a9y United States
12y Patent Application Publication (o) Pub. No.: US 2012/0102357 Al

US 20120102357A1

Ramani et al. 43) Pub. Date: Apr. 26, 2012
(54) METHOD AND APPARATUS FOR (32) US.CL ..., 714/15; 714/E11.023
PROCESSING LOAD INSTRUCTIONS IN A
MICROPROCESSOR HAVING AN (57) ABSTRACT
ENHANCED INSTRUCTION DECODER AND . . .
AN ENHANCED LOAD STORE UNIT A method and microprocessor are described for efliciently
executing load instructions out-of-order (speculatively). The
_ : : : microprocessor mcludes an enhanced load store unit (LSU)
(75) Inventors: grés)hlhl;:;{ggﬁl;:: (Sj;fitslzo(’jiA and an enhanced instruction decoder. The enhanced LLSU
(L"S)? Kai Troes terj Pa erefl MA receives a plurality of out-of-order value addresses, and sends
(L"S)j > +5PP ’ a resync signal to the enhanced instruction decoder when an
execution error associated with a particular load 1nstruction
(73) Assignee: ADVANCED MICRO DEVICES occurs. The enhanced instruction decoder stores a specific
SHEE: INC., Sunnyvale, CA (US) ’ address associated with the particular load mstruction, and
K oAb increments a counter value that indicates how many times the
_ resync signal was sent by the resync predictor. When the
(21) Appl. No.: 12/910,136 counter value reaches a predetermined threshold, subsequent
_— load 1nstructions from the specific address are executed 1n
(22) Filed: Oct. 22,2010 order (non-speculatively). When a future execution of the
Publication Classificat particular load instruction indicates that the probability of an
ublication Classification execution error has been reduced, the counter value 1s decre-
(51) Int.Cl. mented, facilitating newer load instructions associated with
GOGEF 11/07 (2006.01) the same address to again be executed speculatively.
Microprocessor 120
200 180
_\) 164
Execution Byte Results
™ Register
Stored Data Results .
File Feedback
140’ 176 Execution
145 Operands Results
/ Data/Address 170
Requests
] Eniljs:ged Value Add 166 Arithmet Execution
Addresses ress MIMELC T Results
Memory Store Generation| 125" and Logic
Unit (LSU) 174 | Unit (AGU) Unit (ALU) |
Stored Data 240 135 le8
Results In Order Hazard Check (IOHC) Ordggleg
Memo 210 Decode
205 ~—1T Res?fnc . Resync r___r_y_l Instructions
Predictor | | strength Counter | Resync | 915
30 :Predictor :
155 Instruction/ 229 | Table 110° 115
P) Address)"—105 bt /
—_ Requests
I_ _I-‘?i Integer Instruction Enhanced DECOd_Ed
| External | 150 - tgh Bytes Instruction | INStrUctions | fpetruction
| Memory | 160 Unite ({I:FU) Decoder Scheduler
L — Instruction 160 162

Bytes

Apr. 26,2012 Sheet 1 of 5 US 2012/0102357 Al

Patent Application Publication

Uy JOld

. Ol4 so)Ag
207 09T uolpnisuy |4
J9|Npayds 19p022(Sm__wwmu_w_:: oo_ﬁ | dowapy |
UOMONASUT | syoppnpsup | UOAPNASUL sa1Ag Jofow 05l | |ewspq |
D0 UuonoNSuUT |R'._I
Sl s1sanboy — |_
/ (smw (.
cTT GOT JuonpnIIsu] a3l
SUOIONASU]
P9pP023Q 01T e
(nam) vil
Jun (MV) N - (N9V) Jun (NST) 1un o/
xoed S)|Nsay olbo7 pue HOAEISRE) S95S2.ppY S 9/1 Aowai
UM DIJRWLIUY SS24ppY DEOT
0ST | uonnJax3 99T an[eA s15anbon
0/ T ss2ippy/eleq
S)nsoy Spuesdo 14|
LUONNJAXJ 9/T Ovl
PEAP=e S]insay eleq P=401S
S)INS9Y 3)Ag UORNJBX3
12°]!
el f 00T
Ocl 10559204d0.DI|y

