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In the various aspects, a virtual machine operating at the
machine layer may use power consumption models to parti-
tion object code into portions, 1dentity the relative power
eiliciencies of the mobile device processors for the various
code portions, and route the code portions to the mobile
device processors that can perform the operations using the
least amount of energy. A dynamic binary translator process
may translate the object code portions mto an instruction set
language supported by the hardware component identified as
being preterred. The code portions may be executed and the
amount ol power consumed may be measured, with the mea-
surements used to generate and/or update performance and

power consumption models.
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DYNAMIC PARTITIONING FOR
HETEROGENEOUS CORES

RELATED APPLICATIONS

[0001] This application claims the benefit of priority to
U.S. Provisional Application No. 61/538,655, entitled
“Dynamic Partitioning for Heterogeneous Cores” filed Sep.
23,2011, the entire contents of which are hereby incorporated
by reference.

[0002] This application 1s also related to U.S. patent appli-
cation Ser. No. entitled “Dynamic Power Optimiza-
tion for Computing Devices” filed Nov. , 2011.

BACKGROUND

[0003] Cellular and wireless communication technologies
have seen explosive growth over the past several years. This
growth has been fueled by better communications, hardware,
larger networks and more reliable protocols. Wireless service
providers are now able to offer their customers an ever-ex-
panding array of features and services, and provide users with
unprecedented levels of access to information, resources and
communications. To keep pace with these service enhance-
ments, mobile electronic devices (e.g., cellular phones, tab-
lets, laptops, etc.) have become more powerful than ever. A
single mobile device may now include multiple complex
processors and system of chips (SOCs), which are commonly
used to perform complex and power intensive operations
without a wired connection to a power source. As a result, a
mobile device’s battery life and power consumption charac-
teristics are becoming ever more important considerations for
consumers of mobile devices.

[0004] Increased battery life maximizes the user’s experi-
ence by allowing users to do more with a wireless device for
longer periods of time. To maximize battery life, mobile
devices typically attempt to optimize power consumption
using dynamic voltage and frequency scaling techniques.
These techmiques allow programmable device resources/
pipelines to run 1n a lower power and/or lower performance
mode when non-critical applications or low load conditions
are detected. For example, a mobile device may be configured
to place one or more processors and/or resources 1 a low
power state when 1dle. While these techniques may improve
the overall battery performance, they require that device pro-
cessors and/or resources be placed 1n an 1dle state and cannot
improve the power consumption characteristics of individual
applications or processes executing on the device. Optimiz-
ing applications to reduce the amount of power consumed by
mobile device during execution will greatly enhance the user
experience.

SUMMARY

[0005] The various aspects include methods of optimizing
object code during execution on a computing device, includ-
Ing receving 1 a computing device system soltware com-
piled object code, analyzing the object code to identify opera-
tions required during execution of the object code,
partitioning the object code nto object code units based on
identified operations, 1dentitying a preferred hardware com-
ponent for each object code unit, translating at least one
object code unit 1nto an 1nstruction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit, and executing the instruction set in the identified
hardware component. In an aspect, translating at least one
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object code unit into an 1nstruction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit includes performing 1n a dynamic binary translator
an 1nstruction-sequence-to-instruction-sequence translation
ol the recerved object code. In an aspect, performing in the
dynamic binary translator an instruction-sequence-to-in-
struction-sequence translation of the received object code
includes translating a first istruction set archutecture 1nto a
second instruction set architecture. In an aspect, the first
instruction set architecture 1s the same 1nstruction set archi-
tecture as the second instruction set architecture. In an aspect,
identifying a preferred hardware component for each object
code unit includes 1dentifying the performance characteris-
tics of various hardware components of the computing device
for executing the 1dentified operations. In an aspect, 1dentify-
ing a preferred hardware component for each object code unit
includes identifying relative power efficiencies of various
hardware components of the computing device for executing
the 1dentified operations. In an aspect, 1dentifying relative
power elficiencies of various hardware components of the
computing device for executing the identified operations
includes using a power consumption model for the various
hardware components to predict an amount of power each
hardware component may consume 1n executing each code
unit, and selecting one of the various hardware components
predicted to consume a least amount of power. In an aspect,
the method further includes measuring an amount of power
consumed 1n the hardware component executing each code
unit, comparing the measured amount of power consumed to
predictions of the power consumption model, and modifying
the power consumption model based on a result of the com-
parison.

[0006] Further aspects include a computing device that
includes means for analyzing the object code to identily
operations required during execution of the object code,
means for partitioning the object code 1nto object code units
based on i1dentified operations, means for identifying a pre-
terred hardware component for each object code unit, means
for translating at least one object code unit into an 1nstruction
set supported by a hardware component 1dentified as being
preferred for that object code unit, and means for executing
the instruction set 1n the identified hardware component. In an
aspect, means for translating at least one object code unit into
an 1nstruction set supported by a hardware component 1den-
tified as being preferred for that object code unit includes
means for performing 1 a dynamic binary translator an
instruction-sequence to instruction-sequence translation of
the recerved object code. In an aspect, means for performing
in the dynamic binary translator an instruction-sequence to
istruction-sequence translation of the received object code
includes means for translating a first instruction set architec-
ture into a second instruction set architecture. In an aspect,
means for translating a first istruction set architecture into a
second 1nstruction set architecture includes means for trans-
lating the 1nstructions such that the first instruction set archi-
tecture 1s the same instruction set architecture as the second
instruction set archutecture. In an aspect, means for identify-
ing a preferred hardware component for each object code unit
includes means for identilying the performance characteris-
tics of various hardware components of the computing device
for executing the 1dentified operations. In an aspect, means
for 1dentitying a preferred hardware component for each
object code unit includes means for identifying relative power
elficiencies of various hardware components of the comput-
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ing device for executing the identified operations. In an
aspect, means for identifying relative power efficiencies of
various hardware components of the computing device for
executing the identified operations includes means for using a
power consumption model for the various hardware compo-
nents to predict an amount of power each hardware compo-
nent may consume in executing each code unit and selecting
one of the various hardware components predicted to con-
sume a least amount of power. In an aspect, the computing
device further includes means for measuring an amount of
power consumed 1n the hardware component executing each
code unit, means for comparing the measured amount of
power consumed to predictions of the power consumption
model, and means for modifying the power consumption
model based on a result of the comparison.

[0007] Furtheraspects include a computing device having a
memory, and a processor coupled to the memory, wherein the
processor 1s configured with processor-executable instruc-
tions to perform operations including recerving compiled
object code 1n system software, analyzing the object code to
identily operations required during execution of the object
code, partitioning the object code 1nto object code units based
on identified operations, identifying a preferred hardware
component for each object code unit, translating at least one
object code unit into an instruction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit, and executing the instruction set in the 1dentified
hardware component. In an aspect, the processor 1s config-
ured with processor-executable instructions such that trans-
lating at least one object code unit mto an instruction set
supported by a hardware component 1dentified as being pre-
terred for that object code unit includes performing 1n a
dynamic binary translator an instruction-sequence to mstruc-
tion-sequence translation of the received object code. In an
aspect, the processor 1s configured with processor-executable
instructions such that performing in the dynamic binary trans-
lator an 1nstruction-sequence to mnstruction-sequence transla-
tion of the received object code includes translating a first
instruction set architecture into a second 1nstruction set archi-
tecture. In an aspect, the processor 1s configured with proces-
sor-executable instructions such that the first instruction set
architecture 1s the same mstruction set architecture as the
second mstruction set architecture. In an aspect, the processor
1s configured with processor-executable instructions such
that identifying a preferred hardware component for each
object code unit includes identifying the performance char-
acteristics of various hardware components of the computing
device for executing the i1dentified operations. In an aspect,
the processor 1s configured with processor-executable
instructions such that identifying a preferred hardware com-
ponent for each object code unit includes 1dentifying relative
power elfficiencies of various hardware components of the
computing device for executing the 1dentified operations. In
an aspect, the processor 1s configured with processor-execut-
able instructions such that identifying relative power efficien-
cies ol various hardware components of the computing device
for executing the 1dentified operations includes using a power
consumption model for the various hardware components to
predict an amount of power each hardware component may
consume 1n executing each code umit and selecting one of the
various hardware components predicted to consume a least
amount of power. In an aspect, the processor 1s configured
with processor-executable mstructions to perform operations
turther including measuring an amount of power consumed 1n
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the hardware component executing each code unit, compar-
ing the measured amount of power consumed to predictions

of the power consumption model, and modifying the power
consumption model based on a result of the comparison.

