Data Store Manager;

[0050] Query Request Handler;

[0051] Data Access Manager;

[0052] Probe Interface; and

[0053] Propretary non-relational database referred to as

the NDRB and detailed 1n the Directory Structure heading
below and illustrated 1n FIGS. 2 and 3

[0054] Data Store Manager

[0055] This component recerves data from probes 1n a well
defined format, 1t and stores it in NRDB. A probe 1s an
external software program which collects data on a periodic
basis from an external data source and writes data into a
format which can be processed by Data Store Manager. The
Data Store Manager can have any program structure so long
as 1t can recerve data 1n the probe data format described
clsewhere herein, decompress it and store 1t 1n the NDRB 1n
the directory structure and data format described herein for
the NDRB. In the preferred embodiment, 1t will have a pro-
gram structure which can perform the processing of the tlow-
chart of FIG. 5. It can run on any off the shelf computer having
suificient speed, memory capacity and disk capacity to store
the performance data being collected.

Apr. 11,2013

[0056] Query Request Handler

[0057] This component accepts search queries from exter-
nal applications or users, and provides back the results. The
query language 1s a proprietary syntax for regular expressions
which 1s given below under the Query Definition Language
Heading, and which provides constructs for specifying search
patterns to analyze data. The Query Request Handler can have
any program structure which can receive query requests with
regular expressions embedded therein having the syntax
described below, and parse those queries and perform the
processing of the tlowchart of FIG. 7. It can run on any off the
shelf computer having suflicient speed, memory capacity and
disk capacity to store the performance data being collected.
[0058] Data Access Manager

[0059] Thiscomponent provides access to the data stored 1n
Megha’s proprietary non-relational database (NRDB). This
internal employs standard caching techniques to provide
results faster. The Data Access Manager can have any pro-
gram structure which can access directory structures like
those of the NDRB of which FIGS. 3 and 4 are examples, and
which supports the Query Request Handler requests for data
from the NDRB to perform the processing of the flowchart of
FIG. 7. It can run on any oif the shelf computer having
suificient speed, memory capacity and disk capacity to store
the performance data being collected.

[0060] Probe Interface
[0061] NRDB

[0062] All the data in Megha 1s stored in NRDB. NRDB
uses a normal file system consisting of files and folders. It
uses a special folder structure and special encoding of data
files to optimize the storage and access of data.

[0063] The entire soitware that implements the Data Store
Manager, the Search Handler, the Data Access Manager and
the Probe Interface, in the preferred embodiment 1s designed
to run on commodity hardware 1nside a Java virtual machine.
Commodity hardware 1s defined as regularly available Intel
x86/64 architecture based computers. Standard Linux distri-
bution such as CentOS 1s used as the base operating system.
[0064] As an example of how the system works to collect
performance metric data and analyze 1t, suppose server 130 1s
a server which has a couple of virtual machines running on 1t
the performance of which 1s to be monitored. The perfor-
mance metric data for each virtual machine 1s collected by an
agent or probe process (not shown) or, 1n some embodiments,
a separate probe process for every virtual machine. The per-
formance data 1s gathered on a per day basis to measure
various performance metrics on server 130.

[0065] Performance data of the server 130 itself such as
CPU cycle utilization, hard disk access time, hard disk capac-
ity, etc. may also be gathered. There are usually several met-
rics that are measured simultaneously, often on a per minute
basis.

[0066] This performance metric data gathered by the agent
process 1s compressed and packetized and the packets are sent
over the internet 128 to ISP 126 to which a local area network
122 1s connected. The local area network 1s coupled via a
network line 120 to the communications interface 118 of the
monitoring server system 100.

[0067] Probe Data Format

[0068] The performance metric data for every element 1s
collected by a probe. A probe 1s a program running on the
computer having the element or attribute being monitored.
The probe for each element periodically or sporadically (usu-
ally a call 1s made every minute) makes application program-

US 2013/0091266 Al

matic iterface calls to the operating system of the computer
or other machine to gather the performance data on the ele-
ment 1t 1s monitoring. The probes can be any agent hardware
and/or soltware combination that can collect the desired per-
formance metric data and put it into the data format described
below for probe data.

[0069] Probes don’t have to be just for IT attributes. They
can also gather data for mechnical structures or automative
systems. For example, engineers designing bridges may
attach temperature and strain sensors at various positions on
the structures, each of which 1s read by a probe program
running on a computer which periodically interrogates each
sensor from time to time, takes 1ts reading and sends 1t else-
where for storage and analysis. The probe gathers all the
sensor data, formats the data into the data structure format
described below, compresses the data structure and pack-
ctizes the compressed data for transmission over any data
path to a system elsewhere for analysis. Likewise for cars,
engines, etc. The probe system 1s more or less like the modern
day equivalent of telemetry systems used on satellites and
missiles that feed performance data back to an earth station by
a radio telemetry link.

[0070] The performance metric data values gathered by the
probes are typlcally packetized for transmission over the
Internet. The primary objective of the probe data format 1s to
reduce the amount of data which probe will produce so as to
reduce bandwidth requirements on the data link over which
the probe data 1s sent. This reduces the amount of storage
required to store the data and also makes the transmission to
another location faster. The probe programs do not do the
conversion of the performance metric data to unicode 1n the
preferred embodiment, but in some alternative embodiments,
they could.

[0071] The probe collects all the attribute data for one day
on all the elements it 1s monitoring and creates a directory
structure such as the one shown in FIG. 4. The directory
structure contains files which store the time series of attribute
values (performance metric data) for every attribute for which
the probe collected data. The attribute values are numbers and
are not converted by the probe to unicode values. That hap-
pens at the monitoring server end.

[0072] InFIG. 4, block 180 represents the top level direc-
tory, block 182 represents a folder for all host type elements,
block 184 represents a folder for all disk type elements being,
monitored. Each of the folders 182 and 184 contains a text file
that contain the attribute values obtained by the probe for
every element being momitored of the type symbolized by the
subdirectory. Each text file that contains all the performance
metric values for all the monitored elements 1n the same
group with one row containing the performance metric values
measured for one of the elements being monitored 1n that
group. For example, the host folder 182 may have a single text
tile Al.txt, but that file contains multiple row, one for each
host element being monitored. For example, blocks 186 and
188 contain the performance metric values for two particular
hosts being monitored in the group within Al.txt called H1
and H2. H1 and H2 1n blocks 186 and 188 represent unique
strings which uniquely identify the hosts for which the per-
formance metric data was collected. H1 has 1440 perfor-
mance metric measurements stored 1n the row symbolized by
the V1, V2 . . . V1440 values 1n a comma delimited list. for
host H1, a performance value was measured every minute.
Same for host H2. Blocks 190 and 192 contain performance
metric values collected by the probe for two disks D1 and D2

Apr. 11,2013

in the group of monitored elements “disk” represented by
folder 184. These performance metric values for disks D1 and

)2 are stored 1n difterent sections or rows ot a text file named
A2 txt.