US 2012/0102357 Al

Apr. 26,2012 Sheet 2 of S

Patent Application Publication

¢ Old

13|NpaYos

/

QTT

SUOIN.SU]
DOP023(]
PIAPIO

(nam)
nun
yoeq

0ET SHIM

OLT

SIEEN
LUoNDAX3

¥oeqpas

POl

09T

4]
19p023(] Sm__wwo“h_::
UOMONASUT | syoppnpgsup | UORPNASUL salig ba]
Pap023(] p=ouEyus uononIsut
r—===- moHL
OTT oldel 0S7
| |
opipaid | | | U5
GTC rw@mlmﬂ_l | 12)Un0) ybuains
oiz—L| W o
%\ plezeH JapiQ U
991 — (DHOT) ¥o8YD pJezey JapiQ U]
O c
(N7v) un (nov)un | ¥4
21607 pue SCI |uonelauan
AP sy ssauppy | PPV
UONNJ9XJ 99T anjep
spueladQ
o JA OPT
o|l4
. s)INSaY E1eq pa.
JansiBoy JiNSoy €je pPalals
S NSy S1Ag UoRNISX3
x 08T
0cT

Sa)Ag
uolpnasur
|4
00T | Aowap |
0ST | leurpq |
| s15enbay _| — |_
SSoIPPY Mu
fuononlsu SS1
| sopipaig
5J|NSaY
eleq pal0lS
(NS7) 1un Q/1
2101S AlOWa
9/1
peoT
PoJueyud S1Sanbay
SseIppy/eled
ST

f 002

105s3204doDIp

Patent Application Publication Apr. 26, 2012 Sheet 3 of 5 US 2012/0102357 Al

Resync

Predictor

Table
215

s

310 Incorrectly

Executed
305 Load Instruction Address 315

FIG. 3

Patent Application Publication Apr. 26, 2012 Sheet 4 of 5 US 2012/0102357 Al

400
Start —

)"\ 405

An enhanced load store unit (LSU) in a microprocessor
receives a plurality of out-of-order value addresses.

410

A resync predictor in the enhanced LSU detects an

error in the order of the execution of instructions
associated with one of the value addresses.

f- 415

The resync predictor in the enhanced LSU sends a
resync signal to a memory in an enhanced instruction
decoder in the microprocessor, the resync signal
indicating that a particular load instruction was
incorrectly executed.

420

The enhanced instruction decoder stores an address
of the particular load instruction and increments a
counter value associated with the particular load
instruction, the counter value indicating how many
times the resync signal was sent by the resync
predictor.

(‘\ 425

The enhanced instruction decoder sets a predetermined
counter valve threshold.

From steps 430 and 445 To Step 430 F | G 4 A

Patent Application Publication Apr. 26, 2012 Sheet S of 5 US 2012/0102357 Al

To Step 405 From Step 425

430
When

decoding the particular
oad instruction in the enhanced instruction
decoder, did the counter value associated with
the particular load instruction reach the
predetermined counter value
threshold?

NO

435
Yes

The memory in the enhanced instruction decoder sends an
in order hazard check (IOHC) signal to the resync predictor
in the enhanced LSU, the IOHC signal indicating that the

particular load instruction should be executed in order
(1.e., should be marked "IOHC").

440

the particular load instruction
executed successfully in order without detecting an
older uncommitted store having the same address as
the particular load instruction?

No

Voo 445

The resync predictor in the enhanced LSU sends a strength
counter signal to the memory in the enhanced instruction
decoder, the strength counter signal indicating that the
risk associated with the particular load instruction being
incorrectly executed has been substantially reduced.

r450

The enhanced instruction decoder decrements the counter
value associated with the particular load instruction.

FIG. 4B

US 2012/0102357 Al

METHOD AND APPARATUS FOR
PROCESSING LOAD INSTRUCTIONS IN A
MICROPROCESSOR HAVING AN
ENHANCED INSTRUCTION DECODER AND
AN ENHANCED LOAD STORE UNIT

FIELD OF INVENTION

[0001] This application 1s related to a high performance
MICroprocessor.

BACKGROUND

[0002] Modem high performance out-of-order (specula-
tive) executing microprocessors execute loads and stores out-
of-order. There are occasions during the processing whereby
a load may be erroneously executed before 1t has seen the
correct interlocking store. When such occasions are detected,
the errant load 1s re-executed by resyncing so that the load and
all younger instructions 1n the pipeline are flushed. Although
this ensures that load 1nstructions are correctly executed, each
ol these resyncs wastes an execution opportunity, resulting 1n
loss of performance.

