a9y United States
12y Patent Application Publication o) Pub. No.: US 2011/0320786 A1

Chen et al.

US 20110320786A1

43) Pub. Date: Dec. 29, 2011

(54) DYNAMICALLY REWRITING BRANCH
INSTRUCTIONS IN RESPONSE TO CACHE
LINE EVICTION

(75) Inventors:

(73) Assignee:

(21) Appl. No.:

(22) Filed:

265

TARGET ITAG
SUBROUTINE

Tong Chen, Yorktown Heights, NY
(US); Brian Flachs, Georgetown,
TX (US); Brad W. Michael, Cedar
Park, TX (US); Mark R. Nutter,
Austin, TX (US); John K.P.
O’Brien, South Salem, NY (US);
Kathryn M. O’Brien, South
Salem, NY (US); Tao Zhang,
Jersey City, NJ (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

12/823,226

Jun. 25, 2010

Publication Classification

(51) Int.CL
GOGF 9/38 (2006.01)
GOGF 9/45 (2006.01)
GOG6F 12/08 (2006.01)
(52) US.CL .. 712/233; 711/125; 717/151; 71 1/E12.017;
712/E09.045
(57) ABSTRACT

Mechanisms are provided for evicting cache lines from an
instruction cache of the data processing system. The mecha-
nisms store, for a portion of code in a current cache line, a
linked list of call sites that directly or indirectly target the
portion of code 1n the current cache line. A determination 1s
made as to whether the current cache line 1s to be evicted from
the instruction cache. The linked list of call sites 1s processed
to 1dentily one or more rewritten branch instructions having
associated branch stubs, that either directly or indirectly tar-
get the portion of code 1n the current cache line. In addition,
the one or more rewritten branch instructions are rewritten to
restore the one or more rewritten branch instructions to an
original state based on information in the associated branch
stubs.

TARGET
INSTRUCTION TAG

TARGET LOCAL
STORE ADDRESS

LOCAL STORE

ITAG DIRECTORY
ITAG A

| 200

|ICACHE
MANAGER

220

INSTRUCTION
CACHE (ICACHE)

TARGET INSTRUCTICON

TARGET LOCAL _II'/— 260
STORE ADDRESS |

213

SPACE ADDRESS

BACKING
STORE ADDRESS
SUBROUTINE

S --» TARGET BACKING STORE ADDRESS

TARGET BACKING
STORE ADDRESS

TARGET INSTRUCTION

TARGET INSTRUCTION L\
SPACEADDRESS | ™ 285

PROGRAM

250

280

135
/

BACKING STORE

US 2011/0320786 Al

Dec. 29, 2011 Sheet1 of 16

Patent Application Publication

061 GEl

Ol

340L1S ONIMOVE

081
SNg INJINF 13 HOSSI00dd

r- - - - 7T - =/ == -1
| | | | 0El _
| G/l GOl GGl | | | |
“ " " AHOW3N 21 "
| | | | |
| 4401S °00 J401S 44018 _ _ c7| |
| WOOT VOOT VOO | | _
| | | | |
_ V NdS v NdS Y NdS | NILSAS |
| N 3dS q 3dS v 3dS | | ONILYHIdO _
| | | |

1INN DNISSTO0Nd
_ \ ANV 1d V.LV{ v/ / _ _ _
I 0L 091 oL | | anvidiodiNoD |
rIIIﬂW IIIIIIIIIIIIIIIIIIII I N T M”L
OVl (V3d) 3¥NLOALIHOHEY INTWI 1T HOSSTD0Nd oLl

—
<
&
v o
=
ﬂ JHOLS DNIMOVH QSIHAAY IHOLS

||||||||||||| NIMOVE L1IDHVL
= mmmm_%gq JHOLS ONIMOVE L1IOUY] &+f—————— ONDIOVE 139dvL _
M GCl A
m 08¢ INILNOYENS Gz

05¢ §S3WAQY JHOLS
¢ DIAH ONIMOVE
o - Avdd0dd SSTHAQY IOVdS
- GGZ~. SSIWAQV 3OVdS ._TI-- NOLLONMLSNI 13O¥YL
~ NOILONYLSNI L3DuVYL e
> NOILONYLSNI 1398VL —_—
— _ S1ig 8} SLig vl
= —— N
~ “ GGZ
! ssaaava¥ols | | i
2 09Z - TvO011394Vl SSIHAQY IHOLS
) NOILONYLSNI LIDHVL V0T 1394vl INLLNONENS
= (3HOVO!) HOVD OVLl 1IOUYL
_ 077 zo_B\:Emz_
= HIDYNYI ez 1¢C
N JHOVII GO¢
= ooty !l /"
V1l 139HVL S

£ 0)7 L — OV ldodvl OV.L NOILONYLSNI
= 9 OVl 139UV
= Y OVLI
S A¥OLO3YIA 9V
-p
& JHOLS VIO
~
-
&
o~
A

US 2011/0320786 Al

Dec. 29, 2011 Sheet 3 01 16

Patent Application Publication

4IOVNVIN 3HOVDI |~ UCC Ove

8 SS38UOY 39VAS -\ vig INMOdIVYL

NOILONYLSNI LIOHVL

————— — e — oo
| |
| g
0S€ 0E€ | 0Z€
_
g YOLdMOSIA | VHOLMOSIA | ENOILONYLSNI |
HONVHY HONVHY HONVHH

e i

T L
FHIVOI
¢ DId

|
_ 09€ r
|

Gre

VY §SJ4dav J0vdS
NOILONYLSNI L3OHVL

GEE

L —

HONYYHY INI'TOdNVHL

ANIT 3HOVO

00¢ 0L€

V NOILONHLSNI

NOILONHLSNI

HONVHY

0tc

NOILONYLSNI

Patent Application Publication Dec. 29,2011 Sheet 4 of 16 US 2011/0320786 Al

400

COMPILATION/
LINKING START
405 ~_ 410

RETRIEVE INSTRUCTION —{ SOURCE CODE |

420
BRANCH 422
NO
INSTRUCTION 4/25
? CO
MPILE
4 ;lgs YES INSTRUCTION
432
BRANCH “\DIRECT /
TYPE?
438 ~J INDIRECT

GENERATE INSTRUCTIONS THAT:
- TRANSLATE TARGET

INSTRUCTION SPACE GENERATE BRANCH

ADDRESS TO ITAG DESCRIPTOR THAT

460 - -LOOK UP ITAG IN ICACHE INCLUDES TRAMPOLINE

_BRANCH TO TARGET IF HIT BRANCH AND TARGET [440

USING TARGET LOCAL INSTRUCTION SPACE

STORE ADDRESS ADDRESS (TISA)
_ CALL ICACHE MANAGER IF MISS

COMPILE BRANCH
COMPILE BRANCH INSTRUCTION INSTRUCTION AND 450
470 | AND GENERATED INSTRUCTIONS BRANCH DESCRIPTOR

MORE YES (LOOP)

INSTRUCTIONS \
. 482
NO [\ 488
490 END

US 2011/0320786 Al

Dec. 29, 2011 Sheet S of 16

Patent Application Publication

0LS N3

H01d[43S30 HONVYE
40 §S340AV JH0LS
Vo011V d41vo01

NOILONYLSNI
139HV1 OL HONVYd

FAH01S
ONIMOVH

Gel

GLS

045

Ad01044(d DV
341¥{ddN "FHOVOI
OLNI QVOT ANV
JHOLS ONIXOVH
WO¥d NOILONYLSNI
IERLLARENE LI},

9S3¥aay 3ovds
NOILONYLISNI L1IDHVL
ONISN (¥S1L) SSIHAAV

34018 V301
1394v1 31NdWOD

$SIHAAY IDVdS
NOILONYLISNI 1394V
ONISN (YSEL) SSFyaay
JHOLS ONIMOVE
1394Y1 31NdWOI

096

79§

SS14dQAV JH01S VOO0]
149¥vV1 OL SSANAAY
30VdS NOILONYLSNI
139UV1 1VISNVHL

¢9G — | S3A

ON

09§

i

AHOLORIA DVLI NI
OVL 1494V1 dMMO0

$5140av I0vdS
NOLLONHLSNI
13OHVL ONISN OV
1398V1 41NdWOD

HOLdI¥IS3A HONYYY
NO¥4 (VSIL) SS3¥aav
30VdS NOILONYLSNI
1394VL 1ovY1X3

d3LS193d MNIT
FHOVII WOY4
d4INIOd H0.1dI¥9540
HONVYE JAIH 13

- 0FS

NOILND3X3
AVHO0¥d
4MNNILNOD

HIOVNVYIW JHOVOI
01 ¥31NIOd
H0LdI¥aS4d

HONVYHE SANJS
ANV 44OVNYIA
JHOVOI Ol
SJHONV4
ANITOdAVAL

GG

LAVLS HIDVYNVAA
FHOVOI

OtS

d01dl8354d
HONVYE

NI 30NTONI

ANITOdNVYL

Ol HONVdS

NOILONYLSNI

HONV4H
103410 dvOT

018

-G0S

14V.1S HONVHY
103dId

00§

Patent Application Publication Dec. 29,2011 Sheet 6 of 16 US 2011/0320786 Al

600 INDIRECT
BRANCH START

610~/ COMPUTE TARGET ITAG USING 615

TARGET INSTRUCTION SPACE -
ADDRESS (TISA) IN REGISTER

620~] LOOKUP TARGET ITAG e 225
IN ITAG DIRECTORY DIRECTORY
638 630
N\ YES

REGISTER
STORE

632 ~INO

CALL ICACHE MANAGER

TO RETRIEVE TARGET
840~ INSTRUCTION FROM BACKING
STORE AND LOAD INTO ICACHE

S —

TRANSLATE TARGET INSTRUCTION V
650 SPACE ADDRESS TO TARGET
LOCAL STORE ADDRESS | ICACHE

MANAGER
220

BRANCH TO TARGET ICACHE
LOCAL STORE ADDRESS 23()

135

Patent Application Publication

Dec. 29, 2011 Sheet 7 o1 16

700 FUNCTION
RETURN START FIG. 7
705
CREATE RETURNVALUEASLOCALSTORE |
ADDRESS AND STORE IN LINK REGISTER I
I
I
I
I
I
I
720
Yy /
TRANSLATE TARGET LOCAL STORE ADDRESS
RETURN VALUE TO TARGET INSTRUCTION ——»| | REGISTER
SPACE ADDRESS AND STORE IN LINK REGISTER STORE
730 I
I
I

738

NO
/

732 YES |
740 I
RETRIEVE LINK REGISTER VALUE ——
TARGET
TARGET LOCAL | OCAL STORE
STORE ADDRESS ~ ADDRESS OR TARGET
% INSTRUCTION SPACE
758 ADDRESS
750
TARGET INSTRUCTION | ~752
SPACE ADDRESS
CALL ICACHE MANAGER TO RETRIEVE
TARGET INSTRUCTION FROMBACKING |———- ——
760 STORE AND LOAD INTO ICACHE
TRANSLATE TARGET INSTRUCTION SPACE
765 ADDRESS TO TARGET LOCAL SPACE ADDRESS

270 | BRANCH TO TARGET LOCAL STORE ADDRESS I*———

ICACHE
230

780 /I CONTINUE PROGRAM EXECUTION |

790~ _END_)

US 2011/0320786 Al

ICACHE
MANAGER

Patent Application Publication Dec. 29,2011 Sheet 8 0of 16 US 2011/0320786 Al

TARGET INSTRUCTION
SPACE ADDRESS

800

14 BITS | 18 BITS |

Y

820 /‘ 18 BITS |

TARGET LOCAL
sToRE ADDRESS FIG. 8A

TARGET INSTRUCTION
SPACE ADDRESS TO TARGET
ITAG TRANSLATION START

830

GENERATE ITAG INDEX USING
TARGET INSTRUCTION SPACE 840
ADDRESS AND
TAG ARRAY MASK

GENERATE TARGET
ITAG FROM ITAG INDEX

850

TARGET INSTRUCTION SPACE
ADDRESS TO TARGET BACKING STORE
ADDRESS TRANSLATION START

870

880 GENERATE OFFSET USING TARGET
- INSTRUCTION SPACE ADDRESS
AND ICACHE BASE ADDRESS

GENERATE TARGET BACKING STORE
ADDRESS USING GENERATED
890 ~"| OFFSET AND MASK THAT PRESERVES

INDEX INTO CACHE ARRAY

Patent Application Publication Dec. 29, 2011 Sheet 9 01 16 US 2011/0320786 A1l
INFORMATION HANDLING SYSTEM
920 900 PROCESSOR FIG. 9
\ INTERFACE
——t BUS 910
| SYSTEM MEMORY | PROCESSOR(S)
| | NORTH BRIDGE 0l
| MEMORY |—|— MEMORY 025 930
| | CONTROLLER PC / /
| MEMORY |—|— 915 EXPRESS | GRAPHICS
| | CONTROLLER [] DISPLAY
o = 918
955 PC OMIBUS 919
\ EXPRESS ¥
1-LANE []
145
USB STORAGE DEVICE |’ I
EXPRESSCARD | |
USt | USB |
| USB DEVICE | EVICES |
975 PC| ' |
N YPRESS | USB DEVICE | 942
802.11 1-LANE USB Ry e . 044
WIRELESS CONTROLLER M
972 940
946
BLUETOOTH r
O\ INFRARED RECEIVER
048 /D
— 1©).| cAvERA
INTERNAL AUDIO LINE-IN AND
HARD DRIVE
984 " AUDIO (©) OPTICAL DIGITAL
AUDIO IN PORT
NTERFACE | CIRCUITRY -
SERIAL 060 OPTICAL DIGITAL
ATABUS | SOUTH BRIDGE 20U HO) OUTPUT AND
/0 DEVICE 958 HEADPHONE JACK
088 AND DISK 964
CONTROLLER INTERNAL |
990 035 VICROPHONE (zr _;\[l INTERNAL SPEAKERS
" EGACY" PCI 068
0 LPOBUS EXPRESS 966
DEVICES AN ETHERNET CONTROLLER
970
996 008 LPC BUS
N TPM
BOOT ROM