[0073] Thewhole collection of data files and subdirectories
1s zipped by the probe 1into one zip file which 1s a compressed
version of the data structure. By sending a compressed ver-
sion of the data, the bandwidth requirement on the data path
between the probe and the monitoring server(s) i1s greatly
reduced. When the zip file 1s unzipped, the data structure like
that 1n F1G. 4 (or whatever the data structure 1s the number of
clements and attributes being monitored) results.

[0074] Any pavload produced by the probe must conform
to the following structure:

[0075] The first file named

[0076] ListOfFiles<YYYYMMDD_HHmmSS>_ <base64

encoded text of encrypted value of (SiteName+*_"+Server-
Name+“_"+ArraySerialNumber)>_<ProbeType>.txt

[0077] Each line 1nside this file will have name of a file
which 1s part of this payload
[0078] If the file has configuration or events data, the
file must be named Coni<YYYYMMDD
HHmmSS>_ <base64 encoded text of encrypted value
of (SiteName+“_"+ServerName+“ "+ ArraySerial-
Number)>_<ProbeType>.zip.enc

[0079] Ifthefile has performance data, the file must be
named Peri<YYYYMMDD_HHmmSS>_ <base6t4
encoded text of encrypted value of (SiteName+*_ "+
ServerName+“_+ArraySerialNumber)>_ <Probe-

Type>.zip.enc
Where:
[0080] SiteName—mname of the site assigned for the
probe
[0081] ServerName—mname of the entity from which

data 1s being collected, it 1s the text filled in by the user
during probe configuration.

[0082] ArraySerialNumber—Optional additional infor-
mation to further identify the entity.

[0083] ProbeType—Type of entity from which data 1s

being collected—VMWare, SMIS, NetApp, Amazon
ECS, Bridge Sensors

[0084] One or more .zip file as 1dentified 1n the list of files
[0085] The configuration zip file contains one or more files
which can be of two types:

[0086] Snapshot

[0087] Mini-snapshot
[0088] Snapshot
[0089] The snapshot type file contains the entire configu-

ration about the data source to which the probe 1s connected.
The name of this file 1s;: <Site Name>_<DataSource>_snap-

shot <YYYYMMDD> <HHMMSS> <Version>.txt,
where:

[0090] <Site Name>: Idenfifier for location (actual
physical site) where the probe 1s situated

[0091] <Data Source>: Identifier for the data source (re-
source, 1.€., host, disk array, printer, etc.) from which the
data 1s being collected

[0092] <YYYYMMDD> <HHMMSS>: The date and
time when the snapshot was made

[0093] <Version>: Version of the file.

US 2013/0091266 Al

[0094] The file format of snapshot 1s as follows:

Yometa

probe__1d:<Identifier>
probe__type:<Probe Type>
probe__ site:<Site Name>
probe__server:<Server Name>
probe__version:<Probe Version>
Yometa

1

t<YYYMMDD_ HHMMSS>

!

R:<ResourceType>#<Resource Id>
O:{<ResourceType>#<Another Resource_ id>,}+?
b: <Begin Time YYYMMDD_ HHMMSS >7
e:<bEnd Time YYYMMDD_HHMMSS >7
a:{<Attribute Id>=<Attribute Value>}+
r:{<Resource Type>#<Resource Id>,}+
$:{<Event Id> <space><Event String> }+

b+

b+

EXAMPLE

[0095]

Yometa

probe_ 1d:Cust_ 192.168.0.63

probe_ type:VMWare

probe__site:Custl
probe__server:192.16%.0.63

probe_ version:10

Yometa

£:20110624 062248
R:dc#Cust__192.168.0.63__datacenter-2
aname=MTNVIEW

R:ds#Cust_ 192.168.0.63_ datastore-203
a:name=FAS960__home
a:capacity=51322806272
a:freeSpace=42685091840
aruncommitted=17323200512
a:provisionedSpace=25960914944
a:type=NES
a:URL=netis://192.168.0.50//vol/volO/home/
a:sroc=disabled

r:h#Custl_ 192.168.0.63__host-171,
R:ds#Custl_ 192.168.0.63__datastore-10
a:name=storagel
$:AlarmSnmpCompleted Alarm *Host error’- an SNMP trap for entity
192.168.0.48 was sent

[0096] Updates

[0097] As configuration changes and configuration related

events occur, they will be written to a mini snapshot file. The
name of this file will be: <Site name> <Data

[0098] Source> minisnapshot_ <YYYYMMDD>_
<HHMMSS> <version>.txt <YYYYMMDD:=>_
<HHMMSS>:

[0099] The format of this file 1s exactly same as the snap-
shot file. The primary difference 1s that it will have only have
a subset of the data of the snapshot type of file. The subset
captures the changes which have occurred in configuration
data since the last time a snapshot file was made.

[0100] Performance Data

[0101] The performance data 1s a zip file which must have
the following directory structure:
[0102] <YYMMDD_HHMMSS>—This directory
name the start time of the time series specified in this
data set

Apr. 11,2013

[0103] <Resource Type>—One directory for each
resource type

[0104] <Attnibute Id>.txt—One file for each perfor-
mance metric

[0105] Each <Attribute Id>.txt has one or more lines where
cach line has the following format:

[0106] <Resource Signature>,"{ Value}*,’{<Value>}+
[0107] The value list 1s a time ordered series of values for
that performance metric for the resource specified at the
beginning of the time. I the metric value does not exist for a
particular point 1n time, then a blank or empty value 1s
allowed.

NRDB File System Structure

[0108] The performance metric data 1s stored 1n a filesys-
tem structure as defined below. One directory 1s created for
cach day 1n the format YYY YMMDD. All performance data
for all the resources 1n the data model for a particular day are
stored 1n this directory. Under this directory, there 1s a direc-
tory for each resource where the directory name 1s the signa-
ture of that resource. Under this directory, there 1s one file for
a group ol attributes. The directory will look something like
this:

<YYYYMMDD> - One Folder for each day
<Resource Type>
<AttributeGroupld>.perf

[0109] <YYMMDD_HHMMSS>—This directory
name contains the start time of the time series specified
in this data set
[0110] <Resource Type>—One directory for each

resource type
[0111] <Attrnibute Id>.txt—One file for each perfor-
mance metric <AttributeGroupld>.pert file stores
processed values for each sample 1n a compressed
format. This format 1s now described 1n detail. The file
1s divided 1nto “n” number of sections. Where “n' 1s
the attributes which are defined to be 1n the same
group. Each section will hold “m™ number of val-
ues—the entire time series values of that day for that
resource’s attribute. So, for example, if the probe
sampling interval 1s 1 minute then there will be 1440
(1440 minutes 1 a day) values. Each <Attribute 1d>.
txt has one or more lines where each line has the
following format:

[0112] <Resource Signature>*,"{Value}*,’{*,’<Value>}+

[0113] The value list 1s a time ordered series of values for

that performance metric for the resource specified at the

beginning of the time. I the metric value does not exist for a

particular point in time, then a blank or empty value 1s

allowed.