[0008] Further aspects include a non-transitory computer
readable storage medium having stored thereon processor-
executable software instructions configured to cause a pro-
cessor to perform operations for optimizing object code dur-
ing execution on a computing device, the operations
including recetving in a computing device system software
compiled object code, analyzing the object code to 1dentity
operations required during execution of the object code, par-
titioning the object code i1nto object code units based on
identified operations, 1dentifying a preferred hardware com-
ponent for each object code unit, translating at least one
object code unit into an nstruction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit, and executing the instruction set in the 1dentified
hardware component. In an aspect, the stored processor-ex-
ecutable software instructions are configured to cause a pro-
cessor to perform operations such that translating at least one
object code unit 1nto an struction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit includes performing 1n a dynamic binary translator
an 1nstruction-sequence to instruction-sequence translation
of the received object code. In an aspect, the stored processor-
executable software instructions are configured to cause a
processor to perform operations such that performing in the
dynamic binary translator an instruction-sequence to mstruc-
tion-sequence translation of the received object code includes
translating a first instruction set architecture into a second
instruction set archutecture. In an aspect, the stored processor-
executable software instructions are configured to cause a
processor to perform operations such that the first instruction
set architecture 1s the same instruction set architecture as the
second 1nstruction set architecture. In an aspect, the stored
processor-executable software mstructions are configured to
cause a processor to perform operations such that identifying
a preferred hardware component for each object code unit
includes 1dentitying the performance characteristics of vari-
ous hardware components of the computing device for
executing the identified operations. In an aspect, the stored
processor-executable software instructions are configured to
cause a processor to perform operations such that identifying
a preferred hardware component for each object code unit
includes identifying relative power efficiencies of various
hardware components of the computing device for executing
the 1dentified operations. In an aspect, the stored processor-
executable software instructions are configured to cause a
processor to perform operations such that identifying relative
power elficiencies of various hardware components of the
computing device for executing the identified operations
includes using a power consumption model for the various
hardware components to predict an amount of power each
hardware component may consume 1n executing each code
unit and selecting one of the various hardware components
predicted to consume a least amount of power. In an aspect,
the stored processor-executable software instructions are
coniigured to cause a processor to perform operations includ-
ing measuring an amount of power consumed in the hardware
component executing each code unit, comparing the mea-
sured amount of power consumed to predictions of the power
consumption model, and modifying the power consumption
model based on a result of the comparison.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorpo-
rated herein and constitute part of this specification, 1llustrate
exemplary embodiments of the invention, and together with
the general description given above and the detailed descrip-
tion given below, serve to explain the features of the mnven-
tion.

[0010] FIG. 1 1s a layered computer architectural diagram
illustrating logical components and interfaces 1n a computing
system suitable for implementing the various aspects.
[0011] FIGS. 2A and 2B are process flow diagrams 1llus-
trating logical components and code transformations for dis-
tributing code 1n a format suitable for implementing the vari-
ous aspects.

[0012] FIGS. 3A and 3B are layered computer architectural
diagrams 1llustrating logical components in virtual machines
suitable for implementing the various aspects.

[0013] FIG. 4 1s a component block diagram 1llustrating
logical components and data flows of system virtual machine
in accordance with an aspect.

[0014] FIG. 5 1s a component flow diagram illustrating
logical components and data flows for optimizing the object
code to execute on multiple processing units and monitoring
the object code performance during execution for future re-
optimization 1n accordance with an aspect.

[0015] FIG. 6 1s a component flow diagram illustrating
logical components and data flows for partitioming object
code to execute on multiple processing units in accordance
with an aspect.

[0016] FIG. 7 1s a process tlow diagram illustrating an
aspect method for performing object code optimizations.
[0017] FIG. 8 1s a component block diagram 1llustrating a
mobile device suitable for implementing the various aspects.
[0018] FIG. 9 1s a component block diagram illustrating
another mobile device suitable for implementing the various
aspects.

DETAILED DESCRIPTION

[0019] The various aspects will be described 1n detail with
reference to the accompanying drawings. Wherever possible,
the same reference numbers will be used throughout the
drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative
purposes, and are not intended to limit the scope of the mnven-
tion or the claims.

[0020] Theword “exemplary” i1s used herein to mean “serv-
ing as an example, mstance, or i1llustration.” Any implemen-
tation described herein as “exemplary” 1s not necessarily to be
construed as preferred or advantageous over other implemen-
tations.

[0021] The terms “mobile device” and “computing device™
are used interchangeably herein to refer to any one or all of
cellular telephones, personal data assistants (PDA’s), palm-
top computers, wireless electronic mail recerwvers (e.g., the
Blackberry® and Treo® devices), multimedia Internet
enabled cellular telephones (e.g., the Blackberry Storm®),
Global Positioning System (GPS) recervers, wireless gaming
controllers, and similar personal electronic devices which
include a programmable processor and operate under battery
power such that power conservation methods are of benefit.
[0022] The term “resource” 1s used herein to refer to any of
a wide variety of circuits (e.g., ports, clocks, buses, oscilla-
tors, etc.), components (e.g., memory), signals (e.g., clock
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signals), functions, and voltage sources (e.g., voltage rails)
which may be used to support processors and clients running
on a computing device.

[0023] The term *“system on chip” (SOC) 1s used to refer to
a single integrated circuit (IC) chip that contains multiple
resources and processors integrated on a single substrate. A
single SOC may contain circuitry for digital, analog, mixed-
signal, and radio-frequency functions. A single SOC may also
include any number of general purpose and/or specialized
processors (DSP, modem processors, video processors).
SOCs may also include software for controlling the integrated

resources and processors, as well as for controlling peripheral
devices.

[0024] Existing performance and power management tech-
niques typically involve controlling the operating/power
states of one or more processors and/or resources. For
example, duty cycling 1s a common power management tech-
nique 1n which the processors are placed 1n an 1dle state/sleep
mode by default, and periodically woken to attend to pending
tasks and events. However, these existing techniques do not
tully exploit the different processing capabilities and power
characteristics of individual hardware components 1n a mul-
tiprocessor system and do not change the code executed by
the applications/processes based on the available hardware.

[0025] The various aspects provide methods, systems, and
devices that use virtualization techniques that may be imple-
mented within a hypervisor layer to finely control the perfor-
mance/power characteristics of active processors/resources.
A virtual machine receives object code for execution, ana-
lyzes the object code to recognize operations and parameters
characterizing the operations to be performed by the device
processors, and performs binary to binary translations to
transiform or translate the object code into new object code
that can function more efficiently on the various hardware
components present 1n a specific mobile device. This trans-
formation of object code may be accomplished according to a
device specific model. Using a model that 1s associated with
the processor architecture of a given mobile device, the vir-
tual machine may determine that executing the object code on
a particular hardware device may be inefficient, too power
intensive, too slow, etc. The virtual machine may then trans-
late the binary object code to a ditferent object binary code
having different operators (e.g., shift and add operations vs.
multiplication operations) 1n order to achieve the preferred
performance. The virtual machine may also translate the
binary object code generated for a first processor (e.g., a
general processor) to binary object code optimized for
another processor (e.g., a specialized processor).

