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(57) ABSTRACT

A distributed storage system stores data for files. A first blob
(binary large object) of data 1s received. The first blob 1s split
into one or more first chunks of data. Content fingerprints for
the first chunks of data are computed. The first chunks of data

are stored 1n a chunk store while and their content fingerprints
are stored 1n a store distinct from the chunk store. A second

blob of data 1s received. The second blob 1s split into one or
more second chunks of data. Content fingerprints for the
second chunks of data are computed. Then for a second chunk
of data whose content fingerprint matches a content finger-
print of a first chunk of data, a second reference to the corre-
sponding first chunk of data that has a matching content
fingerprint 1s stored, but the second chunk of data 1s not
stored.
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1104 Each instancc of thc databasc compriscs onc or morc scrver computers with
mcmory and onc or more proccssors.

1100

Identify a first mstance of the distributed database at a first geographic location.

1108 Identity a sccond instance of the distributed databasc at a sccond geographic location.

1110

1114 Track changes to the distributed database at the first instance by storing deltas.
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arc applicd to the data.
1120
1122 Each delta has an instance 1identifier that specifies an instance where the delta
was created.
1124 Dctermine which deltas arc to be sent to the sccond stance using a sccond cgress

map at the first instance, where the second egress map specifies which combinations

of row 1dentifier and sequence 1dentifier have been acknowledged as received at the
second instance.
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Tape Utilization Process 1900 \

1902 Utihize a tape system for data storage.

1904 The method of utilizing a tape system 1s implemented on one or more scrvers,
cach having one or more processors and memory

1906

Recelve a request to store a blob of data 1n a tape store.

1908 The request includes the content of the blob.

1910
Write the contents of the blob to a first tape store buffer.
1912 When a predefined condition is mct, write the content from the first tape storc buffer
to a tape
g
!
1914 : he predefined condition 1s that the first tape store buffer fills to a first threshold |
| percentage of capacity. :
|
1916 '
|
|
1918
Receive a request from a client to read the blob of data from the tape store.
1920
When read requests reach a second threshold, read the contents of the blob from tape.
1922

Write the contents of the blob to a second tape store buffer.

1924

Send a message to the client indicating that the blob contents are available for reading.
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2002 The process 1s implemented on one or more servers, each having memory and one or
MOore Processors.

2004 Receive a first blob of data.

2006 Split the first blob of data into one or more first chunks of data.

2008 Compute a content fingerprint for each of the first chunks of data.

2010 Store the first chunks of data in a chunk store.

2012 Store the content fingerprints of the first chunks of data 1n a store distinct from the

chunk store.

2014 . L |
Receive a second blob of data.

2010 Split the sccond blob of data into onc or morc sccond chunks of data.
2018 .
Compute a content fingerprint for each of the second chunks of data.
2020 -
For cach second chunk of data whose content fingerprint matches a content
fingerprint of a first chunk of data;
2022

Store a second reference to the corresponding first chunk of data that has a

matching content fingerprint; and

2024 Do not store the second chunk of data.

2026

For each second chunk of data whose content fingerprint does not match a content
fingerprint of a first chunk of data:

2028
Store the second chunk of data 1n a chunk store.
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Process of Utilizing Blob Representations 2100 \v

2102 The process 1s implemented on one or more servers, each having memory and one or
MOIC ProccsSors.

2104 Recetve a first representation of a blob of data having a specified first representation
typc.
2106 .
Store the first representation of the blob of data.
2108 Store metadata for the blob of data, including a name of the blob, the representation
type, and a storage location for the first representation of the blob.
2110 Recerve a request to create a second representation of the blob with a second
representation type.
2112

Create a second representation of the blob having the second representation type.

2114
Store the second representation of the blob of data.

2116 Updatc the mctadata for the blob of data to indicatc the presence of the sccond
representation of the blob with the second representation type.

2118 Recelve a request from a client for a copy of the blob, wherein the request includes a
specified representation type.
2120 Retrieve either the first representation of the blob or the second representation of the
blob, the retrieved representation of the blob corresponding to the representation type
requested by the client.
2122

Send the retrieved representation of the blob to the client.
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Process of Reading a Blob 2200 \

2202 . .
0 Execute the process at a client on a computer with on¢e or more processors and
memory.
2204 | o
Receive a request from a user application for a blob.
2206 Locatc an instancc within the distributed storage system that 1s gcographically closc to
the client.
2208 Contact a blob access module at the located 1mnstance to request metadata for the
requested blob, the request including user access credentials.
2210 Receive from the blob access module a collection of metadata from the requested
blob, and a set of one or more read tokens.
2212 Sclect an instance that has a copy of the requested blob bascd on the received
collection of metadata.
2214 Contact a data store module at the selected instance, including providing the data store
module with the set of one or more read tokens.
2216 _ .
Receive the content of the requested blob 1n one or more chunks.
2218
Assemble the one or more chunks to form the requested blob.
2220

Rcturn the blob to the user application.

Figure 22
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STORAGE OF DATA IN A DISTRIBUTED
STORAGE SYSTEM

PRIORITY

[0001] This application claims priority to U.S. Provisional
Application Ser. No. 61/302,930, filed Feb. 9, 2010, entitled
“Storage of Data 1n a Planet-Scale Distributed Storage Sys-
tem””, which 1s incorporated by reference herein 1n 1ts entirety.

TECHNICAL FIELD

[0002] The disclosed embodiments relate generally to dis-
tributed storage systems, and more specifically to storage of
blobs 1n large-scale distributed storage systems.

BACKGROUND

[0003] User applications are commonly delivered to end
users with web-based interfaces. These applications are avail-
able to millions of users all over the world, and require a
substantial amount of space for data storage. For example, the
Gmail™ application 1s used by many millions of users, and
requires storage space for each user’s email. Such applica-
tions 1impose several constraints on the storage system, and
prior art systems do not satistactorily meet these constraints.
[0004] One desirable property of a storage system 1s that 1t
be both large and scalable. Even 1t a storage system could
handle current storage needs, many systems will not scale to
meet the growing needs.

[0005] Another desirable property of a storage system 1s
that the data stored 1s near the end user so that that reading and
writing data 1s fast. A single centralized storage facility at one
location or a small number of locations does not meet the
needs of users throughout the world because some users have
to read and write data over slow network links.

[0006] Another desirable property of a storage system 1s
that the data be reliably backed up, so that it can recover from
both natural and human errors. Many storage systems do not
maintain multiple copies of data, so that recovery could
require retrieval from tape backup, taking a very long time.
[0007] Another desirable property of a storage system 1s
that network and data center failures should be transparent to
end users. In most systems, 11 a network link or data center
goes down, some users will not be able to access their own
data while the failure 1s resolved or a temporary workaround
1s manually implemented.

SUMMARY

[0008] The above deficiencies and other problems associ-
ated with existing distributed storage systems are addressed
by the disclosed embodiments. Some of the disclosed
embodiments 1mplement distributed storage systems with
instances located throughout the world. Replicas of data
blobs are distributed throughout the storage system, with new
blobs created near the relevant users. Based on both usage and
policy, copies of blobs are transmitted to other instances,
which optimize storage space based on the actual needs of the
end users. The architecture of the disclosed distributed stor-
age system embodiments facilitates growth, both within indi-
vidual instances, and the addition of new instances. More-
over, inthe disclosed architecture, various portions of the data
are ellectively “backed up” by other copies of the data else-
where within the distributed storage system. In addition, the
disclosed architecture facilitates locating data near where it 1s
used, so that users everywhere have relatively fast access.
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[0009] In accordance with some embodiments, a distrib-
uted storage system for storing electronic data comprises
instances, which may be local instances or global instances.
The system has a plurality of local instances, and at least a
subset of the local 1nstances are at physically distinct geo-
graphic locations. Each local instance includes a plurality of
server computers, each having memory and one or more
processors. Each respective local instance 1s configured to
store data for a respective non-empty set of blobs 1n a plurality
of data stores having a plurality of distinct data store types and
store metadata for the respective set of blobs in a metadata
store distinct from the data stores. The system has a plurality
of global instances. Each global instance includes a plurality
of server computers, each having memory and one or more
processors. Each global instance 1s configured to store data
for zero or more blobs 1n zero or more data stores and store
metadata for all blobs stored at any local or global 1nstance.
One global instance has a background replication module that
replicates blobs between instances according to blob policies.

[0010] In accordance with some embodiments, a distrib-
uted storage system for storing electronic data comprises
instances, which may be local instances or global 1nstances.
The system has a plurality of local instances, and at least a
subset of the local 1nstances are at physically distinct geo-
graphic locations. Each local instance includes a plurality of
server computers, each having memory and one or more
processors. Each respective local instance 1s configured to
store data for a respective non-empty set of blobs 1n a plurality
of data stores having a plurality of distinct data store types and
store metadata for the respective set of blobs 1n a metadata
store distinct from the data stores. The system has a plurality
of global instances. Each global instance includes a plurality
of server computers, each having memory and one or more
processors. Each global instance 1s configured to store data
for zero or more blobs in zero or more data stores and store
metadata for all blobs stored at any local or global 1nstance.
Each local or global instance has a dynamic replication mod-
ule that dynamically replicates blobs from one local or global
instance to another local or global mnstance based on user
requests to access blobs that are not stored at a local or global
instance near the user.

[0011] In accordance with some embodiments, a distrib-
uted storage system for storing electronic data comprises a
plurality of instances. Each instance includes a plurality of
server computers having memory and one or more proces-
sors. At least a subset of the instances are at physically distinct
geographic locations. Each instance stores data for a plurality
of blobs. Each blob has an associated blob policy that speci-
fies the desired number of copies of the blob as well as the
desired locations for copies of the blob. The system 1ncludes
a location assignment module configured to compare the
desired number of copies of each blob and desired location
constraints for each blob to a current number of copies of each
blob and current locations of copies of each blob. The location
assignment module 1s also configured to 1ssue commands to
delete a copy of a respective blob or to replicate a respective
blob to another instance when the current number of copies of
a respective blob and/or current locations of the respective
blob are inconsistent with the desired number of copies of the
respective blob or the desired location constraints of the
respective blob.