[0114] Currently, corresponding to each raw value of a

performance metric attribute received from the probe, two

types of processed value are stored:
[0115] Band value

[0116] An attribute can define the “fidelity” with
which 1t will store the raw value. This 1s called 1n Band
Factor. Band factor 1s an mnteger with a minimum
value of 1 and maximum of any positive integer value.
With a band factor of 1, there 1s no loss of fidelity. The
processed value 1s same as raw value. With a band
factor 10, the processed value will be Vi0o” of the raw
value rounded to the nearest integer.

US 2013/0091266 Al

[0117] Delta value

[0118] It 1s the change in percentage from band value
at time t-1 and band value at time t.

[0119] Each set of 1440 values of a performance metric
attribute (assuming one value 1s measured every minute) are
stored as a Java UTF-8 encoded String. Each performance
metric attribute value 1s encoded as a single Unicode charac-
ter 1n the String.

[0120] FIG. 2 1s an example of a directory structure storing
one day’s performance data on a resource the performance of
which 1s being monitored remotely. The processor 104 in
FIG. 1 1s programmed by instructions stored in main memory
106, according to one embodiment of the invention, to create
a special directory structure with one directory for each day’s
worth of data, and one subdirectory for each resource for
which performance metric data 1s being received. In FIG. 2,
block 150 represents the directory created for storing the
performance metric data collected on Aug. 14, 2011. The
subdirectory represented by block 152 represents the subdi-
rectory where performance data for the resource E1 1s to be
stored. Suppose 1n this example, that resource E1 1s the server

130 1n FIG. 1.

[0121] Each subdirectory has the directory name 1n its sig-
nature. In this case, subdirectory 152 has 20110814 1n its
directory name which 1s the name of the directory of which 1t
1s a part.

[0122] FEach subdirectory contains one attribute file for
cach group of attributes that are being measured by the per-
formance metric data that stores performance metric values.
Each attribute file has N sections, one section for each
attribute defined to be in the group for which the file was
created. Each section holds M performance metric values for
the particular attribute whose values are recorded in that
section. That section’s data comprises the entire time series of
values for the attribute to which the section 1s devoted.

[0123] Inthe example of FIG. 2, there are only two groups
of attributes 1n subdirectory 152 so there are only two files 154
and 156. Suppose each of these files represents one of the
virtual machines running on server 130. Each file 1s a time
slice of performance metric data values that records the entire
day’s worth of a metric in the section of that file devoted to
storing values for that performance metric. Typically, if a
metric has a measured value every minute, the section of the
file devoted to that metric will have 140 comma delimited
values for that metric encoded as a Java UTF-8 encoded
string. UTF-8 1s a multibyte character encoding for unicode.
UTF-8 can represent every character in the unicode character
set. Hach of the 1,112,064 code points in the unicode charac-
ter set 1s encoded 1n a UTF-8 string comprised of one to four
8-bit bytes termed octets. The earlier characters in the uni-
code character set are encoded using fewer bytes leading to

greater efficiency. The first 128 unicode character set coincide
with the 128 ASCII characters.

[0124] The system of the invention has a mapping table that
maps performance metric values into unicode characters and
then encodes them with UTF-8. Since unicode only supports
positive values, the unicode range 1s split and a first range of
unicode values 1s mapped to positive performance metric
values and a second range of unicode values 1s mapped to
negative performance metric values.

[0125] FEach performance metric value from a measure-
ment 1s encoded as a single unicode character in the hexa-
decimal number system (hex).

Apr. 11,2013

[0126] Fachnew day’s worth of data from all resources and
all probes 1s stored 1n a new directory structure. The names of
the directories, subdirectories and files include information
about the day during which the data was gathered, the
resources from which 1t was gathered and the particular group
ol attributes whose performance metric data 1s stored in the
various sections of the file.

[0127] Inthe example of FIG. 2, the directory structure 150
has files 154 and 156 for one day of metric data gathered every
minute for two different metrics from the same resource,
represented by subdirectory 152. In other words, there 1s only
one resource being monitored. Also, for the example of FIG.
2, there 1s only one attribute 1n each group of attributes and
only two attributes total have performance metric data gath-
ered. The performance metric data 1s gathered on Aug. 14,
2011 so the directory 150 created to store that day’s metric
data 1s named 20110814. There 1s only one resource being
monitored called E1 so there 1s created a subdirectory 152
called 20110814_E1. That subdirectory contains two files.
The first file 154 1s named E1/G1, and 1t stores the metric
values for metric 1 i group 1 (which has only one section
because there 1s only one metric M1 in the group E1/G1). The
values of metric M1 are gathered every minute and are sym-
bolized as values V1 through V1440 which are stored as a
comma delimited list. The value V1 1s the value of metric M1
taken at time 00:01:01 on Aug. 14, 2011, 1.e., the first minute
of Aug. 14, 2011. The value V2 1s the value of metric M1
taken at time 00:02:01 on Aug. 14, 2011, the second minute of
Aug. 14, 2011. The value V1440 1s the value of metric M1
taken at time 23:59:01 which 1s the last minute of Aug. 14,
2011. Theretore, the position of any particular value on the
comma delimited list denotes the time at which the value was
captured on Aug. 14, 2011.

[0128] The second file 156 1n the resource E1 subdirectory
1s named E1/G2 and 1t stores values for a metric M2 in group
2 (which also only has one metric 1n the group so there 1s only
one section 1n the file). It has not been shown in detail since 1t
has the same structure as the file E1/G1.

[0129] The values stored in each position of the file are
Unicode encoded meaning the numeric value of the metric’s
value has been mapped to a text character or string of char-
acters 1n the encoding process.

[0130] This allows these values to be searched using regu-
lar expressions which are a form of formal language (used 1n
the sense computer scientists use the term “formal language™)
which has predefined rules of syntax and semantics (together
called 1ts grammar). The elements from which regular expres-
s1ons can be formed are known and each element has 1ts own
known syntax for how 1t 1s structure and has its own unique
and known semantics defining what it means. Persons wish-
ing to analyze the performance metric data in any way, can
compose aregular expression using the available elements for
composing a regular expression and their syntax and seman-
tics.

[0131] FIG. 31s another example of a file system containing
a separate directory for storing performance metric data for
three different days for three different resources, each
resource having two groups of attributes. The file system
storing metric data 1s represented by block 158. Three days of
performance data are stored in directories 160, 162 and 164,
respectively. Each of these directories has three subdirecto-
ries named R1, R2 and R3, each of which 1s a folder which
contains actual files of text data encoding performance metric
values that have been measured and transmitted by the agents.

US 2013/0091266 Al

Blocks 166 and 168 represent comma delimited text files
named GRP1.TXT and GRP2.TXT storing the performance
metric data gathered on Jul. 277, 2011 for resource 1 for group
1 and group 2 attributes, respectively.