992

Patent Application Publication

ORIGINAL CODE

BC RCOND, L20

1110

LOAD/STORE
RETURN ADDRESS

TARGET
ADDRESS

1110

1120

Dec. 29,2011 Sheet 10 of 16

REWRITTEN CODE

US 2011/0320786 Al

1000

BRANCH STUB1

BC RCOND, STUB1 |

FIRST WORD

EA RETURN
ADDRESS

FIG. 11

US 2011/0320786 Al

Dec. 29,2011 Sheet 11 of 16

Patent Application Publication

052l

0tcl

8GZ 1~ Y0078 3HOVO 1394V L
HONVYE LO3YION

QG2 MO018 JHOVD
HONVYE 1934IANI

PGCl~] 10018 JHOVO 1394V1
HONVYE 10JdIC

ATA) MO018 JHOVD
HONYYE 10310

08¢1

d0SS3004d

(3¥OLS Tv201) IHOVII

gNLS HONVYY LOJ4IANI
6tCl

8NLS HONVYE 1O3uIa
8ecl

NOILONYLSNI HONYYY
10JdIAONI NJLLI-MMIS

0421

AOVIS TIVD

JID0T ONILIIMIS
NN1dd HONVYY

A
A

D190 1 ONILIIMI

HONYYE JINVNAQ
A4

d3OVNVIN JHOVO

9tl!l
NOILONYLSNI
Vell L3OUVL MOTHD

NOILONYLSNI HONYHY

103410 N3LLIdM3d
ctcl

D07
ONI|LIEMI
HONVd4

d311dWOD

3000 N4LLlI9MId

N
0ccl

NOILONHLSNI
W3LSAS JNILNNY JHIOVOI

Ovcl

NOILONHLSNI

HONVad 1O0ddIANI

142492414

NOILONHLSNI

HONVY4d 103dId
3d02 TVNIDIHO

¢l DId

09¢L

d31S5193d
NI

0lcl

Patent Application Publication

Dec. 29,2011 Sheet 12 of 16

1305 ~_

COMPILER ANALYZES
THE RECEIVED CODE

1310

BRANCH?

YES

1325 ~_

GENERATE BRANCH

STUB FOR BRANCH
INSTRUCTION

1330 ~_

TARGET BRANCH STUB

REWRITE BRANCH
INSTRUCTION TO

INDIRECT NO

BRANCH?

1340

INSERT CHECK
TARGET INSTRUCTION

END

NO

OF CODE
7

1320

OUTPUT OPTIMIZED
CODE TO LINKER FOR
GENERATION OF
EXECUTABLE CODE

END

FIG. 13

(START)

EVICTION OF CACHE BLOCK

1610

CACHE
BLOCK ENTRY TO
FUNCTION?

PROCESS LINKED CALL SITE
LIST USING CALL STUB

1630

FIXCALL SITES IN
LINKED CALL SITE LIST

1640

CHECK CALL SITES

INSIDE EVICTED BLOCK 1630

CALL SITE
IN LINKED CALL
SITE LIST

REMOVE CALL SITE FROM
LINKED CALL SITE LIST

END

FIG. 16

US 2011/0320786 Al

Patent Application Publication

1405

1425
\

FETCH

CACHE
BLOCK

1430

1440

1445

1450

1455

REQUESTED | YES

Dec. 29, 2011 Sheet 13 0of 16 US 2011/0320786 Al
(START)
RECEIVE CACHE
BLOCK REQUEST
1410
YES
o 1415
1420 /
Do [
HAS AVAILABLE
SPACE? INSTRUCTION
' CACHE

NO
EVICT EXISTING
CACHE BLOCK

PERFORM
DYNAMIC BRANCH

NO

REWRITING
?

1435

YES

PERFORM DYNAMIC
BRANCH REWRITING

PERFORM RETURN
REWRITE OPERATION

DYNAMICALLY REWRITE
LINK REGISTER

INSERT INDIRECT
BRANCH INSTRUCTION
TO LINK REGISTER

FIG. 14

Patent Application Publication Dec. 29,2011 Sheet 14 0of 16 US 2011/0320786 Al

1500

CALL STUB

19121 BRANCH TO ICACHE MANAGER
19191 ORIGINAL TARGET ADDRESS
1510
1516 OFFSET TO ORIGINAL
BRANCH/CALL INSTRUCTION

1518 COPY OF ORIGINAL
BRANCH/CALL INSTRUCTION
LINKED LIST
1522 PREVIOUS POINTER

y5pa - LINKED LIST NEXT POINTER

1520
1526 PAD
2

FIG. 15

1750 SOURCE CODE BLOCK ADDRESSES

SOURCE CODE BLOCK LISTING
o
1720 NUMBER OF BRANCH STUBS

1700 730 NUMBER OF CALL STUBS

1740 START ADDRESS OF STUBS

FIG. 17

Patent Application Publication Dec. 29,2011 Sheet 15 0f 16 US 2011/0320786 Al

START

START

RECEIVE NEXT
BLOCK OF CODE

1805 ~_

DETERMINE CACHE BLOCK
NEEDS EVICTION

1910

1810 IDENTIFY POSSIBLE
N SOURCE BLOCKS THAT
MAY TARGET BLOCK

FETCH LAST QUAD WORD 1920

OF EVICTED CACHE BLOCK
1820~ STORE ADDRESSES
OF SOURGE BLOCKS DETERMINE HOW MANY
SOURCE BLOCK ADDRESS | ~1930
1830~| STORE NUMBER OF IN EVICTED CACHE BLOCK
SOURCE CODE BLOCKS AND ADDRESS START

STORE NUMBER PROCESS NEXT POTENTIAL 1940

STORE ADDRESS L OCATE SOURCE CODE -
1850 CALL STUBS IN EVICTED BLOCK
FETCH NUMBER OF BRANCH
LAST - STUBS AND ADDRESSES 960
CODE BLOCK FROM SOURCE BLOCK
?
1860 EXAMINE BRANCH STUBS
= AND CHECK WHETHER
BRANCHES TO EVICTED 1970
CACHE BLOCK
FIG. 18
FIX REWRITTEN
BRANCH INSTRUCTION
CORRESPONDING TO 1080
BRANCH STUB BRANCHING
TO EVICTED CACHE BLOCK

FI1G. 19

Patent Application Publication Dec. 29,2011 Sheet 16 0of 16 US 2011/0320786 Al

(START)

2010~| BUILD WEIGHTED
CALL GRAPH

SELECT MAXIMALLY
2020~| WEIGHTED EDGEE,
HAVING NODES V1 AND V2,

IN UNPROCESSED EDGES 2040
2030 4
PLACE REMAINING
NO _| PROCEDURES IN SAME
NODE TOGETHER IN v
SAME CACHE LINE
s (e)

WEIGHT
(V1) + WEIGHT (V2) < CACHE
LINE SIZE?

NO MARK EDGE AS
PROCESSED

20350

2060~ MERGE V1 AND V2 |

ELIMINATE
2070-"| SELECTED EDGEE

2080

YES

FI1G. 20

US 2011/0320786 Al

DYNAMICALLY REWRITING BRANCH
INSTRUCTIONS IN RESPONSE TO CACHE
LINE EVICTION

BACKGROUND

[0001] The present application relates generally to an
improved data processing apparatus and method and more
specifically to mechanisms for dynamically rewriting branch
istructions in response to cache line eviction.

[0002] Many modern computing devices utilize a multipro-
cessor architecture 1n which multiple processors are provided
to 1ncrease the computation power of the computing device.
One example of a modern multiprocessor architecture 1s the
Cell Broadband Engine (CBE) available from International
Business Machines Corporation or Armonk, N.Y. With the
CBE, a primary control processor, referred to as the PPE, 1s
provided along with a plurality of controlled processors,
referred to as synergistic processing elements (SPEs). Each
SPE has a local memory, or local store, into which instruc-
tions and data are copied so that the SPE may execute instruc-
tions 1n the local store on data brought into the location store
from main memory. Thus, the local store serves as both an
instruction and data cache for the SPE. Other multiprocessor
architectures utilize similar configurations 1n which the pro-
cessors may have a local instruction cache and data cache into
which data and instructions are brought before executing on
the processor or having the processor operate on the data.
[0003] TTypically, the local store, or cache, of a modern day
multiprocessor architecture 1s designed to be much smaller in
storage size than the main memory. Thus, executing code
larger than the processor’s local store or cache size requires a
strategy for swapping pieces ol code, or code segments, 1nto
the local store or cache before use. In some cases, a code
segment may include branch instructions whose target
instruction 1s located 1n a different code segment that may not
be currently present 1n the local store or cache. This would
require a strategy for bringing in the code segment corre-
sponding to the target instruction from main memory.

SUMMARY

[0004] In one illustrative embodiment, a method, 1n a data
processing system, 1s provided for evicting cache lines from
an istruction cache of the data processing system. The
method comprises storing, by a processor of the data process-
ing system, for a portion of code 1n a current cache line, a
linked list of call sites that directly or indirectly target the
portion of code in the current cache line. The method further
comprises determining, by the processor, that the current
cache line 1s to be evicted from the 1nstruction cache. More-
over, the method comprises processing, by the processor, the
linked list of call sites to identily one or more rewritten branch
instructions having associated branch stubs, that either
directly or indirectly target the portion of code 1n the current
cache line. In addition, the method comprises rewriting, by
the processor, the one or more rewritten branch instructions to
restore the one or more rewritten branch instructions to an
original state based on information in the associated branch
stubs.

[0005] In other illustrative embodiments, a computer pro-
gram product comprising a computer useable or readable
medium having a computer readable program 1s provided.
The computer readable program, when executed on a com-
puting device, causes the computing device to perform vari-

Dec. 29, 2011

ous ones, and combinations of, the operations outlined above
with regard to the method illustrative embodiment.

[0006] In yet another illustrative embodiment, a system/
apparatus 1s provided. The system/apparatus may comprise
one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions
which, when executed by the one or more processors, cause
the one or more processors to perform various ones, and
combinations of, the operations outlined above with regard to
the method 1illustrative embodiment.

[0007] These and other features and advantages of the
present invention will be described 1n, or will become appar-
ent to those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0008] The invention, as well as a preferred mode of use
and further objectives and advantages thereof, will best be
understood by reference to the following detailed description
of 1llustrative embodiments when read 1n conjunction with
the accompanying drawings, wherein:

[0009] FIG. 11sanexample embodiment of an information
handling system capable of implementing aspects ol the illus-
trative embodiments set forth herein;

[0010] FIG. 2 1s a diagram showing embodiments of a
soltware controlled instruction cache (1cache) manager trans-
lating a target instruction space address to other types of
instruction addresses;

[0011] FIG. 3 1s a diagram showing a cache line that
includes direct branch instructions and corresponding branch
descriptors 1n accordance with one illustrative embodiment;

[0012] FIG. 4 1s a flowchart showing steps taken in com-
piling various branch instruction types in accordance with
one 1llustrative embodiment;

[0013] FIG. 51s a flowchart showing steps taken 1n execut-
ing a direct branch instruction in a runtime environment n
accordance with one 1llustrative embodiment;

[0014] FIG. 6 1s a tlowchart showing steps taken 1n execut-
ing an indirect branch instruction 1n a runtime environment 1n
accordance with one 1llustrative embodiment;

[0015] FIG. 71s a flowchart showing steps taken 1n execut-
ing a function return 1mstruction in a runtime environment 1n
accordance with one 1llustrative embodiment;

[0016] FIG. 8A shows a target instruction space address
translated 1nto a target local store address 1n accordance with
one 1llustrative embodiment;

[0017] FIG. 8B i1s a flowchart showing steps taken in an
icache manager translating a target instruction space address
to a target instruction tag (ITAG) 1in accordance with one
illustrative embodiment;

[0018] FIG. 8C 15 a flowchart showing steps taken 1in an
icache manager translating a target instruction space address
to a target backing store address in accordance with one
illustrative embodiment;

[0019] FIG. 9 illustrates information handling system,
which 1s another embodiment of a simplified example of a

computer system capable of performing the computing
operations described herein;

[0020] FIG. 10 1s an example diagram of a branch stub 1n
accordance with one 1llustrative embodiment;

US 2011/0320786 Al

[0021] FIG. 11 1s an example diagram 1llustrating a rewrit-
ing of a link register 1n accordance with one 1llustrative
embodiment;

[0022] FIG. 12 15 an example diagram illustrating an over-
all operation of one 1llustrative embodiment for rewriting
branch 1nstructions using branch stubs;

[0023] FIG. 13 1s a flowchart outlining an example opera-
tion of a compiler for rewriting branch instructions 1n accor-
dance with one illustrative embodiment;

[0024] FIG. 14 1s a flowchart outlining an example opera-
tion or an instruction cache runtime system for performing
dynamic rewriting of branch instructions in accordance with
one 1llustrative embodiment;

[0025] FIG. 15 1s an example diagram illustrating a call
stub 1n accordance with one 1llustrative embodiment;

[0026] FIG. 16 1s a flowchart outlimng an example opera-
tion of an 1nstruction cache manager when handling the evic-
tion of a cache line in accordance with one illustrative
embodiment;

[0027] FIG.171s an example diagram 1llustrating one 1llus-
trative embodiment of a source code block listing quad word;

[0028] FIG. 18 1s a flowchart outlimng an example opera-
tion of a compiler when analyzing original code and inserting,
a list of possible source code blocks targeting a current code
block 1n accordance with one illustrative embodiment;

[0029] FIG. 19 1s a flowchart outlimng an example opera-
tion of the instruction cache runtime system in accordance
with one 1illustrative embodiment, with regard to handling
eviction of a cache line; and

[0030] FIG. 20 1s a flowchart outlimng an example opera-
tion for performing code optimization using a partitioned call
graph 1n accordance with one illustrative embodiment.