[0012] Inaccordance with some embodiments, a computer-
implemented method of utilizing a tape system for data stor-
age executes at one or more server computers, each having
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one or more processors and memory. The memory stores one
or more programs for execution by the one or more processors
on each server computer. The method receives a request to

store a blob of data in a tape store, and the request includes the
content of the blob. The method writes the content of the blob
to a first tape store buffer. Then, when a predefined condition
1s met, the method writes the content from the first tape store
builer to a tape. In some embodiments, the predefined condi-
tion 1s that the first tape store butler fills to a first threshold
percentage of capacity. In some embodiments, the predefined
condition 1s that a predefined length of time has passed since
a last time content was written from the first tape store butfer
to a tape. Other embodiments have a predefined condition that
1s a combination of these two conditions. The method later
receives a request from a client to read the blob of data from
the tape store. When read requests reach a second threshold,
the method reads the contents of the blob from tape, and
writes the contents of the blob to a second tape store bufler.
The method sends a message to the client indicating that the
blob contents are available for reading.

[0013] Inaccordance with some embodiments, a computer-
implemented method of storing data for files executes at one
Oor more server computers, each having one or more proces-
sors and memory. The memory stores one or more programs
for execution by the one or more processors on each server
computer. The method receives a first blob of data, and splits
the first blob of data into one or more first chunks of data. The
method computes a content fingerprint for each of the first
chunks of data. The method stores the first chunks of data 1n
a chunk store and stores the content fingerprints of the first
chunks of data 1n a store distinct from the chunk store. The
method also receives a second blob of data, and splits the
second blob of data into one or more second chunks of data.
The method computes a content fingerprint for each of the
second chunks of data. For each second chunk of data whose
content fingerprint matches a content fingerprint of a {first
chunk of data, the method stores a second reference to the
corresponding first chunk of data that has a matching content
fingerprint and does not store the second chunk of data 1tself.
For each second chunk of data whose content fingerprint does
not match a content fingerprint of a first chunk of data, the
method stores the second chunk of data 1n a chunk store.

[0014] Inaccordance with some embodiments, a computer-
implemented method of storing data for files executes at one
or more server computers, each having one or more proces-
sors and memory. The memory stores one or more programs
for execution by the one or more processors on each server
computer. The method recerves a first representation of a blob
of data having a specified first representation type, and stores
the first representation of the blob of data. The method also
stores metadata for the blob of data, including a name of the
blob, the representation type, and a storage location for the
first representation of the blob. The method also receives a
request to create a second representation of the blob with a
second representation type, and creates a second representa-
tion of the blob having the second representation type. The
method stores the second representation of the blob of data
and updates the metadata for the blob of data to indicate the
presence ol the second representation of the blob with the
second representation type. The method receives a request
from a client for a copy of the blob, and the request includes
a specified representation type. The method retrieves either
the first representation of the blob or the second representa-
tion of the blob, the retrieved representation of the blob cor-
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responding to the representation type requested by the client.
The method sends the retrieved representation of the blob to
the client.

[0015] Inaccordance with some embodiments, a computer-
implemented method of reading a blob from a distributed
storage system executes at a client on a computer having one
or more processors and memory. The memory stores one or
more programs for execution by the one or more processors
on the computer. The method receives a request from a user
application for a blob and locates an instance within the
distributed storage system that 1s geographically close to the
client. The method contacts a blob access module at the
located 1nstance to request metadata for the requested blob.
The request includes user access credentials. The method
receives from the blob access module a collection of metadata
from the requested blob, and a set of one or more read tokens.
The method selects an instance that has a copy of the
requested blob based on the received collection of metadata
and contacts a data store module at the selected instance. The
method provides the data store module with the set of one or
more read tokens. The method receives the content of the
requested blob 1n one or more chunks and assembles the one
or more chunks to form the requested blob. The method
returns the blob to the user application.

[0016] Thus methods and systems are provided that are
scalable, and efficiently use existing storage capacity and
network bandwidth. The methods and systems effectively use
the distributed resources to place copies of blobs near where
they are needed, with additional copies at other locations that
can function as real-time backups. Because of intelligent
background replication and replication based on immediate
end user needs, the disclosed methods and system provide a
system that 1s reliable, provides quick access for users, and
uses the existing storage capacity etlectively.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] For a better understanding of the aforementioned
embodiments of the invention as well as additional embodi-
ments thereof, reference should be made to the Description of
Embodiments below, 1n conjunction with the following draw-
ings 1n which like reference numerals refer to corresponding
parts throughout the figures.

[0018] FIG. 1A 1saconceptual 1llustration for placing mul-
tiple instances of a database at physical sites all over the globe
according to some embodiments.

[0019] FIG. 1B illustrates basic functionality at each
instance according to some embodiments.

[0020] FIGS. 1C-1G 1llustrate ways that a distributed stor-
age system may be integrated with systems that provide user
applications according to some embodiments.

[0021] FIG. 2 1s a block diagram illustrating multiple
instances of a replicated database, with an exemplary set of
programs and/or processes shown for the first instance
according to some embodiments.

[0022] FIG. 3 1s a block diagram that 1llustrates an exem-
plary instance for the system, and illustrates what blocks
within the nstance a user interacts with according to some
embodiments.

[0023] FIG. 4 1s a block diagram of an instance server that
may be used for the various programs and processes 1llus-
trated in FIGS. 1B, 2, and 3, according to some embodiments.
[0024] FIG. 5 illustrates a typical allocation of instance
servers to various programs or processes 1llustrated in FIGS.
1B, 2, and 3, according to some embodiments.
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[0025] FIG. 6 illustrates how metadata 1s stored according
to some embodiments.

[0026] FIG. 7 1llustrates a data structure that 1s used to store
deltas according to some embodiments.

[0027] FIG. 8 1illustrates an exemplary compaction process
according to some embodiments.

[0028] FIG. 9 illustrates a sequence of events 1n the repli-
cation process according to some embodiments.

[0029] FIG. 10 1s a block diagram that illustrates a client
computer according to some embodiments.

[0030] FIGS. 11A-11C 1illustrate a method of replicating
distributed data according to some embodiments.

[0031] FIGS. 12A-12B illustrate a method of compacting
data 1 a distributed database according to some embodi-
ments.

[0032] FIG. 13 illustrates a method of reading a piece of
data from a distributed database according to some embodi-
ments.

[0033] FIGS. 14A-14D illustrate skeletal data structures
for egress and ingress maps according to some embodiments.
[0034] FIGS. 15A-15B 1llustrate a process of developing a
transmission plan for sending database changes to other
instances according to some embodiments.

[0035] FIG. 16 provides an example of evaluating the cost
of various transmission plans according to some embodi-
ments.

[0036] FIG. 17 illustrates a method of determining a com-
paction horizon using ingress maps according to some
embodiments.

[0037] FIGS. 18A-18F illustrate data structures used to

store metadata according to some embodiments.

[0038] FIG. 19 illustrates a method of utilizing a tape
device as a data store according to some embodiments.
[0039] FIG. 20 1llustrates a method of implementing con-
tent-based de-duplication according to some embodiments.
[0040] FIG. 21 1illustrates a method of efficiently creating

an utilizing multiple representations of a blob according to
some embodiments.

[0041] FIG. 22 illustrate a method of reading a blob stored
in a distributed storage system according to some embodi-
ments.

[0042] FIG. 23 1s a block diagram that illustrates a process
to reduce the amount of storage using content-based de-du-
plication according to some embodiments.

[0043] FIGS.24A-24C illustrate an exemplary set of opera-
tions to create and retrieve multiple representations of the
same blob according to some embodiments.

[0044] FIG. 25 1s a block diagram that 1llustrates a process

of reading a blob deom a distributed storage system according
to some embodiments.

[0045] FIG. 26 1s a block diagram that 1llustrates a three
layer stable clock system according to some embodiments.
[0046] FIG. 27 provides an exemplary list of blob policies,
and 1llustrates the relationship between blobs and blob poli-
cies according to some embodiments.

[0047] FIG. 28 provides a high-level illustration of how
blobs are stored according to some embodiments.

[0048] Relerence will now be made 1n detail to embodi-
ments, examples of which are illustrated 1n the accompanying,
drawings. In the following detailed description, numerous
specific details are set forth 1n order to provide a thorough
understanding of the present invention. However, 1t will be
apparent to one of ordinary skill 1n the art that the present
invention may be practiced without these specific details.
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[0049] The terminology used in the description of the
invention herein 1s for the purpose of describing particular
embodiments only and 1s not intended to be limiting of the
invention. As used in the description of the invention and the
appended claims, the singular forms “a”, “an” and *“the” are
intended to include the plural forms as well, unless the con-
text clearly indicates otherwise. It will also be understood that
the term “and/or” as used herein refers to and encompasses
any and all possible combinations of one or more of the
associated listed items. It will be further understood that the
terms “comprises” and/or “comprising,” when used 1n this
specification, specily the presence of stated features, steps,
operations, elements, and/or components, but do not preclude
the presence or addition of one or more other features, steps,

operations, elements, components, and/or groups thereof.

DESCRIPTION OF EMBODIMENTS

Purpose

[0050] FEmbodiments of the present mvention provide a
distributed storage system. In some embodiments, the distrib-
uted storage system 1s global or planet-scale. The term
“Planet-scale” contrasts the disclosed embodiments with
ex1isting machine-scale or data-center-scale storage systems,
but does not necessarily require that the elements be located
all over the planet. The disclosed embodiments form a single
storage system from the perspective of 1ts users, even 1n an
environment with many data centers (sometimes referred to
as 1nstances). Planet-scale systems differ from data-center-
scale systems primarily 1n that the network link between two
data centers 1s orders of magnitude slower and of lower capac-
ity than the links within a data center, so data-center-scale
techniques do not apply.