[0003] FIG. 1 shows a conventional out-of-order executing
microprocessor 100. The microprocessor 100 includes an
integer fetch unit (IFU) 105, an mstruction decoder 110, an

instruction scheduler 115, a register file 120, an arithmetic
and logic unit (ALU) 125, a write back unit (WBU) 130, an

address generation unit (AGU) 135, a load store unit (LSU)
140, and a memory 145.

[0004] Stll referring to FIG. 1, as an ongoing process, the
IFU 105 sends instruction/address requests 150 that request
an external memory 1355 to send instruction bytes 160 from
particular addresses. The IFU 1035 outputs the instruction
bytes 160 to the instruction decoder 110, which decodes the
instruction bytes 160 such that each instruction 1s uniquely
identified by a certain combination of bits. The 1nstruction
decoder 110 has the knowledge to interpret these instructions
and, for example, determine whether an 1nstruction 1s per-
forming an “add” or a “multiply” function.

[0005] The instruction decoder 110 outputs decoded
instructions 162 to the instruction scheduler 115, which
orchestrates the order (i.e., scheduling) of the decoded
instructions, and outputs ordered decoded instructions 164 to
the register file 120. The register file 120 provides operands
166 for executing the ordered decoded instructions 164 to the
ALU 125 and the AGU 135. The ALU 125 executes simple
instructions which do not mnvolve memory, (i.e., mstructions
which are purely arithmetical or purely logical and do not
involve memory), and outputs execution results 168 to the

wBU 130.

[0006] The WBU 130 essentially feeds back the execution
results (by outputting feedback execution results 170) to the
register file 120, after determining which addresses in the

register file 120 to store the feedback execution results 170.
The AGU 135 generates value addresses 174 to fetch values

from the memory 145, and inputs the value addresses 174 to
the LSU 140. The LSU 140 recerves the value addresses 174

from the AGU 135, and also receives stored data results 176
from the register file 120, and determines the order 1n which
the value addresses 174 are sent to the memory 1435, such that

the memory 145 fetches data located at particular addresses.
The LSU 140 outputs the stored data results 176 to the
memory 145 to write data, and outputs data/address requests

Apr. 26, 2012

178 to the memory 145 to read data. The memory 145 outputs
execution byte results 180 to the register file 120.

[0007] The responsibility of the LSU 140 1s to schedule
instructions to memory 1n an eificient way, such that overall
performance of a system 1s satisfactory. The AGU 135 pro-
vides value addresses 174 to the LSU 140 that are not 1n a
particular order. It 1s the responsibility of the LSU 140 to
make sure that when 1t communicates with the memory 145,
it does so 1n a methodical order to provide error-free execus-
tion results without reducing efficiency. However, since the
LSU 140 in the microprocessor 100 of FIG. 1 typically
executes 1nstructions 1n a particular order, the LSU 140 1s
constrained from maximizing efliciency and performance.
[0008] A valueaddress 1s essentially arequest to memory to
fetch data from a particular address. A store address 1s essen-
tially a request to memory to write data to a particular event.
[0009] For example, 11 there exists a series of compilations
whereby a first instruction indicates that c=a+b, and a second
instruction indicates that e=2c+d, 1t 1s essential that the first
instruction be executed before the second 1nstruction. Other-
wise, an error will occur.

[0010] If data 1s written 1n a particular memory location,
followed by a read from that memory location, 1t 1s important
to ensure that the data being read 1s the same data that was
previously written. However, 1t 1s possible that the LSU 140 1n
the microprocessor 100 of FIG. 1 does not know what data 1s
going to be written to another memory location that 1t wants
to read. The LSU 140 may wait to make sure that all older
stores have been written to memory before reading the data,
which results in an undesired delay. Thus, every time a read-
ing process from a different memory address begins, the
probability of an error occurring is heightened.