[0026] Generally, the performance and power consumption
characteristics (herein “‘performance characteristics™) of
individual hardware components depend on a number of fac-
tors, including the physical characteristics of the components,
the computer’s architecture, and the specific operations
executed by the software processes/tasks during execution.
The number of instructions and the amount of power con-
sumed to accomplish a given processing task (e.g., execute a
soltware process) may vary from one type ol device to
another, depending upon their architectures and how they are
implemented within the computer system. In addition, the
performance characteristics of a single type of processor
(e.g., Inte]™ Core 17) can vary significantly from lot-to-lot
and chip-to-chip. Due to these variances, 1t 1s difficult to
optimize software applications for a specific hardware com-
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ponent because the actual performance characteristics of the
hardware are not available until the program 1s actually
executed.

[0027] Various aspects provide methods, systems, and
devices that improve the performance of, and/or reduce the
amount of power consumed by, active processors/resources 1n
a multiprocessor system. Performance and power consump-
tion information may be collected from one or more hardware
components at runtime and used to generate performance and
power consumption models (herein “performance models™).
The performance models may be used to identity the relative
elliciencies/performance capabilities of the various hardware
components with respect to specific operations.

[0028] Application programs/processes may be partitioned
into units or chunks, and the units/chunks may be distributed
to different processing components based on the identified
elficiencies/capabilities. In order to do this, object code of an
application may be analyzed by a virtual machine functioning
below the operating system to determine the processor on the
mobile device that can best process selected portions (e.g.,
most efficiently, using the least amount of power, fastest, most
available, etc.). For example, the virtual machine may assess
whether an object code segment can be processed more effi-
ciently (e.g., from a power/performance perspective) on a
processor other than the central processing unit (CPU), such
as 1n the digital signal processor (DSP) of a modem chip orin
a graphics processor unit (GPU) processor. If so, a code
generator may regenerate that portion of object code 1nto a
format that 1s executable by that other processor, and the
selected processor may be directed to execute the regenerated
code segment. The code regeneration process may include
adding the pointers, links, and process control instructions
necessary to enable the object code to be executed by the
multiple processors in the device as if they were processed by
the CPU. By executing some code portions on non-CPU
processors that can execute the 1nstruction more efficiently,
the various aspects enable significant gains 1n performance,
elficiency, and power consumption, compared to simply
executing applications on the device CPU.

[0029] As mentioned above, virtualization techniques may
be used to improve the performance of active processors/
resources. These virtualization techniques may be mmple-
mented 1n a virtual machine (VM), which 1s a software appli-
cation that executes application programs like a physical
hardware machine A virtual machine provides an interface
between application programs and the physical hardware,
allowing application programs tied to a specific instruction
set architecture (ISA) to execute on hardware implementing a
different instruction set architecture.

[0030] Application programs are typically distributed 1n
binary format as object code. Without the assistance of virtual
machines, object code must be executed on hardware that
supports the specific instruction set architecture (e.g., Intel
IA-32, etc.) and operating system interface for which 1t was
generated. Virtual machines circumvent these limitations by
adding a layer of software that supports the architectural
requirements of the application program and/or translates the
application program’s instruction set architecture into the
instruction set architecture supported by the hardware.

[0031] FIG. 1 1s alayered architectural diagram 1llustrating
the logical components and interfaces 1n a typical computer
system suitable for implementing the various aspects. The
illustrated computer system architecture 100 includes both
hardware components and software components. The hard-
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ware components may include execution hardware (e.g., an
application processor, digital signal processor, etc.) 102,
input/output devices 106, and one or more memories 104. The
soltware components may include an operating system 108, a

library module 110, and one or more application programs
112.

[0032] The application programs 112 use an application
program interface (API) to 1ssue ligh-level language (HLL)
library calls to the library module 110. The library module
110 uses an application binary interface (ABI) to invoke
services (e.g., via operating system calls) on the operating
system 108. The operating system 108 communicates with
the hardware components using a specific instruction set
architecture (ISA), which 1s a listing of specific operation
codes (opcode) and native commands implemented by the
execution hardware 102.

[0033] The application binary interface defines the
machine as seen by the application program processes,
whereas the application program interface specifies the
machine’s characteristics as seen by a high-level language
program. The ISA defines the machine as seen by the oper-
ating system.

[0034] FIGS. 2A and 2B are process flow diagrams 1llus-
trating the conversion of the software applications written in
a high level language (e.g., Java, C++, etc.) into distributable
code. As mentioned above, mobile device application pro-
grams are typically distributed as compiled binary files (re-
ferred to as “object code”) that are tied to a specific ISA and
operating system interface (OSI).

[0035] FIG. 2A illustrates a method 200 for converting
code from a high level language 202 to the distributable
binary object code 206 for delivery to a mobile device. Appli-
cation developers may write source code 202 using a high
level language (Java, C++, etc.), which may be converted into
object code 206 by a compiler. The compiler may be logically
organized into a front-end component, a middle-end compo-
nent, and a back-end component. The compiler front-end may
receive the source code 202 and perform type checking opera-
tions, check the source code’s syntax and semantics, and
generate an intermediate representation 204 of the source
code (“intermediate code”). The compiler middle-end may
perform operations for optimizing the intermediate code 204,
such as removing useless or unreachable code, relocating
computations, etc. The compiler back-end may translate the
optimized intermediate code 204 1into binary/object code 206,
which encodes the specific machine mstructions that will be
executed by a specific combination of hardware and OSI. The
binary/object code 206 may then be distributed to devices
supporting the specific combination of ISA and OSI for
which the binary was generated, and may be stored in a
physical memory and retrieved by a loader as a memory
image 208.

[0036] FIG. 2B illustrates an aspect method 250 for con-

verting code from a high level language source code 252 to
the distributable code 254 for delivery to a mobile device
having virtualization software. A compiler module may
receive source code 252 written 1n a high level language and
generate abstract machine code 1n a virtual instruction set
architecture (Virtual ISA code) and/or bytecode 254 that
specifies a virtual machine interface. The compiler module
may generate the Virtual ISA code/bytecode 254 without
performing any complex middle-end and back-end compiler
processing that ties the code to a specific architecture or
operating system. The generated virtual ISA code/bytecode
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254 may be distributed to mobile devices having a wide
variety of platforms and execution environments, so long as

the mobile devices include virtualization software that sup-
ports the virtual ISA used to generate the Virtual ISA code/
bytecode 254.

[0037] A computing device having virtualization software
installed may recerve the distribution bytecode 254 and store
the recerved code 1n a memory as a virtual memory 1mage
256. The virtualization software may include an interpreter/
compiler for translating the virtual ISA 1nstructions into the
actual ISA 1nstructions used by the underlying hardware. A
virtual machine loader may load a virtual memory image 256
of the received code and pass the received code on to the
virtual machine interpreter/compiler, which may interpret the
virtual memory 1mage and/or compile the virtual ISA code
contained thereon, to generate guest/host machine code 258
for direct execution on the guest/host platform.

[0038] The compilation of the code may be performed 1n
two steps, one before distribution and one after distribution.
This allows the software applications to be easily ported to
any computing device having virtualization software that
supports the virtual ISA used by the first compiler, regardless
of the device’s underlying hardware and operating system
interface. Moreover, the virtual machine compiler may be
configured to process the code considerably faster than the
tull compiler, because the virtual machine compiler needs
only to convert the virtual ISA 1nto the guest/host machine
instructions.

