a9y United States
12y Patent Application Publication o) Pub. No.: US 2011/0314019 A1

Jimenez Peris et al.

US 20110314019A1

43) Pub. Date: Dec. 22, 2011

(54)

(75)

(73)

(21)

(22)

(60)

PARALLEL PROCESSING OF CONTINUOUS
QUERIES ON DATA STREAMS

[nventors: Ricardo Jimenez Peris, Boadilla
del Monte (ES); Marta Patino

Martinez, Boadilla del Monte (ES)

Assignee: Universidad Politecnica de
Madrid, Madrid (ES)

Appl. No.: 13/112,628
Filed: May 20, 2011

Related U.S. Application Data

Provisional application No. 61/356,353, filed on Jun.
18, 2010.

Publication Classification

(51) Int.CL

GOG6F 17/30 (2006.01)
(52) US.CL .o, 707/737; 707/774; 707/E17.014
(57) ABSTRACT

A continuous query parallel engine on data streams provides
scalability and increases the throughput by the addition of
new nodes. The parallel processing can be applied to data
stream processing and complex events processing. The con-
tinuous query parallel engine receives the query to be
deployed and splits the original query 1nto subqueries, obtain-
ing at least one subquery; each subquery 1s executed 1n at least
in one node. Tuples produced by each operator of each sub-
query are labeled with timestamps. A load balancer 1s 1nter-
posed at the output of each node that executes each one of the
instances of the source subquery and an input merger 1s inter-
posed 1n each node that executes each one of the istances of
a destination subquery. After checks are performed, further
load balancers or input managers may be added.

Patent Application Publication Dec. 22,2011 Sheet 1 of 2 US 2011/0314019 Al

» M —» F _: J » F — A > F >
FIG. 1
> M > F |d J > F o A R
| | | | | | |
| | | | | I |
FIG. 2

FIG. 3

Patent Application Publication Dec. 22,2011 Sheet 2 of 2 US 2011/0314019 Al

2 3
| 1 | | 1

M = M > LB l; M > A > LB >
\ . \
| | \L‘

IM » M » LB > M —> A —» LB

FIG. 4
2 3
| 1| ;_]
M | M | LB J,\;IM —> A - LB “,
.
| ‘\\/g/‘ $
‘ //“‘x ‘
M > M > LB | [F M) A |5 LB >
7 S |

FIG. 35

US 2011/0314019 Al

PARALLEL PROCESSING OF CONTINUOUS
QUERIES ON DATA STREAMS

[0001] This application claims benefit of U.S. Ser. No.
61/356,333, filed 18 Jun. 2011 and which application 1s incor-
porated herein by reference. To the extent appropriate, a claim
of priority 1s made to the above disclosed application.

FIELD OF THE INVENTION

[0002] The present invention belongs to the data stream
processing and event management fields.

BACKGROUND OF THE INVENTION

[0003] Continuous query processing engines enable pro-
cessing data streams by queries that process continuously
those streams producing results that are updated with the
arrival of new data 1n the data stream. Known continuous
query processing engines are Borealis (Daniel J. Abadi, Yamf
Ahmad, Magdalena Balazinska, Ugur € etintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Woligang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, Stanley B. Zdonik: The Design of the Borealis Stream
Processing Engine. CIDR 20035: 277-289), Aurora (Daniel J.
Abadi, Donald Carney, Ugur C etintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nes-
ime Tatbul, Stanley B. Zdonik: Aurora: a new model and
architecture for data stream management. VLDB 1. 12(2):
120-139 (2003)) y TelegraphC(Q (Sirish Chandrasekaran,
Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph
M. Hellerstein, Wer Hong, Sailesh Krishnamurthy, Samuel
Madden, Vijayshankar Raman, Frederick Reiss, Mehul A.

Shah: TelegraphCQ: Continuous Datatlow Processing for an
Uncertain World. CIDR 2003). Unlike data bases that per-
form instant queries on persistent data, stream processing
engines perform continuous queries on data streams that
evolve over time and are processed 1n memory without being
stored 1n disk and their results also evolve over time.

[0004] None ofthe currently existing approaches enables to
scale out with respect to the incoming stream volume. This 1s
because the data stream processed by a query or operator
query must go through a single node, containing the query or
operator, and therefore the system capacity will be limited by
the Capac1ty of a single node. For stream volumes exceeding
the processing capacity of a node these systems cannot scale
out. In centralized engines such as Aurora or TelegraphCQ) all
the stream goes through the system centralized node and
when that node 1s saturated it cannot scale out. In distributed
engines as Borealis a query operator 1s deployed 1n a single
node. This implies that the whole stream processed by that
operator 1s processed by the node where 1t runs and therefore
when the node 1s saturated, the system cannot scale out. In
some systems 1t 1s being tried to itroduce a certain parallel-
1sm 1n queries such as Aurora* (Mitch Chermiack, Har1 Bal-
akrishnan, Magdalena Balazinska, Donald Carney, Ugur
C etintemel, Ying Xing, Stanley B. Zdonik: Scalable Distrib-
uted Stream Processing. CIDR 2003). In Aurora™ a node 1s
used to distribute the load between a set of nodes and another
node to recombine 1t. Those two nodes again become a bottle-
neck because once they are saturated, the system cannot scale
out.

[0005] Load balancing has also being studied 1n the context
of stream processing engines. In Ying Xing, Stanley B.

Dec. 22, 2011

Zdonik, Jeong-Hyon Hwang: Dynamic Load Distribution 1n
the Borealis Stream Processor. ICDE 2005: 791-802, corre-
lation between workloads 1s studied to avoid workload peaks
in different operators that take place 1n the same node. How-
ever, this load balancing 1s studied in the context of distrib-
uted query engine that does not parallelize queries, therefore,
it does not address the problem of how distribute the load
between 1nstances of the same subquery, but across different
subqueries.

[0006] Another technique currently used to treat overloads
1s the removal of data 1items or tuples, known as load shedding
(Frederick Reiss, Joseph M. Hellerstein: Data Triage: An
Adaptive Architecture for Load Shedding in TelegraphCQ).
ICDE 2003: 155-136), (Frederick Reiss, Joseph M. Heller-
stein: Data Triage: An Adaptive Architecture for Load Shed-
ding in TelegraphCQ. ICDE 2005: 155-136) and (Nesime
Tatbul, Ugur C etintemel, Stanley B. Zdomk: Staying FIT:
Efficient Load Shedding Techniques for Distributed Stream
Processing. VLDB 2007: 159-170). With this technique when
a node 1s saturated it begins to discard tuples according to
different criteria. The problem with this technique 1s the loss
of information that 1s not permissible for a multitude of appli-
cations and also has associated tradeoils such as precision
loss 1n the result of queries or even consistency loss in the
outcome of queries.

[0007] Another recently proposed technique 1s using hard-
ware acceleration by the implementation of the data stream
operators in hardware with FPGAs (Rene Miiller, Jens Teub-
ner, Gustavo Alonso: Streams on Wires—A Query Compiler
for FPGAs. PVLDB 2(1): 229-240 (2009). This hardware
approach enables improving the performance of single nodes
but not scaling. That 1s, it makes a node have a larger capacity
but once that capacity 1s exhausted this approach prevents
turther scaling.