DETAILED DESCRIPTION

[0031] The illustrative embodiments provide a mechanism
for statically and dynamically rewriting branch instructions
so that they may be more optimally executed 1n view of the
limited size of local stores or caches of a processor. In par-
ticular, the mechanisms of the illustrative embodiments pro-
vide functionality for rewriting code, both statically by a
compiler and dynamically by an instruction cache runtime
system, to thereby generate and utilize branch stubs 1n the
code for branch instructions. The branch stubs may be used as
a basis for holding information about the branch 1nstruction
for use 1n determiming whether a jump directly to a target of
the branch instruction 1n the instruction cache may be pos-
sible or not. Examples of branch instructions include function
calls, conditional branch instructions, unconditional branch

instructions, function returns, and the like, as 1s generally
known 1n the art.

[0032] In addition, the mechanisms of the illustrative
embodiments provide functionality for performing dynamic
rewriting of branches based on whether or not the possible
targets of the branches are known or not. The rewriting of the
branch instructions allows the code to directly jump to target
code in the mstruction cache when possible rather than having
to go through an instruction cache manager to determine if the
target code 1s present in the mstruction cache or not. In gen-
cral, when the target code 1s loaded into the mstruction cache,
the branch instruction 1s rewritten as a jump to the location of
the target code 1n the 1nstruction cache. When the target code
1s evicted from the instruction cache, the branch instruction 1s
restored since 1t cannot jump to the target code directly but

Dec. 29, 2011

must trigger a software instruction cache mechanism to
handle the jump to the target code.

[0033] As will be appreciated by one skilled 1n the art, the
present invention may be embodied as a system, method, or
computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied 1n any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

[0034] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, device, or any suitable combi-
nation of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable medium would
include the following: an electrical connection having one or
more wires, a portable computer diskette, a hard disk, a ran-
dom access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0035] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, 1n a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an 1nstruction execution system,
apparatus, or device.

[0036] Computer code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber

cable, radio frequency (RF), etc., or any suitable combination
thereof.

[0037] Computer program code for carrying out operations
for aspects of the present invention may be written 1n any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute enfirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-

US 2011/0320786 Al

nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

[0038] Aspects of the present mmvention are described
below with reference to tlowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to the illustrative embodiments of
the mvention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0039] These computer program instructions may also be
stored 1n a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function 1n a particular manner, such that the
instructions stored 1in the computer readable medium produce
an article of manufacture including instructions that imple-
ment the Tunction/act specified 1n the flowchart and/or block
diagram block or blocks.

[0040] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus, or other devices to produce a computer 1mple-
mented process such that the 1nstructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0041] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos-
sible 1mplementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, 1n some alternative imple-
mentations, the functions noted 1n the block may occur out of
the order noted 1n the figures. For example, two blocks shown
1n succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart 1llustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

[0042] FIG. 1 1s an example embodiment of an information
handling system capable of implementing aspects of the 1llus-
trative embodiments set forth herein. The example informa-
tion handling system shown 1n FIG. 1 1s an example of a Cell
Broadband Engine (CBE) architecture available from Inter-
national Business Machines Corporation of Armonk, N.Y. It
should be appreciated, however, that the present invention 1s
not limited to use with the CBE and other information han-

Dec. 29, 2011

dling system architectures, configurations, and the like, may
be used without departing from the spirit and scope of the
illustrative embodiments.

[0043] Processor element architecture (100) includes mul-
tiple heterogeneous processors that share a common memory
and a common bus. Processor element architecture (PEA)
100 sends and receives information to/from external devices
through mnput output 190, and distributes the information to
control plane 110 and data plane 140 using processor element
bus 180. Control plane 110 manages PEA 100 and distributes
work to data plane 140.

[0044] Control plane 110 includes processing unit 120,
which runs operating system (OS) 125. For example, process-
ing unit 120 may be a Power PC core that1s embedded in PEA
100 and OS 1235 may be a Linux operating system. Processing,
unmit 120 manages a common memory map table for PEA 100.
The memory map table corresponds to memory locations
included in PEA 100, such as L2 memory 130 as well as
non-private memory included in data plane 140.

[0045] Dataplane 140 includes Synergistic Processing Ele-
ments (SPE) 150, 160, and 170. Each SPE processes data
information and each SPE may have different instruction sets.
For example, PEA 100 may be used 1n a wireless communi-
cations system and each SPE may be responsible for separate
processing tasks, such as modulation, chip rate processing,
encoding, and network interfacing. In another example, each
SPE may have identical instruction sets and may be used 1n
parallel to perform operations benefiting from parallel pro-
cesses. Fach SPE includes a synergistic processing unit
(SPUs 155, 165, 175), which 1s a processing core, such as a
digital signal processor, a microcontroller, a microprocessor,
or a combination of these cores. Each SPU includes a local
storage area (local stores 158, 168, and 178), which may be
segmented into private and non-private memory. Each of
local stores 158, 168, and 178 store a cache directory and tag
directory (instruction and/or data), along with a cache man-
ager (see FIG. 2 and corresponding text for further details).
And, each cache manager within each SPU manages their
corresponding cache and retrieves data from backing store
135 accordingly.

[0046] While FIG. 1 shows one information handling sys-
tem, an information handling system may take many forms.
For example, an information handling system may take the
form of a desktop, server, portable, laptop, notebook, or other
form factor computer or data processing system. In addition,
an information handling system may take other form factors
such as a personal digital assistant (PDA), a gaming device,
ATM machine, a portable telephone device, a communication
device or other devices that include a processor and memory
(see FI1G. 9 and corresponding text for another embodiment of
an information handling system for performing compilation
functions as described herein).

[0047] FIG. 2 1s a diagram showing embodiments of an
instruction cache (icache) manager translating a target
instruction space address to other types of 1instruction
addresses. Local store 200 resides within a synergistic pro-
cessing unit (e.g., SPU’s 155, 165, or 175) and includes
instruction cache (icache) manager 220, instruction tag
(ITAG) directory 223, and instruction cache 230.

[0048] Inorder to effectively move mstructions from back-
ing store 135 to icache 230, icache manager 220 requires an
clfective address within backing store 133 that corresponds to
the location of the target instruction (target backing store
address 280), as well as a local storage address within 1cache

US 2011/0320786 Al

230 to store the mstruction (target local store address 260). In
addition, icache manager 220 requires an instruction tag that
corresponds to the target instruction in order to utilize ITAG
directory 223 and determine a cache hit or a cache miss (target
ITAG 270). As discussed herein, icache manager 220 uses an
instruction’s “instruction space address” (target 1nstruction
space address 255) to compute an instruction’s target backing
store address, target local store address, and target ITAG. The
instruction space address 1s an address given to an 1nstruction
at link/load time based upon the location of the instruction 1n
a program (program 250).

[0049] Whenicache manager 220 1s requested (by an appli-
cation thread) to branch to a particular target instruction,
icache manager 220 determines whether the target instruction
already resides 1n icache 230 by checking whether the target
instruction’s corresponding instruction tag (ITAG) 1s located
in ITAG directory 225 (target ITAG 270). In order to generate
target I'TAG 270, icache manager 220 uses target ITAG sub-
routine 265, which generates target I'TAG 270 using target
instruction space address 255 and a tag array mask (see FIG.

8B and corresponding text for further details).

[0050] When icache manager 200 needs to load the target
instruction from backing store 135 into i1cache 230, i1cache
manager 220 computes the location of the target instruction in
backing store 135 (target backing store address 280) as well
as the location to store the target instruction in 1cache 230
(target local store address 260). Icache manager 220 utilizes
target 1nstruction space address 255 to generate these
addresses as discussed below.

[0051] In the example shown 1n FIG. 2, target instruction
space address 235 1s 32 bits. Target instruction space address
255’s 18 least significant bits, however, 1s target local store
address 260 because local store 20015 256 KB 1n size and only
requires 18 bits for addressing into i1cache 230. As such,
icache manager 220 masks off target instruction space
address 255°s 14 most significant bits 1n order to generate
target local store address 260 (see FIG. 8 A and corresponding,
text for further details). As those skilled 1n the art can appre-
ciate, more or less bits may be required for target local store
address 260 based upon the size of local store 200.

[0052] Inordertoidentily the location in backing store 135
to retrieve the struction (target backing store address 280),
icache manager 220 uses backing store subroutine 275, which
generates an offset using target instruction space address 255
and an 1cache base address, and uses the offset and a mask to
generate target backing store address 280 (see FIG. 8C and
corresponding text for further details). In turn, 1cache man-
ager 220 retrieves the target instruction from target backing

store address 280; stores the target instruction in target local
store address 260; and updates ITAG directory 2235 accord-
ingly.

[0053] FIG. 3 1s a diagram showing a cache line that
includes direct branch instructions and corresponding branch
descriptors 1n accordance with one 1llustrative embodiment.
A “direct” branch 1instruction 1s an instruction 1 which the
address of a next istruction to execute, 1.e. the target of the
branch 1nstruction, 1s explicitly specified. An “indirect”
branch instruction 1s one in which the address of the next
instruction to execute 1s not explicitly specified but instead the
argument of the branch instruction specifies where the
address 1s located. Thus, an example of an indirect branch
istruction could be of the type “jump indirect on the rl
register,” which means that the next instruction to be executed
would be at the address whose value 1s stored 1n register r1. It

Dec. 29, 2011

should be noted that indirect branch instructions can also
depend on the value of a memory location, rather than a
specified register. Thus, with indirect branch instructions, the
address of the next istruction to execute 1s not known at
compile time, but 1s only known once the branch instruction
1S executed, 1.e. at runtime. With direct branch instructions,
the target of the branch instruction 1s known at compile time.

[0054] One aspect of the illustrative embodiment 1s that,
during source compilation, a compiler adds a “branch
descriptor” mto a program for each direct branch instruction
and, 1n turn, an 1cache manager loads the branch descriptors
into the same nstruction cache line during runtime execution.
FI1G. 3 shows instruction cache 230, which includes cache
line 300. Cache line 300 includes multiple instructions, some
of which are direct branch instructions 310 and 320. Cache

line 300 also includes branch descriptors 330 and 350, which
correspond to direct branch instructions 310 and 320, respec-
tively.

[0055] When an application thread executes direct branch
mstruction 310, direct branch instruction 310 branches to
branch descriptor 330. Branch descriptor 330 includes tram-
poline branch instruction 335 and target instruction space
address 345. A trampoline branch 1s an 1nstruction that, when
executed, branches to, or “bounces” to icache manager 220,
thus causing a trampoline effect. When branch instruction
310 branches to branch descriptor 330, trampoline branch
instruction 335 1s invoked, which branches to 1cache manager
220 and loads pointer 340 1nto a link register via a branch and
set link 1nstruction, which points back to branch descriptor
330. In turn, icache manager 220 uses pointer 340 to locate
branch descriptor 330 and retrieve target instruction space
address 345. Icache manager 220 uses target instruction space

address 345 to generate various addresses and locate a target
istruction corresponding to direct branch instruction 310
(see FIG. 5 and corresponding text for further details).

[0056] Likewise, when the application thread executes
direct branch instruction 320, the branch instruction branches
to branch descriptor 350, which 1s different than branch
descriptor 330. Branch descriptor 350 includes trampoline
branch instruction 355 and target instruction space address
365. Target instruction space address 3635 corresponds to a
location of the target instruction for branch imstruction 320.
When branch instruction 320 branches to branch descriptor
350, trampoline branch instruction 355 1s mvoked, which
branches to icache manager 220 and loads pointer 360 into the
link register via a branch and set link instruction, which points
back to branch descriptor 350. In turn, icache manager 220
uses pointer 360 to locate branch descriptor 350 and retrieve
target instruction space address 365.

[0057] FIG. 4 1s a flowchart showing steps taken 1n com-
piling various branch instruction types in accordance with
one 1llustrative embodiment. The illustrative embodiments
described herein includes embodiments discussing code
compilation/linking, and embodiments discussing code
execution (e.g., runtime environment). FIG. 4 shows steps
taken by a compiler (and/or linker) when the compiler
encounters a branch istruction while compiling source code.

[0058] Processing commences at 400, whereupon process-
ing retrieves an struction from source code 410 at step 405.
A determination 1s made as to whether the retrieved nstruc-
tion 1s a branch mstruction (decision 420). If the mstruction 1s
not a branch instruction, decision 420 branches to “No”

US 2011/0320786 Al

branch 422 whereupon processing compiles the instruction
(step 425) 1n a traditional manner known to those skilled 1n
the art.