[0132] The reason for grouping different attributes pertor-
mance values in the same file 1s for speed of loading and
analysis. Typically, an analysis of a resource will involve
looking at patterns or values or value changes of several
different attributes over a particular interval. If the attributes
involved 1n the analysis are all grouped 1n the same group,
they will be stored 1n the same file. In this way, all the data
needed to do the analysis can be loaded into memory for
analysis simply by reading appropnate file containing the
attribute group for the resource under analysis from the direc-
tory structure corresponding to the day of interest. That file 1s
loaded into memory by a standard file access call to the
operating system, and the regular expression search or
searches can be performed on the data. This 1s faster than
having to load several different files or having to do SQL
queries to a database which would require a larger number of
reads.

[0133] FIG. 5 1s a high level flowchart of the process the
monitoring server performs to receive the zip files of perfor-
mance metric data from a probe, recover the data and store 1t.
Block 200 represents the process of recerving the zip file of
performance metric data from the probe. Block 202 repre-
sents the process of decompressing the zip file to recover the
data structure such as that shown in FIG. 4. Block 204 repre-
sents the process of converting the numerical performance
metric values stored in the text files to unicode characters
using a mapping table the server uses for such purposes.
Block 206 represents the process of storing the unicode data
structure derived 1n step 204 in the appropriate parts of the
NDRB data structure. Usually this just entails storing the
entire directory and all 1ts files on disk since the data structure
1s already structured as one directory for the particular day on
which the data was collected with imdividual text files of
metric data for each element being monitored in subdirecto-
ries for the type of element each text file represents.

Example of How a Regular Expression can be used
to Analyze the Metric Performance Data

[0134] Suppose an analyst wanted to know 1f CPU utiliza-
tion was between 90% and 100% {for at least 5 minutes or
more. The regular expression syntax to make a search and
analysis of the performance metric data for CPU utilization
would be 1n generic syntax:

[U90-U100]{5,} =100 -200

[0135] To convert this regular syntax to take into account
the unicode encoding of the CPU utilization metric values,
suppose a CPU utilization metric value representing 90%
utilization 1s mapped to unicode hex character a, 92.5% CPU
utilization 1s mapped to unicode hex character b, 95% to hex
character ¢, 97.5% to hex character d, and 100% to hex
character e. If CPU utilization metric values are measured
every minute, then a regular expression to determine 1f the
CPU utilization was between 90% and 100% for at least 5
minutes would be:

[a-e]{5}[g]
which means if five consecutive values 1n the file storing CPU

utilization values for the CPU 1n question on the day in
question were any combination of hex characters a through e,

Apr. 11,2013

then the expression evaluates to true. This means that every
time on that particular day the CPU utilization metric values
had five consecutive values which were any combination of
hex a through hex e, then for each of those intervals, the CPU
utilization was between 90% and 100%. This may mean the

CPU 1s maxing out and another CPU should be added.

[0136] The preferred embodiment of the invention, the user
must know the syntax of regular expressions in order to com-
pose his or her query. In alternative embodiments, a user
interface 1s provided which allows the user to think in the
problem space and compose his queries 1n plain English, and
the system converts that query into the proper syntax for a
regular expression which will perform that query and analy-
s1s. In some embodiments, the software portion of the system
of the mvention presents a user intertace which has a set of
predefined searches which the user can use to do various
forms of analysis. Each predefined search, when selected
causes a regular expression to be generated and used to search
the performance metric data and return the results. In some
embodiments, these predefined searches are templates which
have variables that can be set by the user. For example, there
may be a predefined search to determine 11 CPU utilization 1s
between x % and v % for more than z minutes where x, y and
7z are variables that the user can set before the search 1s run.

[0137] o run asearch/query, in the preferred embodiment,
the software of the system of the mvention displays a query
expression box and two time range boxes, one for a start time
and one for an end time. These start and end time boxes are
calendars 1n the preferred embodiment, and the user simply
picks the first day for which data is to be examined and picks
a second day 1n the end time calendar which 1s the last day of
data to be examined. He then types his query into the query
expression box in the syntax of the regular expression and hit
return. The software then automatically accesses the appro-
priate directory structures for the day or days specified by the
user, accesses the appropriate files that contain the perfor-
mance metric attribute values as specified in the query expres-
s10m, reads those attribute values into memory and examines
the data using the logic specified 1n the query expression.

[0138] FIG. 6 1s a template for a regular expression used to
explain the syntax of a typical regular expression query. The
h at the beginning of the regular expression indicates that this
particular query 1s designed to search host performance met-
ric data. If the query was about disks or something else,
something i1ndicative of the type of resource in question
would be 1n the place of the h.

[0139] The large left bracket indicates the beginning of the
actual query expression. The (@ symbol at the beginning of
the query expression 1s a keyword. The “CPU usage™ term 1s
the name of the attribute data to be searched and 1t 1s this
attribute name which causes the software to look up the
correct file name which contains the performance metric data
for CPU usage. The “rx” term 1ndicates that what follows 1s a
regular expression, and the “b” term 1ndicates that the type of
search 1s for band data as opposed to delta data. The [U90-
U100]{5} is a regular expression that indicates the actual
criteria to be used 1n performing the band data search, 1.e., 1t
defines which performance metric data satisiy the query and
which do not. The regular expression could also be a pointer
to another regular expression stored in a file. The pointer
would contain a unique ID for the regular expression to be
used.

US 2013/0091266 Al

[0140] The band values are computed or mapped values for
internal representation of numbers which are greater than the
highest number which can be unicoded (around 1,000,000).
For example, 11 a data transier rate 1s 20 million bits per
second and the metric 1s 20,000,000, a band value will be
computed for that metric using a reduction factor of, for
example 10 million so as to reduce the 20 million number to
the number 2 before 1t 1s unicoded. Any reduction factor that
brings the range of a performance metric which 1s a high
number down 1nto the unicode range may be used for internal
representation purposes. The searches are then done on the
computed band values and not the actual performance metric
numbers.

[0141] Delta values are usetul for analyzing performance
metric data that spikes. A delta value records how much a
value has changed since the previous time 1t was measured.
[0142] Thesystem, 1n the preferred embodiment, calculates
and stores both a band value and a delta value for some or all
performance metrics.

Query Definition Language

Objectives

[0143] Be able to traverse from a set of resources to
another set of related resources and so on

[0144] At each stage of traversal apply certain filtering
criteria:
[0145] Configuration attributes: Matching certain

value, change 1n value
[0146] Relations: Addition or deletion of a relation
[0147] Performance metrics: Matching certain pat-
terns
[0148] Basic Syntax Building Blocks that may be used to
Build a Query
[0149] XPath style data processing/filtering and this pro-
cessing will be applied to various search queries.
[0150] <Resource ‘Type>/<*Related resource type>
|[=<conf attrld> rx <regex> OR|AND . .. |[-<conf attr 1d> . .
. [©<pert attr 1d> <rx bld>IrxId <regex or regex pattern
id>][$<event id . . .][+1-<related resource type]/{Related
resource type/ . . . H{Related resource type/ . . . }

Relation Traversal:

[0151] <resource type>/<related resource type>/
[0152] Ex: v/h/d

[0153] Theabove expression will result the following path:
[0154] v->h->d

[0155] Multiple Traversal Paths:

[0156] <resource type>/{related resource type>/ . . .