SUMMARY

[0011] A method and microprocessor are described for effi-
ciently executing load instructions out-of-order (specula-
tively). The microprocessor includes an enhanced load store
umit (LSU) and an enhanced instruction decoder. The
enhanced LSU recerves a plurality of out-of-order value
addresses. A resync predictor in the enhanced LSU detects an
error 1n the order of the execution of instructions associated
with one of the value addresses, and sends a resync signal to
a memory 1n the enhanced instruction decoder. The resync
signal indicates that a particular load nstruction was ncor-
rectly executed. The enhanced instruction decoder stores a
specific address associated with the particular load nstruc-
tion 1n a first field of a resync predictor table of the memory
and increments a counter value associated with the particular
load 1nstruction that 1s stored in a second field of the resync
predictor table. The counter value indicates how many times
the resync signal was sent by the resync predictor.

[0012] The enhanced instruction decoder may set a prede-
termined counter value threshold, and compare the counter
value associated with the particular load instruction to the
predetermined counter value threshold. When decoding the
particular load 1nstruction, the enhanced 1nstruction decoder
determines whether or not the counter value associated with
the particular load instruction reached the predetermined
counter value threshold based on the comparison. The
memory 1n the enhanced instruction decoder may send an in
order hazard check (IOHC) signal to the resync predictor in
the enhanced LSU 1f it 1s determined that the counter value
associated with the particular load instruction reached the
predetermined counter value threshold. The IOHC signal

US 2012/0102357 Al

indicates that the particular load instruction should be
executed 1n order. The resync predictor 1n the enhanced LSU
may send a strength counter signal to the memory 1n the
enhanced instruction decoder if the particular load instruction
was executed successtully in order without detecting an older
uncommitted store having the same address as the particular
load 1nstruction. The strength counter signal indicates that the
risk associated with the particular load instruction being
incorrectly executed has been substantially reduced. The
enhanced 1nstruction decoder may then decrement the
counter value associated with the particular load instruction
that 1s stored 1n the second field of the resync predictor table.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] A more detailed understanding may be had from the
following description, given by way of example 1n conjunc-
tion with the accompanying drawings wherein:

[0014] FIG. 1 shows a conventional out-of-order executing
MmICroprocessor;

[0015] FIG. 2 shows an example of a microprocessor that 1s
configured with an enhanced LSU having a resync predictor,
and an instruction decoder having a memory with a resync
predictor table, 1n accordance with the present invention;
[0016] FIG. 3 shows an example of the resync predictor
table used in the microprocessor of FIG. 2; and

[0017] FIGS. 4A and 4B, taken together, are a flow diagram

of a procedure for executing loads using the microprocessor
of FIG. 2.

DETAILED DESCRIPTION

[0018] The embodiments will be described with reference
to the drawing figures wherein like numerals represent like
clements throughout.

[0019] FIG. 2 shows an example of a microprocessor 200
that 1s configured 1n accordance with the present invention.
The microprocessor 200 comprises an integer fetch unit
(IFU) 105, an enhanced instruction decoder 110, an 1nstruc-
tion scheduler 115, a register file 120, an arithmetic and logic
unit (ALU) 125, a write back umt (130), an address genera-
tion unit (AGU) 135, an enhanced load store unit (LSU) 140",

and a memory 145.

[0020] Stll referring to FIG. 2, as an ongoing process, the
IFU 105 sends instruction/address requests 150 that request
an external memory 155 to send instruction bytes 160 from
particular addresses. The IFU 1035 outputs the instruction
bytes 160 to the enhanced instruction decoder 110", which
decodes the mnstruction bytes 160 such that each instruction 1s
uniquely 1dentified by a certain combination of bits. The
enhanced instruction decoder 110" has the knowledge to inter-
pret these mstructions and, for example, determine whether
an 1nstruction 1s performing an “add” or a “multiply” func-
tion. The enhanced instruction decoder 110' outputs decoded
instructions 162 to the instruction scheduler 115, which
orchestrates the order (i.e., scheduling) of the decoded
instructions, and outputs ordered decoded instructions 164 to
the register file 120. The register file 120 provides operands
166 for executing the ordered decoded instructions 164 to the
ALU 125 and the AGU 135. The ALU 125 executes simple
instructions which do not involve memory, (e.g., instructions

which are purely arithmetical or purely logical), and outputs
execution results 168 to the WBU 130.