[0059] On the other hand, 1f the retrieved 1nstruction 1s a
branch instruction, decision 420 branches to “Yes” branch
428, whereupon a determination 1s made as to the type of
branch mstruction (decision 430). If the instruction 1s a direct
branch instruction, decision 430 branches to “Direct” branch
432 whereupon processing generates a branch descriptor that
includes a trampoline branch nstruction and a target instruc-
tion space address at step 440. During runtime execution, the
direct branch instruction branches to the trampoline branch
instruction, which sends a pointer to the 1cache manager and,
in turn, the icache manager retrieves the target instruction
space address from the branch descriptor (see FIGS. 3, 5, and
corresponding text for further details). At step 450, process-
ing compiles the branch instruction and branch descriptor.

[0060] If the branch type 1s an indirect branch, however,
decision 430 branches to “Indirect” branch 438, whereupon
processing generates a number of 1nstructions (step 460) to
handle the indirect branch during runtime execution. The
instructions include an instruction to translate the indirect
branch’s target instruction space address to an 1nstruction tag,
(ITAG) along with an instruction to look up the ITAG 1n an
icache directory (icache directory 225 shown in FIG. 2).
Processing also generates instructions 1n order to handle hit or
miss outcomes of the lookup. For example, processing gen-
crates an 1instruction that translates the target instruction
space address to a target local store address 1n order to branch
to the 1nstruction 1n icache 11 the lookup results 1n a cache hat,
and also generates an instruction that calls the icache manager
if the lookup results 1n a cache miss. At step 470, processing
compiles the nstructions.

[0061] A determination 1s made as to whether there are
more 1nstructions to process i1n source code 410 (decision
480). If there are more instructions to process, processing
branches to “Yes” branch 482, which loops back to retrieve
and process the next instruction. This looping continues until
there are no more source code instruction to process, at which
point decision 480 branches to “No” branch 488 whereupon
processing ends at 490.

[0062] FIG. 51s a flowchart showing steps taken 1n execut-
ing a direct branch instruction in a runtime environment 1n
accordance with one 1llustrative embodiment. In some of the
illustrative embodiments described herein a branch descrip-
tor 1s inserted 1into a cache line for each direct branch nstruc-
tion (see FIG. 4 and corresponding text for further details). In
turn, the branch descriptor includes information to pass onto
an icache manager to process the direct branch instruction.

[0063] Processing commences at 300, whereupon process-
ing (e.g., application thread) loads a direct branch instruction
at step 505. The direct branch instruction was arranged at load
time to branch to a trampoline branch mstruction included in
the direct branch’s corresponding branch descriptor (see FIG.
3 and corresponding text for further details). As such, at step
510, processing branches to the trampoline branch instruction
included 1n the corresponding branch descriptor. The tram-
poline branch instruction, at step 515, branches to the icache
manager and sends a branch descriptor pointer to the icache
manager (e.g., stores the branch descriptor pointer 1n an
icache link register).

[0064] Icache manager processing commences at 530,
whereupon the 1cache manager retrieves the branch descrip-
tor pointer from the link register at step 535. At step 540, the

Dec. 29, 2011

icache manager uses the branch descriptor pointer to locate
and extract the target instruction space address from the
branch descriptor. The target instruction space address 1s an
address that corresponds to the direct branch’s target instruc-
tion.

[0065] At step 545, the icache manager computes a target
ITAG from the target instruction space using a tag array mask
(see FI1G. 8B and corresponding text for further details). Next,
the 1cache manager looks up the target ITAG 1n ITAG direc-

tory 225 in order to determine whether the target instruction 1s
located 1n icache 230 (step 550).

[0066] A determination 1s made as to whether ITAG direc-
tory 225 includes the target ITAG (decision 560). If ITAG
directory 223 includes the target ITAG (cache hit), decision
560 branches to “Yes” branch 562 whereupon the icache
manager translates the target instruction space address to a
target local store address at step 564 by masking off a portion
of the target instruction space address (see FIG. 8A and cor-
responding text for further details). Then, at step 5635, the
icache manager branches to the target instruction located at
the target local store address within icache 230; passes control
back to the application thread; and ends at 570. The applica-

tion thread continues program execution at step 520, and ends
at 525.

[0067] On the other hand, 1f ITAG directory 225 fails to
include the target ITAG (cache miss), decision 360 branches
to “No” branch 568 wherecupon processing computes a target
backing store address from the target instruction space
address using an offset and mask at step 570 (see FIG. 8C and
corresponding text for further details). The target backing
store address corresponds to the location of the target instruc-
tion stored 1n backing store 135. Next, the icache manager
translates the target instruction space address to a target local
store address at step 5735 by masking off a portion of the target
instruction space address (see FIG. 8 A and corresponding
text for tfurther details). The target local store address 1s the
location 1n 1cache 230 that the target instruction 1s stored. At
step 580, the icache manager loads the target instruction from
backing store 135 into icache 230. At this point, the 1cache
manager branches to the target instruction located at the target
local store address within icache 230 and passes control back
to the application thread (step 565), which continues program
execution at step 520. Icache manager processing ends at 570
and application thread processing ends at 525.

[0068] FIG. 615 a flowchart showing steps taken 1n execut-
ing an indirect branch instruction 1n a runtime environment 1n
accordance with one illustrative embodiment. Indirect branch
processing commences at 600, whereupon processing (e.g.,
application thread) computes a target instruction tag (I'TAG)
using a target instruction space address located 1n register
store 615 that corresponds to the indirect branch instruction’s
target instruction (step 610). The target instruction space
address was stored 1n register store 615 from a previous
instruction (hence an 1ndirect branch instruction).

[0069] Processing looks up the target ITAG 1n I'TAG direc-
tory 225 at step 620, and a determination 1s made as to
whether the lookup results in a cache hit or a cache miss
(decision 630). If a cache miss occurs, decision 630 branches
to “No”” branch 632, whereupon processing calls icache man-
ager 220 to move the target instruction from backing store 135
into 1cache 230 (step 640). Icache manager 220, in turn,
translates the target instruction space address to a target back-
ing store address and a target local store address 1n order to
move the target instruction from backing store 133 into icache

US 2011/0320786 Al

230 (see FIGS. 5, 8A, 8C, and corresponding text for further
details). On the other hand, if a cache hit occurs, decision 630
branches to “Yes” branch 638, bypassing icache manager
steps.

[0070] Atstep 650, processing translates the target imnstruc-
tion space address to the target local store address and, at step
660, processing retrieves the target instruction from 1cache
230 at the target local store address. Processing continues
program execution at step 670, and ends at 680.

[0071] FIG. 7 1s a flowchart showing steps taken 1n execut-
ing a function return 1mstruction 1n a runtime environment 1n
accordance with one 1llustrative embodiment. Processing
commences at 700, whereupon processing executes a func-
tion return 1mstruction and, 1n doing so, creates a target local
store address (1cache address) as the return value, which 1s
stored 1n a link register included in register store 720 (step
705).

[0072] While waiting for the instruction to finish, a deter-
mination 1s made as to whether the target instruction 1s being,
evicted from the 1cache (decision 710). If the target mstruc-
tion address 1s being evicted from the 1cache, decision 710
branches to “Yes” branch 712, whereupon processing trans-
lates the target local store address to a target instruction space
address and stores the target instruction space address 1n the
link register at step 715. The target instruction space address
1s stored 1n the link register such that when the function return
completes, processing realizes that the target instruction 1s no
longer 1n 1cache 230 and should call the icache manager to
move the target instruction from backing store 135 into 1icache
230 (discussed below). On the other hand, 1f the target
instruction 1s not evicted from the icache, decision 710
branches to “No” branch 718 bypassing translation steps.

[0073] A determination 1s made as to whether the function
return has completed (decision 730). If the function return has
not yet completed, decision 730 branches to “No” branch
732, which loops back to monitor function return completion
and target instruction eviction. This looping continues until
the function return completes, at which point decision 730
branches to “Yes” branch 738 whereupon processing
retrieves the link register value from register store 720 (step
740).

[0074] A determination 1s made as to whether the link reg-
ister value 1s a target local store address (TLSA) or a target
instruction space address (TISA) (decision 750). It the link
register value 1s a target mstruction space address, decision
750 branches to “TISA” branch 752, whereupon processing
calls icache manager 220 to move the target instruction from
backing store 135 into 1cache 230 (step 760). Icache manager
220, 1n turn, translates the target instruction space address to
a target backing store address and a target local store address
in order to move the target instruction from backing store 1335
into icache 230 (see FIGS. 5, 8A, 8C, and corresponding text
for further details). Processing, at step 765, converts the target
instruction space address to the target local store address. On
the other hand, 11 the link register value 1s a target local store
address (e.g., target instruction was not evicted), decision 750
branches to “TLSA” branch 758 bypassing icache manager
calling steps.

[0075] At step 770, processing branches to the target
address at the target local store address and continues pro-
gram execution at step 780. Processing ends at 790.

[0076] FIG. 8A shows a target instruction space address
translated 1nto a target local store address 1n accordance with
one 1llustrative embodiment. The target instruction space

Dec. 29, 2011

address discussed herein includes 32 bits and the target local
store address discussed herein includes 18 bits. As those
skilled 1n the art can appreciate, more or less bits may be used
for the target 1instruction space address and/or the target local
store address. The target mstruction space address includes
the target local store address 1n its 18 least significant bits (see
FIG. 2 and corresponding text for further details). As such, 1n
order to translate the target instruction space address to the
target local store address, the icache manager masks off target
instruction space address 800°s 14 most significant bits using
mask 810, which leaves 18 least significant bits as target local
store address 820.

[0077] FIG. 8B 1s a flowchart showing steps taken 1n an
icache manager translating a target instruction space address
to a target instruction tag (ITAG) 1n accordance with one
illustrative embodiment. Icache manager processing com-
mences at 830, whereupon the icache manager generates an
instruction tag index using the target instruction space etiec-
tive address and a tag array mask (step 840). In one embodi-
ment, a tag array 1s an array of structures with one element per
cache line. Each element includes an instruction space
address of a corresponding line that 1s currently resident. As
such, 1n this embodiment:

tag array mask=Number of cache lines-1

ITAG index=(TISA/linesize)&tag mask

[0078] Next, at step 850, the 1cache manager generates the
target instruction tag at step 850 from the generated ITAG
index, such as by using the instruction:

Target ITAG=tag[ITAG index]

[0079] Theicache manager may then use the target ITAG to
look 1n the ITAG directory and determine whether a corre-
sponding target instruction 1s located 1n the 1cache or whether
the 1icache manager should retrieve the target instruction from

backing store and load 1t into the 1cache. Processing ends at
860

[0080] FIG. 8C 1s a flowchart showing steps taken 1in an
icache manager translating a target instruction space address
to a target backing store address. Icache manager processing
commences at 870, whereupon the 1cache manager generates
an offset using the target mstruction space address (TISA)
and 1cache base address (step 880), such as with the instruc-
tion:

offset=(TISA-icachebase)

[0081] Next, at step 890, the 1cache manager generates the
target backing store address (IBSA) using the generated
offset and mask that preserves an index into a cache array,
such as with the 1nstruction:

TBS A=(offset&mask that preserves 1dx imnto cache
array)|(offset>>(18-log2 icachesize))

where “&” 1s a bitwise AND operator; “|” 1s a bitwise OR
operator; and “>>" 1s a bitwise right shift. The 1cache man-
ager may then use the target backing store address to retrieve
the target instruction from backing store at the target backing
store address, and load the target instruction into the i1cache
(see FIGS. 5-7 and corresponding text for further details).
Processing ends at 895.

[0082] FIG. 9illustrates information handling system 900,
which 1s another embodiment of a simplified example of a
computer system capable of performing the computing
operations described herein. Information handling system

US 2011/0320786 Al

900 1ncludes one or more processors 910 coupled to proces-
sor interface bus 912. Processor interface bus 912 connects
processors 910 to Northbridge 915, which 1s also known as
the Memory Controller Hub (MCH). Northbridge 915 con-
nects to system memory 920 and provides a means for pro-
cessor(s) 910 to access the system memory. Graphics control-
ler 925 also connects to Northbridge 915. In one embodiment,
PCI Express bus 918 connects Northbridge 915 to graphics
controller 925. Graphics controller 925 connects to display
device 930, such as a computer monaitor.

[0083] Northbridge 915 and Southbridge 9335 connect to
cach other using bus 919. In one embodiment, the bus 1s a
Direct Media Interface (DMI) bus that transfers data at high
speeds 1n each direction between Northbridge 915 and South-
bridge 935. In another embodiment, a Peripheral Component
Interconnect (PCI) bus connects the Northbridge and the
Southbridge. Southbridge 935, also known as the I/O Con-
troller Hub (ICH) 1s a chip that generally implements capa-
bilities that operate at slower speeds than the capabilities
provided by the Northbridge. Southbridge 935 typically pro-
vides various busses used to connect various components.
These busses include, for example, PCI and PCI Express
busses, an ISA bus, a System Management Bus (SMBus or
SMB), and/or a Low Pin Count (LPC) bus. The LPC bus often
connects low-bandwidth devices, such as boot ROM 996 and
“legacy” 1/0 devices (using a “super I/O” chip). The “legacy”™
I/0 devices (998) can include, for example, serial and parallel
ports, keyboard, mouse, and/or a floppy disk controller. The
LPC bus also connects Southbridge 9335 to Trusted Platiorm
Module (TPM) 995. Other components often included in
Southbridge 935 include a Direct Memory Access (DMA)
controller, a Programmable Interrupt Controller (PIC), and a
storage device controller, which connects Southbridge 935 to
nonvolatile storage device 985, such as a hard disk drive,
using bus 984.