[0051] Advantages of the disclosed embodiments include
functionality that:

[0052] makestemporary datacenter unavailability events
as 1nvisible as possible to the user. The disclosed
embodiments adapt to the unavailability of one data
center by directing traffic to other data centers and
potentially making additional copies of data at addi-
tional data centers. Outages of data centers or certain
network links to data centers are fairly common.
Because the storage for a single user’s data may be
spread over a large number of data centers, this creates
difficulties for applications that lack a planet-scale stor-
age system.

[0053] makes decisions about where to store 1ndividual
pieces of data on 1ts own. This means that a user 1s
isulated from 1ssues related to insuificient capacity
being available at any particular data center. The dis-
closed embodiments will simply spread their data over
multiple data centers. This automatic distribution also
addresses the case where a data center 1s unavailable 1n
the long term or even permanently: the disclosed
embodiments can easily transier the data elsewhere,
without needing to notity the user.

[0054] The disclosed embodiments are designed primarily
for immutable or weakly mutable data. “Weakly mutable™
means that, when you change an entry, that change will ulti-
mately propagate everywhere, but the time for the propaga-
tion 1s not constrained. This 1s sometimes referred to as “even-
tually consistent.”” On the other end of the spectrum 1s
“strongly mutable™ data. For strongly mutable data, once you
have written a change, all future reads are guaranteed to return
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the newly written value, regardless of where the user or data
reside. Many applications only require weak mutability, or no
mutability at all, and this can be implemented much more
cheaply than strong mutability, so there 1s an advantage 1n
doing so. The disclosed embodiments primarily address the
needs of weakly mutable data, although some of the disclosed
methods apply to distributed storage systems 1n general with-
out regard to whether the underlying data 1s weakly mutable
or strongly mutable.

[0055] The disclosed embodiments form a “blob store.” A
blob store maps blob names onto arbitrary contents, and the
blob store makes no attempt to interpret the contents. In this
way, a blob store 1s conceptually similar to a file system, with
a blob name corresponding to file name.

[0056] One feature of the disclosed embodiments 1s
dynamic replication. At any point in time, a blob may have
one or more replicas. Replicas may be added on-the-fly 1n
response to demand. This means that blobs that are 1n high
demand can get a large number of replicas (1mproving
latency, availability, and so on) without user intervention,
while blobs that are 1n low demand have less replication and
a lower cost for storage.

[0057] Another feature of the disclosed embodiments 1s
background replication. Users can specily a replication
policy such as “keep two copies on disk and one on tape, in
three different metro areas.” The system will monitor blobs 1n
the background and add or remove replicas in various loca-
tions, 1n order to satisiy this policy. The system that imple-
ments this background replication must trade ofl costs of
storage and transit to and from various locations.

[0058] The combination of demand based replication and
background replication based on policy can provide fairly
optimal storage at a much lower cost. Since the disclosed
embodiments can add and remove replicas on a per-blob
basis, and do so dynamically, users can specity a baseline
policy for the least-needed blobs, and rely on real-time rep-
lication to add replicas for just those blobs that need addi-
tional copies. This can greatly reduce the overall cost of data
storage.

[0059] An additional feature of the disclosed embodiments
1s content-based de-duplication. In the underlying storage
system, 11 two blobs have 1dentical contents, the data is stored
only once. For example, consider the use of a blob store to
store email attachments. IT a person sends copies of the same
attachment to multiple recipients, some embodiments of the
present invention would only store a single copy of the attach-
ment.

[0060] Thedisclosed embodiments are implemented on top
of various data-center-scale storage systems such as BigTable
and GFS (Google File System). That 1s, embodiments of the
present invention utilize both BigTable storage and GFS stor-
age as data stores for blobs.

[0061] Various features of the disclosed embodiments
resolve problems created by prior art data storage systems.
For example, keeping track of which piece of data 1s at which
data center 1s very complex, especially when there i1s blob-
level granularity. Without a dedicated system that manages
the locations of individual blobs, most applications forego
implementing individualized locations: such systems instead
stick with a conceptually simpler system along the lines of
“we have a complete data set X, and we have copies of the
entire dataset at data centers A, B, and C.” The complete-
dataset-only solution makes 1t easy to find a piece of data (it
1s at every data center), but creates other problems.
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[0062] One problem with the complete-dataset-only solu-
tion occurs when a data center becomes unavailable. The
soltware that accesses the data must be able to handle the
outage and reroute user requests intelligently. This alone
largely eliminates the perceived simplicity of have a complete
data set at each data center because the application software
cannot rely on any individual data center.

[0063] A complete-dataset-only 1mplementation also
requires enough capacity at every data center to store the
entire dataset. Not only 1s this expensive, 1t 1s also sometimes
impossible to extend capacity at a particular data center (e.g.
because one has run out of electrical capacity). This means
that 1t the service needs more data, 1t needs to retire an
ex1isting data center, get capacity at a new datacenter, transier
all of the data (while simultaneously providing user access,
because the service can’t shut down), reconfigure the systems
to recognize the new set of data centers, etc. Stmilar problems
happen 11 a data center needs to have long-term maintenance
or other unavailability. This 1s a major problem for distributed
applications.

[0064d] Another problem with a complete-dataset-only
implementation 1s over-storage of little-needed blobs. Gen-
crally, the number of copies of the dataset has to be fixed by
the number of copies needed for the most-needed blobs. Even
if just a small number of blobs require a large number of
copies, the same number of copies applies to all of the other
blobs, creating large unnecessary overhead costs with little
value.

[0065] Because of these factors, application developers
artificially reduce the number of data centers at which they
store data, and they will store data disproportionately at large
data centers with high capacity. This causes underutilization
of smaller data centers, and generally a less-then-optimal
distribution of data.

[0066] Furthermore, even if application developers were to
implement more flexible designs without the complete-
dataset-only limit, there are inherent ineificiencies by not
coordinating among various applications. For example, 1f
multiple large applications implement distributed storage
systems, the decisions about where to store data, when to
transier 1t, and so on, will be inefficient and may collide
because each application 1s competing for the same scarce
resources (disk space, network bandwidth, etc) without coor-
dination. Having a single unified storage system allows rep-
lication decisions to be centralized, which allows the most
eificient possible allocation of resources.

Outline

[0067] A single deployment of a disclosed distributed stor-
age system 1s called a “universe.” A universe comprises mul-
tiple 1nstances, which are individual sub-nodes of a distrib-
uted storage system. Typically, there will be one instance per
data center, but this 1s not required. Each instance has zero or
more chunk stores. A chunk store 1s an underlying, typically
data-center-scale, storage system, in which a blob can be
written. Note that a “blob” (1.e., a binary large object) 1s a
collection of binary data (e.g., images, videos, binary files,
executable code, etc.) stored as a single entity 1n a database.
This specification uses the terms “blob™ and “object” inter-
changeably and embodiments that refer to a “blob” may also
be applied to “objects,” and vice versa. In general, the term
“object” may refer to a “blob” or any other object such as a
database object, a file, or the like, or a portion (or subset) of
the atorementioned objects. Each blob at any point in time has
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replicas 1n one or more chunk stores around the world. Each
instance also has a metadata table, which contains entries
describing individual blobs: the contents of each blob, who 1s
allowed to access the blobs, where the replicas of the blobs are
located, and so on. Instances come 1n two types, known as
local and global. The difference 1s that local instances store
metadata only for blobs which have replicas in one of the
chunk stores of the instance, while global instances store
metadata for all blobs. There are generally only a few global
instances in the universe.

[0068] Each blob 1s broken up into chunks, which are sim-
ply subsets of the contents of the blob. In some embodiments,
cach chunk holds a contiguous range of bytes from a blob.
Blobs are broken into multiple chunks when a single blob 1s
so large as to be unwieldy 1f manipulated as a single object.
For example, failure 1n replicating a single large blob would
be more likely to occur and more costly if 1t did occur (1.¢.,
retransmitting the entire large blob again). If the same large
blob were broken into many 1individual chunks, then no spe-
cific chunk would be likely to have a failure, and 1f one did
fail, 1t would be inexpensive to retransmit the single chunk
that failed. Each chunk 1s identified by a chunk ID. In some
embodiments, the chunk ID 1s a mathematical function of the
contents of the chunk. Embodiments that compute the chunk
ID as a function of the contents have content-based de-dupli-
cation because the same content will always result 1n the same
chunk ID. Note that content-based de-duplication of indi-
vidual chunks results in de-duplication of blobs only 1if the
splitting of blobs into chunks 1s performed 1n the same way
for both blobs. In some embodiments, the splitting into
chunks 1s deterministic (1.e., there 1s no randomness), so two
identical blobs would have identical sets of chunks. One of
the fields of the blob metadata 1s the extents table, which maps
logical ranges of byte positions within each blob onto indi-
vidual chunks. The actual chunk contents are stored in the
chunk stores.

[0069] A single instance includes the following compo-
nents:
[0070] A metadata table, which 1s a database containing

the metadata for each appropriate blob. In some embodi-
ments, the metadata 1s saved 1n a Biglable.

[0071] A blobmaster, which 1s a program that acts as the
external interface to the metadata table. A blobmaster

provides functions such as “please return the metadata
for blob X.”

[0072] Zero or more chunk stores, which are storage
systems such as databases (e.g., Biglable), distributed
file systems (e.g., GFS), or tape drive arrays. Inline
chunk stores are a special case where the actual content
1s saved 1n the metadata table. Note that each chunk store
belongs to a single mstance. For example, even when
there are two 1nstances at the same data center, there are
no shared chunk stores.

[0073] A bitpusher, which i1s a program which acts as the
external 1nterface to the chunk stores. A bitpusher pro-

vides functions such as “please return the contents of
chunk X.”