[0021] The WBU 130 essentially feeds back the execution
results (by outputting feedback execution results 170) to the

Apr. 26, 2012

register file 120, after determining which addresses in the
register file 120 to store the feedback execution results 170.
The AGU 135 generates value addresses 174 to fetch values
from the memory 143, and 1nputs the value addresses 174 to
the enhanced LSU 140'. The enhanced LSU 140' recerves the
value addresses 174 from the AGU 135, and also receives
stored data results 176 from the register file 120, and deter-
mines the order in which the value addresses 174 are sent to
the memory 145, such that the memory 145 fetches data
located at particular addresses. The enhanced LSU 140' out-
puts the stored data results 176 to the memory 145 to write
data, and outputs data/address requests 178 to the memory
145 to read data. The memory 145 outputs execution byte
results 180 to the register file 120.

[0022] Stll referring to FIG. 2, the enhanced LSU 140
includes a resync predictor 205, and the enhanced instruction
decoder 110" includes a memory 210 that stores a resync
predictor table 215. The enhanced LSU 140" and the enhanced
instruction decoder 110" communicate with each other to
enhance the efficiency of processing instructions, as will be
explained 1n greater detail hereinatter. The enhanced LSU
140" detects whether there are errors 1n the order of execution
of loads. If errors are detected, the errors are corrected by
flushing the microprocessor and re-executing the instructions
in the correct order.

[0023] FIG. 3 shows details of an example resync predictor
table 215. Referring to FIGS. 2 and 3, the resync predictor
205 1n the LSU 140' sends a resync signal 230 to the memory
210 1n the enhanced instruction decoder 110'. The resync
signal 230 indicates to the enhanced instruction decoder 110’
that a particular load struction was incorrectly executed.
The memory 210 of the enhanced instruction decoder 110
stores the address of the particular load nstruction 1n a first
field 305 of a first column 310 in the resync predictor table
215, and stores a counter value (e.g., 2 bits) 1n a second field
315 of a second column 320 of the resync predictor table 215.
The counter value indicates how many times the particular
load 1nstruction has been reported by a resync signal 230 as
having been incorrectly executed. The counter value 1n the
second field 315 1s incremented each time a resync signal 230
1s recerved that indicates that the particular load instruction
has been 1ncorrectly executed.

[0024] Still referring to FIGS. 2 and 3, when the enhanced

instruction decoder 110' decodes the particular load 1nstruc-
tion, the address of the particular load 1nstruction 1s compared
with all of the fields in the first column 310 of the resync
predictor table 215. If there 1s a match with a particular field
in the first column 310, and if a counter value field 1n the
second column 320 of the resync predictor table 2135 that
corresponds to the particular field in the first column 310
reaches a predetermined threshold, the memory 210 in the
enhanced instruction decoder 110' sends an ““in order hazard
check™ (IOHC) signal 240 to the resync predictor 205 in the
L.SU 140'. When the resync predictor 203 receives an IOHC
signal 240, it will “more caretully” (non-speculatively)
execute the particular load instruction, by executing 1t 1n
order, (1.e., a “restricted execution mode™), rather than execut-
ing 1t speculatively (out-of-order), (1.¢., a “speculative execu-
tion mode™), since it 1s made aware that the particular load has
caused errors 1n the past, (i.e., the particular load 1s “danger-
ous” (1.e., “risky™’)).

[0025] As previously indicated, when the microprocessor
200 executes 1nstructions in order, rather than speculatively
executing 1nstructions out-of-order, the efliciency of the

US 2012/0102357 Al

microprocessor 200 1s reduced. Thus, 1t would be desirable to
selectively change the mode of the particular load 1nstruction
from a “restricted execution mode™ to a “speculative execu-
tion mode”, and to operate 1n the “speculative execution
mode” as much as possible.

[0026] When load instructions, which are marked “IOHC”,
are executed successiully without forwarding data from a
prior store, the LSU 140" determines that future load nstruc-
tions from this address are less “risky” to execute specula-
tively by the LSU 140'. Thus, the IOHC marked load checks
to see 1f there 1s at least one older store to the same address as
the load, which 1s not committed (has not written 1ts value to
memory), when the load successtully executed 1n order. Once
the LSU 140' determines the “risk” associated with the par-
ticular load 1nstruction has been substantially reduced, the
resync predictor 205 1n the LSU 140' sends a strength counter
signal 250 to the memory 210, which decrements the counter
value 1n the second field 315 in the second column 320 of the
resync predictor table 215, and thus the particular load
istruction 1s processed 1 accordance with a speculative
execution mode.