Hanother related type>/ . .. }

[0157] Ex: v/{h/n}{r/d}
[0158] The above expression results to the following tra-
versals:
[0159] v/h/n (v->h->n)
[0160] v/r/d (v->r->d
[0161] Note: There 1s no limit on number or sub paths or

any level of nested paths are supported as shown in the fol-
lowing sample:
[0162] v/{h/{r/d}{n}}{r/d}
[0163] The above sample results:
[0164] v/h/r/d
[0165] v/h/n
[0166] v/r/d

Apr. 11,2013

[0167] Look for Changes in Configuration:

[0168] <resource type>[—<attr 1d>, <attrid>. .. |

[0169] Ex: v/h[~attr]l,attr2]/n

[0170] It takes all resources of type “v’, finds the related

resources of type *h’ which have configuration attributes attrl
and atttr2 have changes 1n the given time window. Then 1t
finds resources of type ‘n” which are related to the resulting
resources of type ‘h’.

[0171] Find Patterns 1in Performance Data:

[0172] <resource type>[©O*<attr 1d> <rx bld> IrxId
<expression or 1d>][@ . . .]

[0173] <resource type>[O*#twl#<attr Id> rx bld <expr. .
>/<r type>[@ twl™

[0174] <attrid><rxbld>...]
[0175] <resource type>[©*#twl#<attr Id>rx bld <expr. ..
>|/<r
[0176] type>[O#Htw2# twl <attr id> <rx bld>. . .]
[0177] Where
[0178] *: 1gnores the resulted data__ 1) can be used to

derive time windows for subsequent use__ 2)can be used
to build logical pattern _b: for banded data d: for delta
values
[0179] Special note: Any numeric value in actual regex
(exclusion=>quantifiers) should be prefix with “U” e.g. [40-
90]4{5} will become [U40-U90]{5}. Here numbers within the
character class have been modified but not the quantifier 1.¢

151,

Examples of regular expression queries of various types

EXAMPLES
[0180] v[©attr]l rx b U90+]|/h
[0181] It finds all the virtual machines which have perfor-

mance data of metric attrl value equal or exceeds 90 in the
given time window. Then 1t finds the respective hosts. It also
returns the matched performance data

[0182] v[©attr] rxId rxpl]/h
[0183] Itis sumilar to the example 2 but it specifies the regex

pattern 1d which will be defined 1n a separate file.
[0184] v[O#twl# attr]l rx b U90+]/h[© tw]1 attrl2 rx b

US0+]

[0185] The first metric has defined a time span Id (twl)
which can be referred by any other metric 1n the subsequent
path. If metric attrl has generated any matched data and the
respective time windows will be assigned the 1d “tw1” and the
same time windows will be used on metric attr2. Note that 11
the connected host has narrow time windows than the resulted
tw1, the common slots will be used on metric attr2.

[0186] Event Filter:

[0187] Syntax: [$*t: <regex pattern>, d:<regex pattern>]
[0188] Where

[0189] *:1gnores the resulted data (won’t produce any out-

put but can be used to build logical patterns)_ t: will search
against the type of the event_ d: will search against the
description of the event

[0190] The following are valid:

¢ [$t:rmAdded] /| type check

* [$d:error] // description
check

* [$t:irmAdded,d:error] // logical OR

* [$*t:rmAdded] // type check and 1gnore the result

* [$*d:error] // description check and ignore the result

* [$*t:rmAdded,d:error] // local OR and ignore the result

US 2013/0091266 Al

[0191] Resource Addition/Deletion:

[0192] <resource type>[+ <related resource types added> .
.. |[-<related resource types removed> . . . |

[0193] Ex: v[+h,d,n][-h,d]

[0194] The above expression will return resources of type
‘v’ on which relation of type ‘h’, ‘d’, ‘n” has added or relation
of type ‘h’, °‘d” has been removed.

[0195] How to exclude the data of a matched relation:
[0196] <resource type>/*<related resource=>/<sub
resource=>

[0197] Ex: v/*h/d

[0198] The above express will return resources of type v’

and the related resources of type ‘d” directly. But, 1t will skip
the data of the matched resources of type ‘h’ 1n the output.
[0199] Note: One can mix any of the above combinations.
One can specily configuration changes, performance data
filters, events list, multiple paths, etc. in the same query.

[0200] Logical AND Operator

[0201] Logical AND operations are supported at path level
and filter level.

[0202] At path level:

[0203] _Syntax: P1/[&]|P2/[&]P3/P4 . ..

Example 1

pl/&p2 _pl && p2_Note: pl qualifies only 11 p2
qualifies

Example 2

pl/&p2/&p3 _pl && p2 && p3_Note: p2 1s
dependent on p3 and pl 1s dependent on p2

Example 3

pl/p2/&p3 _pl, p2 && p3_Note: pl can quality
irrespective of p2 status but p2 can qualily only 11 p3
qualifies

Example 4

pl/&p2/p3/&pd _pl&&p2, p3&&pd_Note: p2 can
qualily 1rrespective ol p3 status

[0204] At filter level:
[0205] _Syntax: Pl[filter] |[&][filter 2][&][filter 3]/P2[{il-
ter 1][&][flter 2]. . . .

Example 1

p1[=1001 rx Demo3]&[©2001 rx b U10+]_P1
qualifies 11 both the filters find matches

Example 2

pIf1I[f21&[f3] _(f1[[f2) && 13

Example 3

p[f1&[2][&T3] _f1 && 2 && 13

Example 4

p[f1][£2][£3] _f1I£2I13

Example 5

pIf1I&[R2][f3] _fl && (2]f3)

[0206] Note: 1f 11 fails, 1t exits (no processing of 12 or 13).
Short circuit execution on _Logical AND failure. But if 11
succeeds, 1t processes both 12 and 13 irrespective of their
results_Consider “||” for union rather than logical OR.

Apr. 11,2013

Example 6

p[1]l |&&&&&[12] _11 && 12_Note: multiple &s
will be collapsed into one

Example 7

p[fl][f2]& _f1|[f2_Note: trailing & will be ignored

[0207] Others
[0208] Regular expression patterns can include brackets,
but only with matching pairs.

[0209] When aresourceis included in the higher level path,
it will not be repeated in lower level paths.

EXAMPLE
[0210] v[=attr] rx Demo3]/*h/v
[0211] In third level 1n the result, Demo3 will not be
repeated.
[0212] *v[=attr] rx Demo3]/*h/v
[0213] Since 1n first level Demo3 1s not included, 1t waill

appear 1n the third level
[0214] Regex Patterns

[0215] _Query supports both regular expression string or
regular expression pattern 1d which will be defined 1n a sepa-
rate {ile 1n the following format:

<PatternList> <Pattern id=""

extraDataPoints="""><![CDATA [<pattern>]|></Pattern>__</PatternList>

_ Example

<PatternList>__ <Pattern id="rxpl” extraDataPoints="30">__
<I[CDATA[9+]]>__</Pattern>__ </Patternlist>

[0216] Pattern with id “rxp2” will directly apply the regular
expression pattern to the performance data.