[0074] The blobmaster and bitpusher “programs™ (as well
as most other program identified herein) are meant 1n the
sense of a distributed system. Each of these “programs” com-
prises one or more tasks, where a task 1s a single occurrence
of the binary program executing on a particular machine. For
example, the bitpusher at a single mstance may actually be
running on 100 different machines simultaneously, with each
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task running the same code. In some embodiments, each
bitpusher task 1s responsible for a different subset of data. In
addition, some embodiments assign tasks to virtual machines,
and the mapping of virtual machines onto physical machines
1s done by a distributed computing environment. In these
embodiments, portions of independent tasks may be running
on the same physical machine at the same time.

[0075] Insome embodiments, the partitioning of the blob-
master 1nto tasks 1s done on a per-blob-ID basis. That 1s, at any
given moment, there 1s a single blobmaster task responsible
for each blob ID at that instance. This mapping of blob IDs to
tasks, and the complicated handling of distributing load
evenly, restarting failed blobmasters, etc. 1s handled 1n some
embodiments by a BigTable coprocessor system. In general,
the task scheduling system for blobmasters must coordinate
closely with the database system that stores the metadata 1n
order to guarantee that each blob ID 1s assigned to a unique
blobmaster task. The task scheduling system must also coor-
dinate closely with the network communication system used
by clients to contact a blobmaster about a particular blob.

[0076] One special kind of chunk store 1s an inline chunk
store, where the chunks are stored inside the metadata table
along with the metadata for the blob. Inline chunk stores are
normally handled by the same code paths as non-inline chunk
stores, but data read operations from an inline chunk store are
optimized specially. These stores are more expensive than
other stores (e.g., because they don’t provide content-based
de-duplication—the chunks are stored with each blob that
requires them) but are sigmificantly faster to access.

[0077] FEach imnstance may also include one or more auxil-
1ary components:

[0078] A replication module comprises one or more
servers that maintain a persistent queue of tasks to copy
data from one instance to other instances. In some
embodiments, the replication module maintains two or
more mdependent queues to optimize processing. These
replication queues are sometimes referred to as “rep-
queues.”

[0079] A tape master 1s an auxiliary server that helps the
operation of tape-based chunk stores. In general, tape-
based chunk storage uses two phases to read or write to
tape, using an intermediate read/write butler that may be
managed by a tape master.

[0080] A quorum clock server 1s an auxiliary server that
simply reports the current time according to that
machine’s internal clock. In some embodiments, each
instance has multiple quorum clock servers to reduce the
risk of problems associated with failure or glitch 1n a
single clock.

[0081] A statistics server 1s an auxiliary server that
aggregates information from bitpushers and replication
queues around the world about the current availability of
capacity i chunk stores, network bandwidth, etc.

[0082] A “life of a blob” server 1s a debugging tool that
allows developers and support technicians to examine
the full history of a blob, including all operations that
create, read, write, or replicate the blob, or chunks that
comprise the blob. The full history also includes changes
to the metadata for a blob, such as access rights.

[0083] The location assignment daemon, known as the
“LAD,” 1s a system that makes decisions about background
replication. The LAD always runs at a single instance, which
must be a global 1nstance.
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[0084] FEmbodiments of the disclosed distributed storage
system use several external systems for support. For example,
a distributed storage system may use a configuration file
distribution system, a load balancing service, and an authen-
tication system. A configuration file distribution system
pushes out updates to configuration files 1n a sate way to all of
the servers at all of the instances. This enables configuration
to be managed at a single central location, while usage of the
configuration information 1s done locally at each instance. A
load balancing service routes traific to particular instances
when there are choices among multiple 1nstances. Embodi-
ments of the distributed storage system report to the load
balancing service how much traffic 1s currently tlowing to
cach istance, and in return the load balancing service can
answer questions of the form “I have a request originating
here, which needs to talk to one of the following instances.
Which one would be best to use?” The underlying network
protocol includes an authentication system so that network

calls 1nto the distributed storage system can be reliably asso-
ciated to the principals (1.e., users) making those calls.

[0085] Applications that wish to use embodiments of the
disclosed distributed storage system use a client library,
which 1s a code library that 1s embedded 1n application pro-
grams. The client library defines the outside API of the dis-
tributed storage system, providing operations such as “create
a new blob with contents X and “read the contents of this
blob.” In 1ts stmplest mode, the client library provides an API
similar to that of a file system. The client library also provides
more advanced API routines that are specific to embodiments
of the disclosed distributed storage system. For example, a
client can access specific generations or specific representa-
tions of a blob (explained in more detail below). For example,
the files used for a website (HTML pages, CSS files, JavaS-
cript files, image files, etc.) may have multiple versions over
time, and each of these versions could se saved as distinct
generations.

Reading a Blob

[0086] One common operation responds to a request to
“read the contents of blob X.” In a simple mode of operation,
a blob 1s 1dentified by a blob ID, which 1s similar to a file
name. For example, the string *““/blobstore/universename/di-
rectory/subdirectory/blobname”™ could be the blob ID of a
blob when the individual components of the string are
replaced by specific actual names. In some embodiments, the
process works as follows:

[0087] (1) The application calls the “read a blob” API
function in the client library.

[0088] (2) The client contacts a blobmaster. The client
asks the load balancing service to give 1t any blobmaster,

which 1s commonly the nearest blobmaster. The client
asks the blobmaster for the metadata for the blob.

[0089] (3) The blobmaster looks up the metadata. In the

simplest case, the desired blob i1s stored at the instance to
which this blobmaster belongs. The blobmaster exam-
ines the metadata and verifies that, for example, the
given user 1s authorized to view the contents of the blob.
If the user 1s not authorized, the blobmaster returns an
appropriate error message. If the user 1s authorized, the
blobmaster returns:

[0090] the metadata for the blob, which includes the
mapping from byte ranges in the blob to chunk IDs;
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[0091] the Iist of chunk stores, which i1ncludes
instance names, in which replicas can be found (not
just the current mstance); and

[0092] either a set of read tokens or the chunk con-
tents. In general, the blobmaster returns read token,
which are cryptographically signed tokens saying that

the blobmaster has authorized the given user to access
the contents of particular chunks (e.g., one read token
per chunk). However, 1n the special case that the blob
1s stored 1n an i1nline chunk store at the instance, the
blobmaster returns the actual contents of the blob
instead of read tokens.

[0093] (4) If the blob contains non-inline chunks, the
client now contacts a bitpusher. In some embodiments,
the client asks the load balancing service to give it any
bitpusher belonging to an instance at which the blob has
a replica. Because the previous load balancer call likely
returned the closest blobmaster to the client, and the
current scenario assumes there 1s a replica at that
instance, the load balancing service will generally
assign a bitpusher belonging to the same 1nstance as the
blobmaster that responded to the initial request.
Although some embodiments will always assign a bit-
pusher from the same 1nstance as the blobmaster 1n the
current scenario, the more tlexible assignments provided
by a load balancer can better optimize the use of
resources. The client sends read tokens to the bitpusher,
and the bitpusher returns the contents of the chunks.

[0094] The process of reading a blob 1s more complex 11 the
blob 1s not present at the instance that the client originally
contacted. In some embodiments, the original blobmaster
contacted may reside at a global instance, which holds all of
the metadata for all of the blobs. In other embodiments,
clients can only contact only local blobmasters, and local
blobmasters will contact global blobmasters when necessary.
In some embodiments, connections from a local blobmaster
to a global blobmaster use a load balancing service to select
an appropriate global blobmaster. In other embodiments, the
small number of global blobmasters are geographically dis-
persed, so each local blobmaster contacts a specific global
blobmaster when necessary to find a blob. In the subsequent
discussion, “initial blobmaster” and “initial instance” refer to
the blobmaster and the mstance originally contacted, which
may be global instances.

[0095] When a desired blob 1s not stored at the initial
instance, the blob metadata 1s retrieved from a global

instance. The global instance may be the mnitial instance;
otherwise, the local blobmaster at the initial 1nstance may
query a global blobmaster. As noted above, contacting a glo-
bal blobmaster generally uses a load balancing call. The glo-
bal blobmaster first determines 11 the desired blob exists and
whether the user has rights to access it. If the requested blob
does not exist, or the user does not have access privileges, the
global blobmaster returns an appropriate error message. Ifthe
blob does exist, and the user has access rights, then the global
blobmaster examines the set of locations at which the blob 1s
currently stored to develop a delivery strategy. If there 1s a
replica of the blob “close” to the client, then the strategy 1s
generally to return the blob metadata to the client (either
directly, or indirectly via the initial blobmaster), and every-
thing proceeds as before. In this case, the client will access the
blob at the identified close replica.

[0096] If the nearest replica of the blob 1s “far” from the
client, the global blobmaster may instead choose to trigger
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real-time replication to copy the blob from a distant replica to
an 1nstance closer to the client. Real-time replication begins
by picking a replica of the blob to act as the “source replica,”
and a chunk store belonging to the 1nitial instance (which 1s
typically a local mstance close to the client) to act as the
destination chunk store. The 1mitial instance triggers real-time
replication.

[0097] Part of the real-time replication process 1s to change
the metadata of the blob to indicate that there 1s now a new
replica at this 1nitial instance. The replication 1s flagged as
being “real-time” and therefore gets the highest priority for
the use of network links, etc. Of course this means that real-
time replications are expensive operations. Much of the logic
of background replication, described below, 1s designed to
mimmize the use of real-time replication. Another part of
real-time replication 1s the actual replication of the blob con-
tents. In some embodiments, the replication module at the
source 1stance creates a queue entry for each chunk 1n the
blob to replicate, and proceeds to replicate the chunks.
Because real-time replication has the highest prionty, the
replication of these chunks typically occurs right away.
[0098] Once a dynamic replication starts, the process con-
tinues to completion regardless of the original request. That
1s, even 1f the original user request for the blob is rescinded,
the replication does not stop. Some embodiments of the dis-
closed distributed storage system do not leave blobs 1n incon-
sistent or incomplete states.