[0008] The proposed invention 1s seen as a necessity with
respect existing methods and processing engines on the mar-
ket. The mvention parallelizes continuous queries processing,
in a scalable way, with low distribution cost and 1t introduces
clasticity and load balancing on the query parallel processing.

SUMMARY OF THE INVENTION

[0009] The mvention presents a continuous query parallel
engine on data streams. This parallel processing engine will
solve the limitations of the state of the art avoiding that the
data streaming query engine will process the whole stream
with single nodes that limits the system capacity to the pro-
cessing capacity of a single node.

[0010] Parallel processing of data streams allows providing
scalability and that way, increasing the throughput by means
of the addition of new nodes. This parallel processing can be
applied to data stream processing and complex events pro-
cessing.

[0011] A data stream 1s a sequence of data items or tuples
that over time can grow without limitation and 1t 1s charac-
terized by the sharing of the same data schema by all data
items 1n the same stream. In many data streaming processing
engines, data streams are labeled with a timestamp. Depend-
ing on the application, the stream can guarantee that the data
1s labeled with monotonically increasing timestamps.

[0012] A data stream processing engine or data stream
management systems 1s a system that enables to deploy con-
tinuous queries over data streams. The processing engine
labels the tuples with timestamps. These timestamps enable
to establish a relative ordering among tuples.

US 2011/0314019 Al

[0013] A query 1s represented with an acyclic graphic of
query operators. The query has one or more data input streams
and one or more output streams. FEach query operator can have
one or more mputs and one or more outputs. Operators can be
classified as stateless and stateful.

[0014] Stateless operators are characterized by each 1nput
tuple producing an output independently of any previous
input tuple. Typical stateless query operators are map, filter
and union. A map operator applies a function to every input
tuple 1n order to obtain the corresponding output tuple. For
example, given a tuple with a temperature in Fahrenheit
degrees, 1t yields a tuple with the temperature 1n Celsius
degrees. The filter operator given a sequence of n predicates,
and n or n+1 outputs, 1t executes the following processing
with each tuple. It applies the first predicate, 1f the predicate 1s
satisiied 1t emits that tuple through the first output. If not, it
applies the second predicate and 11 1t 1s satisfied 1t emits that
tuple through the second output. And so on, with the rest of
predicates. If the number of predicates equals to the outputs
number and no predicate 1s satisfied, the mput tuple 1s dis-
carded. If the outputs number 1s n+1 and no predicate is
satisfied, the tuple 1s emitted through the output n+1. The
union, given two or more input streams with the same schema,
produces a single output stream with that schema and in
which all tuples receirved by the different input streams are
emitted.

[0015] Stateful operators keep a sliding window of 1nput
tuples and the result of processing an mput tuple does not
depend only on the input tuple but on the content of the tuples
window. Sliding windows can be defined over time or over the
number of tuples. The time period or the number of tuples
admuitted by the window 1s known as the length of the window.
Some typical stateful operators are the aggregation operator
and the join operator. The aggregation operator computes a
function over the tuples contained 1n the mput window, for
instance, the number of tuples recetved 1n the last hour, or the
average temperature over temperature stated by the tuples
received during the last 24 hours. The join operator receives
two 1nput streams and keeps a window for each stream. The
operator has as a predicate as parameter. For each pair of
tuples, one from each mput window, applies the predicate and
if 1t 1s satisfied by the pair of tuples, it generates an output
tuple which 1s the concatenation of the two input tuples. If the
input sliding windows of the join operator iput are defined
over the time, they evolve as follows, when a tuple arrives 1n
an 1nput stream, all tuples with timestamp greater than the
temporal length of the window are removed from the other
window.

[0016] Stream processing engines can be centralized or
distributed. A centralized stream processing engine has a
single system instance executed 1n a single computer or node.
That 1s, the system 1s executed 1n a single node. A distributed
stream processing engine has multiple istances, that 1s, mul-
tiple executions of the system are performed and each
instance can be executed by different nodes. The most basic
distributed engines can execute different queries in different
nodes. Thereby, they can scale out the number of queries by
increasing the number of nodes. Some distributed engines
enable distributing query operators 1 different nodes. This
allows them to scale out with respect to the number of opera-
tors by increasing the number of nodes.

[0017] However, the present invention goes beyond the
state of art by introducing a parallel distributed continuous
query processing engine. That means that, on the one hand,

Dec. 22, 2011

multiple 1nstances of the processing engine are executed in
multiple nodes. On the other hand, multiple instances of the
engine cooperate to process a subquery distributing the mput
stream and thereby scaling out with respect to the input
stream volume.

[0018] One of the main difficulties to solve and one of the
main contributions of the present invention 1s how to process
in parallel one or more massive data streams by a set of nodes
without concentrating any of the streams at any single node.
[0019] A continuous query abstractly 1s an acyclic graph of
query operators. This query can be divided into a set of
subqueries by splitting the query graph into a set of sub-
graphs.

[0020] Once divided 1nto a set of subqueries, the query 1s
deployed. This division can be performed according to any
criterion. Some possible criterions are:

[0021] 1) Not splitting the original query, that 1s, the
division result would be a subquery 1dentical to whole
original source query.

[0022] 2) Splitting the source query into as many sub-
queries as query operators 1t comprises, every subquery
consisting of each of the query operators that appear 1n
the source query.

[0023] 3) Splitting the source query into subqueries, so
every subquery contains a stateful operator, followed by
one or more stateless operators, except possibly for an
initial subquery containing only stateless operators.

[0024] 4) Any other subdivision into subqueries.

[0025] The process of parallel processing that implements
the parallel stream processing engine deploys each subquery
into a set of nodes, such that every subquery 1s executed 1n at
least one node. Each set of nodes can have an arbitrary num-
ber of nodes and may have different number of nodes across
sets ol nodes, and dynamically change their number indepen-
dently.

[0026] If a query 1s divided into two or more subqueries,
cach pair of consecutive queries, source subquery and desti-
nation subquery, in which outputs of the source subquery are
connected to one or more 1nputs of the destination subquery,
they will be connected 1n their parallel distributed deploy-
ment as follows. Each ofthe subqueries since 1t 1s deployed on
a set ol nodes the connection will be made from each instance
of the source subquery to each instance of the destination
subquery.

[0027] The process of parallel processing considers two
methods of query processing depending on how the source
subquery 1s divided. If all subqueries satisiy the condition that
contain at most an stateful operator and its mput or inputs
come from previous subqueries, then the parallel processing
redistributes the streams between subqueries at origin and
otherwise, at destination.

[0028] Parallel processing with source redistribution con-
s1sts of interposing a load balancer at the output of each
instance of the source subquery, named subquery local to the
load balancer. That 1s, at each node of the source subquery a
load balancer 1s interposed, so at every instance the source
subquery output 1s connected to the iput of the load balancer
and 1ts output 1s connected to all the mstances of the destina-
tion subquery. At each instance of the destination subquery an
input merger 1s interposed so all the outputs of the source
subquery become input merger’s inputs and 1ts output
becomes the input of the instance of the destination subquery.
Thenstance of the query that 1s connected to the input merger
1s called local 1nstance.

US 2011/0314019 Al

[0029] The parallel processing with destination redistribu-
tion, 1n addition to interpose a load balancer pair and an input
merger between subqueries, they are also interposed 1n each

subquery before each stateful operator preceded by any other
operator 1n the subquery. That means that a tuple with desti-
nation redistribution may have to go through multiple
instances t1ll completing 1ts processing by the destination
subquery.