[0084] ExpressCard 955 is a slot that connects hot-plug-
gable devices to the information handling system. Express-
Card 955 supports both PCI Express and USB connectivity as
it connects to Southbridge 935 using both the Universal Serial
Bus (USB) the PCI Express bus. Southbridge 935 1ncludes
USB Controller 940 that provides USB connectivity to
devices that connect to the USB. These devices include web-
cam (camera) 950, infrared (IR) recerver 948, keyboard and
trackpad 944, and Bluetooth device 946, which provides for
wireless personal area networks (PANs). USB Controller 940
also provides USB connectivity to other miscellanecous USB
connected devices 942, such as a mouse, removable nonvola-
tile storage device 945, modems, network cards, ISDN con-
nectors, fax, printers, USB hubs, and many other types of
USB connected devices. While removable nonvolatile stor-
age device 945 1s shown as a USB-connected device, remov-
able nonvolatile storage device 945 could be connected using
a different interface, such as a Firewire interface, etcetera.

[0085] Wireless Local Area Network (LAN) device 975
connects to Southbridge 935 via the PCI or PCI Express bus
972. LAN device 975 typically implements one of the IEEE
802.11 standards of over-the-air modulation techniques that
all use the same protocol to wireless communicate between
information handling system 900 and another computer sys-
tem or device. Optical storage device 990 connects to South-
bridge 935 using Serial ATA (SATA) bus 988. Serial ATA
adapters and devices communicate over a high-speed serial
link. The Serial ATA bus also connects Southbridge 9335 to

other forms of storage devices, such as hard disk drives.

Dec. 29, 2011

Audio circuitry 960, such as a sound card, connects to South-
bridge 935 via bus 938. Audio circuitry 960 also provides
functionality such as audio line-1n and optical digital audio 1n
port 962, optical digital output and headphone jack 964, inter-
nal speakers 966, and internal microphone 968. Ethernet con-
troller 970 connects to Southbridge 935 using a bus, such as
the PCI or PCI Express bus. Ethernet controller 970 connects
information handling system 900 to a computer network,
such as a Local Area Network (LAN), the Internet, and other
public and private computer networks.

[0086] The above mechanisms provide the ability for code
to jump, through the use of a trampoline struction, to the
instruction cache manager of the instruction cache to check
whether the target code for a branch instruction 1s in the
instruction cache or not. If not, the instruction cache manager
will bring the target code into the cache. The instruction cache
manager will then cause the execution to jump to where the
target code 1s present 1n the instruction cache. This allows
code segments to be brought from a backing store, or main
memory, of the system into a local store or istruction cache
associated with a processor. This mechanism may be repli-
cated with each processor of a multi-processor system such
that each processor may manage the moving of instructions
into and out of the local stores or instruction caches associated
with the individual processors.

[0087] While this mechanism generally works well, further
performance enhancement and optimization may be achieved
by providing mechanisms to avoid the overhead of redirecting
execution to the instruction cache manager, having the
instruction cache manager perform its checks and operations,
and then returning to the original code. The mechanisms of
the 1llustrative embodiments provide further functionality to
dynamically rewrite branch instructions utilizing branch
stubs, 1.e. small portions of code that stand 1n for, or replace,
another programming function. The branch stubs maintain
information about branch instructions and serve as a mecha-
nism for jumping directly to target code in the instruction
cache when possible. The branch stub code serves a similar
purpose as the trampoline code with the exception that the
overhead of the mstruction cache manager 1s avoided when
the target code exists within the mnstruction cache. In the case
that the target code 1s not 1n the instruction cache, the execu-
tion of the code may be redirected to the instruction cache
manager as previously described above. These mechanisms
may be implemented in an information handling system, such
as described above with reference to FIG. 9, or other type of
information/data processing system.

[0088] The branch stubs are itroduced into the code, such
as at the end of a code block (a section of code grouped
together, typically having a size that 1s able to {it into one or
more cache lines of an instruction cache), by a compiler at
compile time and may be dynamically updated at runtime by
an 1nstruction cache runtime system. The mstruction cache
runtime system 1s the collection of software designed to sup-
port the execution of computer programs, which may include
subroutines and libraries for common operations, implemen-
tation of programming language commands, type checking,
debugging, code generation and optimization, and the like. In
particular, the mstruction cache runtime system includes an
instruction cache manager, such as that previously described
above, which has been modified to make use of the additional
mechanisms described 1n the further illustrative embodi-
ments hereaiter. The original branch istruction 1s rewritten
by the compiler to branch to an address corresponding to the

US 2011/0320786 Al

branch stub for this branch instruction and the modified
branch instruction and branch stub are included 1n the execut-
able code so that 1t can be brought 1nto the nstruction cache
along with the other instructions. Again, branch instructions
may be function calls, conditional branch instructions,
unconditional branch instructions, or the like, and may be
direct branch instructions or indirect branch instructions.

[0089] With direct branch instructions, 1.e. branch 1nstruc-
tions for which an address of a next instruction to execute 1s
explicitly specified in the branch instruction, the branch stubs
can be used to store a branch offset, 1.e. an offset from the
address of the branch instruction, that 1s used to locate the
original target address of the next instruction to execute and
thus, the target 1s explicitly 1dentified. During runtime, after
the instruction cache line corresponding to the branch instruc-
tion 1s fetched, the direct branch instruction can be rewritten
so that 1t targets the address of the actual target nside the
instruction cache, rather than the address of the branch stub.
In this way, further executions of the direct branch instruction
will proceed directly to the target address of the next instruc-
tion directly without incurring instruction cache runtime sys-
tem overhead, 1.e. the overhead associated with jumping to
the instruction cache manager of the instruction cache runt-
ime system.

[0090] Indirect branch mstructions cannot be rewritten 1n
the same manner as direct branch instructions using the
branch stubs since the targets of indirect branch instructions
are only known at runtime and may be different each time the
indirect branch instructions are executed. Thus, the overhead
associated with having to go to the instruction cache runtime
system can only be avoided i1 1t can be determined that the
current target of the indirect branch instruction is already 1n
the mstruction cache. The illustrative embodiments provide
mechanisms for determining whether the target of an indirect
branch 1nstruction 1s 1n the instruction cache or not so that a
direct jump can be made using the branch stub.

[0091] With indirect branch instructions, the instruction
cache runtime system may monitor the execution of code to
identify these indirect branch instructions and may determine
the target of the indirect branch 1nstruction and whether the
target of the indirect branch instruction is the same target as in
a previous execution of the indirect branch instruction. The
branch stubs for indirect branch instructions, along with a
compiler inserted check instruction, can be used to make such
a determination, as will be described in greater detail hereat-
ter. IT the indirect branch instruction 1s targeting the same
target address as for a previous execution of the indirect
branch instruction, then the execution may jump directly to
this target i the instruction cache without having to go
through the instruction cache runtime system, e.g., the
instruction cache manager. However, 1f the target address of
the indirect branch instruction does not match a previous
target address for a previous execution of the branch 1nstruc-
tion, then the execution may jump to the instruction cache
runtime system, such as the instruction cache manager as
described above, to bring the target of the indirect branch
instruction mto the instruction cache.

[0092] As mentioned above, one aspect of these 1llustrative
embodiments 1s the itroduction of branch stubs for branch
instructions i code provided to a compiler. The compiler
may analyze the recerved code, identily branch instructions in
the code as well as whether the branch instruction 1s a direct
branch instruction or an indirect branch instruction. For
example, the compiler may 1dentity a branch instruction as a

Dec. 29, 2011

direct branch instruction when the target of the branch
instruction 1s a discernable address at compile time. A branch
instruction whose target 1s a register or some other location
whose contents are dynamically determined at runtime, will
be identified by the compiler as an indirect branch instruction.

[0093] For direct and indirect branch instructions, the com-
piler generates a branch stub, 1nserts a link to the instruction
cache manager 1nto a first portion of the branch stub, and a
copy of the target address from the original branch instruction
in a second portion of the branch stub. The original branch
instruction 1s then rewritten to reference the branch stub, 1.e.
the target of the original branch mstruction 1s changed to an
address or offset to the branch stub for that branch mstruction
to thereby generate a modified branch istruction. For indi-
rect branch instructions, the compiler further mserts a check
instruction, such as prior to the branch instruction, to check
whether a target of the branch instruction matches a previous
target of the same branch instruction and to jump to one of the
target 1nstruction or the instruction cache runtime system
based on an outcome of the check. This will be described in
greater detail hereafter.

[0094] FIG. 10 1s an example diagram of a branch stub 1n
accordance with one illustrative embodiment. As shown 1n
FI1G. 10, 1n one illustrative embodiment, the branch stub 1000
comprises a plurality of portions of data 1010-1040 with each
portion of data 1010-1040 storing different information based
on the type of branch instruction that 1s replaced by the branch
stub 1000. In the depicted example, the branch stub 1000 1s
comprised of four words 1010-1040, with each word being a
fixed size number of bits of data. In general the first portion
1010 of the branch stub 1000, ¢.g., the first word, 1s used for
storing an address to link register and a cache miss handler 1n
the first portion 1010, which may be the instruction cache
manager, may be part of the instruction cache manager, or
may otherwise be provided by the instruction cache runtime
system, for example, 1n case the target of the branch 1s not
present 1n the instruction cache when the branch stub 1s pro-
cessed. The second portion 1020 may store a copy of the
target effective address from the original branch instruction.
The last two portions 1030 and 1040, ¢.g., the last two words,
are Iree to be used by the instruction cache runtime system to
store information about runtime status of the branch instruc-
tions that are rewritten using the branch stub 1000 based on
the type of branch instruction being replaced or rewritten.

[0095] For example, the third portion 1030 of the branch
stub 1000 may be used by the instruction cache runtime
system, for direct branch instructions, to store an offset into a
cache line or cache line for locating the original branch
instruction. The fourth portion 1040 of the branch stub 1000
may be used to store a copy of the original branch instruction
before rewriting. With this extra information in the branch
stub 1000, after the istruction cache manager fetches the
instruction cache line corresponding to the branch instruction
into the instruction cache, the mstruction cache manager may
cause the direct branch instruction to be rewritten to target the
actual target address inside the instruction cache rather than
the branch stub 1000. Thereafter, when the direct branch
instruction 1s again executed, the branch instruction will jump
directly to the target 1n the nstruction cache rather than hav-
ing to go through the mstruction cache manager to check to
see 1 the target 1s 1n the 1mstruction cache.

[0096] For indirect branch instructions, the mechanisms of
the 1llustrative embodiments make use of the observation that

indirect branch instructions tend to target the same target

US 2011/0320786 Al

address at runtime. Thus, for indirect branch instructions, the
instruction cache runtime system uses a sub-portion of the
third portion 1030 of the branch stub 1000, which 1s unused
for direct branch 1nstructions, to store the target address for
the last target called by the indirect branch instruction. This
target address for the last target called by the indirect branch
instruction, stored 1n sub-portion of the third portion 1030 of
the branch stub 1000, may be used by the check instruction
inserted by the compiler to check to see 11 the previous execus-
tion of the indirect branch instruction targeted the same target
address or not as the current execution of the mdirect branch
instruction. If so, then the target instruction 1s already present
in the instruction cache (since the previous execution used 1t)
and thus, the imndirect branch 1nstruction can jump directly to
the target instruction 1n the instruction cache without having,
to go through the istruction cache manager. If the target
address for the last target called by the indirect branch mstruc-
tion does not match the target of the current execution of the
indirect branch instruction, then the execution jumps to the
instruction cache manager to perform the necessary opera-
tions for bringing the target into the instruction cache, as
previously described above.

[0097] It should be noted that 1n order to handle cache line
eviction properly, such as when there 1s an 1nstruction cache
miss and a cache line needs to be evicted to bring 1n another
cache line, the saved target address 1n the sub-portion of the
third portion 1030 of the branch stub 1000 of the calling
indirect branch instruction needs to be cleared when the target
instruction 1s evicted from the 1nstruction cache. The same 1s
true for direct branches such that the target address informa-
tion stored 1n the branch stub 1000 must be cleared when the
target instruction 1s evicted from the mstruction cache. More
about eviction will be provided hereaftter.

[0098] In addition to the above, the illustrative embodi-
ments further include mechanisms for rewriting branch
instruction returns. Branch instruction return rewriting, in
accordance with one illustrative embodiment, 1s achieved
without using branch stubs but instead makes use of a rewrit-
ing ol a link register. For example with a processor element
architecture such as shown in FIG. 1, each SPE may support
128 bit registers, each of which may store a quadword. Reg-
ister r) may be used as a link register, 1.¢. aregister that stores
the address to return to when a function completes execution,
with only word O of the link register typically being used. In
general, when a function returns, the address stored in the link
register 1s loaded from the call stack and then a return handler,
which may be part of the instruction cache manager, or oth-
erwise provided in the instruction cache runtime system, 1s
called with the link register address as input. The return
handler would then check whether the code block to return to
1s still 1n the instruction cache or not, and 11 not, 1t will fetch
the code block from the backing store or main memory and
put 1t 1nto the mstruction cache.

[0099] FIG. 11 1s an example diagram illustrating a rewrit-
ing of a link register in accordance with one illustrative
embodiment. As shown 1n FIG. 11, the mechanisms of the
illustrative embodiments rewrite the link register 1100 so that
additional information 1s stored 1n the link register 1100. That
1s, typically the link register 1100 only stores the return
address, referred to as the load/store return address, 1n word O
1110 of the link register 1100. However, with the mechanisms
of the illustrative embodiments, the instruction cache runtime
system rewrites the link register 1100 to store a target address
in word 0 1110, which 1s to be used as a basis for an indirect

Dec. 29, 2011

branch instruction to the target address, and an effective
address (EA) for the return address in word 1 1120.