[0217] ExtraDataPoints will be used 1n the result set to
return additional data 1n addition to the matched values. It
adds 30 points before and after to the matched values.
[0218] Query Processing Flow

[0219] The configuration datatells the system what types of
resources have performance metric data stored 1n the system
and what are the attributes of each type of resource, some of
said attributes which may have had performance data mea-
sured. The configuration data basically tells what resources
have existed for what periods of time.

[0220] FIG. 7 1s a tlowchart of the processing of the query
processor. When the query processor starts, 1t first reads the
query to determine the start and end times of the interval of
performance data to be searched, and then reads a configura-
tion data file to determine for the time frame of the query (as
set by the user by setting the start date and end date for the
query expression) what resources exist or have existed. These
processes are represented by step 210. If a resource or
resources existed for only part of the relevant query interval,
the query processor determines ifrom the configuration data
the valid times these resources existed during the relevant
interval, and, if the resources still exist, at what time they
came 1nto existence during the relevant query interval.
Resources can come and go such as when a server 1s taken
offline or a disk 1s swapped out. Reading the query and the
configuration data file and determining what resources
existed at any time during the relevant interval 1s symbolized
by step 210. The configuration file also contains data which

US 2013/0091266 Al

tells which resources are related to the resources named 1n the
query. For example, a disk which 1s contained 1n or connected
to a particular server 1s indicated as related to that server.

[0221] The server reads all this data in the configuration file
and, 1n step 212, creates a map of only the relevant resources,
1.€., the resources of the system that match the resource type
identified at 208 1n the query of FIG. 6 and which existed at
any time during the query interval and any related resources.
In the preferred embodiment, the string at 208 identifies only
aresource type. In this example of FI1G. 6, the resource type 1s
a host. Step 214 represents the process of loading the entire
day of performance metric data for the relevant day, relevant
resources (named resource and related resources) and the
relevant attribute (the attribute named in the query). This
results 1n all the performance data for all resources of that type
being loaded into memory as described below for the entire
day or days which include the relevant interval starting at the
start time and ending at the end time 1dentified 1n query. These
start and end times are given by the user 1n separate boxes (not
shown) from the query expression box when the user enters
the query expression of FIG. 6 by interacting with a display on
a computer that shows the query box and start and end time
boxes.

[0222] This filtering out of performance data for resources
not ol the named type allows the query processor to easily and
quickly find performance metric data which has been stored
in the NDRB for only the relevant resource types indicated at
208 1n the query syntax of FIG. 6.

[0223] The query processor then starts parsing the query
expression and determines from element 213 of the query of
FIG. 6 what type of attribute data for the resource type named
at 208 which 1s stored in the NDRB and which the query
processor needs to perform the query. In the example of the
query of FIG. 6, parsing the query and reading portion 213
thereot, the query processor determines it will be performing,
a search on performance metric data for CPU usage on all
hosts as 1dentfied by the string at 208. This 1s symbolized by
step 214 of FIG. 7.

[0224] Also 1n step 214, the query processor examines the
start time (date and time) and end time (date and time) set by
the user on the query screen (not shown). The query processor
then goes to the NDRB and examines the directory structures
and finds the directory structures for the relevant day or days
that contain the start time and end time of the query. The query
processor then determines which subdirectory or subdirecto-
ries 1n these relevant directories which contain performance
metric data for resources of the type indicated at 208 in FIG.
6. The query processor then determines the text files 1n the
relevant subdirectories and determines which text files con-
tain the performance metric data for the group of attributes
which contain the attribute identified 1n the query expression,
1.€., the attribute 1dentified at 213. The query processor also
determines from the configuration data file what other
resources are related to the resource types 1dentified at 208
and loads the performance metric data for these related
resources for the relevant interval into memory also, which 1s
also part of step 214 1n some embodiments.

[0225] Next, in step 216, the query processor determines
whether the needed data 1s already stored 1n cache. If so, the
needed data 1s loaded from the cache memory to save the time
of a disk read. If the needed data 1s not stored in the cache, the
query processor sends a read request to the operating system
API toread the appropriate text file or files containing the data
needed for the query into memory in step 218. Step 218 loads

Apr. 11,2013

the entire day’s worth of performance data for the resources
of the type identified 1n the string at 208 in FIG. 6 and for the
group of attributes including the attribute identified at 213 of
the query expression.

[0226] Now all the performance metric data for the file
containing the performance metric data for the entire group of
attributes that contain the relevant attribute, and for the entire
day or days spanning the start date and end date are stored 1n
memory. The data in memory contains both performance
metric data for attributes not named 1n the query as well as
performance metric data for the relevant attribute which 1s
outside the start time and end time given 1n the query. To
climinate this excess data, the query process builds a new
string containing only the data for the relevant attribute and
only starting at the starting time and ending at the ending time
named 1n the query. This process 1s symbolized by step 220.
To do this, the query processor finds the row in the loaded file
which contains the performance metric data for the relevant
attribute 1dentified at 213 of the relevant resource 1dentified at
208 and counts entries until 1t reaches the value recorded for
the named start time. That performance metric value and all
subsequent values extending out to the end time are copied to
anew file in the same sequence they were stored in the NDRB,
all as symbolized by step 220.

[0227] In step 222, the logic of the regular expression
shown at 221 1s applied to the performance data in the new file
created 1n step 220 to find values which meet the criteria
expressed 1n the regular expression at 221 of the search query
for every resource of the type i1dentified at step 208. The
values so found are returned and decoded from unicode back
to the original performance metric values recerved from the
probe. ITf multiple substrings from multiple resources of the
type indicated at 208 are found which match the query, all
such matching substrings are returned along with identifying,
data as to which resource returned each string. In some
embodiments including the preferred embodiment, the meta-
data about the resource identity (the specific host identity 1n
the example of FIG. 6), the attribute identity (CPU usage in
the example of FIG. 6), as well as the start time and end time
of the query and the times the returned values were recorded
1s also returned for help 1n analyzing the results. In some
embodiments, only a true or false result 1s returned. In some
embodiments, 1f a true result 1s returned, and the sub string of
performance metric values which matched the regular expres-
s1on 1s also returned after being decoded from unicode back to
the performance metric value recerved from the probe.

Nested Queries

[0228] Sometimes complex situations arise where trouble
shooting of the performance metric data 1s needed to solve a
problem. An example would be where a host 1s running mul-
tiple virtual machines and one of them has slowed down
considerably or stopped responding and the reason why needs
to be determined. In such a case, a set of nested queries such
as those given below can be used to determine the source of
the problem.

[0229] vm|©readlatency rx b [U20-U1000]{5}/h[©Creadla-
tency rx b [U20-U1000]{5}/vm[Creadiop rx b [U1000-
U20001{51]

[0230] The above query 1s actually three nested queries
designed to drill down 1nto the performance data to find out
what the problem 1s with a slow virtual machine.