[0039] Thus, 1n method 200 illustrated 1n FIG. 2A the code
1s distributed as machine/object code (e.g., ARM executable),
whereas 1n the aspect method 250 1llustrated 1n FIG. 2B, the
code 1s distributed as abstract machine code/bytecode (e.g.,
Dalvik bytecode). In either case, a static optimizer may opti-
mize the code betfore distribution (e.g., during compilation).
However, the specific characteristics of the hardware on
which the code 1s to be executed on 1s not available to the
static optimizer, and generally cannot be known until runt-
ime. For this reason, static optimizers typically use generic
optimization routines that optimize the code to run more
cificiently (i.e., faster) on a wide variety of platforms and
execution environments. These generic optimization routines
cannot take 1nto consideration the specific characteristics of
the individual hardware on which the code 1s executed, such
as the power consumption characteristics of a specific pro-
cessor. The various aspects use virtualization techniques to
optimize the code at runtime, using the specific characteris-
tics of the hardware on which the code 1s to be executed to
reduce the amount of energy required to execute the code.

[0040] FIGS. 3A and 3B illustrate the logical components
in a typical computer system implementing a virtual machine.
As discussed above, virtual machines allow application pro-
grams tied to a specific ISA to execute on hardware 1imple-
menting a different instruction set architecture. These virtual
machines may be categorized into two general categories:
system virtual machines and process virtual machines System
virtual machines allow the sharing of the underlying physical
hardware between different processes or applications,
whereas process virtual machines support a single process or
application.

[0041] FIG. 3A 1s a layered architectural diagram 1llustrat-
ing logical layers of a computing device 300 implementing a
process virtual machine 310. The computing device 300 may
include hardware 308 components (e.g., execution hardware,
memory, I/0 devices, etc.), and software components that
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include a virtualization module 304, an operating system 306,
and an application module 302.

[0042] As discussed above with reference to FIG. 1, hard-
ware components are only visible to the application programs
through the operating system, and the ABI and API efiec-
tively define the hardware features available to the application
program. The virtualization soitware module 304 performs
logical operations at the ABI/API level and emulates operat-
ing system calls and/or library calls such that the application
process 302 communicates with the virtualization software
module 304 1n the same manner 1t would otherwise commu-
nicate with hardware components (i.e., via system/library
calls). In this manner, the application process 302 views the
combination of the virtualization module 304, operating sys-

tem 306 and hardware 308 as a single machine, such as the
process virtual machine 310 1llustrated in FIG. 3A.

[0043] As mentioned above, the process virtual machine
310 exists solely to support a single application process 302.
The process virtual machine 310 is created with the process
302 and terminated when the process 302 finishes execution.
The process 302 that runs on the virtual machine 310 1s called
a “guest” and the underlying platform is called the “host.”
Virtualization software 304 that implements the process vir-
tual machine 1s typically called runtime software (or simply
“runtime’).

[0044] As an example, Dalvik 1s a process virtual machine
(VM) on the Google™ Android operating system. The
Android operating system converts Dalvik bytecode to ARM
executable object code prior to execution. However, the
power consumption characteristics of the hardware are not
taken into consideration when generating the ARM object
code. Moreover, since the process virtual machine 310 1s
created with the process 302 and terminated when the process
302 finishes, information about the execution of the process
302 cannot be used to optimize other, concurrent, processes.

[0045] FIG. 3B 1s a layered architectural diagram illustrat-
ing the logical layers in a computing device 350 implement-
ing a system virtual machine 360. The computer system may
include hardware 358 components (e.g., execution hardware,
memory, 1/0O devices, etc.) and software components that
include a virtualization module 356, an operating system 354,
and an application programs module 352. Software that runs
on top of the virtualization module 356 i1s referred to as
“ouest” software and the underlying platform that supports
the virtualization module 1s referred to as “host” hardware.

[0046] The virtualization soitware module 356 may be
logically situated between the host hardware and the guest
software. The virtualization software may run on the actual
hardware (native) or on top of an operating system (hosted),
and 1s typically referred to as a “hypervisor” or virtual
machine monitor (VMM). The hypervisor provides the guest
soltware with virtualized hardware resources and/or emulates
the hardware ISA such that the guest software can execute a
different ISA than the ISA implemented on the host hard-
ware

[0047] Unlike process virtual machines, a system virtual
machine 360 provides a complete environment on which the
multiple operating systems can coexist. Likewise, the host
hardware platform may be configured to simultaneously sup-
port multiple, 1solated guest operating system environments.
The 1solation between the concurrently executing operating
systems adds a level of security to the system. For example, 11
security on one guest operating system 1s breached, or 1f one
guest operating system suilers a failure, the software running
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on other guest systems 1s not aiffected by the breach/failure.
Moreover, the system virtual machine may use information
gained from the execution of one process to optimize other,
concurrent, processes.

[0048] As mentioned above, 1 a system virtual machine,
virtualization software may run on the actual hardware (na-
tive) or on top of an operating system (hosted). In native
configurations, the virtualization software runs in the highest
privilege mode available, and the guest operating systems
runs with reduced privileges such that the virtualization soft-
ware can intercept and emulate all guest operating system
actions that would normally access or manmipulate the hard-
ware resources. In hosted configurations, the virtualization
soltware runs on top of an existing host operating system, and
may rely on the host operating system to provide device
drivers and other lower-level services. In either case, each of
the guest operating systems (e.g., operating system 354) com-
municate with the virtualization software module 356 1n the
same manner they would communicate with the physical
hardware 358. This allows each guest operating system (e.g.,
operating system 354) to view the combination of the virtu-
alization module 356 and hardware 358 as a single, virtual

machine, such as the system virtual machine 360 illustrated in
FIG. 3B.

[0049] Virtual machines may emulate the guest hardware
through interpretation, dynamic binary translation (DBT), or
any combination thereof. In interpretation configurations, the
virtual machine includes an interpreter that fetches, decodes,
and emulates the execution of individual guest instructions. In
dynamic binary translation configurations, the wvirtual
machine includes a dynamic binary translator that converts
guest instructions written 1n a first ISA 1nto host instructions
written 1n a second ISA. The dynamic binary translator may
translate the guest instructions in groups or blocks (as
opposed to istruction-by-instruction), which may be saved
in a soltware cache and reused at a later point 1n time. This
allows repeated executions of previously translated instruc-
tions to be performed without required a retranslation of the
code, thereby improving efficiency and reducing overhead
COsts.

[0050] As mentioned above, dynamic binary translators
convert guest mstructions written in a first ISA (e.g., virtual
ISA, SPARC, etc) mto host instructions written 1n a second
ISA (e.g., ARM, etc.). In the various aspects, the dynamic
binary translator 414 may be configured to convert guest
instructions written 1 a first ISA (e.g., ARM) imto host
instructions written in the same ISA (e.g., ARM). As part of
this translation process, the dynamic binary translator 414
may perform one or more code optimization procedures to
optimize the performance of the binary code based on amodel
of the amount of power consumed at runtime by a specific
piece of hardware in performing a particular segment or
sequence of code. In this processing, the dynamic binary
translator 414 may 1dentity machine operations (e.g., multi-
ply operations) and/or hardware components that consume
the most power (or run the slowest, etc.) oridentify alternative
hardware components and/or operations (e.g., shift-and-add)
capable of achieving the same results while consuming less
power (or while executing faster, etc.). The identified code
segments may be translated into a format/ISA/language suit-
able for execution on the identified alternative hardware com-
ponents and/or into the 1dentified operations. The translated
code may then be executed on the 1dentified alternative hard-
ware components.
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[0051] FIG. 415 a component diagram illustrating the logi-
cal components 1n a computing device 400 implementing a
system virtual machine 402 configured to optimize the power
behavior of applications 404 at runtime 1n accordance with
the various aspects. The system virtual machine 402 may
operate at the hypervisor level, beneath the operating system
406, and include one or more models (e.g., performance
models, energy consumption models, etc.) 410. The system
virtual machine 402 may also include a dynamic code gen-
erator/runtime compiler 412 configured to generate and/or
select one or more optimization procedures specifically tai-
lored to the execution characteristics of a specific application
program or hardware component. The system virtual machine
may also include a dynamic binary translator 414 configured
to translate the object code 1nto optimized object code, tailor-
ing application programs to the exact hardware on which the
applications execute. In an aspect, the code generator/runtime
compiler 412 and the dynamic binary translator 414 may be
implemented as a single compiler unit 416. In an aspect, the
system virtual machine may be configured such that the com-
piler unit 416 operates on object code (as opposed to source
code) and generates new object code optimized for power
elficiency (versus for performance/speed).