[0030] Given a subquery deployed 1n a set of nodes that
satisiies the source redistribution condition, the processing
between their different instances 1s performed as follows. The
first operator of the destination subquery 1s a stateful operator.
The stateful operator executes 1ts operation depending on one
or more key fields. Tuples with the same key must be aggre-
gated (aggregation 1s just an example because 1t could be any
operation executed by a stateful operator) together. That
means they must be recerved by the same 1nstance so they can
be aggregated. Semantic aware redistribution distributes the
tuples so tuples with the same key are received by the same
instance of the query statetul operator. 11 the strategy used by

the load balancers results 1n a semantic aware redistribution,
1t 15 said that the load balancer 1s semantic-aware.

[0031] In the parallelization strategy described, the load
balancers that send tuples to a destination subquery beginning,
with a stateful query operator are semantic-aware. Any
semantic-aware load balancing method can be used. For the
sake of simplicity, 1n the description when 1t becomes neces-
sary to refer to aload balancing method, 1t will be assumed the
load balancing method detailed below. Given a stream with a
key ¢, a possible method of redistribution 1s 1n which each
tuple with key ¢, a hash function 1t 1s applied to obtain the
value h=hash (¢). From this value h the modulo operation 1s
applied with a constant np, obtaining the value p=h mod np.
This value p will be named partition 1dentifier. Given a tuple,
applying the previous process, its partition identifier is
obtained. The total number of partitions 1s np, and each par-
tition with 1dentifier p 1s assigned to a subquery mstance. The
responsibility of processing the tuples from a partition thus
corresponds to a single instance. This way, the method of
redistribution satisfies the requirement of semantic awareness
because all tuples that must be aggregated together will be
sent to the same instance.

[0032] Regardless the type of redistribution, the parallel-
ization can be done with or without guaranties of transparent
parallelization. In the second case the parallelization 1s done
to allow semantic awareness of stateful operators, but it does
not guarantee that the resulting parallel execution 1s equiva-
lent to an execution 1n a sequential engine. In the first case, 1t
guarantees that parallel processing 1s equivalent to that would
be observed in a sequential engine. This parallelization aspect
1s reflected 1n the load balancer and input merger.

[0033] When there 1s no guarantee of transparent parallel-
1zation, the imnput merger forwards tuples as soon as they are
received from any of the source subqueries to the destination
subquery 1s connected to or local 1nstance of the subquery.
This can produce an interleaving that would never occur 1n a
sequential engine. The reason why these interleavings can
occur 1s because the windows in each instance of a parallel
statelul operator, for example, a join operator, slide indepen-
dently. That 1s, tuple interleaving (relative order) 1n the two
input streams in the sequential case would produce a
sequence of overlapping windows with the corresponding
output, in the parallel case, tuple interleaving in the two 1mput

Dec. 22, 2011

streams can be different 1n each instance, producing different
sequences of overlapping windows and thus, 1t might produce
different outputs.

[0034] The load balancer and the input merger work as
follows to guarantee transparent parallelization. Each input
merger waits t1ll 1t has received a tuple from each input stream
before forwarding a tuple to the subquery 1s connected to or
local subquery. It forwards the tuple with the smallest times-
tamp. Thus, parallel processing in each instance becomes
independent of stream interleaving from the different load
balancers. This process can be blocking.

[0035] Ifany source subquery does not produce tuples to be
processed by the destination subquery, then the imnput merger
will block. To avoid this situation the load balancers would
work as 1t follows. Each load balancer keeps track of the last
timestamp of the last tuple generated for each destination
subquery. When no tuple 1s sent to a destination subquery for
a maximum period of time m, then i1t sends a dummy tuple
with an 1dentical timestamp to the last one sent by that load
balancer. When the dummy tuple i1s received by an input
merger, 1t 1s just used to unblock the input merger processing.
If 1t does not have the smallest timestamp, the input merger
will take the tuple with smallest timestamp. Sooner or later,
the dummy tuple will be the one with smallest timestamp, in
that case, the mnput merger will just discard 1t. Thus, periodic
generation of dummy tuples 1n the load balancers avoids
blocking the input merger.

[0036] Flasticity 1s a property of distributed systems that
refers to the capacity of growing and shrinking the number of
nodes to process the imncoming load by using the minimum
required resources, that 1s, the minimum possible number of
nodes able to process the incoming load satistying the quality
of service requirements.

[0037] Load balancing in a distributed system refers to the
method used to distribute the load to be processed by the
different nodes so the nodes have a similar load. When nodes
have different processing capacity, the goal 1s to balance the
relative load, that 1s, each node uses the same fraction of its
processing capacity. Load balancing can be static or dynamic.
Static load balancing 1s decided betfore deploying the system
and 1t does not change during the execution. Dynamic load
balancing 1s continually changing during execution time
allowing the adaptation to changes in workload. A very
important property of dynamic load balancing 1s that 1t must
alfect as the little as possible to processing capacity of nodes.

[0038] Flasticity and load balancing are closely related to
cach other because both properties need a common technique
known as state transfer. State transier consists of transierring,
part or all data from one node to another one. Once the state
transier to a node completes, that node 1s responsible for
processing the load for that state. In the context of the present
invention, the state of a stateful query operator consists of the
sliding window of tuples and any needed value to generate the
output, for example, the current aggregated value 1n a aggre-
gation operator (for example, the average temperatures dur-
ing the last hour).

[0039] The state transier procedure consists of the follow-
ing steps. Whenever the processing engine 1s reconfigured for
whatever reason (for example: load imbalance, failure of a
node, a new node 1s added to avoid overloading), the recon-
figuration process reallocates data partitions from one or
more mstances to one or more instances. This problem can be
split into 1ndividual data partition transfers from a source
instance to a destination instance. That means that the state of

US 2011/0314019 Al

that data partition has to be transferred from the source
instance to the destination instance. For this, the greatest
active timestamp 1n the system 1s examined, mt, and a new
future timestamp 1s created, mti=mt+1, where feN which
provides a suilicient margin to alert all involved instances in
the reconfiguration about the timestamp that begins the
reconfiguration.

[0040] This timestamp 1s sent to all involved instances, that
1s, to all mnstances of the source subquery, as well to the two
instances of destination subquery that perform the state trans-
ter. All tuples with timestamp less than or equal to mtf are
processed by the source instance, while all tuples with times-
tamp greater than mtf are processed by the destination
instances.

[0041] The load balancers of the source subquery store the
mti timestamp included in the reconfiguration command.
Tuples belonging to the partition being reconfigured, p, with
a timestamp less than or equal tomtf are sent to the instance of
the destination subquery responsible for partition p before the
reconiiguration, while tuples with greater timestamp than mtf
are sent to 1nstance of the destination subquery responsible
for partition p after the reconfiguration. When {first tuple of
partition p greater than mtf 1s going to be sent, first, a tuple
reporting the end-of-reconfiguration 1s sent to the two
instances of the destination subquery involved in the state
transfer.