US 2013/0091266 Al

[0231] The first part of the query 1s: vin[©readlatency rx b
[U20-U1000] {5}/This query looks at the readlatency
attribute (a measure of speed) of all virtual machines which 1s
between U20 and U1000 for 5 consecutive readings. This
range U20-U1000 finds all the virtual machines which are
running pretty slow.
[0232] The question then becomes why are these virtual
machines running slowly. To find that out, one question would
be are the hosts that are executing the code of the virtual
machines themselves running slowly for some reason. In
parsing this query, the query processor determines all host
type resources which are related to the virtual machine type
identified by the string vm at the beginming of the query. The
performance metric data for all these hosts 1s loaded into
memory when the virtual machine performance metric data1s
loaded 1nto memory according to the processing of FI1G. 7. In
order to find out if the host or hosts are running slowly, the
second part of the query 1s used. That part 1s:

[0233] h|[©readlatency rx b [U20-U1000]{5}/
[0234] This second part of the query looks at all the read-
latency performance metric values for host type resources
that are related to the virtual machine resource type identified
in the first part of the query and determines which ones of
these hosts are runming slowly. The returned data indicates
which hosts have slow read latency. The question then
becomes why 1s this host or hosts running slowly. To answer
that, the third part of the query 1s used. That part determines
which virtual machines which are related to the hosts have
high 10 operations going on which are bogging down the
hosts. The third part of the query 1s:

[0235] vm|[©readiop rx b [V1000-V2000]{5}]
[0236] This query returns the identities of the wvirtual
machine which have high levels of mput/output operations
going on. This high level of I/O operation will bog down the
hardware of the host and will be the explanation why other
virtual machines have slowed down or stopped. The results
can then be used to shut down the virtual machine that 1s
bogging down the system or modify 1ts operations somehow
so as to not slow down the other virtual machines.
[0237] The results returned, for example, might indicate
that virtual machine 1 on host 1 1s running slowly and host 1
1s running slowly because virtual machine 3 on that host 1s
running a high number of I/O operations. Another set of data
that matches the three queries may show also that virtual
machine 2 running on host 2 1s running slowly because host 2
1s running slowly because virtual machine 4 running on host
2 1s carrying out a high number of I/O operations.

Module Processing Flows

[0238] FIG. 8, comprised of FIGS. 8A through 8C, 1s a
flowchart of the processing of the probe data importer. The
Probe Data Importer runs a Data Import Scheduler routine
which runs data import operations at regular intervals, as
symbolized by step 230. Step 232 checks the probe data
folder for new data to be processed. Test 234 determines 1f
new data has arrived, and, 1f not, processing returns to step
230. It new data has arrived, step 236 1s performed to parse the
list of files to get the list of configuration and performance
metric data files 1n the new data in sorted order. Test 238
determines 1f the new data has performance metric data in 1t.
I1 so, step 240 1s performed to import the performance data. If
the new data does not have performance data files 1n 1t, pro-
cessing skips from step 238 to step 242 where a test 1s per-
formed to determine 1f configuration data has arrived. If not,

Apr. 11,2013

processing returns to step 230 to wait for the next data import.
If new configuration data has arrived, step 244 1s performed to
import the new configuration data.

[0239] Step 246 starts the processing of performance met-
ric data files listed 1n the sorted list. Related performance
counters of each resource will be grouped together for storage
and access optimization. Step 248 creates file groups based on
performance counter group wherein one file group 1s formed
for each performance counter group. Step 250 creates a thread
pool and processes the file groups 1n multiple threads. Using
Java API (java.util.concurrent package), it creates a pool of
threads and each thread will pick one FileGroup at a time and
processes 1t. After completion of one FileGroup processing,
the same thread will pick the next FileGroup, 1f any, for
processing and the process repeats until all the FileGroups are
processed. Total thread count in the thread pool 1s configured
through application properties file. Step 252 1s the processing
for each thread. In each thread, the files are read and the
resources 1dentified 1n the files are found and resource counter
groups are created. There 1s one resource counter group per
cach resource. In step 254, another thread pool 1s formed, and
the resource counter groups are processed as explained
above. In step 256, for each thread, the resource counter group
data 1s processed, and data structures 1n memory are updated

to reflect the collected performance metric data for each
resource. The resource counters are used to determine where
in each text file each performance metric data value 1s to be
stored to properly reflect the time at which 1t was gathered.
Finally, 1n step 258, the data structures created 1n memory,
1.¢., the text files created when the performance metric values
are converted to unicode and stored 1n text files per the struc-
ture described elsewhere herein, are written to non volatile

storage of the NRDB.

[0240] Step 260 on FIG. 8C represents the start of process-
ing of the configuration files listed on the sorted list. In step
262, the conﬁguration data file 1s parsed and the timestamp
and resource signature 1s found. Test 264 determines whether
the resource 1dentified by the resource signature 1s found in
the NRDB. If not, step 266 creates a mimisnapshot file 1n the
NRDB using the available configuration data. If test 264
determines that the resource identified 1n the configuration
file 1s already 1n the NRDB, step 268 1s jumped to where the
configuration changes and events are saved in an updates file
in the NRDB. Finally, 1n step 270, the in-memory configura-
tion data 1s refreshed by re-loading 1t from the NRDB.

[0241] FIG. 9, comprised of FIGS. 9A and 9B, 1s a module
diagram and tlowchart of the processing of the NRDB Access
manager module. The NRDB access manager module 300
controls access to the non relational data base file system 302
where the configuration data and performance metric data 1s
stored. The NRDB access manager module 300 retrieves data
from the NRDB and uses a cache 304 in memory of the server
which 1s running module 300 and a cache 306 1n the file
system to store data which 1s frequently accessed to speed up
data access. Performance data and configuration data are
imported from the probes by the Probe Data Importer module
308 by the processing previously described and put into the
NRDB via the NRDB access manage module 300. Query
requests to analyze the performance metric data in the NRDB
are handled by Query Request Handler module 310 which
accesses the data in the NRDB via the NRDB Access Man-

ager module 300.

US 2013/0091266 Al

[0242] In FIG. 9B, the NRDB Access Manager processing
starts with recerving a request for performance metric data
from the Query Process Handler, this request symbolized by
line 312. Step 314 determines 11 the requested performance
data 1s 1n the performance data cache 304 1n the system RAM
and 1n the file system. If 1t 1s, step 316 1s jumped to, and the
performance data 1s returned from the cache to the Query
Process Handler 310. If test 314 determines the performance
data requested 1s not 1n the cache, step 318 1s performed to
load the requested data from the NRDB file system into the
cache 304, and then step 316 returns the requested data to the
Query Process Handler 310.