[0099] The 1mnitial blobmaster returns the new metadata to
the client, and the read process continues as described above.
Assuming that the client does, indeed, read from this instance,
(which 1s generally true), the bitpusher at this instance waill
both write the data locally to the designated chunk store (to
create the new replica) and forward the chunks to the client.
Both of these operations occur as bytes arrive at the initial
instance from the source copy. Conceptually, the client 1s
reading from the remote mstance, but simultaneously a local
copy 1s being saved. The 1dea 1s that (a) because the distrib-
uted storage system has already paid the really expensive
cost—the cost of copying data over a long-haul link—the
system may as well create an additional copy locally; and (b)
if someone has accessed the blob now, it’s likely that someone
may access 1t again soon, so having a local copy will be

helptul.

[0100] Note that the new replica created by real-time rep-
lication 1s 1dentical 1n every way to any other replica of the
blob. The new copy 1s not a special, transient replica, and 1s
not subject to more restricted access. This new replica 1s
identified in the metadata for the blob, so once 1t 1s copied, any
user with appropriate access privileges may access this new
cCopy.

[0101] Insome embodiments, the full set of rules for decid-
ing whether or not to invoke real-time replication can be more
complicated than distance between the client and the source
replica. In some embodiments, real-time replication rules
may be specified as part of a blob’s replication policy. Some
exemplary factors that may be considered are:

[0102] distance from the client to the various replica
locations:
[0103] the current status of various network links, stor-

age systems, and so on, which enable forming an accu-
rate estimate the actual cost of accessing the various
replicas;

[0104] whether the user or owner of the blob has speci-
fied a policy that deliberately prohibits or discourages
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real-time replication. For example, the blob user or
owner may know a prion (erther at policy-writing time
or at the time of the individual request) that this request
1s not likely to be repeated again, so the cost of creating
a new replica would be wasted; and/or
[0105] whether the policy imposes a “hard constraint.”
For example, a blob should never be stored 1n the E.U.
for legal reasons.
[0106] Someembodiments ofthe presentinvention provide
more advanced forms of “reading a blob.” In some embodi-
ments, the general blob reading API 1s a class that provides the
following functionality: (a) start a new blob reader that
fetches the metadata for the blob; (b) read any particular
subrange of byte positions within a blob; or (¢) return sum-
mary statistics derived from metadata, such as the total size of
a blob 1n bytes.
[0107] Insome embodiments, the API provided by the cli-
ent library implements ordinary POSIX file semantics,
including “open,” “pread,” etc.
[0108] Some embodiments improve performance by hav-
ing each bitpusher task maintain an in-memory cache of
chunks that the bitpusher has recently processed. If there are
multiple tasks at a particular instance, then chunk IDs are
preferentially assigned to a particular task by a mathematical
function of the chunk ID. This means, for instance, that client
read requests for a particular chunk will attempt to contact the
bitpusher task that 1s more likely to have cached the same
chunk ID previously. This cache locality improves cache
usage. The client will contact another task only 11 the pre-
ferred task 1s overloaded or unavailable.

Writing a Blob

[0109] FEmbodiments of the disclosed distributed storage
system are primarily designed for immutable or weakly
mutable data, so these embodiments generally provide amore
restricted set of API functions for file content manipulation
than most file systems. Specifically, some embodiments
allow a user to create a blob, completely overwrite a blob’s
contents, or delete the blob, but not partially modify the
internal contents of a blob. This 1s not a fundamental limita-
tion, because any partial modification of a blob’s contents
could be accomplished by deleting the old version and creat-
ing a new blob with the desired modifications. Other embodi-
ments do not impose these limitations, but may internally
implement changes as a delete plus a create. In terms of
POSIX file semantics, the embodiments that impose these
limits support the modes “r”” and “w,” but not, for example,
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[0110] The simplest form of writing a blob creates a new
blob. The process of overwriting an existing blob 1s described
below. The description here illustrates the operations per-
formed to write a blob 1n embodiments of a distributed stor-
age system, but 1s not intended to be limiting. One of ordinary
skill 1n the art would recognize that many variations of dis-
closed operations are possible within the scope of the dis-
closed teachings.

[0111] A user application begins writing a blob by 1instan-
tiating a “blob writer” object. The blob writer object 1s
capable of creating (or really, overwriting) a single blob. The
application repeatedly calls a write function, passing data to
the blob writer. In some embodiments, the write function
permits the user application to specily that “the following
data should start at offset X within the blob.” This 1s syntac-
tically analogous to POSIX pwrite( ). Higher-level API func-
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tions within the blob writer object expose behaviors analo-
gous to POSIX write( ) etc. Note that 1t 1s an error to write to
a data range of a blob that has already been written.

il

[0112] In some embodiments, the client bulfers writes, so
that the client can decide on the most natural partitioning of
the written data into chunks. In some embodiments, the par-
titioning optimizes both content-based de-duplication and
keeps the number of chunks small. Typically, having a smaller
number of chunks makes the underlying storage more effi-
cient. In some embodiments, the partitioning divides each
blob 1nto chunks of a fixed size. Some embodiments use
Rabin-Karp chunking or other complex algorithms.

[0113] The client decides which type of chunk store should
be used to write the data. The selection 1s based on the data
being written as well as the blob policy the user selects for the
blob. Some policies are very explicit about the type of data
store. For example, “always write these blobs to inline-in-
memory chunk stores” would be an appropriate policy for a
blob that needs to be accessed very quickly. Other policies
provide a range of options based on blob characteristics. For
example, some embodiments include a “standard disk™ policy
that writes to different stores depending on the size of the
blob: blobs whose total size i1s less than one threshold are
saved to an 1nline store; blobs between the first threshold and
a second threshold are saved to a Biglable-based store; and
very large blobs with size greater than the second threshold
are saved as chunks in a distributed file system store. This
allocation based on s1ze works 1n some embodiments because
different chunk stores can handle different sizes better. For
small blobs, the overhead cost of storing to inline chunks 1s
low and the efficiency gain 1s high; a BigTable-based store 1s
generally efficient but may have trouble handling very large
data; and the distributed file system store (using GFS, for
example) 1s very good at handling large data, but has a high
overhead per datum and thus 1s mapproprate for small data.

[0114] When the cache 1s full, or when the application
explicitly calls a Flush( ) method on the client, the client
actually writes the data to a data store. The actual write to a
data store 1s accomplished by contacting a bitpusher (selected
by load balancing) and writing data. In general, the bitpusher
1s near the client. The bitpusher verifies that this user is
allowed to write, and then actually writes the chunk. In
embodiments that implement content-based de-duplication,
the chunk 1s not written 1f the chunk 1s already present. The
bitpusher returns to the client a write token for each chunk. In
some embodiments, a write token 1s a cryptographically
signed token indicating that a certain chunk was written to a
specific chunk store, as part of a certain blob, etc. Inline
chunks are written through this code path as well, but do not
perform content-based de-duplication.

[0115] Either at the end of blob writing, or when the appli-
cation explicitly calls a FlushMetadata( ) method on the cli-
ent, the client writes the metadata for this blob to a metadata
store. The client contacts a blobmaster (selected by load bal-
ancing or based on the instance(s) where chunk data has been
written) and tells the blobmaster that that 1t 1s writing to a
particular blob ID. The client passes various information to
the blobmaster: all of the write tokens that i1t has received;
structural and access control information about the blob such
as 1ts extents table; and the relevant blob policy. As soon as
this data 1s written to a local instance, read operations that
arrive at this local mstance will be possible. In addition, this
change to metadata will be propagated to other relevant
instances as soon as 1t 1s written. The changes to the metadata
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are replicated by the metadata replication system. Metadata
replication 1s discussed below, and 1n more detail 1n co-pend-
ing application U.S. patent application Ser. No. 12/703,167,

“Method and System for Efficiently Replicating Data in Non-
Relational Databases,” filed Feb. 9, 2010, which 1s incorpo-
rated herein by reference 1n 1ts entirety.

[0116] In some embodiments, the client calls a Finalize( )
function on the blob writer when 1t 1s done writing a blob. The
call to Finalize( ) will also occur automatically 1f the blob
writer object1s deleted betore the Finalize( ) method 1s called.
The process of finalizing performs several important opera-
tions. First, finalizing flushes the client’s data butlier, to guar-
antee that all of the blob contents are physically written to a
data store. Second, as part of finalizing, the client decides
where the 1mitial location of the blob should be. In the com-
mon case where all chunks were written to the same chunk
store, the location 1s that chunk store (and the instance where
that chunk store 1s located). If chunks were spread over mul-
tiple chunk stores, the client typically picks the chunk store
that recerved the majority of the bytes, or the greatest number

of bytes. Because chunks are not necessarily the same size,
having the majority of bytes 1s not necessarily the same as
having the greatest number of chunks. If a blob 1s large and the
bitpushers were highly loaded during the write process, the
chunks may be distributed across multiple targets. Similarly,
if the upload took a long time, and during that time a particular
instance became temporarily unavailable, the writes would
have gone to an alternative bitpusher at a different instance.
As these examples 1llustrate, in the process of writing a blob,
individual chunks may be written to different chunk stores
within one 1nstance, or different chunk stores at different
instances.

[0117] Aspart of the finalizing process, the client flushes 1ts
metadata. Along with this metadata update flush, the client
sends a command to “finalize the blob at instance Z.” When a
metadata update to “finalize” 1s recerved by a blobmaster,
several things happen, including determining whether all of
the chunks of the blob are already present at the chosen
destination location. (This 1s the common case!) I so, the
blobmaster immediately marks the blob as finalized. At this
point, future modifications to the contents of this blob are
forbidden. In some embodiments, all of the chunks must be
saved to the same chunk store at the destination 1nstance 1n
order to immediately mark the blob as finalized. In these
embodiments, all of the chunks must be consolidated into a
single chunk store prior to designating the blob as “finalized.”