[0042] The state transier completes with the following
steps. The source mstance of the state transier processes the
received tuples. When the end-of-reconfiguration tuple 1s
received from all load balancers of the source subquery, it
knows no more tuples should be processed, so 1t transters the
state ol partition p to the destination instance of the state
transier. The destination istance of the state transter when
receives the state transier of partition p applies that state and
stores the responsibility for partition p. When it receives the
end-of-reconfiguration tuples from all load balancers of the
source subquery, 1t starts the processing of partition p. At this
point the state transier 1s over and the responsibility for par-
tition p has passed from the source to the destination instance.

[0043] The method to achieve elasticity and load balancing
1s described below. First of all, each instance monitors 1its
CPU and memory utilization locally. For each subquery, one
of the nodes from the set of nodes 1n which the subquery has
been deployed, 1t 1s responsible for compiling the load infor-
mation of all the nodes 1n which the subquery 1s deployed. A
special process, called subquery provisioner, i1s responsible
for this task 1n that node. All nodes of a subquery send peri-
odically the load monitoring data to the provisioner. As part of
load monitoring message, a node also sends the greatest
timestamp among the tuples 1t has processed. The provisioner
compares the relative load of the different nodes. If the imbal-
ance between nodes exceeds a first given imbalance thresh-
old, the provider decides how to rebalance partitions to bal-
ance the load. Once the decision 1s taken, 1t obtains the
greatest known timestamp and sends a reconfiguration com-
mand to the load balancers from the source subquery and to
subquery instances that will be reconfigured. State transfer 1s
performed according th the aforementioned method.

[0044] The provisioner also checks if the node average load
exceeds a second upper utilization threshold. It this happens,
it means that the set of nodes running the subquery 1s close to
saturation and a new node must be added in order to add
computing capacity. Then, the subquery 1s deployed 1n one
node from the set of available nodes. Once the new node 1s

Dec. 22, 2011

ready to run the subquery, the provisioner includes the new
node in the set of nodes running the subquery. The load
balancing mechanism detects an imbalance between the new
node and the rest of the nodes and immediately starts the
reconfiguration applying the load balancing method
described above.

[0045] The provisioner also checks if the average load as a
whole could be processed by a smaller number of nodes
without exceeding the second maximum threshold average
load. If this happens, the provisioner selects any node and
reconiigures the system so that all partitions of that node are
distributed evenly among the rest of nodes that process the
subquery. The provisioner starts the reconfiguration as 1n the
previous case and it 1s processed as a load balancing recon-
figuration. When the reconfiguration finishes that node 1s
returned to set of available nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0046] In what follows a realization of the mvention 1s
described 1n an 1llustrative but not limitative way to ease the
understanding of the ivention. It refers to a series of figures.
[0047] FIG. 1 shows a query with map (M), filter (F), join
(J) and aggregate (A) operators.

[0048] FIG. 2 shows a set of subqueries from the split of the
query 1n FIG. 1 given one criterion of division.

[0049] FIG. 3 shows a set of subqueries from the division of
the query 1n FIG. 1 given another criterion of division.
[0050] FIG. 4 shows two consecutive subqueries with
source redistribution.

[0051] FIG. 5 shows two consecutive subqueries with
redistribution at the source.

DETAILED DESCRIPTION OF A EMBODIMENT

[0052] FIG. 1 shows a query with Map (M), Filter (F), Join
(J) and Aggregate (A) operators. In this query incoming
tuples enter through the leit operator. The map operator trans-
forms a tuple with the associated transformation function.
The filtering operator applies a predicate to the tuple, if it 1s
satisfied, then the tuple 1s forwarded to the next operator,
otherwise, it 1s discarded. The output of the filter operator 1s
connected with the two mputs of the join operator. That 1s,
cach tuple produced by the filter operator 1s sent to each of the
two 1inputs of the join operator performing a selif-join. The join
operator applies a predicate to all pairs kept in the two sliding
windows (associated to the respective mput streams). Each
pair that satisfies the predicate 1s concatenated and generated
as an output tuple. The next operator 1s an aggregate. It aggre-
gates the tuples according a given function or a group-by
clause. A tuple 1s generated periodically with the aggregated
value after each window slide. Finally, the last operator filters
these tuples using a predicate.

[0053] FIGS. 2 and 3 show the same query shown in FIG. 1

partitioned 1into subqueries according to two different criteria.
The partitioning 1s shown with dashed vertical lines. Subque-
ries correspond to each fragment of the original subquery
delimitated by the lines. FIG. 2 shows a partioning in which
cach subquery consist of a one operator. The partitioning 1n
FIG. 3 1s done based on stateful operators. This has led to
three subqueries. The first one 1s made up of a prefix of
stateless operators, the map and filter operators. The second
one 1s made up of the join and filter operators. The third one
1s made up of the aggregate and filter operators. The subque-
ries are characterized by starting with a stateful operator

US 2011/0314019 Al

followed by all stateless operators until the next stateful
operator. The only exception 1s the prefix of stateless opera-
tors until the first stateful operator as 1t happens with the first
subquery 1n FIG. 3.

[0054] FIG. 4 shows two consecutive subqueries from a
parallel-distributed query. Given two consecutive subqueries
it 1s said that the first one 1s the source subquery (2) of the
second one and the second one 1s the destination subquery (3)
of the first one. The source subquery (2) in this case consists
ol a single operator, the map operator (M). The destination
subquery (3) consists of a single operator, the aggregate
operator (A). Each subquery 1s deployed into a set of nodes. In
this case, each set has two nodes (1). An instance of the
subquery 1s deployed 1n each one of the nodes (1) from each
set of nodes. Each mstance 1s executed 1n a different node (1).
Each instance of a subquery 1s extended to become parallel-
distributed with two distribution operators. An mput merger
(IM) 1s introduced at the beginning of each instance of each
subquery. A load balancer (LLB) 1s introduced at the end of
cach instance of each subquery. The load balancer (LB) 1s 1n
charge of distributing the output tuples from each instance of
a subquery to the instances of the destination subquery 3. The
load balancer (LB) 1s semantic awareness, so it distributes the
tuples that must be aggregated together to the same instance
of the destination subquery (3).

[0055] FIG. 5 shows the source (2) and destination (3)
subqueries also shown 1n FIG. 4 but with destination redis-
tribution. Tuples are sent by the load balancers (LB) of the
source subquery (2) to any instance of the destination sub-
query (3) without semantic awareness. The stateful operator
of destination subquery (3), 1in this case an aggregate operator
(A), redistributes the tuples to the right instance with seman-
tic awareness.

[0056] The preferential embodiment of the invention con-
siders the case where transparent parallelization 1s provided.
The case without transparency 1s a simplification of that one.

[0057] Inthis embodiment the most popular data streaming
query operators are considered. The stateless query operators
are map, lilter and union. The statetul query operators are
aggregate and join. In the embodiment the tuples include
source timestamps. Timestamps are monotonically increas-
ng.

[0058] The semantics assumed for stateless operators 1s the
tollowing. The map operator applies a function to each input
tuple and generates an output tuple according to that function.
The filter operator may have associated a sequence of one or
more predicates and as many outputs as predicates, or one
output more than predicates. That 1s, given n predicates i1t will
have n or n+1 outputs. Predicates are evaluated one by one for
cach mnput tuple till one predicate 1s satisfied or none of them
1s satisfied. If the first predicate 1s satisfied, the input tuple 1s
sent to the first output. If the first predicate 1s not satisfied, but
it 1s satisfied the second one, the tuple 1s sent to the second
output, and so on. If there are n+1 outputs and n predicates,
and a tuple does not satisty any the predicates, tuple 1s sent to
the output n+1. If there are n outputs and n predicates, and the
tuple does not satisty any predicate, the tuple 1s discarded,
producing no output tuple.