[0052] As discussed above, the performance and power
consumption characteristics of the processors may depend on
both on the type of hardware and on how the hardware pro-
cesses a speciiic unit of object code. For example, the amount
of power consumed to accomplish a given processing task
may vary from one type of device to another, depending upon
their architectures. Moreover, the power consumption char-
acteristics of the same type of processor can vary from lot-
to-lot and chip-to-chip, 1n some cases up to thirty percent.
Due to these variances, application developers cannot write
source code optimized to a particular device or a particular set
of devices, as such information 1s generally not available until
runtime.

[0053] In an aspect, the system virtual machine 402 com-
piler may be configured to optimize the code at runtime,
based on the actual power consumption characteristics of the
hardware. The wvirtual machine 402 may operate at the
machine layer (as opposed to the language layer), further
enabling the dynamic binary translator 414 to perform opti-
mization procedures that optimize for power consumption in
addition to speed. In an aspect, the compiler unit 416 may use
one or more compiler optimization routines to improve
energy utilization based on the runtime performance of
executing code.

[0054] Inan aspect, the dynamic binary translator 414 may
use profile information collected during interpretation and/or
translation to optimize the binary code during execution. In
addition, the dynamic binary translator 414 may use perfor-
mance and power consumption information collected at runt-
ime to modily the optimization procedures, which may be
used by the dynamic binary translator 414 and/or code gen-
crator 412 to optimize future translations and/or generate
re-optimized versions ol the current translation. As the
dynamic binary translator 414 pulls profiling data, the code
generator 412 may generate tags that allow the virtual
machine to associate the profiling data with a particular chuck
of code. In an aspect, the dynamic binary translator 414 may
use profiling parameters and generated tags to measure the
amount of energy required to execute a specific chunk of code
on a specific piece of hardware, and generate power optimi-
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zation models and performance models based on the actual
power characteristics of the hardware.

[0055] The virtual machine 402 may maintain an inventory
ol available processor cores and/or processors, which may
include one or more system on chips (SOCs). The energy
consumption models 410 may include a data-structure (e.g.,
list, array, table, map, etc.) used to store mmformation for
monitoring each unit of object code being processed on the
different cores/processors, and the amount of power neces-
sary to process each unit of object code on a specific core/
processor. The code generator may perform binary-to-binary
translation operations based on the energy consumption mod-
¢ls to generate power optimized code.

[0056] In various aspects energy consumption models 410
may be supplied by the virtual machine authors, the authors of
the application programs, and/or constructed by the virtual
machine 402 at runtime using a machine learning procedure.
The machine learning procedure may be generated and/or
updated as the mobile device runs and executes object code.
For example, the virtual machine 402 may be configured to
construct the energy consumption models 410 based on infor-
mation collected from previous executions of similar code, by
using machine learning techniques and empirical data.

[0057] In an aspect, the virtual machine may receive a
compiled binary (e.g., as bytecode or object code), analyze
the code by determining how the object code will be executed
by the hardware and 1dentifying patterns within the object
code that could be changed or optimized, compile/translate
the code to generate optimized object code, execute the opti-
mized object code on a hardware processor, measure the
power consumption characteristics of the executing code, and
generate performance and energy consumption models that
may be used to analyze and optimize other code segments. In
this manner, the actual performance of the mobile device
processors may be used to optimize the object code, rather
than relying upon a fixed model that may not retlect lot-to-lot
variability 1n processor performance.

[0058] FIG. 5 1s a component/process flow diagram 1llus-
trating example logical components and data tlows 1n com-
puting device configured to perform an aspect method 500 of
continuously updating the energy consumption models and
regenerating the object code. As mentioned above, the virtual
machine may be implemented on mobile computing device
having multiple cores and/or processors, which may include
one or more system on chips (SOCs). In the illustrated
example of FIG. 5, the mobile computing device includes a
central processor unit 502, a Hexagon QDSP SOC 504, and a
graphics processing unit (GPU) 506. Each of these processors
may be istrumented to measure the power consumed during
execution of the generated object code.

[0059] A compilation umt 318 may generate compiler
intermediate representation chunks and send the code chunks
to a target selector 516. The target selector 516 may monitor
the availability of the processors and select the most suitable
processor for executing a segment of code (e.g., least-utilized
processor, processor requiring the least amount of power,
etc.). The target selector 516 may send a code chunk to a code
generator module 508, 510, 512, which may receive the code
chunk, and perform a instruction-sequence to instruction-
sequence translation of the code to optimize the code for the
selected core/processor 502, 504, 506. The optimized code
may then be loaded onto the selected core/processor 502, 504,
506 for execution.
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[0060] During execution, information may be collected on
the amount of power consumed by each processor 1 process-
ing each code chunk. The measured power consumption
information may be sent to a performance prediction module
514, which compares the measured consumption information
with a performance prediction model. Results of the compari-
son between the actual power consumption model and the
predicted performance model may be fed back to the target
selector 516. The target selector 516 may use the comparison
results to update the power consumption models and optimi-
zation procedures, such that the power consumption charac-
teristics of subsequently generated object code chunks are
improved.

[0061] Inanaspect, the hardware may be instrumented with
additional circuitry to measure the power consumption char-
acteristics of executing code. The system virtual machine
may be configured to read the measurements made by the
additional circuitry, and to use the measured power consump-
tion characteristics to update models and/or perform further
optimizations. For example, the virtual machine may execute
one or more code units on a processor instrumented with
additional circuitry to measure the power consumption char-
acteristics of executing the code units, collect power con-
sumption information from the execution, compare the col-
lected information with a performance prediction model, and
store the results of the comparison 1n a memory. The stored
comparison results may then be retrieved from the memory
and used to update the performance models and/or power
models used by the virtual machine compilation unit to gen-
erate code units for one or more processors. The virtual
machine compilation unit may also re-generate previously
optimized object code units that have not yet been executed to
account for the updated models.

[0062] As discussed above, mobile applications are gener-
ally distributed as object code (e.g., ARM executable) or
bytecode (e.g., Dalvik bytecode) that 1s generically optimized
for execution on a particular type or category of processors/
hardware. Moreover, these generic optimization procedures
are generally unaware of the existence of the additional hard-
ware components (e.g., DSPs, GPUs, QDSPs, etc.) included
in the mobile device, and cannot account for the power con-
sumption characteristics each mobile device processor.

[0063] The various aspects analyze the object code of an
application, partition the object code into portions, 1dentily
the relative power elficiencies of the mobile device proces-
sors, and route the code portions to the mobile device proces-
sors that can perform the operations in the code portions using
the least amount of energy. For example, if the wvirtual
machine determines that an object code segment can be pro-
cessed more efficiently (from a power perspective) on a pro-
cessor other than the CPU (e.g., in the DSP of a modem chip
or 1n the GPU processor), that portion of the code may be
re-generated 1n a format that 1s executable the other processor.
As part of the code regeneration process, the virtual machine
may add pointers, links, and process control instructions into
the code to enable the object code to be executed by more than
one processor, 1n the same manner they would be executed by

the CPU.