[0118] If the blob cannot be immediately finalized, 1t 1s
instead marked as “finalizing.”” Future modifications are
immediately forbidden, and the blobmaster at the destination
instance triggers chunk replication operations to copy chunks
from wherever they may be to the chosen destination. In
particular, when the metadata update that triggers finalization
arrives, etther directly from the client or via the metadata
replication system, at the blobmaster for the instance respon-
sible for the chosen destination chunk store, the blobmaster at
that instance will trigger the copies. Other blobmasters wall
note that the blob 1s finalizing, but not trigger any copies. As
chunks are replicated successtully, the replication module
writes further metadata updates for the blob, indicating that
chunks are present. As each chunk is recerved, the blobmaster
determines 11 all of the chunks 1dentified in the metadata are
present. When all of the chunks are finally at the designated
instance, the blobmaster marks the blob as finalized.
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[0119] Regardless of whether a blob could be finalized
immediately, or required replication of one or more chunks,
the blobmaster makes a call to the background replication
system as soon as the blob 1s finalized. This 1s explained 1n
more detail below 1n the section on “background replication.”

Overwriting a Blob

[0120] Overwnting blobs is closely related to blob genera-
tions. Blobs stored in embodiments of the disclosed distrib-
uted storage system comprise one or more generations. A
generation 1s effectively a version of the blob contents. Fach
time the blob 1s overwritten, the old generation continues to
exist, but a new generation 1s created. Each generation of a
blob has a generation ID. In some embodiments, the genera-
tion ID 1s a 64-bit integer. In some embodiments, the default
generation ID 1s the timestamp at which the generation was
created, with the least-significant bits containing some tie-
breakers to resolve ambiguities 1f multiple servers try to write
data within the same microsecond. In some embodiments,
clients are permitted to override the default 1D with any
selected unique value (the client could not use the same
generation ID for two distinct generations of the same blob).
[0121] The description of writing a blob above actually
applies to a single generation: 1t 1s an individual generation of
a blob that may be uploading, finalizing, or finalized; and an
individual generation has replicas at various locations, etc.
Read operations most commonly ask for the most recent
generation, and thus the generation returned may depend on
which 1nstance 1s queried at the start of the read operation.
Due to latency, different instances may know about different
subsets of generations, and thus the “mostrecent” generations
at different instances may be different. (This scenario exem-
plifies the “eventual consistency” of weak mutability
addressed above.) Read operations may also ask to see a
specific generation, or even to see the metadata for all gen-
crations. In some embodiments, a write operation 1nvariably
creates a new generation. When a blob writer object 1s first
created, 1ts arguments include the blob ID to be written, and
optionally the generation number that should be assigned. As
noted above, some embodiments automatically use a times-
tamp as a default generation ID.

[0122] In some embodiments, there 1s a location assign-
ment daemon (L AD) that coordinates the planet-scale behav-
1or of blob generations over the long term. The LAD may
relocate individual generations of a blob to different
instances, or delete specific generations according to a blob’s
policy. For example, a typical policy specifies keeping N
generations of a blob (N can equal 1), so the LAD may delete
all generations beyond the first N. The LAD comprises mul-
tiple processors running in parallel so that the entire set of
blobs can be reviewed 1n 4 to 8 hours.

[0123] The term “generation” 1s appropriate because two
generations of a blob are related but different from one
another, and there are only a certain number of generations
alive at any time.

[0124] In addition to generations, embodiments of the
present invention include several other advanced metadata
concepts, mcluding references and representations. Refer-
ences act like hard-links 1n a file system. Each blob has one or
more references, and when the last reference to a blob 1is
deleted, the blob 1tself 1s deleted. In general, a blob 1s initially
created with a single reference. In some embodiments, each
reference has 1ts own access control lists, policies, and so
forth. In some embodiments, one of the references to a blob 1s
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designated as the default reference, which 1s generally the
original reference when the blob was created. A read request
1s actually a request to read a particular reference to a blob. If
no reference ID 1s specified, the default reference 1s assumed.
In some embodiments, reference IDs are strings, which may
be fixed length or vanable length. In other embodiments, a
reference ID 1s an integer, such as a 32 bit or 64 bit integer. In
some embodiments, the reference ID 1s part of the blob ID, so
a blob ID may have the form /blobstore/universe/directory/
subdirectory/blobname:referencepathimorepathirefer-
encename. The some embodiments, the default reference 1D
1s the empty string. The use of the empty string as the default
reference enables simplified blob IDs.

[0125] It 1s uselul to note that “references” and “genera-
tions” are distinct independent attributes of a blob. Each
reference refers to the whole blob, which includes all genera-
tions of the blob. As new generations are created, the same
references apply to the new generations. In addition, as new
references are created, the references apply to all of the gen-
erations. References and generations are effectively orthogo-
nal attributes.

[0126] In some embodiments, references are deleted by
1ssuing a metadata change that marks a particular reference
with a “tombstone™ time. A tombstone time 1s a timestamp
that specifies when the physical reference will actually be
deleted. For example, the tombstone time may be 30 days
alter being marked for deletion. References with tombstones
are normally considered to be “deleted” for the purpose of
ordinary reads, but references with tombstones can still be
accessed and undeleted by certain “superusers.” The exist-
ence of superusers provides a salety mechanism against acci-
dental deletion. Once the tombstone time 1s passed, the ret-
erence 1s actually removed, and 11 this 1s the last reference to
the blob, the entire blob 1s deleted. This 1s described in more
detail below with respect to “tombstone expiration.”

[0127] Another important concept for blobs 1s “representa-
tions.” Conceptually, representations identify distinct ways to
view or format the same piece of information. For example, a
digital photograph may have one representation that is a full-
s1ze high-resolution 1mage, and a second low-resolution
thumbnail 1mage. In some ways, representations are like dif-
ferent language translations of the same book. In some
embodiments, representations are managed by coprocessors,
which operate in parallel with the functionality described
above. Note that “coprocessors” here do not inherently refer
to CPU or hardware coprocessors, although 1n some embodi-
ments, the coprocessor functionality i1s fully or partially
implemented in CPU/hardware coprocessors. In the blob
hierarchy, each blob has one or more generations, and each
generation has one or more representations. In general, each
blob generation has only a single representation.

[0128] To summarize, the overall metadata structure for
blobs comprises three components:

[0129] one base metadata entry per generation. This gen-
eration entry contains data for each representation. The
representation entries describe the contents of the blob,
including the extents table that identifies the chunks, and
offsets to each chunk.

[0130] one reference metadata entry per reference. This
reference entry contains access control lists (e.g., who
has access), policies, etc.

[0131] any inline data saved for the blob, with one entry
per chunk. Each inline entry 1s associated with a unique
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generation and a unique representation. In some
embodiments, there 1s no re-use of inline chunks.

Replication

[0132] Embodiments of the disclosed distributed storage
system store both blobs and metadata for the blobs. The blobs
may be very large, and comprise uninterpreted binary data,
whereas the metadata for each blob 1s small, and comprises a
well-defined set of attributes. Moreover, blobs exist because
end users access the contents of the blobs (directly or indi-
rectly), whereas metadata for blobs exists to facilitate access
to blob contents. For these and other reasons, replication of
metadata uses a different mechanism than replication of
blobs. Both forms of replication are described below. In gen-
eral, “replication” will refer to blob replication unless the
context clearly imndicates otherwise. In both forms of replica-
tion, there 1s a source instance that provides the data to be
copied, and a destination mstance, which 1s the target for the
copy. For blob replication, one or more destination chunk
stores must be selected to store the chunks that are copied.
[0133] Blob replication can be triggered 1n multiple ways.
Blob replication 1s called implicitly both by real-time repli-
cation and background replication. In some embodiments,
replication can be called directly by a function 1n the client
library API.

[0134] In some embodiments, blob replication begins by a
call to the ReplicateBlob( ) function at a blobmaster. In some
embodiments, the function call to replicate occurs at the
blobmaster for the destination instance. That 1s, the call 1s
made to a blobmaster at the instance responsible for the
destination chunk stores. In alternative embodiments, the call
to begin replication occurs at the instance that will act as the
source for a copy of the blob. In some embodiments, the
arguments to the ReplicateBlob( ) function include the blob
ID, the source instance, and the priority for the copy. In
embodiments where ReplicateBlob( ) calls always occur at
the destination 1instance, the function call need not specity the
destination instance (it 1s implied). In some embodiments, the
destination instance i1s included as an argument (or an
optional argument) 1 order to provide greater flexibility
about which blobmaster to call. The priorty 1s assigned based
on the type of request. For example, real-time replication has
a high priority and 1s allowed to use a high network priority as
well, because 1t 1s generally 1n response to a real-time request
from an end user. Background replication tasks have varying
priority determined by the LAD, but virtually always use a
low network priority because they are not time-sensitive.
[0135] In some embodiments, the destination blobmaster
(or the blobmaster that recerved the call to replicate) contacts
the source blobmaster and asks it to 1mitiate the source opera-
tion. This initiation at the source 1s sometimes referred to as
“metadata pinning.” The term “pinning” 1s used to indicate
that during the replication process, the source copy of the blob
1s not allowed to be removed. While a blob 1s being copied
from one 1nstance to another, there 1s essentially a single copy
of the blob that “spans”™ two instances. Once the replication 1s
complete, there are two independent replicas, which are indi-
vidually subject to deletion and removal. At the completion of
the copy operation, the metadata for the blob 1s updated again
to indicate that the copy operation 1s complete.