[0100] With this rewniting of the link register 1100, when a
branch returns, the 1instruction cache runtime system can per-
form a load of the link register from the stack and perform an
indirect branch to the link register. The target of the indirect
branch instruction to the link register will be word O of the link
register. This indirect branch instruction can then be handled
using the mechanisms noted above with regard to indirect
branches. As a result, 1 the target address stored 1n word O of
the link register corresponds to the same target address as a
previous execution of the indirect branch, as determined from
a branch stub associated with the indirect branch instruction,
then the execution of the code can bypass the return handler of
the mstruction cache runtime system and jump directly to the
target 1nstruction in the instruction cache. If the target
addresses do not match, then the instruction cache manager
may be mvoked as discussed above.

[0101] In particular, after instruction cache miss handling,
which may occur as a result of a target of the branch nstruc-
tion, e.g., a called function, not being present in the mnstruc-
tion cache, the return handler of the instruction cache runtime
system, €.g., 1n the instruction cache manager, stores the
instruction cache address of the code block to return to 1n the
first slot or word, e.g., word 0 1110, of the link register 1100.

The return handler also stores the corresponding effective
address of the 1nstruction cache address of the code block to
returnto 1n a second slotor word, ¢.g., word 1 1120, of the link
register 1100. Thus, after rewriting the link register, and
assuming that the target block of code 1s not evicted, when the
branch returns, 1t will branch to the first slot or word, e.g.,
word 01110, of the link register 1100 directly without invok-
ing the return handler of the instruction cache runtime system.

[0102] It should be noted that cache eviction needs to be
handled carefully 1n this case. To correct return rewriting,
when the target block of code to be returned to has been
evicted from the instruction cache, whenever a cache line 1s
evicted, the instruction cache manager may traverse all call
stack frames through a back chain. For each call stack frame,
the instruction cache manager may examine the second slotor
word, e.g., word 1 1120, of the link register 1100. If the
effective address 1n the second slot or word matches the cache
line evicted, then the 1mstruction cache manager may moditly
the first slot or word, e.g., word 0 1110, of the link register
1100 to point to the address of the return handler of the
instruction cache runtime system. Thus, later, when the
branch instruction returns, the return handler will be invoked
instead, and the return handler knows which cache line to

tetch based on the second slot or word, e.g., word 1 1120, of
the link register 1100.

[0103] FIG. 12 1s an example diagram 1llustrating an over-
all operation of one illustrative embodiment for rewriting
branch instructions using branch stubs. As shown 1n FIG. 12,
original code 1210 1s provided and may include one or more
direct branch 1nstructions 1212 and/or one or more indirect
branch instructions 1214. The compiler 1220 may receive the
original code 1210 and, as part of 1ts optimizations, may
rewrite the branches 1n the original code 1210 using branch
stubs with the branch instructions referencing the branch
stubs. In order to achieve this rewriting, the compiler 1220
may be provided with branch rewriting logic 1222 that per-
forms the static analysis of the original code 1210 as
described previously to identify branches in the original code
1210 and rewrite these branches accordingly.

US 2011/0320786 Al

[0104] For example, the branch rewriting logic 1222 may
identify the branches in the orniginal code 1210, generate a
branch stub, e.g., branch stubs 1238 and 1239, for each of the
branches in the original code 1210, and populate the branch
stubs with an address for the instruction cache manager (for
use in the case of a target block not being present in the
instruction cache), as well as an original target address from
the original branch instruction. The original branch nstruc-
tions are then rewritten to replace the reference to the target
instruction with a reference to the branch stub corresponding
to the branch 1nstruction. This 1s done regardless of whether
the branch instruction 1s a direct branch instruction or an
indirect branch instruction. As a result, the rewritten code
1230 includes rewritten branch instructions 1232 and 1236 as
well as branch stubs 1238 and 1239 with a linking between
the rewritten branch instructions and their corresponding
branch stubs (represented by the arrows 1n FI1G. 12).

[0105] The branch rewriting logic 1222 further determines
which branch instructions in the original code 1210 are direct
branch mstructions 1212 or indirect branch mstructions 1214.
For indirect branch instructions 1214, the branch rewriting
logic 1222 inserts check target istructions, such as check
target instruction 1234. As discussed above, these check tar-
get mstructions 1234, at runtime, cause a check to be per-
tformed of the target address of the current execution of an
indirect branch istruction with a target address of a last
previous execution of the indirect branch instruction to see 1
there 1s a match between the two. If there 1s a match, then the
execution jumps to the target address directly without having
to go to the instruction cache (1cache) runtime system 1240. I
there 1s not a match, then the execution goes to the icache
runtime system 1240 so that an instruction cache manager
1242 may perform the necessary operations to ensure that the

block of code targeted by the indirect branch instruction 1s
brought mto the mstruction cache (icache) 1250.

[0106] Therewritten code 1230 may be provided to a linker
(not shown) which then links the code with library functions
and the like, and generates executable code that 1s provided to
processor 1280. The processor 1280 may execute the rewrit-
ten code 1230 and, 1n the process execute the rewritten branch
instructions 1232 and 1236 using the corresponding branch
stubs 1238 and 1239. As part of the execution of these instruc-
tions, the icache runtime system 1240 may monitor the execu-
tion to determine when the branch instructions need to be
dynamically rewritten. For example, with direct branch
instructions, such as direct branch instruction 1232, the
dynamic branch rewriting logic 1244 of the icache runtime
system 1240 rewrites the direct branch istruction 1232
dynamically to directly target the location 1254 within the
instruction cache 1250 where the target of the original branch
instruction 1s currently located, rather than pointing to the
branch stub 1238. This dynamic rewriting 1s performed to the
direct branch instruction in the direct branch cache line 1252

in the icache 1250.

[0107] With mdirect branch mstructions, such as indirect
branch instruction 1236, the dynamic branch rewriting logic
1244 monitors whether the corresponding check target
instruction 1234 results 1n the target addresses matching or
not. If the target addresses match, then the processor may
access the indirect branch target cache line 1258 directly
without having to go through the instruction cache manager
1242 of the i1cache runtime system 1240. If the target
addresses do not match, then the execution branches to the
instruction cache manager 1242 of the istruction cache runt-

Dec. 29, 2011

ime system 1240, as specified by the first portion of the
branch stub. In addition, the dynamic branch rewriting logic
1244 rewrites the indirect branch stub 1239, 1n the indirect
branch cache line 1256, with the current target address of the
current execution of the indirect branch instruction 1236,
such as 1n a sub-portion of the third word 1030 1n FIG. 10. In
this way, the target address stored 1n the indirect branch stub
in the indirect branch cache line 1256 1s updated to store the
last previous target address of the indirect branch instruction.

[0108] In addition to the above, the branch return rewriting
logic 1246 of the icache runtime system 1240 operates to
rewrite the link register 1260 so that 1t stores the target address
and effective address of the target address 1n the link register
as discussed above with regard to FIG. 11. When a branch
istruction returns, 1t returns to the target address 1n the link
register using an indirect branch instruction that 1s handled in
the same manner as other indirect branch instructions dis-
cussed above. In addition, the instruction cache manager
1242 may perform the operations noted above using the call
stack 1270 to traverse call stack frames to determine 11 there
1s a match to the effective address of the link register 1260 and
if so, cause the branch return rewriting logic to rewrite the
target address 1n the link register 1260 to point to the 1nstruc-
tion cache manager 1242.

[0109] FIG. 13 1s a flowchart outlining an example opera-
tion of a compiler for rewriting branch instructions in accor-
dance with one 1llustrative embodiment. As shown in FI1G. 13,
the operation starts with the compiler analyzing the received
code (step 1305) and determining if a branch 1nstruction 1s
encountered (step 1310). If a branch instruction i1s not
encountered, the operation determines 11 an end of the code 1s
encountered (step 1315). If not, the operation returns to step
1305. Otherwise the optimized code 1s output to the linker for
generation of executable code (step 1320) and the operation
terminates.

[0110] Ifthe compiler encounters a branch mstruction (step
1310), the compiler generates a branch stub for the branch
instruction including storing the address to the instruction
cache manager and the original target address of the branch
instruction as described above (step 1325). The compiler
rewrites the branch instruction to target the branch stub (step
1330) and determines 11 the branch 1nstruction 1s an indirect
branch instruction (step 1335). If the branch 1s an indirect
branch mstruction, the compiler mnserts a check target instruc-
tion prior to the branch instruction that checks the target of the
indirect branch instruction against a last previous target
address stored in the branch stub and jumps directly to the
target 11 there 1s a match or jumps to the 1nstruction cache
manager 1 there 1s not a match (step 1340). Thereafter, or 1f
the branch instruction 1s not an indirect branch instruction, the
operation continues to step 1315.

[0111] FIG. 14 1s a flowchart outlining an example opera-
tion or an instruction cache runtime system for performing
dynamic rewriting of branch instructions in accordance with
one 1llustrative embodiment. As shown 1n FIG. 14, the opera-
tion starts by recerving a cache line request requesting an
access to a particular portion of code 1n a cache line of the
instruction cache (step 1405). A determination 1s made as to
whether there 1s a cache hit or not, 1.e. the cache line corre-
sponding to the cache line request 1s already present in the
instruction cache (step 1410). If there 1s a cache hit, then the
cache line 1s accessed from the 1nstruction cache (step 1415)
and the operation terminates. If there 1s not a cache hit, 1.e.
there 1s a cache miss, then a determination 1s made as to

US 2011/0320786 Al

whether the instruction cache has available unused space to
store a cache line corresponding to the cache line request (step
1420). It there 1s available space, then the requested cache line
1s fetched from the backing store and loaded 1nto the mstruc-
tion cache (step 1425), with the operation returning to step
1405 where the cache line request 1s again executed.

[0112] If there 1s not available space in the instruction
cache, an existing cache line 1s evicted (step 1430) and a
determination 1s made as to whether dynamic branch rewrit-
ing 1s to be performed (step 1435). If dynamic branch rewrit-
ing 1s not to be performed, the operation continues to step
1425. The determination as to whether to perform dynamic
branch rewriting may include, for example, determining 11 a
branch instruction loaded with the cache line targeted by the
cache line request 1s a direct branch or an 1ndirect branch. If
the branch 1s a direct branch, then the branch instruction can
be dynamically rewritten to dlrectly reference the location of
the original target instruction in the instruction cache rather
than referencing the branch stub of the direct branch. If the
branch 1s an indirect branch, then a check instruction may be
executed to determine 1f the target of the indirect branch 1s the
same as a last previous target as stored 1n the branch stub. If
there 1s a match, then the branch instruction can jump directly
to the target 1n the mstruction cache. If there 1s not a match,
then the execution may branch to the instruction branch man-
ager and the current target may be stored 1n the branch stub 1n
replacement of the last previous target address.

[0113] Ifdynamic branch rewriting is to be performed, then
the dynamic branch rewriting 1s performed as discussed
above (step 1440). A return rewrite operation may then be
performed for the evicted cache line based on the effective
address of the target stored in the link register, as previously
described above (step 1445). The link register may then be
dynamically rewritten (step 1450). As noted above, the link
register may be rewritten to include the target address and the
elfective address of the target. An indirect branch instruction
to the target address stored 1n the link register may be mserted
at the branch return (step 14535). The operation then termi-
nates.

[0114] Thus, the illustrative embodiments provide a
mechanism for using a branch stub and runtime logic to
bypass the 1nstruction cache manager 1n 1nstances where it
can be determined that the target of the branch nstruction 1s
already present in the instruction cache. Moreover, the
mechanisms of the illustrative embodiments provide a func-
tionality for rewriting a link register so that upon areturn from
executing a branch instruction, an indirect branch to a target
specified 1n the link register, or the instruction cache manager
1s made possible.

[0115] These mechanisms improve the performance of a
soltware managed instruction cache by rewriting a jump to
the software instruction cache runtime system as a direct
jump to the target location 1n the software cache. However,
when a cache line or block 1s evicted from the instruction
cache, all jumps directly going to this cache line or cache line
need to be restored to their original targets so that, if neces-
sary, the jumps can be made to the 1nstruction cache runtime
system 1n the event that the target 1s not in the nstruction
cache. This 1s because, 11 these jumps to the targets are not
restored, the jumps may be made to a wrong target since the
correct target 1s no longer in the mstruction cache.

[0116] The unchaining process, i.e. retracing the jump
instructions tfrom one cache line to another in the instruction

cache to 1dentity source cache lines, 1.e. the cache line from

Dec. 29, 2011

which a branch or call to a cache line of interest, or target
cache line, 1s especially challenging when the source cache
lines are only known at runtime, such as with indirect branch
instructions or function calls. One mechanism for handling
this situation 1s to flush the entire instruction cache or utilize
expensive bookkeeping and table lookup algorithms which
result 1in significant overhead and lose the opportunity for
reuse of the cache line, 1.e. 11 the instruction cache 1s flushed
and all cache lines are evicted, then the cache lines that were
brought into the instruction cache cannot be used again.