[0027] FIGS. 4A and 4B, taken together, are a tlow diagram
ol a procedure 400 for executing load instructions using the
microprocessor 200 of FIG. 2. Referring to FIGS. 2 and 4A,
in step 405, the enhanced LSU 140" in the microprocessor 200
receives a plurality of out-of-order value addresses 174. In
step 410, the resync predictor 205 1n the enhanced LSU 140
detects an error 1n the order of the execution of 1nstructions
associated with one of the value addresses 174. In step 415,
the resync predictor 205 in the enhanced LSU 140' sends a
resync signal 230 to the memory 210 1n the enhanced nstruc-
tion decoder 110" 1n the microprocessor 200, the resync signal
230 indicating that a particular load 1nstruction was incor-
rectly executed.

[0028] In step 420 of the procedure 400, the enhanced
instruction decoder 110' stores an address of the particular
load 1nstruction (e.g., 1n a first field 305 of the resync predic-
tor table 215 of the memory 210 as shown in FIG. 3), and
increments a counter value associated with the particular load
instruction (e.g., that 1s stored 1n a second field 315 of the
resync predictor table 215 as shown in FIG. 3), the counter
value 1indicating how many times the resync signal 230 was
sent by the resync predictor 203 for that particular load. In
step 425, the enhanced nstruction decoder 110 sets a prede-
termined counter value threshold.

[0029] In step 430, when the particular load instruction is
decoded by the enhanced instruction decoder 110", a deter-
mination 1s made as to whether the counter value associated
with the particular load instruction has reached the predeter-
mined counter value threshold. If the determination 1s nega-
tive, the procedure 400 returns to step 405. It the determina-
tion 1s positive, the procedure 400 continues with step 435. In
step 435, the memory 210 1n the enhanced instruction decoder
110" sends an 1n order hazard check (IOHC) signal 240 to the
resync predictor 205 in the enhanced LSU 140', the IOHC
signal 240 indicating that the particular load instruction
should be executed 1n order. In step 440, a determination 1s
made as to whether the particular load nstruction was
executed successiully 1 order without detecting an older
uncommitted (did not write 1ts value to memory) store having,
the same address as the particular load instruction. If the
determination 1s negative, the procedure 400 returns to step
405. If the determination 1s positive, the procedure 400 con-
tinues with step 445. In step 445, the resync predictor 205 in

Apr. 26, 2012

the enhanced LSU 140' sends a strength counter signal 250 to
the memory 210 1n the enhanced instruction decoder 110, the
strength counter signal 250 1indicating that the risk associated
with the particular load instruction being incorrectly executed
has been substantially reduced.

[0030] In step 450, the enhanced instruction decoder 110
decrements the counter value associated with the particular
load 1struction (e.g., that 1s stored 1n the second field 315 of
the resync predictor table 215 as shown 1n FIG. 3). Then, the
procedure 400 returns to step 403.

[0031] Thus, the microprocessor 200 of FIG. 2 has been
enhanced to not speculatively execute fetch data from
memory that has a history of causing errors in the past, in
order to reduce the probability of error. If 1t 1s later determined
that the data was incorrectly fetched, the error can be resolved
by essentially flushing the microprocessor 200 and re-execut-
ing the data.

[0032] Although features and elements are described above
in particular combinations, each feature or element can be
used alone without the other features and elements or in
various combinations with or without other features and ele-
ments. The methods or flow charts provided herein may be
implemented in a computer program, software, or firmware
incorporated 1in a computer-readable storage medium {for
execution by a general purpose computer or a processor.
Examples of computer-readable storage mediums include a
read only memory (ROM), a random access memory (RAM),
a register, cache memory, semiconductor memory devices,
magnetic media such as internal hard disks and removable
disks, magneto-optical media, and optical media such as CD-

ROM disks, and digital versatile disks (DVDs).

[0033] Suitable processors include, by way of example, a
general purpose processor, a special purpose processor, a
conventional processor, a digital signal processor (DSP), a
plurality of microprocessors, one or more miCroprocessors in
association with a DSP core, a controller, a microcontroller,
Application Specific Integrated Circuits (ASICs), Field Pro-
grammable Gate Arrays (FPGAs) circuits, any other type of
integrated circuit (IC), and/or a state machine.