[0136] In some embodiments, a blobmaster at the source
instance prepares for replicating chunks of a blob by making
an 1immediate change to the blob metadata at the source
instance. The change indicates that there 1s now a new replica
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ol the blob at the destination instance. The state of the new
replica indicates that replication 1s 1n progress from the
source 1stance. This 1s sometimes referred to as being “in-
flight.” The source instance writes this change to 1ts own
metadata table. This change to the metadata at the source 1s
important for several reasons, such as preventing removal of
the source copy betore the copy operation 1s complete. In
particular, the background processing of the LAD could
determine that the copy of the blob at the source 1s no longer
needed; the change to the metadata indicates that the replica
of the blob at the source 1nstance 1s in use by a pending copy,
and therefore this replica may not be removed.

[0137] The source instance transmits the entire metadata
for the blob to the destination instance. In some embodi-
ments, the metadata 1s copied as-1s. In alternative embodi-
ments, the metadata for the blob 1s converted to a sequence of
one or more metadata mutation operations, as used in typical
metadata replication. The mutations (also known as deltas)
are then sent to the destination instance. The use of deltas to
transmit the metadata facilitates general metadata replication
because there are no collisions between the different replica-
tion methodologies. The use of deltas also facilitates compac-
tion, which 1s described 1n more detail below.

[0138] Adter the destination instance receives the metadata
for the blob, the destination blobmaster initiates chunk repli-
cation by imnforming 1ts local replication manager. The desti-
nation replication manager sends a “replicate chunks™ com-
mand, which specifies the chunks to be copied, the source and
destination for the chunks, and sometimes various auxiliary
information such as priorities. In some embodiments, the
command to replicate chunks specifies the chunks stores
where the chunks are currently stored at the source instance as
well as the chunk stores to store the chunks at the destination
instance. In some embodiments, the destination chunk stores
are determined by the blob policy, and are thus notincluded 1n
the replicate command. In some embodiments, 1dentifying
the specific chunk stores 1s optional, with storage determined
based on policy if the chunk stores are not specified.

[0139] The replication manager either executes the repli-
cate commands immediately, or places the commands 1n a
replication queue. In some embodiments, the replication
queues are “stable.” That 1s, once the replication manager
acknowledges to the blobmaster that a command has been
queued, the replication manager promises to execute the com-
mand, even if the replication manager or the queues managed
by the replication manager fail before completing all of the
commands. For example, some embodiments save the repli-
cation queues 1n persistent storage.

[0140] The replication manager maintains a priority queue
of logical copy operations. Each queue entry specifies the
chunks to be copied, the source instance, the destination
instance, the network quality of service, the requesting user,
and the priority. The priority 1s passed to the replication
manager as part of the replication request. Sometimes the
copy operations are referred to as “links™ because multiple
links may be used to copy chunks from an original source to
the final destination. In some embodiments, each queue entry
corresponds to exactly one chunk; 1n other embodiments, a
single queue entry may specily a list of chunks. In some
embodiments, the replication manager detects the presence of
duplicate requests, which would include requests to send the
same chunk from the same source to the same destination. In
some embodiments, entries are considered duplicates only 11
they have the same network quality of service, requesting
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user, and priority as well. In embodiments that detect dupli-
cates, one of the duplicates 1s selected to process, which may
be the one with the higher quality of service, the one with the
higher priority, or the one that was inserted into the replication
queue earlier. In these embodiments, the duplicates that are
not selected may be deleted, or placed into a holding state
until the chunks are copied based on the selected queue entry.
The network quality of service (QOS) may determine the
speed of transier, and can be used to determine which pro-
cesses are abandoned when a network communication link
becomes overloaded. The quality of service can be specified
by the end user or the client library. Of course, a higher quality
ol service costs more, so the requester must determine 11 the
benelit of higher quality 1s worth the additional cost.

[0141] The replication manager executes a replicate com-
mand by asking the local bitpusher to pull the data from a
remote bitpusher, and to write the data locally as soon as it
arrives. When the replication manager has finished a copy
operation, a metadata change 1s written to the blobmaster,
which indicates that the new chunk 1s present.

[0142] Inan alternative embodiment, 1f both the source and
destination of the replication are inline chunk stores, then the
data 1s copied as part of the metadata replication.

[0143] Each blobmaster periodically examines its meta-
data, and determines the etfects of recent metadata changes.
In some embodiments, this periodic examination of metadata
accompanies compaction analysis, because both review
metadata changes. During this examination, 1 the blobmaster
determines that all chunks of a replication have arrived, the
blobmaster modifies the information for the replica to remove
the annotation that a copy 1s in progress. This would allow the
source replicato beremoved later, 11 the LAD or other process
decides that this replica 1s no longer needed.

Metadata Replication and Compaction

[0144] In some embodiments, blobmasters perform two
special related tasks with metadata: blobmasters replicate
changes in the metadata to other mstances and compact the
changes at theirr own instance. Replication propagates
changes to the metadata to every other instance that needs to
track the changes. In general, the changes must be propagated
to every global instance and each local instance that has a
copy of the blob whose metadata has changed. Because the
changes are stored and replicated as deltas, some embodi-
ments periodically compact the changes to provide faster
access to the data and reduce the storage space usage. The
compaction process merges mformation about changes into
the underlying base data. The operations of replication and
compaction are interrelated 1n some important ways.

[0145] To understand metadata replication and compac-
tion, 1t 1s useful to know how metadata 1s stored. For each
blob, the metadata table contains both the current “merged”
state ol the metadata, and a sequence of zero or more metadata
delta records. Each metadata update 1s implemented by writ-
ing a new delta record, which elfficiently captures just the
changes. The updates are done as “blind writes,” without
database locks and without a read-modify-write cycle.

[0146] One attribute of a metadata delta 1s a sequence 1den-
tifier. In some embodiments, sequence 1identifiers are globally
unique, which provides a well-defined unique ordering of the
metadata deltas. In some embodiments, sequence 1dentifiers
are fixed-length binary strings, but other embodiments use a
variable-length string, a 64-bit integer, or other appropnate
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data type. A sequence identifier 1s also referred to as a
“sequencer,” because 1t specifies where each delta falls in the
global ordering of deltas.

[0147] In some embodiments, a sequence identifier com-
prises a timestamp and a tie breaker. The timestamp indicates
when the delta was created. In some embodiments, the times-
tamp 1s the number of microseconds since the beginning of
the current epoch or other well-defined point in time. In some
embodiments, the timestamp 1s assigned by the blobmaster
that received the metadata update. Generally, the timestamp 1s
assigned at the moment the update 1s received. In some
embodiments, one or more special clocks are used to assign
these timestamps. Some embodiments use a “stable clock
system’ as described below.

[0148] A tie breaker uniquely 1dentifies the blobmaster that
1ssued the timestamp. As noted above, the blobmaster func-
tionality at an instance may be performed by many different
blobmaster tasks, each of which may assign tie breaker values
to sequence identifiers that it generates. Therefore, some
embodiments compute a tie breaker value as a mathematical
function of both the physical machine on which the blobmas-
ter task 1s runming, and the UNIX process ID assigned to the
task. In some embodiments, the tie breaker value 1s computed
as a function of additional values, such as the instance iden-
tifier of the instance where the blobmaster task 1s runming. By
combining both the timestamp and a tie breaker to form a
sequence 1dentifier, when a single blobmaster task 1ssues two
successive sequence i1dentifiers, the second one will be
strictly greater than the first one. Also, because of the tie
breaker values included 1n sequence 1dentifiers, the sequence
identifiers are globally unique. In particular, 11 a single blob-
master task 1s restarted, or if two blobmasters act on the same
blob at different 1nstances, they are guaranteed to generate
different sequence 1dentifiers.

[0149] Sequence identifiers constructed with timestamps
and tie breakers have several useful characteristics. Because
of the timestamp portion of sequence 1dentifiers, the sequence
identifiers are at least approximately in the natural order
because the system clocks on the various computers maintain
roughly the same time. That 1s, sequence 1dentifiers create a
stable, well-defined sort order for deltas. Because of this, the
order of operations 1s defined to be the order created by the
sequence 1dentifiers, regardless of the “actual” order in the
real world. To guarantee the approximate natural order of
metadata deltas, some embodiments include programs, pro-
cesses, or policies to prevent excessive divergence of the time
clocks throughout the distributed storage system.

[0150] In some embodiments, each delta specifies the
instance where the delta was created. That 1s, the instance of
the blobmaster that initially received the delta. This 1s the
instance that will be responsible for replicating the delta to all
other relevant instances. The combination of sequence 1den-
tifier and instance of origin for a delta 1s sometimes referred to
as the provenance of the delta.

[0151] A metadata merger program 1s used to read meta-
data so that the most current metadata 1s returned to each
requestor. The metadata merger program starts with
“merged” base metadata. The metadata merger program then
applies each of the associated zero or more deltas, 1n order, to
the base metadata, to produce final merged metadata. In this
way, metadata reads always get the most current information
that 1s available at the instance, even 1f new deltas have been
inserted. Whenever metadata 1s read by a blobmaster, the
blobmaster reads both the merged base metadata and all of the
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associated deltas, passes them through this merger process,
and returns the final result to the caller.

[0152] This use of deltas guarantees that future reads at the
same blobmaster (even 1 a distinct blobmaster task) waill
correctly reflect the indicated change as soon as a delta 1s
written to the system. The use of deltas also has the conse-
quence that deltas accumulate over time and slow down reads.
Therefore, 1t 1s desirable to incorporate deltas into the merged
base metadata as soon as possible. The process of mcorpo-
rating deltas into the corresponding base value and deleting
the merged deltas 1s called compaction.

[0153] Insome embodiments, each blobmaster continually
runs a maintenance cycle in the background, which examines
cach blob 1n its metadata table 1n turn. This maintenance cycle
handles both compaction and replication. In alternative
embodiments, blobmasters run a maintenance cycle on a peri-
odic basis, such as every hour, or every 10 minutes. In some
embodiments, the maintenance cycle 1s managed by a process
other than the blobmaster. While some embodiments address
compaction and replication in the same maintenance cycle,
these two processes can be implemented separately.