[0059] The semantics assumed for stateful operators 1s as
tollows. Operators have a sliding window for each input
stream. The window length can be expressed 1n time or num-
ber of tuples, for example, tuples received in the last hour or
the last 1000 recerved tuples. When a new tuple arrives, 1t 1s
inserted in the window applying the semantics of the operator.

Dec. 22, 2011

As result the oldest tuples exceeding the window length are
discarded. For example, if the window length 1s 60 minutes
and the difference between timestamps between tuple just
inserted and the first tuple 1n the window are 61 minutes, the
first tuple 1s eliminated from the window. The same happens
to the second tuple 1n the window and so on.

[0060] The aggregate operator has one input and one out-
put. The aggregate operator has one associated aggregate
function fa, the set of fields ca used to group data (group-by
clause) and the window advance or slide av. The aggregate
function 1s applied to the tuples of the sliding window. The
result 1s the aggregated value of all tuples 1n the window, for
example, the average temperature on tuples showing tem-
perature evolution over time. The set of fields indicated 1n the
group-by clause determines which tuples are aggregated
together. For instance, the number of calls by caller’s phone
number can be aggregated based on call description record
tuples for phone calls. That 1s, each output tuple would show
the number of calls made by each phone number that have
made a call during the period considered by the current slid-
ing window. If the group-by clause is present (1.e., grouping
by a given field or a set of fields), each different value of that
(those) field (s) 1s 1n a separated sliding window. For 1nstance,
if the caller’s phone number 1s 1n the group-by clause, each
phone number will have an associated sliding window that
will contain those tuples corresponding to a given caller
phone. The advance indicates how much the sliding window
slides. If 1t 1s a time window, the advance 1ndicates how long
the window moves and if it 1s window length, the advance
indicates how many tuples are slid. For example, 1n a time
window of 60 minutes with an advance of 15 minutes, when
a tuple 1s mserted such that the difference between its times-
tamp and the oldest tuple 1n the window exceeds 60 minutes,
an output tuple 1s generated with the aggregated value during
last 60 minutes. All tuples with difference greater than
60-15=45 minutes compared with the tuple just mnserted are
removed from the window. That 1s, the aggregate operator
will produce output tuples with the same periodicity as the
advance indicates. If the window length 1s expressed 1n num-
ber of tuples, an example of advance could be the following.
With a window length of 100 tuples and an advance of 25
tuples, when tuple 101st arrives, a tuple 1s generated with the
aggregate of the first 100 tuples of the window; then, the new

tuple 1s mserted in the window and the first 25 tuples (the
oldest 25 tuples) are eliminated.

[0061] The join operator has two 1nputs, each one with 1ts
own sliding window and an associated join predicate that
receives a tuple from each input. If the predicate 1s satisfied by
a pair of tuples, an output tuple 1s generated with the concat-
cnation of these two tuples. Each time a new iput tuple
arrives, the tuple 1s matched against the tuples stored in the
sliding window of the other imnput, for each pair satistying the
predicate with the mncoming tuple, an output tuple 1s gener-
ated. When a new tuple 1s 1nserted in a sliding window, the
tuples from the other sliding window beyond the window
length are eliminated. For transparent parallelization the join
operator 1s considered to be a deterministic operator. This join
operator waits till there 1s a tuple 1n each mput before mnsert-
ing a tuple 1nto the sliding windows. When there 1s a tuple 1n
cach imput, 1t takes the one with smallest timestamp and
proceeds as above. This way the join operator 1s independent
of the tuple interleaving 1n 1ts two mputs and thus, it behaves
deterministically regardless of the actual interleavings.

US 2011/0314019 Al

[0062] The assumed method to propagate timestamps
every time an output tuple 1s generated 1s as follows. For
stateless operators, the output tuple has the same timestamp
as the mput tuple 1t comes from. For stateful operators with a
single iput stream, such as the aggregate operator, the times-
tamp of an output tuple 1s the smallest timestamp 1n the time
window 1n which the output tuple was computed. For the join
operator, the timestamp of each output tuple corresponds to
the lowest timestamp between the pair of joied mput tuples.

[0063] The parallel-distributed engine consists of a set of
instances of a distributed query operator, a parallel query
compiler and a set of parallelization and elasticity operators.
There are two kinds of parallelization operators, load bal-
ancer and input merger. Elasticity operators are provisioners
and available nodes manager.

[0064] The mput of the query parallel compiler 1s a con-
tinuous query that 1s, an acyclic graph of query operators. The
compiler splits the source query into subqueries, each sub-
query consisting of a subset of operators from the source
query that are interconnected. The parallel compiler allows
different parallelization strategies. One strategy consists 1n
that each individual operator becomes a subquery. Another
possible strategy consists 1n having a single subquery con-
taining the complete source query. An intermediate strategy
consists of subdividing the source query in many subqueries
as stateful operators, plus an optional prefix of stateless
operators that are at the beginning of the source query. Each
subquery has one stateful operator, followed by all the state-
less operators until the next subquery or subqueries. If the
original query begins with a stateless operator, there 1s an
additional subquery with all the stateless operators t1ll the first
query stateful operator(s). This parallelization strategy (state-
tul-subquery-partitioning) mimmizes the network cost. It
sends tuples over the network only when needed (to preserve
transparency), that is, just before each stateful operator. With-
out loss of generality this parallelization strategy will be
assumed 1n the rest of the description.

[0065] The source query 1s compiled by the parallel com-
piler, the result 1s a set of subqueries. The stateful-subquery-
partitioning strategy described above 1s assumed. Each sub-
query 1s complemented as follows. An mput merger is
introduced at the beginning of the subquery. A load balancer
1s mtroduced at the end of each subquery output. Each sub-
query 1s deployed 1n a different set of nodes. An 1nstance of
the stream processing engine runs in each node. The deploy-
ment of a subquery in a set of nodes lies in the deployment of
that subquery in the mstance of the stream processing engine
at each node. The subqueries are connected as follows. Each
connection between an output of the source subquery with an
input from a destination subquery 1n the original query results
in a connection between the load balancer from that output at
cach instance of the source subquery and the input merger of
cach instance of the destination subquery. FIG. § shows an
example ol the connection of parallel subqueries, correspond-
ing to the stateful-subquery-partitioning shown in FIG. 3, for
the source query 1n FIG. 1.

[0066] Load balancers are semantic aware. That 1s, they
distribute the load among the nodes of the next subquery (or
subqueries) so that, the tuples that must be combined together
in the same aggregate or join operator will be recerved and
thus, processed by the same node. The semantic aware distri-
bution can be implemented 1n anyway, but 1t must fulfill this
requirement, that 1s, tuples that must be combined together
are sent to the same 1nstance of the destination subquery. The

Dec. 22, 2011

following semantic aware distribution will be adopted 1n the
preferred present embodiment. A stateful operator of a desti-
nation subquery uses a field or a set of fields, C, to combine
tuples that 1s called tuple key. For the join operator the key
consists of the fields used in join predicate. For the aggregate
operator the key consists of fields in the group-by clause. This
way each output tuple has a key c¢. A hash function 1s applied
to this key ¢ obtaining the value h=hash(c). The modulo
operation 1s applied to the value h with a constant np, obtain-
ing a value p=h mod np, named partition 1identifier. The result
of applying the above method to a tuple 1s the partition 1d. The
total number of partitions 1s np, and the responsibility for
processing a partition with identifier p corresponds to a single
instance of the subqueries. Each istance 1s responsible for a
subset of partitions. A single instance 1s responsible of pro-
cessing the tuples of a given partition.