What 1s claimed 1s:

1. A method of executing load 1nstructions using a micro-
processor that includes a load store unit (LSU) and an 1nstruc-
tion decoder, the method comprising:

the LSU recetving a plurality of out-of-order value
addresses;

a resync predictor in the LSU detecting an error 1n the order
of the execution of instructions associated with one of
the value addresses; and

the resync predictor in the LSU sending a resync signal to

the instruction decoder, the resync signal indicating that
a particular load instruction was incorrectly executed.

2. The method of claim 1 further comprising:

in response to recerving the resync signal, the mstruction
decoder storing an address of the particular load mnstruc-
tion 1n a first field of a table, and incrementing a counter
value associated with the particular load instruction that
1s stored 1n a second field of the table, the counter value
indicating how many times the resync signal was sent by
the resync predictor.

3. The method of claim 2 further comprising;:

the 1nstruction decoder comparing the counter value asso-
ciated with the particular load 1nstruction to a predeter-
mined counter value threshold; and

US 2012/0102357 Al

in response to the counter value reaching the predeter-
mined counter value threshold, the instruction decoder
signaling the resync predictor to execute the particular
load 1nstruction in order.

4. The method of claim 1 further comprising:

the mstruction decoder determining, when decoding the
particular load istruction, whether the counter value

associated with the particular load 1nstruction reached a

predetermined counter value threshold based on a com-

parison ol the counter value and the predetermined
counter value threshold; and
the instruction decoder sending an 1n order hazard check
(IOHC) signal to the resync predictor in the LSU 11 1t 1s
determined that the counter value associated with the
particular load instruction reached the predetermined
counter value threshold, the IOHC signal indicating that
the particular load should be executed 1n order.
5. The method of claim 4 further comprising:
if the particular load instruction was executed sucesstully
in order without detecting an older uncommitted store
having the same address as the particular load struc-
tion, the resync predictor i the LSU sending a strength
counter signal to the instruction decoder, the strength
counter signal indicating that the risk associated with the
particular load instruction being incorrectly executed
has been substantially reduced; and
the mnstruction decoder decrementing the counter value
associated with the particular load instruction that is
stored 1n the second field of the table.

6. A method of executing load instructions using a micro-
processor that includes a load store unit (LSU) and an 1nstruc-
tion decoder, the method comprising:

the LSU recetving a plurality of out-of-order value

addresses;
the LSU detecting an error 1n the order of the execution of
instructions associated with one of the value addresses;

the LSU sending a resync signal to the instruction decoder,
the resync signal indicating that a particular load instruc-
tion was incorrectly executed; and

in response to receving the resync signal, the instruction

decoder storing an address of the particular load instruc-
tion, and incrementing a counter value associated with
the particular load instruction, the counter value indicat-
ing how many times the resync signal was sent by the
resync predictor.

7. The method of claim 3 further comprising:

the instruction decoder determining whether the LSU

should execute the particular load instruction out-oi-
order or 1n order.

8. The method of claim 6 further comprising:

the instruction decoder comparing the counter value asso-
ciated with the particular load instruction to a predeter-
mined counter value threshold; and

in response to the counter value reaching the predeter-
mined counter value threshold, the instruction decoder
signaling the LSU to execute the particular load instruc-
tion 1n order.

9. The method of claim 8 further comprising:

the mstruction decoder determining, when decoding the
particular load istruction, whether the counter value
associated with the particular load reached a predeter-
mined counter value threshold based on a comparison of
the counter value and the predetermined counter value

threshold; and

Apr. 26, 2012

the instruction decoder sending an 1n order hazard check
(IOHC) signal to the LSU 1if it 1s determined that the
counter value associated with the particular load instruc-
tion reached the predetermined counter value threshold,
the IOHC signal indicating that the particular load
should be executed 1n order.

10. The method of claim 9 further comprising:

11 the particular load 1nstruction was executed sucesstully
in order without detecting an older uncommitted store
having the same address as the particular load struc-
tion, the LSU sending a strength counter signal to the
instruction decoder, the strength counter signal indicat-
ing that the risk associated with the particular load
instruction being incorrectly executed has been substan-
tially reduced; and

the instruction decoder decrementing the counter value
associated with the particular load instruction.