[0243] The Probe Data Importer 308 adds updated and new
configuration data and new performance data via data path
321 to the NRDB through step 320, and updates the respective
configuration data cache 323 in RAM or the performance data
cache 304 in RAM and 1n the NRDB file system 1tself. NRDB
Access Manager before processing performance metric data
gets the in-memory representation (Java object) of the per-
formance metric data through Performance cache. Perfor-
mance cache {first verifies in memory whether it 1s already
loaded from the file. I not, 1t loads the data from the file for
the given date. I data 1s not available, it creates a file with
template data (default values) for all the sampling intervals
tfor that day. Based on the start time, it updates the in-memory
performance metric data at approprate locations. Once all the
metrics data 1in the group 1s processed, 1t commuits the changes
back to the file. The data will be compressed (detlate format)
betfore saved 1nto the file.

[0244] FIG.101sablock diagram of one embodiment of the
overall system including the major functional modules 1n the
central server called Megha™, where the query request pro-
cessing for analysis of performance metric data occurs and
where the NDRB stores the performance metric data and
configuration data. Persons who want to query the perfor-
mance metric data send an asynchronous request using a web
browser running on a client computer 330 to a Web Request
Controller 332 running on the Megha server using a REST
application programmatic iterface (API). The Web Request
Controller 332 receives the request, validates it and then
torwards it to the Query Request Processor module 310 with
an asynchronous Java API call. Then the Web Request Con-
troller returns the status to the client computer 330 by hinting,
that the client needs to come back for the result. The Query
Request Processor 310 processes the request and incremen-
tally saves the results in a Results Cache 311. The client
computer 330 then sends back a request for the results to the
Web Request Controller 332 which checks the Results Cache
311. The results are then returned by the Web Request Con-
troller 332 to the client 330 1n an XML format if available. IT
the Query Request Processor 1s still processing the request,
the Web Request Controller send the status hint to the client
indicating 1t needs to send another request for the results later.
The Report Engine 313 1s a Java class object which sends
query requests to the Query Request Processor 310 Java API

invocation asynchronously and reads the results data from the
Result Cache 311 through a Java API.

[0245] FIG. 11 1s a flowchart of the processing by one
embodiment of the Query Request Processor. Step 320 parses
the search query. It the search query has an invalid format, the
result cache 1s updated with an error and processing 1s termi-
nated. Each query starts with a high level resource type. The
Query Request Processor reads the resource type and
responds by making a request 1n step 322 for all the perfor-

Apr. 11,2013

mance metric data in the NRDB for all resources of the type
specified 1n the query. That request 1s made through the
NRDB Access Manager. In step 324, a thread pool 1s created
to process the data from each resource of the type 1dentified in
the query. Fach thread processes data from one of the
resources of the type identified in the query. The number of
threads created 1s configured 1n the application properties file.
[0246] In step 326, any filters specified 1n the query are
applied. Filters can be things like configuration attribute
matches, events, performance data patterns, etc. All the speci-
fied filters are applied in sequential order. For example, the
following query

[0247] vm[=name rx exchangevml][$t:Network adapter
added][©usedCapacity rx b u40+]

has one configuration attribute match filter, an event filter and
one performance data pattern match filter specified.

[0248] Adter applying the filters, if a thread finds that a
resource’s performance metric data meets the criteria speci-
fied 1in the query 1n test 328, then test 330 1s performed. If test
328 determines that the performance metric data of a resource
does not meet the criteria 1n a query, step 331 1s performed to
discard the performance metric data. In step 330, the query 1s
examined to determine 11 there 1s a sub path to a sub resource
specified therein. If there 1s a sub path specified, the perfor-
mance metric data of the sub path sub resource 1s loaded from
the NRDB. Then any specified filters are applied again 1n step
326 to determine 11 the sub resource qualifies, 1.e., the perfor-
mance metric data of the sub resource meets the specified
criteria i the query. This process continues until all sub paths
specified 1n the query to sub resources have been processed.
When there are no more sub paths, or, 1f there were no sub
paths specified 1n the first place, test 332 1s performed to
determine 11 the top level resource qualified, and, 1f not, the
data 1s discarded 1n step 331. If the top level resource does
quality, the resource that qualified along with any perfor-
mance data that met the criteria specified 1n the query are
added to the Result Cache 1n step 334.

[0249] Those skilled 1n the art will appreciate alternative
embodiments that do not depart from the spirit and scope of
the above described embodiments. All such alternative
embodiments are intended to be included within the scope of
the claims appended hereto.

What 1s claimed 1s:

1. A process comprising:

receving time-series performance metric data from

probes; and

encoding said time-series performance metric data 1 a

unicode format and storing the unicode encoded perfor-
mance metric values.

2. The process of claim 1 further comprising storing said
unicoded performance metric values collected for each day in
a file system which has one directory for each separate day,
said directory having a separate sub directory for each type of
resource for which performance metric data was collected.

3. The process of claim 2 wherein each subdirectory stores
files which store unicoded performance metric values as text
files.

4. The process of claim 3 wherein each text file stored
therein unicoded performance metric values for a group of
attributes related to the performance of the resource type
corresponding to said subdirectory.

5. The process of claam 4 wherein each text file has a
separate section storing unicoded performance metric values
for just one attribute.

US 2013/0091266 Al

6. The process of claim 5 wherein each said section stores
the unicoded performance metric values for the attribute cor-
responding to said section as a comma delimited list.

7. A process comprising:

gathering performance metric data for one or more

attributes of one or more resources using one or more

probe programs;

organizing the performance metric data collected into a

data structure having:

a directory dedicated to storage of performance metric
data collected for all attributes of all resource types on
one calendar day;

a separate subdirectory for every type resource for which
performance metric data was collected;

a separate text file 1 each subdirectory storing all per-
formance metric data for a group of attributes related
to a particular resource within the resource group to
which said subdirectory 1s devoted; and

within each said text file, a separate section storing per-
formance metric data measurement values for each
attribute 1n the group of attributes stored 1n said text
file, said measurement values stored as a comma
delimited list;

compressing the data structure created 1n the previous step;

and

transmitting said compressed data structure over any data

path to another computer for analysis.

Apr. 11,2013

8. The process of claim 7 further comprising the step of
creating a first file 1n said data structure which comprises a list
of files 1n the data structure and including that list of files file
as the first file 1n the collection of files which are compressed.

9. The process of claim 8 further comprising the step of
collecting configuration data and creating a configuration file
which 1s included 1n the data structure which 1s compressed
and transmitted.

10. The process of claim 9 further comprising the step of
creating a snapshot file as part of said configuration file, said
snapshot file contaiming the entire configuration data about
the resource on which said probe 1s executing and collecting
data upon, said snapshot file containing a site name which 1s
the location where said probe 1s being executed, a data source
which identifies the data source or resource about which said
probe 1s collecting data, and the date and time the snapshot
was created imncluding the beginning time and ending time for
which the configuration data 1s valid, the resource type and 1D
for each resource reported upon, the attribute 1D, the resource
type and any event ID and, the version of the file.

11. The process of claim 10 further comprising the step of
creating a mimsnapshot file each time a configuration change

or configuration related event occurs, said minisnapshot file
having the same format as said snapshot {ile.

	Front Page
	Drawings
	Specification
	Claims