[0067] If mput mergers are not transparent, they simply
torward the tuples received from the 1nstances of the source
subquery as soon as they are recerved to their local instance of
the subquery.

[0068] Load balancers and mput mergers are extended to
guarantee transparent parallelization. Input mergers wait to
receive a tuple from each mstance of the source subquery, and
when this happens they forward the tuple with smallest times-
tamp to the their local instance of their subquery. Input merg-
ers may block with this stream merging, if tuples are not
received from one of the load balancers. Load balancers are
extended to produce dummy tuples when they have not pro-
duced a tuple for a given period of time to avoid blocking.
Each load balancer keeps track of the timestamp of the last
generated tuple for each instance of the destination subquery
(subqueries). When no tuple 1s sent during a maximum period
of time m to a destination subquery, then a dummy tuple 1s
sent with the timestamp of the last tuple sent by that load
balancer (to any 1nstances of the destination subquery). Peri-
odic generation of dummy tuples avoids the blocking of the
input merger when a load balancer does not generate tuples
for an instance of the destination subquery and so that the
Input merger can progress.

[0069] The parallelization of stateless subqueries, that 1s,
subqueries consisting exclusively of stateless operators sim-
ply requires round-robbing distribution of the different parti-
tions among the mstances of the subquery. That 1s, tuples are
sent to each one of the 1mstances of the destination subquery
until a tuple has been sent to all of them, then 1t starts again
with the first one. For instance, in a destination subquery with
two 1nstances, the first tuple would be sent to the first instance,
the second tuple to the second instance, the third tuple to the
first instance, and so on.

[0070] The parallelization of subqueries with stateful
operators 1s more complex because 1t must be semantic aware
of the stateful operators of the destination subquery. In this
case the key space of the output tuples must be partitioned, so
that each key 1s assigned a partition identifier, using for
example, the hashing method aforementioned. Thus, given an
output tuple with key c¢ it 1s assigned a partition 1dentifier p.
On the other hand, every partition 1s assigned one instance
and only one of the subquery that will be responsible for
processing all tuples with that partition idenftifier. That
method 1s used for the aggregate operator. Tuples with the
same key are received by the same instance and that way they
can aggregated together locally. This distribution method 1s
also valid for the join with an equality predicate (equi-join). In
this case the tuples with the same key, which are the only ones

US 2011/0314019 Al

the predicate should be checked for, are received by the same
instance of the destination subquery and thus, it can join the
tuples with the same key. For instance, to join phone call
tuples with the same calling phone number the join predicate
requires that the field of the calling phone from the two tuples
to be compared has the same value. Since tuples with the same
calling phone number are recerved by the same instance of the
destination subquery, they can be joined them locally. How-
ever, for the general case of the join operator (as i1t happens
with the Cartesian product operator), when there 1s no equal-
ity predicate that must be satisfied by the tuples to be joined,
a different the distribution method 1s used. To simplify the
presentation 1t 1s assumed that the number of instances of the
subquery with the join operator 1s a square number 1, 4, 9, 16,
. . . . The number of instances is i=j°. The instances are
numbered from O to 1—1. The join operator has two inputs that
will be named left and right. Load balancers connected to the
left input will send an output tuple to 1 mnstances of the desti-
nation subquery with the join operator. p 1s the tuple 1dentifier
under consideration. More specifically, the output tuple 1s
sent to 1 instances numbered d=p*j+0, where o takes values
from O to 1—1. Load balancers connected to the right input will
also send the output tuple to 1 1nstances of the destination
subquery numbered with d=p+o0* where o takes values from
0 to j—1. This ensures that all possible pairs among tuples with
a temporal distance less than or equal to the length of the time
window associated with the join operator will be generated.

[0071] Now, 1t 1s described how to extend the paralleliza-
tion method to obtain elasticity, load balancing and fault
tolerance. As mentioned above, the three properties require
reconfiguring the system and the reconfiguration needs a state
transier procedure. To transier the processing responsibility
ol a subquery responsible for a partition with identifier p from
an mstance A to another instance B of the same subquery, the
state of the stateful operator of the subquery related to that
partition must be transferred from A to B.

[0072] The state transfer procedure has the following steps.
When the decision to reconfigure the system 1s made, recon-
figuration 1mplies the reassignment of data partitions from
some 1nstances to others. This collective reassignment can be
decomposed 1nto individual partition reassignments of a par-
tition with identifier p from an instance A to an 1nstance B.
First of all, a timestamp mt 1s chosen, at which 1t the state
transier will start. This timestamp mti, 1s greater than the
greatest timestamp mt that 1s active 1n the set of nodes of the
subquery for which the reconfiguration is done, such that
mti=mt+{, where 1 provides enough margin to notity all
instances mvolved in the reconfiguration that must start the
state transier with those tuples with timestamp equal or
greater than mtf. Timestamp mttf 1s communicated to all the
instances of the source subquery (subqueries) that sends
tuples to the reconfigured subquery (it will be called destina-
tion), as well as the two 1nstances of the reconfigured desti-
nation subquery, A and B. Load balancers of the instances of
the source subquery store timestamp mtf. The only tuples
distributed 1n a different way are those that belong to partition
p, the rest does not change 1ts processing. Each load balancer
redistributes the tuples it receives 1n increasing timestamp
order. Each load balancer forwards the tuples 1t recerves from
partition p with timestamp lower or equal to mtf to instance A
ol the destination subquery, the 1nitial responsible for parti-
tion p. When a load balancer receives the first tuple with
timestamp greater than mti, 1t sends that tuple to the instance
B, the new responsible for partition p, an end-of-reconfigu-

Dec. 22, 2011

ration tuple with the partition identifier 1s sent just before that
tuple. In the case of a join operator case with predicate with-
out equality, there 1s a set of instances A with the original
responsibility of the partition p and a set of instances B with
destination responsibility. The process 1s applied similarly to
all the sets of instances.

[0073] Besides the reconfiguration of load balancers, the
state corresponding to partition p 1s transierred from the
source instance A to the destination instance B. For the aggre-
gate operator, this state consists of the aggregated value for
partition p and the time window from the partition p. For the
j01n operator case with equality operator 1n the predicate, 1t
consists of the tuples from the two sliding windows associ-
ated to partition p. For the join operator case without equality
in the predicate, it consists of the tuples associated to the
transierred partition. The instance B waits until the state
transier completes and to recerve the end-of-reconfiguration
tuples from all load balancers. At that point, the instance B
begins to process the tuples from partition p.