[0064] FIG. 6 1s a component flow diagram illustrating the
logical components and tlows 1n a first computing device 620
and a second computing device 622 implementing a virtual
machine, 1n accordance with the various aspects. Each of the
first and second computing devices 620, 622 may include an
operating system 604 and a system on chip 606 having a
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central processing unit (CPU) 608, digital signal processor
(DSP) 610 and graphics processing unit (GPU) 612. More-
over, 1n each of the first and second computing devices 620,
622, the application program 602 may be received by the
operating system 604 and processed by the system on chip
606 for display on the first and second computing devices
620, 622. However, the second computing device implements
a virtual machine 614 that serves as an interface between the
operating system 604 and the system on chip 606. Specifi-
cally, the virtual machine 614 may receive the application 602
as object code, partition the object code into a plurality of
code portions, analyze the code portions to determine
whether the code portions may be efficiently processed on
one or more hardware resources (e.g., CPU 608, DSP 610,

GPU 612, etc.), and route each code portion to the appropriate
resources CPU 608, DSP 610, GPU 612, as required.

[0065] The virtual machine 614 may perform a dispatch of
executable code for processing on the system on a chip 606.
The virtual machine may include a code analysis engine, a
dynamic binary translator, and a library of code patterns. At
runtime, the code analysis engine may i1dentify patterns con-
tained within the recerved object code (e.g., by matching code
blocks against a library of code patterns) to 1dentity code
portions that can be run more efficiently on another device
processor (e.g., DSP 610, GPU 612, etc.). The wvirtual
machine 614 may translate (e.g., via dynamic binary transla-
tor) the object code mto an intermediate representation that
includes portions regenerated to execute on a processor other
than the CPU 608. Data flow and control flow information
necessary to enable execution by more than one processor
may be included in the intermediate representation. Code tags
may be associated with code portions to facilitate routing the
code portions to the relevant hardware resource for power
eificient execution, and the dynamic binary translator may
generate ARM code for the appropriate architecture specified
by the code tags. An adaptor module of the virtual machine
614 may return the code to a relevant code section after
processing. The virtual machine 614 may also store the gen-
erated code 1n a code cache and schedule execution of the
code on the selected processor.

[0066] FIG. 7 illustrates an aspect method 700 method for
optimizing object code for executing on a computing device
having more than more processing unit. In block 702, a virtual
machine executing on the computing device may receive
object code corresponding to an application program. In
block 704, the virtual machine may analyze the object code
by, for example, referencing a library of code patterns to
identify portions that may be more efficiently executed on a
processor other than the CPU. In block 706, a dynamic binary
translator may perform an instruction-sequence to mnstruc-
tion-sequence translation of the code to generate code chunks
corresponding to the identified portions that are compatible
with the identified processor. In block 708, the wvirtual
machine may identily the relative power eificiencies of the
mobile device processors and perform operations to deter-
mine whether an object code portion can be processed more
cificiently (from a power perspective) on a processor other
than the CPU (e.g., in the DSP of a modem chip or in the GPU
processor). In block 710, the virtual machine may route the
code portions to the mobile device processors that can per-
form the operations in the code portions using the least
amount of energy. Since this may ivolve significant changes
to the object code, the mstruction-sequence to struction-
sequence translation may translate the object code portions
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for the appropnate processing units, changing the object code
operators to match those used by the selected processor. The
virtual machine may also tag/annotate the code to monitor
cach portion. The virtual machine may also add pointers,
links, and process control instructions into the code to enable
the object code to be executed by more than one processor, in
the same manner they would be executed by the CPU. In
block 712, the virtual machine may initiate the execution of
the code portions on their respective processors. In block 714,
the virtual machine may measure the power etliciency of the
executing code portions, and update the power consumption
and performance models accordingly.

[0067] In the various aspects, the virtual machine may be
configured to learn, over time, which binary transforms are
elfective on a specific unit of hardware and which transforms
are not, and make adjustments as necessary. The stored com-
parison results may be used to identily and disable previous
optimization procedures that resulted 1n higher, rather than
lower, power consumption.

[0068] Inan aspect, the system virtual machine may calcu-
late power savings based on power consumption values col-
lected at runtime. The system virtual machine may periodi-
cally update the power consumptions models and re-generate
the code chunks based on a combination of measured power
consumption characteristics and calculated power savings.
Power savings may be calculated using a linear polynomaial
function, or as the amount of power saved over a calculated
time frame, offset by the amount of work required to perform
the compile/translate and optimization operations.

[0069] Various aspects may use the sum of the power sav-
ings and the energy cost of performing the compile/translate
and optimization operations to determine a power function.
The power function may be used to determine the net power
savings associated with each power model and/or to deter-
mine whether the optimizations should be performed. For
example, the power function may be used to determine 11 the
amount of energy required to perform an optimization
exceeds the amount of energy saved by the optimization, 1n
which case the performance of the optimization may be can-
celled or delayed. Models associated with optimization pro-
cedures that require more energy to perform than the amount
of energy conserved by the optimized code may be stored 1n
a memory, and performed when the computing device 1s not
running on battery power.

[0070] In the various aspects, a variety of feedback and
machine learning techniques may be used. Optimization rules
may be changed or updated when the measured results depart
from the predicted model. Machine perturb and test method
experiments may be performed, such as by changing an opti-
mization rule, comparing the measured power consumption
of the optimized code before and after the change to the
optimization rule, and selecting for use the optimization rule
that renders the best results. In an aspect, the power perior-
mance ol different lengths of optimized code may be com-
pared to one another to recognize patterns to enable better
optimization to occur.

[0071] The feedback and learning mechanisms present a
number of advantages. For example, the mobile device devel-
oper 1s not required to generate the device-specific model of
power consumption because the models are automatically
generated by the mobile device 1tself through machine learn-
ing, which simplifies device development. As another
example, the feedback and learning mechanisms allow the
various aspects to accommodate for changes 1n hardware that
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occur after the mitial design is set (e.g., addition of new
memory, substitution of a processor, etc.) after the model 1s
designed. The feedback and learning mechanisms also allows
the various aspects to better account for lot-to-lot and line-
to-line variability 1n processor power consumption character-
1stics, which can vary by up to twenty percent. For example,
while some of the chips 1n from a particular die may benefit
from optimizing object code in a particular manner (e.g.,
using shift and add operations instead of multiplication
operations), a few may actually experience higher power
consumption from the same optimization due to the lot-to-lot
and line-to-line varniability. The various aspects may account
for such variability by optimizing code based on the indi-
vidual characteristics of the chip/hardware.

[0072] In an aspect, the optimized object code resulting
from the optimizations may be saved 1n memory and used for
subsequent executions of the code. The optimizations may be
performed in conjunction with a model of energy consump-
tion that 1s specific to the particular hardware, which may be
provided by the manufacture and/or learned by the mobile
device during execution. In this manner, the various optimi-
zation procedures discussed above may be performed at runt-
ime, before runtime, when the code 1s loaded, or the first time
the process 1s executed. The various optimization procedures
may be part of the runtime code generation process or part of
the static code generation process.

[0073] It should be understood that, 1n the various aspects,
performing optimizations when connected to power 1s not
exclusive to performing optimizing at runtime. For example,
the system virtual machine may perform optimizations as
needed (e.g., during execution) or ahead of time (e.g., when
connected to power and 1dle).

[0074] It should also be understood that the decisions
regarding when to apply the optimization may be indepen-
dent of the decisions when to gather performance data. The
various aspects may gather data during execution and choose
not to act on the collected data until a condition 1s met (e.g.,
device 1s connected to power).