[0117] The illustrative embodiments provide additional
mechanisms for handling cache eviction in which branch
instructions have been rewritten to directly target cache lines
that are to be evicted. With these mechanisms, the possible
source cache lines of a cache line of interest, hereafter
referred to as the target cache line, are dynamically main-
tained 1n a doubly linked list. When the target cache line 1s to
be evicted, the linked list 1s scanned to restore the chained

jump branch instructions. In this way, the mechanisms of the

illustrative embodiments support etficient eviction via a dou-
bly linked list of cross inter-cache line branches who’s branch
targets are in a particular cache line, and a singly linked list of
inter-cache line branches within a particular cache line that
have been put into the doubly linked lists of the other cache
lines. Moreover, the mechanisms of the illustrative embodi-
ments support a partial stack scan with the stack back trace
scan being stopped at a first match to a “victim™ cache line, as
described hereaftter.

[0118] The rewriting of direct function calls 1s very similar
to rewriting branches inside a function. However, unlike 1n
the case of branches 1nside a function, the compiler generally
does not have a complete view of all functions 1nside a pro-
gram and thus, the compiler does not know the exact set of
possible callers to a callee function. As a result, the compiler
cannot pre-allocate space to record all call sites, 1.e. the
branch instruction that makes the function call which 1s also
part of the source cache line, as in the case of branches inside
a function.

[0119] The mechanisms of the illustrative embodiments
address these problems by using a linked list based solution
that 1s able to handle an arbitrary number of call sites, 1.¢.
branch 1nstructions that branch to, or “call,” a portion of code
corresponding to a target cache line, 1.¢. a callee function. For
cach callee function, 1.e. each function called by a caller
branch instruction, a linked list 1s dynamically constructed
that records rewritten call sites that call the callee function.

[0120] The linked list node 1s constructed as part of an
extended branch stub, which 1s referred to herein as a *“call
stub,” which extends the branch stub described above with an
additional quadword for tracking call sites. For example, 1n a
first quadword, information corresponding to the branch stub
previously described above 1s stored. In a second quadword,
a linked list previous entry pointer and a linked list next entry
pointer for pointing to entries 1n a linked list of call sites are
stored. The linked list previous entry pointer points to a pre-
vious entry in the linked list and the linked list next entry
pointer points to a next entry in the linked list. This provides
a doubly linked list of call sites that facilitates a more simpli-
fied deletion process for deleting call sites from the linked list.

[0121] FIG. 15 1s an example diagram illustrating a call
stub 1n accordance with one illustrative embodiment. As
shown 1n FIG. 15, the call stub 1500 includes a first portion
1510, which may be a first quad word, that stores data similar
to that of the branch stub previously described above. That 1s,

US 2011/0320786 Al

the first portion 1510 stores, in a first word 1512, a link to the
instruction cache manager in the case of a mstruction cache
miss. In a second word 1514, the target address for the origi-
nal branch instruction or function call 1s stored. In a third
word 1516, an offset to the original branch or call instruction
1s stored. In a fourth word 1518, a copy of the original branch
or call instruction 1s stored.

[0122] In addition, the call stub includes a second portion
1520, which may be a second quadword, for storing linked list
pointers for purposes of handling instruction cache eviction.
As shown in FIG. 15, a first word 1522 of the second portion
1520 may store a linked list previous pointer that points to, 1..
stores an address for, a previous call stub 1n the linked list. A
second word 1524 of the second portion 1520 may store a
linked list next pointer that points to, 1.e. stores an address for,
a next call stub 1n the linked list. The third and fourth words
1526 and 1528 may be kept free and unused.

[0123] During runtime, 1f a cache line 1s evicted, the
instruction cache manager determines whether the evicted
cache line 1s the entry of a function. This determination may
be done based on a tag placed on the cache directory when the
cache line 1s loaded due to a function call or a separate table
of function entry cache lines may be maintained, for example.
Other ways of determining whether a cache line 1s an entry to
a function may be used without departing from the spirit and
scope of the illustrative embodiments.

[0124] Ifthe cache line 1s the entry of a function, the cache
line has additional information, before or after the actual
code, that records the start of the doubly linked list of call
sites. This additional information may be generated by the
compiler and may be maintained by the instruction cache
runtime system. The 1nstruction cache manager may process
the doubly linked list and each call site 1s “fixed” by restoring,
the target of the original call or branch instruction to point to
the original target address rather than the call stub. This can be
achieved by replacing the branch or call instruction with the

copy of the original branch or call instruction stored 1n the
tourth word 1518 of the first quadword 1510 1n the call stub

1500 or the fourth word 1040 1n the branch stub 1000 1n FIG.
10. Since the information for performing this {ix 1s stored 1n
the call stub 1500 or branch stub 1000 this fix 1s made simple
to implement by changing the binary code in the instruction
cache to replace the branch instruction or call mstruction.

[0125] Inaddition, the instruction cache manager may per-
form additional functionality for maintaining the doubly
linked call site list. Whenever a cache line i1s evicted, the
instruction cache manager processes the doubly linked call
site list for the evicted cache line and checks whether any of
the call sites 1s 1n the doubly linked call site list. I1 so, the call
site has to be removed from the linked list otherwise, after
eviction of the cache line, the doubly linked call site list may
become corrupted. For example, the next pointer 1n the pre-
vious call stub maybe changed to point to the next pointer in
the current call stub and the previous pointer 1n the next call
stub may be changed to point to the previous call stub of the
current call stub, thereby eliminating the current call stub
from the linked list. Using this doubly linked call site list
mechanism, an arbitrary number of call sites calling a callee

function can be handled with undoing rewriting of call or
branch instructions when the callee function 1s evicted.

[0126] FIG. 16 1s a flowchart outlimng an example opera-
tion of an 1nstruction cache manager when handling the evic-
tion of a cache line in accordance with one illustrative

embodiment. As shown 1n FIG. 16, the operation starts with

Dec. 29, 2011

the eviction of a cache line (step 1610). A determination 1s
made as to whether the cache line 1s an entry to a function
(step 1620). I so, then a doubly linked call site list associated
with the function 1s processed using the call stub of the func-
tion and any other call stubs linked to directly or indirectly by
the call stub (step 1630). Call sites 1n the doubly linked call
site list are fixed by restoring the target address from the call
stubs corresponding to the call sites (step 1640). In addition,
cach call site inside the evicted block 1s checked (step 1650)
to determine 1f the call site 1s present in the doubly linked call
site list as the doubly linked call site list 1s processed (step
1660). I the call site 1s 1n the doubly linked call site list, then
the call site 1s removed from the doubly linked call site list
(step 1670). The operation then terminates.

[0127] Thus, in addition to providing mechanisms for
rewriting branch instructions using branch stubs, the mecha-
nisms of the illustrative embodiments may extend these
branch stubs to call stubs that include pointers for a doubly
linked list. These pointers may be used to maintain a doubly
linked call site list that can be used during cache line eviction
to determine which call sites need to be “fixed” by restoring
the target addresses originally referenced in the call site
branch or call mstructions. Mechanisms for maintaining the
doubly linked call site list are also provided. These mecha-
nisms make eviction of cache lines with rewritten call site
branch 1nstructions or call instructions possible without cor-
rupting the rewritten code.

[0128] To assist in handling the eviction of a cache line
from the instruction cache, 1n addition to the mechanisms
noted above, the illustrative embodiments may, for direct
branches or calls to a target code block, where each code
block 1s stored 1n its own cache line, further record a list of
source code blocks that branch to or call the code 1n the target
code block. Since the compiler has a complete view of the
functions/procedures in the code, for each code block, the
compiler knows the exact list of source code blocks that could
directly branch to this target code block at runtime. The
compiler just needs to record this information 1n the target
code block so that it can be used by the instruction cache
runtime system. With the mechamsms of the illustrative
embodiments, the mformation regarding the list of source
code blocks 1s recorded at the end of the target code block
after all of the created branch stubs and call stubs.

[0129] To store thus list of source code blocks information,
the last quad word of the current code block is reserved. FIG.
17 1s an example diagram illustrating one 1llustrative embodi-
ment of a source code block listing quad word. A first word
1710 of this quad word 1700 contains the number of source
code blocks that could branch to the current code block at
runtime. A second word 1720 of the quad word contains the
number of branch stubs this current code block has. A third
word 1730 of the quad word contains a number of call stubs
this current code block has. A fourth word 1740 of the quad
word contains the start address of the branch stubs and call
stubs 1n the current code block. The locations, 1.e. addresses,
of the source code blocks 1750 are laid out just before the last
quad word so that the imnstruction cache runtime system knows
where to find them at runtime.

[0130] At runtime, when a cache line has to be evicted, the
instruction cache manager needs to {ix all the rewritten source
code blocks with a target code block that 1s in the evicted
cache line. To achieve this, the instruction cache manager 1n
the instruction cache runtime system first fetches the last quad
word of the evicted cache line, which will also be the last

US 2011/0320786 Al

quadword of the code block since each code block 1s loaded
into 1ts own cache line. From the first word 1710 of the quad
word 1700, the mnstruction cache manager knows how many
source code block address have been encoded 1n the evicted
cache line and where the list of addresses start. The mstruc-
tion cache manager processes the potential source code
blocks one by one. For each source code block, the instruction
cache manager locates the source code block based on the
source code block address encoded 1n the evicted cache line.

[0131] The mstruction cache manager fetches the last quad
word of that source block and examines the second word 1720
and fourth word 1740 of the quad word 1700. As previously
mentioned above, the second word 1720 records the number
of branch stubs 1n the source code block. The fourth word
1740 records the start address of the branch stubs. With this
information, the instruction cache manager may examine
each branch stub and check whether the branch stub 1s the one
branching to the evicted cache line. Eventually, the mnstruc-
tion cache manager will find the branch stub that branches to
the evicted cache line.

[0132] 'To fix the rewritten branch instruction that branches
to the evicted cache line, the instruction cache manager cop-
1es the fourth word of the branch stub, 1.e. word 1040 1n FIG.
10, and replaces the rewritten branch instruction with the
copy of the original branch instruction (prior to rewriting)
stored 1n the fourth word 1040. As a result, the branch instruc-
tion 1s restored and does not directly branch to the evicted
cache line, thereby eliminating the possibility of a direct
branch to a wrong target block. To the contrary, the restored
branch instruction will operate in the same manner as dis-
cussed above with regard to branching to the instruction
cache manager to determine 1f the target block is in the
instruction cache or not and bringing the required block of
code into the istruction cache 1t 1t 1s not already present in the
instruction cache.

[0133] FIG. 18 1s a flowchart outlining an example opera-
tion of a compiler when analyzing original code and 1nserting,
a list of possible source code blocks targeting a current code
block in accordance with one illustrative embodiment. As
shown 1n FIG. 18, for a next block of code in received original
code, the compiler 1dentifies possible source blocks that may
target the next block of code (step 1810). The addresses of the
possible source code blocks are stored in a portion of the
current code block after any branch stubs and/or call stubs
created by the compiler (step 1820). The compiler stores a
number of the source code blocks 1n a last portion of the
current code block, e.g., the last quad word of the current code
block (step 1830). The compiler further stores a number of
call stubs in the last portion of the current code block (step
1840). The compiler further stores the start address of branch
and call stubs 1n the current code block 1n this last portion of
the current code block (step 1850). A determination 1s made
as to whether this 1s the last code block to process or not (step
1860). I1 not, the operation returns to step 1810. Otherwise,
the operation terminates.

[0134] FIG. 19 1s a flowchart outlimng an example opera-
tion of the mstruction cache manager in accordance with one
illustrative embodiment, with regard to handling eviction of a
cache line with direct branches to the evicted cache line. As
shown 1n FIG. 19, the operation starts with determining that a
cache line needs to be evicted (step 1910). The instruction
cache manager fetches the last quad word of the evicted cache
line (step 1920). From the first word of the quad word, the
instruction cache manager determines how many source code

Dec. 29, 2011

block address have been encoded 1n the evicted cache line and
where the list of addresses start (step 1930). The instruction
cache manager processes a next potential source code block
(step 1940). For the next source code block, the mnstruction
cache manager locates the source code block based on the
source code block address encoded 1n the evicted cache line
(step 19350).

[0135] The nstruction cache manager fetches the last quad
word of that source block and examines the number of branch
stubs and start address of the branch stubs 1n the last quad
word (step 1960). The nstruction cache manager examines
cach branch stub and checks whether the branch stub
branches to the evicted cache line (step 1970). The instruction
cache manager then fixes the rewritten branch instruction
corresponding to a branch stub that branches to the evicted
cache line, by copying the copy of the original branch instruc-
tion from the branch stub and replacing the rewritten branch
instruction with the copy of the original branch instruction
(step 1980). The operation then terminates.

[0136] With the direct-mapped software mstruction cache
mechanisms described above, contlict misses sometimes are
a problem to the performance of the system. A contlict miss 1s
a cache miss due to the replacement policy used by the sofit-
ware cache. For example, 1in direct-mapped caches, a code
block can be only put, or “mapped,” into one predefined cache
line. Obviously, some code blocks may be mapped into the
same cache line. It they are used repeated, only one of them
can be kept 1n the cache even if there are many other unused
cache lines. As a result, the cache manager has to load and
evict these cache blocks repeatedly. Such cache misses are
referred to as conflict misses.

[0137] Toreducethepossibility of conflict misses, the 1llus-
trative embodiments may further provide a compiler mecha-
nism that i1s able to collect and process all the objects, e.g.,
object files, or .o files, that together make up the executable
code of a program, compiled by the compiler that utilize
direct target jump optimizations such as those described
above. The compiler builds a whole program call graph that
lays out the objects and which objects call which other
objects, as 1s generally known 1n the art. The compiler then
partitions the call graph to minimize inter-partition transi-
tions based on the instruction cache size, the size of each
function, and the affimity among functions.