[0074] The procedure used to extend the parallelization
process to achieve elasticity and load balancing 1s described
below. For each subset of nodes processing a subquery, one
node becomes the provisioner. Each node of the subset of
nodes monitors periodically the local load at each node (by
means of a direct metric such as percentage of CPU utilization
or an indirect metric such as the number of queued tuples
pending to be processed at the subquery 1instance). The moni-
toring information 1s sent periodically from each node of the
subset of nodes to the provisioner. This monitoring message
also 1ncludes the greatest timestamp processed by the
instance. Thus, the provisioner knows the relative load of all
nodes that execute an instance of the subquery. The provi-
sioner compares the relative load across nodes. If the imbal-
ance between the most loaded node and the less loaded one
exceeds an upper imbalance threshold, the subquery 1s recon-
figured by moving one or more data partitions from the most
loaded node to the less loaded one. The reconfiguration pro-
cedure for each partition follows the one described above for
state transier.

[0075] The provisioner also calculates the average load of
the nodes and 1f this average load exceeds another utilization
threshold, 1t means that the set of nodes 1s close to saturation
and a free node 1s provisioned. First of all, an instance from
the query processing engine 1s deployed on that node with a
copy of the subquery. Then, the load balancer from the new
instance 1s connected to the iput mergers to which the sub-
query output(s) 1s connected. The same 1s done with the
iput(s) of the mput merger(s) and the outputs of the load
balancers of the subquery to which their inputs are connected.
From that point that instance of the subquery begins to report
about its load which mitially 1s null. This triggers the load
balancing process described above.

[0076] The provisioner also checks 1f the current global
load of the subquery could be satisfied with one node less
without exceeding the upper utilization threshold of the aver-
age load. In that case, all the partitions of the less load node
are redistributed evenly among the rest of the nodes. Each
partition 1s reconfigured with the same procedure described
for the load balancing. When all the data partitions have been
reconiigured, the outputs of the load balancers connected to
the inputs of the node to be decommuissioned are disconnected
and the outputs of the load balancers are also disconnected
from the inputs of the following subquery (subqueries). Once
the instance of the subquery of the node to be decommis-

US 2011/0314019 Al

sioned 1s disconnected, that node 1s decommissioned and
returned to the set of {free nodes.

[0077] The proposed parallel-distributed engine and 1its
procedure of parallel query processing can be deployed 1n a
cloud computing system. More specifically, 1t can be
deployed 1n an infrastructure as a service responsible for the
management of free nodes. The elasticity procedure in that
case 1s modified as follows. The provisioner of each subquery
delegates the task of node management, getting and freeing
nodes, to the infrastructure as service. Thus, when a new node
1s provisioned, the provisioner asks for a new node to the
infrastructure as a service. When a node 1s freed, the infra-
structure as a service 1s notified that the node 1s free.

[0078] Theinventionis applicable to the industrial sector of
information systems of data stream processing and event
processing. In both types of systems data streams are pro-
cessed by continuous queries. Current solutions are either
centralized or distributed, but in both cases the processing
capacity of these systems 1s limited by the processing capac-
ity of a single node because the whole input data stream 1s
processed by a single node to process a given query operator,
a subquery or a full query. This limitation prevents current

systems from scaling out with respect to the volume of the
input data stream.

[0079] Once the imnvention has been clearly described, it 1s
stated that the specific embodiments described above are
amenable T minor modifications without altering the funda-
mental principle and the essence of the invention.

1. A parallel stream processing engine of continuous que-
ries formed by a plurality of instances wherein each instance
1s executed in any processing node that of the processing
engine, wherein the cooperation of instances processes a
query, comprising:

a) means for receirving the query to be deployed;

b) means for splitting the original query into subqueries,

obtaining at least one subquery; each subquery is
executed at least 1n one node:

¢) means for labeling with timestamps the tuples produced
by each operator of each subquery;

d) wherein between each two consecutive subqueries,

1) a load balancer 1s interposed at the output of each node,
the load balancer executing each of the instances of
the source subquery;

11) the output from the load balancer 1s connected with all

the nodes 1n which one of the instances of the desti-
nation subquery 1s executed;

111) an mput merger 1s mnterposed in each node, the mput
merger executing each of the instances of destination
subquery;

1v) checking 1s performed to determine 11 all subqueries
contain at most a stateful operator and 1f mputs are
connected to previous subqueries, wherein:

a) 1f the checking succeeds, the load balancer sends
received tuples with a same key to a same 1nstance
of the source subquery;

b) 11 the checking fails, a load balancer and an 1nput
merger are imnterposed before each stateful operator
that 1s preceded by any other operator, such that the
stateful operator 1n the node where each of the
instances of the destination query are executed
sends all recerved tuples with the same key to the
same 1nstance of the destination subquery.

Dec. 22, 2011

2. The parallel stream processing engine of continuous
queries, according to claim 1, wherein the means for splitting
queries uses one of the following methods:

a)non splitting the query, being the result a single subquery
identical to the original whole query;

b) splitting the source query into as many subqueries as
operators included 1n the original query;

¢) splitting the source query into subqueries, where each
subquery consists of one stateful operator followed by at
least a stateless operator, except an 1nitial subquery only
contains stateless operators;

d) splitting the Source query into subqueries following
another criterion.

3. The parallel stream processing engine of continuous
queries, according to claim 1, wherein the sending of tuples
received with the same key to the same istance of the source
subquery comprises:

a) applying to each tuple with key ¢ a hash function obtain-

ing a value h=hash;

b) obtaining the partition 1dentifier p of the tuple, making
the modulo operation by a constant np, obtaining a value
p=h mod np;

) assigning each partition with identifier p to an instance of
the subqueries.

4. The parallel stream processing engine ol continuous
queries, according to claim 1, wherein the input merger for-
wards tuples as the input merger recerves the tuples from any
of the source subqueries to the instance of the destination
subquery 1s connected to.

5. The parallel stream processing engine ol continuous
queries, according to claim 1, wherein the input merger wait-
ing to recerve a tuple from each one of the imput merger iput
streams belfore forwarding the tuple with smallest timestamp
to the destination subquery 1s connected to.

6. The parallel stream processing engine ol continuous
queries, according to the claim 5, wherein a load balancer
storing the timestamp from the last generated tuple for each
destination subquery and 1f aiter a maximum prefixed period
of time m, a tuple has not been sent to the destination sub-
query, the load balancer sends a dummy tuple with the same
timestamp the last tuple sent by the load balancer had.