[0075] Typical mobile devices 800 suitable for use with the
various aspects will have 1n common the components illus-
trated 1n FIG. 8. For example, an exemplary mobile device
800 may include a processor 802 coupled to internal memory
801, a display 803, and to a speaker 864. Additionally, the
mobile device may have an antenna 804 for sending and
receiving electromagnetic radiation coupled to the processor
802. In some aspects, the mobile device 800 may include one
or more specialized or general purpose processors 805, 824
which may include systems on chips. Mobile devices typi-
cally also include a key pad or mimature keyboard and menu
selection buttons or rocker switches for recerving user iputs.

[0076] FIG.9 illustrates another exemplary mobile device
900 suitable for use with the various aspects. For example, the
mobile device 900 may 1nclude a processor 902 coupled to
internal memory 901, and a display 908. Additionally, the
mobile device may have a communication port 905 for send-
ing and receiving information. The mobile device 900 may
also include a keyboard 908 and user interface buttons and/or
a touch pad 907 for recerving user inputs.

[0077] The processors 802, 805, 824, 902 may be any pro-
grammable microprocessor, microcomputer or multiple pro-
cessor chip or chips that can be configured by processor-
executable software instructions (applications) to perform a
variety of functions, including the functions of the various
aspects described herein. Typically, software applications and
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processor-executable mstructions may be stored in the inter-
nal memory 801, 901 before they are accessed and loaded into
the processors 802, 805, 824, 902. In some mobile devices,
the processors 802, 805, 824, 902 may include internal
memory suilicient to store the application software nstruc-
tions. In some mobile devices, the secure memory may be in
a separate memory chip coupled to the processor 802, 805,
824, 902. In many mobile devices, the internal memory 801,
901 may be a volatile or nonvolatile memory, such as flash
memory, or a mixture of both. For the purposes of this
description, a general reference to memory refers to all
memory accessible by the processors 802, 805, 824, 902
including internal memory, removable memory plugged into
the mobile device, and memory within the processors.

[0078] The foregoing method descriptions and the process
flow diagrams are provided merely as illustrative examples
and are not intended to require or imply that the steps of the
various aspects must be performed in the order presented. As
will be appreciated by one of skill 1n the art the order of steps
in the foregoing aspects may be performed in any order.
Words such as ‘“thereafter,” “then.” ‘“next.” etc. are not
intended to limit the order of the steps; these words are simply
used to guide the reader through the description of the meth-
ods. Further, any reference to claim elements in the singular,
for example, using the articles “a,” “an’ or “the” 1s not to be
construed as limiting the element to the singular.

[0079] The various illustrative logical blocks, modules, cir-
cuits, and algorithm steps described 1n connection with the
aspects disclosed herein may be implemented as electronic
hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and soft-
ware, various 1illustrative components, blocks, modules, cir-
cuits, and steps have been described above generally 1n terms
of their functionality. Whether such functionality 1s 1mple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality 1n varying ways for each particular application, but
such 1implementation decisions should not be interpreted as
causing a departure from the scope of the present invention.

[0080] The hardware used to implement the various 1llus-
trative logics, logical blocks, modules, and circuits described
in connection with the aspects disclosed herein may be imple-
mented or performed with a general purpose processor, a
digital signal processor (DSP), a DSP within a multimedia
broadcast receiver chip, an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA) or
other programmable logic device, discrete gate or transistor
logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A
general-purpose processor may be a microprocessor, but, 1n
the alternative, the processor may be any conventional pro-
cessor, controller, microcontroller, or state machine A pro-
cessor may also be implemented as a combination of com-
puting devices, e.g., a combination of a DSP and a
microprocessor, a plurality ol microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other
such configuration. Alternatively, some steps or methods may
be performed by circuitry that 1s specific to a given function.

[0081] In one or more exemplary aspects, the functions
described may be implemented 1n hardware, software, firm-
ware, or any combination thereof. If implemented 1n soft-
ware, the functions may be stored on or transmitted over as
one or more 1nstructions or code on a computer-readable
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medium. The steps of a method or algorithm disclosed herein
may be embodied in a processor-executable software module
executed which may reside on a computer-readable medium.
Computer-readable media includes both computer storage
media and communication media including any medium that
facilitates transfer of a computer program from one place to
another. A storage media may be any available media that
may be accessed by a computer. By way of example, and not
limitation, such computer-readable media may comprise
RAM, ROM, EEPROM, CD-ROM or other optical disk stor-
age, magnetic disk storage or other magnetic storage devices,
or any other medium that may be used to carry or store desired
program code 1n the form of instructions or data structures
and thatmay be accessed by a computer. Also, any connection
1s properly termed a computer-readable medium. For
example, 11 the software 1s transmitted from a website, server,
or other remote source using a coaxial cable, fiber optic cable,
twisted pair, digital subscriber line (DSL), or wireless tech-
nologies such as infrared, radio, and microwave, then the
coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are
included 1n the definition of medium. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk, and blu-ray disc.
Combinations of the above should also be included within the
scope of computer-readable media. Additionally, the opera-
tions of a method or algorithm may reside as one or any
combination or set of codes and/or instructions on a machine
readable medium and/or computer-readable medium, which
may be incorporated into a computer program product.

[0082] The preceding description of the disclosed embodi-
ments 1s provided to enable any person skilled 1n the art to
make or use the present invention. Various modifications to
these embodiments will be readily apparent to those skilled in
the art, and the generic principles defined herein may be
applied to other embodiments without departing from the
spirit or scope of the invention. Thus, the present invention 1s
not intended to be limited to the embodiments shown herein
but 1s to be accorded the widest scope consistent with the
tollowing claims and the principles and novel features dis-
closed herein.

What 1s claimed 1s:

1. A method for optimizing object code during execution
on a computing device, comprising:

receiving 1in a computing device system soitware compiled
object code;

analyzing the object code to 1dentily operations required
during execution of the object code;

partitioning the object code into object code units based on
identified operations;

identifying a preferred hardware component for each
object code unit;

translating at least one object code unit into an 1nstruction
set supported by a hardware component i1dentified as
being preferred for that object code unit; and

executing the instruction set in the identified hardware
component.

2. The method of claim 1, wherein translating at least one
object code unit 1nto an 1nstruction set supported by a hard-
ware component 1dentified as being preferred for that object
code unit comprises performing 1n a dynamic binary transla-
tor an instruction-sequence to instruction-sequence transla-
tion of the recerved object code.
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3. The method of claim 2, wherein performing in the
dynamic binary translator an instruction-sequence to mstruc-
tion-sequence translation of the received object code com-
prises translating a first instruction set architecture nto a
second 1nstruction set architecture.

4. The method of claim 3, wherein the first instruction set
architecture 1s the same 1nstruction set architecture as the
second 1nstruction set architecture.

5. The method of claim 1, wherein identifying a preferred
hardware component for each object code unit comprises
identifying the performance characteristics of various hard-
ware components of the computing device for executing the
identified operations.

6. The method of claim 1, wherein 1identifying a preferred
hardware component for each object code unit comprises
identifving relative power elficiencies of various hardware
components of the computing device for executing the 1den-
tified operations.

7. The method of claim 6, wherein 1dentifying relative
power elficiencies of various hardware components of the
computing device for executing the identified operations
comprises using a power consumption model for the various
hardware components to predict an amount of power each
hardware component may consume 1n executing each code
unit and selecting one of the various hardware components
predicted to consume a least amount of power.

8. The method of claim 7, further comprising:

measuring an amount of power consumed 1n the hardware
component executing each code unit;

comparing the measured amount of power consumed to
predictions of the power consumption model; and

modifying the power consumption model based on a result
of the comparison.