[0138] Inorder to achieve such partitioning, the i1llustrative
embodiments weights the call graph by weighting the nodes
in the call graph according to code size, and weights the edges
of the call graph according to a number of calls between the
particular objects at the ends of the edge. A maximally
weighted edge 1 unprocessed edges of the call graph 1s
selected and a determination 1s made as to whether the
weights ol the nodes associated with the selected edge are less
than a cache line size. I so, then the nodes are merged nto a
new node with the weights being updated appropriately. If an
edge having a maximum weight among unprocessed edges
cannot be found, any remaiming procedures are places in one
node together 1n one cache line. In this way, the compiler tries
to put high affimity functions into the same partition to reduce
conflict misses.

[0139] Using such call graph partitioming and attempting to
put high affinity functions into the same partition helps to
reduce cache contlict misses for the following reasons. Under
call graph partitioning, one “compilation umt” 1s created for
cach call graph partition. That 1s, after the call graph 1s parti-
tioned 1nto several sub-graphs, each of the sub-graphs, along

US 2011/0320786 Al

with 1ts procedures, 1s associated with a compilation unit for
the compiler to operate on. The compiler takes one compila-
tion unit, or partition, as iput and lays out the code 1n 1t
starting at the beginning of the instruction cache address
space. Thus, the functions inside one call graph partition
normally will not evict each other, as long as the code size for
this call graph partition 1s smaller than the total 1nstruction
cache size.

[0140] With this call graph partitioning mechamism, the
link-time optimizer first builds a global call graph 1n amariner
generally known in the art. Each node 1n the global call graph
1s weighted according to the corresponding size of the code
represented by the node 1n the global call graph. Each call
graph edge 1s weighted according to a number of calls
between the nodes associated with the edge. This information
may all be determined statically by the compiler at compile
time by analyzing the original code and determining the size
ol the portions of code in the compiled code that correspond
to the nodes 1n the global call graph and determining an
estimate of the number of calls anticipated between nodes,
such as based on 1terations in loops referencing portions of
code, or the like. Thus, the weights may be determined
through static program analysis or by profiling, for example,
and the result may be a weighted call graph that may be the
basis for the partitioning mechanisms. Of course other
welghtings may be used without departing from the spirit and
scope of the illustrative embodiments.

[0141] FIG. 20 1s a flowchart outlining an example opera-
tion for performing code optimization using a partitioned call
graph 1n accordance with one illustrative embodiment. As
shown 1n FI1G. 20, the operation starts by building a weighted
call graph (step 2010). As noted above, the building of the
weighted call graph starts by building a global call graph and
then applying weights to the nodes and edges of the global
call graph. The weights of nodes may be determined accord-
ing to the code size, such as in bytes, associated with the
nodes. The weights of edges may be determined based on an
estimate of the number of calls between nodes of the particu-
lar edge. These weights are applied to the nodes and edges of
the global call graph to thereby generate a weighted call
graph.

[0142] A maximally weighted edge, in unprocessed edges
of the call graph, 1s selected (step 2020). Assume for purposes
of description that the selected edge 1s € and the nodes of the
selected edge are vl and v2. A determination 1s made as to
whether such a maximally weighted edge can be found or not
(step 2030). If not, any remaining procedures/functions are
placed in the same node together in one cache line (step 2040)
and the operation ends.

[0143] If a maximally weighted edge 1s found, a determi-
nation 1s made as to whether a sum of the weights of the nodes
associated with the selected edge, e.g., weight(vl)+weight
(v2), are less than or equal to a cache line size, e.g., a 1K cache
line size or the like (step 2050). If so, then the nodes are
merged into a new node with the weights being updated
approprately (step 2060). The merging of nodes into a new
node places the binary code for the nodes together in the
resulting binary code that 1s loaded into the instruction cache.

[0144] The weights of the new node may be set, for
example, by setting the weight of the new node to the sum of
the weights of the merged nodes, e.g., weight(vnew)=weight
(vl)+weight(v2). The weight of the edges between this new
node and other nodes previously connected to the nodes of the
selected edge are set, for example, equal to the sum of the

Dec. 29, 2011

weights of the edges between these other nodes and the nodes
of the selected edges, e.g., weight (edge(edge(vnew,v))
=weight(edge(vl, v))+weight(edge(v2, v)) for all v. Of
course other weightings may be used without departing from
the spirit and scope of the illustrative embodiments. The
selected edge e, 1.e. edge (v1, v2), 1s then eliminated from the
weilghted call graph (step 2070) and the operation returns to
step 2020 to select a next maximally weighted edge from the
remaining unprocessed edges. I the sum of the weights of the
nodes of the selected edge 1s greater than a cache line size,
then the edge 1s marked as having been processed (step 2080)
and the operation returns to step 2020.

[0145] Theresultis a partitioned call graph 1n which nodes
are merged 1nto sizes corresponding to the cache line size of
the struction cache based on their affinity. The resulting
code 1s configured according to this partitioned call graph
such that when the code 1s brought into the instruction cache
the code fits within the cache lines of the instruction cache
will minimal cross-cache line references. This greatly
reduces contlict misses because of a cache line not being
present 1n the mstruction cache.

[0146] Thus, the illustrative embodiments provide mecha-
nisms for directly jumping to branch targets 1in an instruction
cache when possible through compiler implemented and
runtime 1mplemented rewriting of branch instructions and
function calls. The illustrative embodiments further provide
mechanisms for handling eviction of cache lines that corre-
spond to rewritten branch instructions and function calls so as
to avoid any jumps to incorrect targets in the istruction
cache. Further, the 1llustrative embodiments provide mecha-
nisms for reducing instruction cache contlict misses by par-
titioning the code based on instruction cache size, function
s1ze, and affinity amongst the functions. All of these mecha-
nisms work together to improve the performance of a sys-
tem’s execution of the code by reducing latency encountered
by the overhead of having to redirect execution to an instruc-
tion cache manager for every branch or function call.

[0147] As noted above, 1t should be appreciated that the
illustrative embodiments may take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software ele-
ments. In one example embodiment, the mechanisms of the
1llustrative embodiments are implemented 1n software or pro-
gram code, which includes but 1s not limited to firmware,
resident software, microcode, etc.

[0148] A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1n order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0149] Input/output or I/O devices (including but not lim-
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems and Ethernet cards are just a
tew of the currently available types of network adapters.

US 2011/0320786 Al

[0150] The description of the present invention has been
presented for purposes of illustration and description, and 1s
not intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill 1n the art. The embodiment
was chosen and described 1n order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method, 1n a data processing system for evicting cache
lines from an 1nstruction cache of the data processing system,
comprising;

storing, by a processor of the data processing system, for a

portion of code in a current cache line, a linked list of call
sites that directly or indirectly target the portion of code
in the current cache line;
determining, by the processor, that the current cache line 1s
to be evicted from the instruction cache; and

processing, by the processor, the linked list of call sites to
identily one or more rewritten branch instructions hav-
ing associated branch stubs, that either directly or indi-
rectly target the portion of code 1n the current cache line;
and

rewriting, by the processor, the one or more rewritten

branch instructions to restore the one or more rewritten
branch instructions to an original state based on 1nfor-
mation in the associated branch stubs.

2. The method of claim 1, wherein the linked list 1s stored
in an extended portion of the branch stubs of the one or more
rewritten branch instructions.

3. The method of claim 2, wherein the extended portion of
the branch stubs includes a previous pointer pointing to a
previous entry in the linked list and a next pointer pointing to
a next entry 1n the linked list, wherein each entry 1n the linked
list 1s a branch stub of a rewritten branch instruction 1n the one
or more rewritten branch instructions.

4. The method of claim 1, wherein the branch stubs of the
one or more rewritten branch instructions comprises a copy of
a corresponding original branch instruction prior to rewriting
the branch istruction, and wherein rewriting the one or more
rewritten branch instructions to restore the one or more
rewritten branch instructions to an original state comprises
replacing the one or more rewritten branch instructions with
a copy of the corresponding original branch instruction from
corresponding branch stubs.

5. The method of claim 1, further comprising;

determining, for call sites in the current cache line, 11 the
call sites are present in the linked list; and
removing the call sites from the linked list in response to
eviction of the current cache line.
6. The method of claim 1, further comprising;
determining 11 the current cache line 1s an entry to a func-
tion; and
retrieving a call stub associated with the function 1in
response to the current cache line being an entry to the
function, wherein the call stub comprises an entry 1n the
linked list pointing to a call site that calls the function.
7. The method of claim 1, wherein, for target code blocks in
the portion of code that are directly targeted by source code
blocks, a compiler stores a listing of source code blocks that
can possibly directly branch to the target code block, and
wherein the listing of source code blocks 1s processed in

Dec. 29, 2011

response to evicting the current cache line to 1dentity a source
code block that directly targets the target code block.

8. The method of claim 7, wherein the listing of source
code blocks includes a quadword of data comprising a num-
ber of source code blocks 1n the listing of source code blocks,
a number of branch stubs 1n the target code block, a number of
call stubs 1n the target code block, and a start address of the
branch stubs and call stubs in the target code block.

9. The method of claim 8, wherein processing the list of
source code blocks comprises retrieving, for each source code
block sequentially until a source code block targeting the
target code block 1s found, a quadword associated with the
source code block and checking each branch stub referenced
in the quadword to determine 1f the source code block
includes a branch instruction that branches to the target code
word.

10. The method of claim 9, further comprising rewriting
the branch instruction 1n the source code block that targets the
target code block to restore the branch instruction to an origi-
nal state.

11. A computer program product comprising a computer
readable storage medium having a computer readable pro-
gram stored therein, wherein the computer readable program,
when executed on a data processing system, causes the data
processing system to:

store for a portion of code 1n a current cache line, a linked

list of call sites that directly or indirectly target the
portion of code 1n the current cache line;

determine that the current cache line is to be evicted from

the instruction cache;

process the linked list of call sites to 1dentity one or more

rewritten branch instructions having associated branch
stubs, that either directly or indirectly target the portion
of code 1n the current cache line; and

rewrite the one or more rewritten branch instructions to

restore the one or more rewritten branch instructions to
an original state based on information in the associated
branch stubs.

12. The computer program product of claim 11, wherein
the linked list 1s stored 1n an extended portion of the branch
stubs of the one or more rewritten branch instructions.

13. The computer program product of claim 12, wherein
the extended portion of the branch stubs includes a previous
pointer pointing to a previous entry in the linked list and a next
pointer pointing to anext entry in the linked list, wherein each
entry in the linked list 1s a branch stub of a rewritten branch
instruction 1n the one or more rewritten branch instructions.

14. The computer program product of claim 11, wherein
the branch stubs of the one or more rewritten branch nstruc-
tions comprises a copy of a corresponding original branch
instruction prior to rewriting the branch instruction, and
wherein rewriting the one or more rewritten branch instruc-
tions to restore the one or more rewritten branch instructions
to an original state comprises replacing the one or more
rewritten branch instructions with a copy of the correspond-
ing original branch instruction from corresponding branch
stubs.

15. The computer program product of claim 11, wherein
the computer readable program further causes the data pro-
cessing system to:

determine, for call sites 1n the current cache line, 1f the call

sites are present in the linked list; and

remove the call sites from the linked list 1n response to

eviction of the current cache line.

US 2011/0320786 Al

16. The computer program product of claim 11, wherein
the computer readable program further causes the data pro-
cessing system to:

determine 11 the current cache line 1s an entry to a function;

and

retrieve a call stub associated with the function in response

to the current cache line being an entry to the function,
wherein the call stub comprises an entry 1n the linked list
pointing to a call site that calls the function.

17. The computer program product of claim 11, wherein,
for target code blocks in the portion of code that are directly
targeted by source code blocks, a compiler stores a listing of
source code blocks that can possibly directly branch to the
target code block, and wherein the listing of source code
blocks 1s processed 1n response to evicting the current cache
line to 1dentify a source code block that directly targets the
target code block.

18. The computer program product of claim 17, wherein
the listing of source code blocks includes a quadword of data
comprising a number of source code blocks 1n the listing of
source code blocks, a number of branch stubs in the target
code block, a number of call stubs 1n the target code block,
and a start address of the branch stubs and call stubs 1n the
target code block.

19. The computer program product of claim 18, wherein
processing the list of source code blocks comprises retriev-
ing, for each source code block sequentially until a source
code block targeting the target code block 1s found, a quad-

Dec. 29, 2011

word associated with the source code block and checking
cach branch stub referenced in the quadword to determine 1f
the source code block includes a branch instruction that
branches to the target code word.

20. The computer program product of claim 19, further
comprising rewriting the branch instruction in the source
code block that targets the target code block to restore the
branch instruction to an original state.

21. A data processing system, comprising:

a processor; and

an 1nstruction cache coupled to the processor, wherein the

instruction cache 1s configured to store for a portion of
code 1n a current cache line, a linked list of call sites that
directly or indirectly target the portion of code in the
current cache line, and wherein the processor 1s config-
ured to:

determine that the current cache line 1s to be evicted from

the instruction cache;

process the linked list of call sites to 1dentify one or more

rewritten branch instructions having associated branch
stubs, that either directly or indirectly target the portion
of code 1n the current cache line; and

rewrite the one or more rewritten branch instructions to

restore the one or more rewritten branch instructions to

an original state based on information in the associated
branch stubs.

	Front Page
	Drawings
	Specification
	Claims