7. The parallel processing engine of continuous queries on
data streams, according to claim 3, wherein the engine 1s able
to reconfigure the processing of tuples corresponding to a
partition p, by transferring the processing of those tuples from
a source mstance to a destination nstance, comprising:

a) obtaining the greatest active timestamp in the system,

mt;

b) establishing a future timestamp mtf, by adding temporal
shift feN to the greatest active timestamp 1n the system,
mt, mt{=mt+{;

¢) sending, during the established time margin 1, a recon-
figuration command including the timestamp that begins
the reconfiguration, mtf, to all source mstances involved
in the reconfiguration;

d) storing the timestamp mtf 1n all load balancers of the
source subquery;

¢) sending of the tuples corresponding to the reconfigured
partition p with timestamp less or equal than mttf by the
load balancers of the source subquery to the instance of
the destination subquery responsible for the partition p
betore the reconfiguration started;

1) sending of one tuple by the load balancers of the source
subquery that indicates the end of reconfiguration to the

US 2011/0314019 Al

instances of the destination subquery involved 1n the
state transier before sending the first tuple from partition
p greater than mtf;

o) sending of the tuples belonging to reconfigured partition
p with timestamp greater than mti by the load balancers
of the source subquery to the instance of the destination
subquery responsible for the partition p after the recon-
figuration;

h) transferring the state of partition p to the destination
instance aiter receiving the tuple that indicates the end of
reconfiguration from all load balancers of the source
subquery;

1) apply at the destination instance the state of the partition
p after recerving the state transfer from partition p

8. The parallel stream processing engine ol continuous
queries, according to claim 7, wherein the configuration of
one of the nodes where a subquery 1s executed to balance the
load comprises:

a) receiving periodically from all the nodes where the
query 1s being executed, data about CPU and memory
utilization at each node, and the greatest timestamp
among the processed tuples at each node.

b) comparing utilization data across the nodes executing
the query;

¢) if, for a subquery, the comparison between utilization
exceeds a first given upper utilization threshold, the node
reconiigures at least a data partition, sending a recon-
figuration command to the mvolved instances of the
source and destination subquery;

d) if the average load of the nodes of a subquery exceeds a
given second upper imbalance threshold, the node
selects one node from the set of free nodes, adds the
selected node to the set of nodes that executes the sub-
query so that, the selected node will recerve load from
other nodes automatically;

¢) 1f the average load of the nodes of a subquery can be
satisfied with a smaller set of nodes without exceeding
the second upper utilization threshold, the node selects
one node from the set of nodes where the subquery 1s
being executed, and sends a reconfiguration command to
the selected node so all the selected nodes partitions will
be distributed among the rest of the nodes that execute
the subquery.

9. A method of parallel stream processing continuous que-
ries formed by a plurality of instances wherein each instance
1s executed 1n a processing node comprising a processing
engine, wherein the cooperation of instances processes a
query, comprising the following steps:

a) recerving the query to be deployed;

b) splitting the original query into subqueries, obtaining at
least one subquery; each subquery 1s executed at least 1n
one node;

¢) labeling with timestamps the tuples produced by each
operator of each subquery;

d) between each two consecutive subqueries,

1) interposing a load balancer at the output of each node,
the load balancer executing each of the instances of
the source subquery;

11) connetcting the output from the load balancer with all
the nodes 1n which one of the istances of the desti-
nation subquery 1s executed;

111) interposing an mput merger in each node, the mput
merger executing each of the istances of destination
subquery;

Dec. 22, 2011

1v) checking 11 all subqueries contain at most a stateful
operator and 11 inputs are connected to previous sub-
queries, wherein:

a) 1f the checking succeeds, the load balancer sends
received tuples with a same key to a same 1nstance
of the source subquery;

b) 11 the checking fails, a load balancer and an 1nput
merger are interposed before each stateful operator
that 1s preceded by any other operator, such that the
stateful operator in the node where each of the
instances of the destination query are executed
sends all received tuples with the same key to the
same nstance of the destination subquery.

10. The method of parallel stream processing continuous
queries, according to claim 9, wherein the means for splitting
queries 1s made by one of the following methods:

a)non splitting the query, being the result a single subquery
identical to the original whole query;

b) splitting the source query into as many subqueries as
operators included 1n the original query;

¢) splitting the source query into subqueries, where each
subquery consists of one stateful operator followed by at
least a stateless operator, except an initial subquery only
contains stateless operators;

d) splitting the Source query into subqueries following
another criterion.

11. The method of parallel stream processing continuous
queries, according to claim 9, wherein the sending of tuples
received with the same key to the same mstance of the source
subquery comprises:

a) applying to each tuple with key ¢ a hash function obtain-

ing a value h=hash;

b) obtaining the partition 1dentifier p of the tuple, making
the modulo operation by a constant np, obtaining a value
p=h mod np;

) assigning each partition with identifier p to an instance of
the subqueries.

12. The method of parallel stream processing continuous
queries, according to claim 9, wherein the input merger for-
wards tuples as the input merger recerves the tuples from any
of the source subqueries to the instance of the destination
subquery 1s connected to.

13. The method of parallel stream processing continuous
queries, according to claim 9, wherein the input merger wait-
ing to recerve a tuple from each one of the imput merger input
streams before forwarding the tuple with smallest timestamp
to the destination subquery 1s connected to.

14. The method of parallel stream processing continuous
queries, according to claim 13, wherein a load balancer stor-
ing the timestamp from the last generated tuple for each
destination subquery and 1t aiter a maximum prefixed period
of time m, a tuple has not been sent to the destination sub-
query, the load balancer sends a dummy tuple with the same
timestamp the last tuple sent by the load balancer had.

15. The method of parallel processing continuous queries
on data streams, according to claim 11, wherein the engine 1s
able to reconfigure the processing of tuples corresponding to
a partition p, by transferring the processing of those tuples
from a source instance to a destination instance, comprising:

a) obtaining the greatest active timestamp in the system,
mt;

b) establishing a future timestamp mtf, by adding temporal
shift feN to the greatest active timestamp 1n the system,
mt, mti=mt+{;

US 2011/0314019 Al Dec. 22, 2011

10

16. The method of parallel stream processing continuous
queries, according to claim 15, wherein the configuration of
one of the nodes where a subquery 1s executed to balance the
load comprises:

¢) sending, during the established time margin 1, a recon-
figuration command including the timestamp that begins
the reconfiguration, mtf, to all source mstances involved

in the reconfiguration;

d) storing the timestamp mti in all load balancers of the
source subquery;

¢) sending of the tuples corresponding to the reconfigured
partition p with timestamp less or equal than mtf by the
load balancers of the source subquery to the imnstance of
the destination subquery responsible for the partition p
betore the reconfiguration started;

1) sending of one tuple by the load balancers of the source
subquery that indicates the end of reconfiguration to the
instances of the destination subquery involved 1n the
state transier before sending the first tuple from partition
p greater than mtf;

o) sending of the tuples belonging to reconfigured partition
p with timestamp greater than mti by the load balancers
of the source subquery to the instance of the destination
subquery responsible for the partition p after the recon-
figuration;

h) transferring the state of partition p to the destination
instance after recerving the tuple that indicates the end of
reconiiguration from all load balancers of the source
subquery;

1) apply at the destination instance the state of the partition
p after recerving the state transfer from partition p

a) recewving periodically from all the nodes where the
query 1s being executed, data about CPU and memory
utilization at each node, and the greatest timestamp

among the processed tuples at each node.

b) comparing utilization data across the nodes executing
the query;

¢) if, for a subquery, the comparison between utilization
exceeds a first given upper utilization threshold, the node
reconiigures at least a data partition, sending a recon-
figuration command to the involved instances of the
source and destination subquery;

d) 11 the average load of the nodes of a subquery exceeds a
given second upper imbalance threshold, the node
selects one node from the set of free nodes, adds the
selected node to the set of nodes that executes the sub-
query so that, the selected node will recerve load from
other nodes automatically;

¢) 1f the average load of the nodes of a subquery can be
satisfied with a smaller set of nodes without exceeding,
the second upper utilization threshold, the node selects
one node from the set of nodes where the subquery 1s
being executed, and sends a reconfiguration command to
the selected node so all the selected nodes partitions will
be distributed among the rest of the nodes that execute
the subquery.

	Front Page
	Drawings
	Specification
	Claims