9. A computing device, comprising;
means for recerving compiled object code 1n system sofit-
ware;

means for analyzing the object code to 1dentify operations
required during execution of the object code;

means for partitioning the object code into object code
units based on 1dentified operations;

means for identilying a preferred hardware component for
cach object code unit;

means for translating at least one object code unit into an
istruction set supported by a hardware component
identified as being preferred for that object code unit;
and

means for executing the instruction set in the identified
hardware component.

10. The computing device of claim 9, wherein means for
translating at least one object code unit into an instruction set
supported by a hardware component 1dentified as being pre-
terred for that object code unit comprises means for performs-
ing 1n a dynamic binary translator an istruction-sequence to
instruction-sequence translation of the received object code.

11. The computing device of claim 10, wherein means for
performing in the dynamic binary translator an mstruction-
sequence to mstruction-sequence translation of the received
object code comprises means for translating a first instruction
set architecture into a second 1nstruction set architecture.

12. The computing device of claim 11, wherein means for
translating a first 1nstruction set architecture into a second
istruction set architecture comprises means for translating
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the 1nstructions such that the first instruction set architecture
1s the same 1nstruction set architecture as the second instruc-
tion set architecture.

13. The computing device of claim 9, wherein means for
identifying a preferred hardware component for each object
code unit comprises means for identifying the performance
characteristics of various hardware components of the com-
puting device for executing the identified operations.

14. The computing device of claim 9, wherein means for
identifving a preferred hardware component for each object
code unit comprises means for identifying relative power
elficiencies of various hardware components of the comput-
ing device for executing the 1dentified operations.

15. The computing device of claim 14, wherein means for
identifying relative power efficiencies of various hardware
components of the computing device for executing the 1den-
tified operations comprises means for using a power con-
sumption model for the various hardware components to pre-
dict an amount of power each hardware component may
consume 1n executing each code umit and selecting one of the
various hardware components predicted to consume a least
amount of power.

16. The computing device of claim 15, further comprising:

means for measuring an amount of power consumed 1n the

hardware component executing each code unait;

means for comparing the measured amount of power con-

sumed to predictions of the power consumption model;
and

means for modifying the power consumption model based

on a result of the comparison.

17. A computing device, comprising:

a memory; and

a processor coupled to the memory, wherein the processor

1s configured with processor-executable instructions to
perform operations comprising:
receiving compiled object code 1n system software;

analyzing the object code to identify operations required
during execution of the object code;

partitioning the object code into object code units based
on 1dentified operations;

identifyving a preferred hardware component for each
object code unait;

translating at least one object code unit into an nstruc-
tion set supported by a hardware component identi-
fied as being preferred for that object code unit; and

executing the mnstruction set in the i1dentified hardware
component.

18. The computing device of claim 17, wherein the proces-
sor 1s configured with processor-executable instructions such
that translating at least one object code unit into an instruction
set supported by a hardware component identified as being
preferred for that object code umit comprises performing 1n a
dynamic binary translator an instruction-sequence to mstruc-
tion-sequence translation of the received object code.

19. The computing device of claim 18, wherein the proces-
sor 1s configured with processor-executable instructions such
that performing in the dynamic binary translator an nstruc-
tion-sequence to 1nstruction-sequence translation of the
received object code comprises translating a first instruction
set architecture into a second 1nstruction set architecture.

20. The computing device of claim 19, wherein the proces-
sor 1s configured with processor-executable instructions such
that the first instruction set architecture 1s the same 1nstruction
set architecture as the second instruction set architecture.
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21. The computing device of claim 17, wherein the proces-
sor 15 configured with processor-executable instructions such
that identifying a preferred hardware component for each
object code unit comprises 1dentitying the performance char-
acteristics of various hardware components of the computing
device for executing the 1dentified operations.

22. The computing device of claim 17, wherein the proces-
sor 15 configured with processor-executable instructions such
that identifying a preferred hardware component for each
object code umit comprises 1dentitying relative power etfi-
ciencies of various hardware components of the computing
device for executing the 1dentified operations.

23. The computing device of claim 22, wherein the proces-
sor 1s configured with processor-executable mstructions such
that 1dentifying relative power efficiencies of various hard-
ware components of the computing device for executing the
identified operations comprises using a power consumption
model for the various hardware components to predict an
amount of power each hardware component may consume 1n
executing each code unit and selecting one of the various
hardware components predicted to consume a least amount of
POWE.

24. The computing device of claim 23, wherein the proces-
sor 1s configured with processor-executable instructions to
perform operations further comprising;:

measuring an amount of power consumed 1n the hardware
component executing each code unit;

comparing the measured amount of power consumed to
predictions of the power consumption model; and

moditying the power consumption model based on a result
of the comparison.

25. A non-transitory computer readable storage medium
having stored thereon processor-executable software instruc-
tions configured to cause a processor to perform operations
for optimizing object code during execution on a computing
device, the operations comprising:

recerving in a computing device system software compiled

object code;

analyzing the object code to identily operations required
during execution of the object code;

partitioning the object code 1nto object code units based on
identified operations;

identifying a preferred hardware component for each
object code unit;

translating at least one object code unit into an instruction
set supported by a hardware component i1dentified as
being preferred for that object code unit; and

executing the instruction set 1n the identified hardware
component.

26. The non-transitory computer readable storage medium
of claim 25, wherein the stored processor-executable soft-
ware 1structions are configured to cause a processor to per-
form operations such that translating at least one object code
unit into an instruction set supported by a hardware compo-
nent i1dentified as being preferred for that object code umit
comprises performing in a dynamic binary translator an
istruction-sequence to instruction-sequence translation of
the recerved object code.

277. The non-transitory computer readable storage medium
of claim 26, wherein the stored processor-executable soft-
ware 1nstructions are configured to cause a processor to per-
form operations such that performing in the dynamic binary
translator an 1instruction-sequence to 1instruction-sequence
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translation of the recerved object code comprises translating a
first 1nstruction set architecture into a second instruction set
architecture.

28. The non-transitory computer readable storage medium
of claim 27, wherein the stored processor-executable sofit-
ware 1nstructions are configured to cause a processor to per-
form operations such that the first instruction set architecture
1s the same 1nstruction set architecture as the second 1nstruc-
tion set architecture.

29. The non-transitory computer readable storage medium
of claim 25, wherein the stored processor-executable sofit-
ware 1nstructions are configured to cause a processor to per-
form operations such that identifying a preferred hardware
component for each object code unit comprises 1dentifying
the performance characteristics of various hardware compo-
nents of the computing device for executing the 1dentified
operations.

30. The non-transitory computer readable storage medium
of claim 25, wherein the stored processor-executable sofit-
ware 1nstructions are configured to cause a processor to per-
form operations such that identifying a preferred hardware
component for each object code unit comprises 1dentifying
relative power efliciencies of various hardware components
of the computing device for executing the identified opera-
tions.
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31. The non-transitory computer readable storage medium
of claim 30, wherein the stored processor-executable sofit-
ware 1nstructions are configured to cause a processor to per-
form operations such that identifying relative power efficien-
cies ol various hardware components of the computing device
for executing the identified operations comprises using a
power consumption model for the various hardware compo-
nents to predict an amount of power each hardware compo-
nent may consume in executing each code unit and selecting
one of the various hardware components predicted to con-
sume a least amount of power.

32. The non-transitory computer readable storage medium
of claim 31, wherein the stored processor-executable soft-
ware 1nstructions are configured to cause a processor to per-
form operations comprising:

measuring an amount of power consumed 1n the hardware
component executing each code unit;

comparing the measured amount of power consumed to
predictions of the power consumption model; and

moditying the power consumption model based on a result
of the comparison.
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