11. A microprocessor comprising;

a load store unit (LSU) configured to receive a plurality of
out-of-order value addresses, the LSU having a resync
predictor, wherein the resync predictor 1s configured to
detect an error 1n the order of the execution of instruc-
tions associated with one of the value addresses, and
send a resync signal indicating that a particular load
instruction was incorrectly executed; and

an instruction decoder configured to receive the resync

signal.

12. The microprocessor of claim 11 wherein the instruction
decoder 1s configured to store an address ol the particular load
instruction 1n a first field of a table, and increment a counter
value associated with the particular load 1nstruction that 1s
stored 1n a second field of the table, the counter value 1ndi-
cating how many times the resync signal was sent by the
resync predictor.

13. The microprocessor of claim 12 wherein the instruction
decoder 1s configured to compare the counter value associated
with the particular load instruction to a predetermined
counter value threshold, and signal the resync predictor to
execute the particular load instruction 1n order 1n response to

the counter value reaching the predetermined counter value
threshold.

14. The microprocessor of claim 11 wherein the instruction
decoder 1s configured to determine, when decoding the par-
ticular load instruction, whether the counter value associated
with the particular load reached a predetermined counter
value threshold based on a comparison of the counter value
and the predetermined counter value threshold, and send an 1n
order hazard check (IOHC) signal to the resync predictor 1n
the LSU 11 1t 1s determined that the counter value associated
with the particular load instruction reached the predetermined
counter value threshold, the IOHC si1gnal indicating that the
particular load should be executed 1n order.

15. The microprocessor of claim 14 wherein the resync
predictor 1n the LSU 1s configured to send a strength counter
signal to the mnstruction decoder 11 the particular load instruc-
tion was executed sucessiully 1n order without detecting an
older uncommuitted store having the same address as the par-
ticular load 1nstruction, the strength counter signal indicating,
that the risk associated with the particular load 1nstruction
being incorrectly executed has been substantially reduced,
and the istruction decoder 1s configured to decrement the
counter value associated with the particular load instruction
that 1s stored 1n the second field of the table.

US 2012/0102357 Al

16. A microprocessor comprising:

a load store unit (LSU) configured to recerve a plurality of
out-of-order value addresses, detect an error 1n the order
ol the execution of instructions associated with one of
the value addresses, and send a resync signal indicating
that a particular load instruction was 1ncorrectly
executed; and

an struction decoder configured to store an address of the
particular load 1nstruction in response to receiving the
resync signal, and increment a counter value associated
with the particular load mstruction, the counter value
indicating how many times the resync signal was sent by
the resync predictor.

17. The microprocessor of claim 16 wherein the instruction
decoder 1s configured to determine whether the LSU should
execute the particular load instruction out-of-order or in
order.

18. The microprocessor of claim 16 wherein the instruction
decoder 1s configured to compare the counter value associated
with the particular load instruction to a predetermined
counter value threshold, and signal the LSU to execute the
particular load instruction 1n order in response to the counter
value reaching the predetermined counter value threshold.

Apr. 26, 2012

19. The microprocessor of claim 18 wherein the instruction
decoder 1s configured to determine, when decoding the par-
ticular load 1nstruction, whether the counter value associated
with the particular load reached a predetermined counter
value threshold based on a comparison of the counter value
and the predetermined counter value threshold, and the

istruction decoder 1s configured to send an in order hazard
check (IOHC) signal to the LSU 1if 1t 1s determined that the
counter value associated with the particular load instruction
reached the predetermined counter value threshold, the IOHC
signal indicating that the particular load should be executed 1n
order.

20. The microprocessor of claim 19 wherein the LSU 1s
configured to send a strength counter signal to the instruction
decoder 11 the particular load 1nstruction was executed suc-
essfully in order without detecting an older uncommutted
store having the same address as the particular load instruc-
tion, the strength counter signal indicating that the risk asso-
ciated with the particular load instruction being incorrectly
executed has been substantially reduced, and the instruction
decoder 1s configured to decrement the counter value associ-
ated with the particular load instruction.

ke i o e 3k

	Front Page
	Drawings
	Specification
	Claims