[0154] In some embodiments, deltas are grouped together
into two dimensional “shapes.” In general, a shape comprises
one or more rectangles. One of the dimensions comprises
sequence 1dentifiers, and the other dimension comprises blob
IDs. Each delta applies to a unique blob (1.¢., there 1s a unique
blob ID), and has a sequence identifier, so each delta corre-
sponds to a unique point 1n this two-dimensional delta space.
Conversely, each point 1n this two-dimensional delta space
corresponds to at most one delta. The deltas 1n this two-
dimensional space are very sparse. Some embodiments pro-
vide data structures and routines to implement geometric
shapes on this space, and perform ordinary computational
geometry tasks on the shapes, such as intersections, unions,
and set theoretic differences.

[0155] In order to track metadata replication, some
embodiments maintain an egress map and an 1ngress map. An
egress map tracks deltas that have been transmuitted to, and
acknowledged by, other instances. In some embodiments, the
egress map uses shapes as described above to identify the
deltas that have been transmitted to and acknowledged by
other instances. An ingress map tracks deltas that were trans-
mitted from another instance to the current instance, and
acknowledged by the current instance. In some embodiments,
the ingress map uses shapes as described above to 1dentity the
received deltas. The ingress map at A from B should be the
same as the egress map at B for A because both represent the
set of deltas transmitted from B to A and acknowledged by A.

[0156] In some embodiments, the blobmaster backs up the
state of the egress map 1n the metadata database. Although
generally reliable, the consequence of losing data from the
egress map 1s simply that the blobmaster will retransmit some
data unnecessarily. (Each delta will be mserted only once,
even 1f the same delta 1s retransmitted.) When a blobmaster
starts up, 1t reads its egress map from the metadata database,
and sets up 1ts gress map by contacting all of 1ts peer
blobmasters at other instances to retrieve data from their
egress maps.

[0157] When the maintenance cycle processes a row 1n the
metadata table, 1t first determines how many of the deltas can
be merged into the base data without risk of creating incon-
sistencies between different instances. The compaction hori-
zon specifies the upper limit of sequence 1dentifiers that may
be compacted. The blobmaster can safely compact any deltas
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with sequence 1dentifiers less than this value (i.e., merge the
deltas into the merged base metadata, and discard the deltas).
In some embodiments, the blobmaster can sately compact
any deltas with sequence 1dentifiers less than or equal to the
compaction horizon.

[0158] Generally, 1t 1s safe to compact a specific deltaiftwo
conditions are satisfied:

[0159] The blobmaster knows with certainty that 1t will
never recerve another delta for this blob with a sequence
identifier less than the sequence 1dentifier of the specific
delta. In general, the order of the deltas 1s important, so
they need to be applied 1n sequence 1dentifier order; and

[0160] If the specific delta was created at the current
instance, the blobmaster must know that this delta has
already been replicated to all other appropnate
instances, and the replication has been successiully
acknowledged. After merging, the delta will be gone, so
it must be transmitted to the other instances first. Note
that this applies only to deltas created at the current
instance because the current 1nstance 1s responsible to
replicate deltas created at the current instance.

[0161] In some embodiments, the compaction horizon is
computed using the egress and ingress maps. An 1illustrative
calculation of a compaction horizon for a given blob performs
the following calculation for each other instance and for each
ingress and egress map. (For example, 11 there are fifty other
instances, then the following calculation 1s performed 100
times.) Compute the least sequence 1dentifier not present in
the metadata row associated with the blob ID. That 1s, 1f' S 1s
the shape for the deltas n the map, look at just the sequence
identifiers Correspondmg to the given blob ID. Find the least
sequence 1dentifier not 1n this set.

[0162] The same operation 1s performed for each other
instance and each ingress and egress map. The compaction
horizon computed by this method 1s the minimum of all the
individual calculations. This 1s a valid compaction horizon
because (a) any delta received via metadata copying in the
future will have a sequence 1dentifier greater than or equal to
this value (this follows from the use of ingress maps for each
instance); and (b) all deltas with sequence identifiers less than
this value have already been replicated to every other instance
(this follows from the use of egress maps). It 1s noted that any
future metadata changes associated with the given blob at the
current 1nstance will have sequence identifiers greater than
the computed compaction horizon because sequence 1denti-
fiers are monotonically increasing.

[0163] In some embodiments, the calculations above are
limited to 1nstances that have metadata for the identified blob
(1.e., mnstances that have replicas of the blob as well as all
global instances). In other embodiments, the calculations
above for ingress maps are limited to instances that have
replicas of the identified blob.

[0164] The compaction process 1s described 1n more detail
below with respect to FIGS. 8, 12A, 12B, 15A, and 15B.
Although the above description calculated the compaction
horizon for a single metadata row, some embodiments apply
the same process to groups of metadata rows, which may
comprise contiguous ranges ol blob IDs.

[0165] Insome embodiments, the maintenance cycle regu-
larly computes a transmission plan, which 1s a map from
shapes 1n delta space to sets of instances that need to receive
the designated deltas. For each entry 1n a plan, the mainte-
nance cycle maintains a queue. Deltas may be written into this
queue, and whenever enough bytes have been written to a
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particular queue, the queuing system immediately 1nitiates a
transmission of metadata to the approprate destinations, and
updates 1ts egress maps at the appropriate time (the 1ngress
maps are updated by the destinations). In alternative embodi-
ments, the maintenance cycle runs at periodic times, and
initiates a transmission of metadata as part of each cycle.
[0166] In summary, some embodiments of the disclosed
distributed storage system have a continuously running main-
tenance cycle that executes the following operations for each
blob’s metadata:

[0167] Compute the compaction horizon.

[0168] Create a metadata record in memory for this row,
which includes the base metadata values for each indi-
vidual data item.

[0169] For each delta, determine 11 1t 1s 1n the transmis-
sion plan for any destinations. If so, add the delta to the
appropriate queue(s).

[0170] If the delta’s sequence 1dentifier 1s less than the
compaction horizon, apply the delta to the metadata
record 1n memory, and mark that delta cell for deletion.

[0171] Once all of deltas with sequence 1dentifiers less
than or equal to the compaction horizon have been pro-
cessed, some embodiments perform special computa-
tions that happen at delta compaction time. Some
embodiments use this opportunity to perform special
computations because each delta 1s compacted exactly
once 1n 1ts lifetime at each instance. Therelore any
actions that need to occur once per delta are typically
scheduled to occur at the time the delta 1s compacted.
Some embodiments perform various combinations of
the following actions at compaction: (1) 1f any reference
tombstones have expired, then the indicated reference 1s
removed. I1 this was the last reference, then the blob as
a whole (all generations) 1s marked for deletion; (2) if
any deltas have caused a user’s usage of the storage
system to change (e.g., the user has written new data to
the system that causes a change to “accounting”), then
the system records all of the relevant changes to usage;
(3) 1 the blob metadata 1s no longer needed at this
instance, because the blob has no replicas at this instance
and the 1nstance 1s not global, then the entire blob (all
generations) 1s marked for deletion at this instance. If 1t
1s later discovered that there are uncompactable deltas,
the marking for deletion 1s undone; (4) if a delta 1ndi-
cates that a particular generation ought to be removed
from this instance, then that generation 1s marked for
deletion.

[0172] Once all deltas have been processed, changes in
usage and updates to the metadata database are recorded.

[0173] Although compaction 1s important for reading eifi-
ciency, and provides an opportunity to perform other once-
per-delta activities, compaction does not affect the conse-
quences of a read operation. The deltas are either applied to
the base metadata during a read operation, or were already
applied to the base metadata during compaction. Because of
this, some embodiments implement compaction as a back-
ground operation.

[0174] Metadata transmission plans can be modified to
improve the overall efliciency of replicating the metadata to
other instances. In some embodiments, every so many rows of
work, the metadata replication system draws a rectangle in
delta space 1dentitying a range of blob IDs and a range of
sequence 1dentifiers. The range of sequence identifiers 1s
bounded by the infinite past on one side and the current
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sequence 1dentifier value on the other. The rectangle 1s
selected so that once the maintenance cycle has reached the
bottom of the blob ID range, every delta in the rectangle wall
have been replicated to every other relevant instance. The
system then compares this rectangle to each egress map entry,
1n turn, to see what metadata deltas still need to be transmitted
to each instance. The system then merges and/or modifies the
transmission sets for individual instances for optimal deliv-
ery. For example, if the set of deltas to send to instance X 1s
nearly the same as the deltas to send to mstance Y, an optimal
transmission plan may send the common set of deltas to both
X and Y, and the small difference to just X or Y. For each set
of deltas being sent, the system designs a transmission plan
that uses “tree distribution™ to minimize the amount of net-
work tratfic needed. This works particularly well when the set
of recipients for the same set of deltas 1s as large as possible.

Transmission plans, and how they may be optimized, are
described in more detail below with respect to FIGS. 15A and

15B.
Background Replication
[0175] Much of the efficiency provided by embodiments of

the disclosed distributed storage system comes from choos-
ing replica locations well. Having well-placed replicas mini-
mizes the need for real-time replication and other network
use. Furthermore, users will use less storage 11 (1) they can set
policies for less-needed blobs and be confident that these
policies will be obeyed, (11) they have suilicient data integrity
guarantees (e.g., making sure that there are enough backups),
and (111) they have confidence that the system will dynami-
cally add replicas for blobs that need it. Therefore, intelligent
decisions about where blobs ought to be stored reduce both
network usage and disk space usage.

[0176] Allnon-real-time decisions about additions or dele-
tions of blob replicas are made by a module known as the
location assignment daemon, which 1s sometimes referred to
as the LAD. The LAD i1s conceptually a single program that
runs continually or periodically to scan the metadata for all
blobs. For each blob the LAD makes decisions about where,
iI anywhere, replicas ought to be added or removed. In an
exemplary implementation, the LAD runs as a single (multi-
tasked) program at a global instance or an instance that 1s
geographically close to a global index. In other embodiments,
multiple smaller LADs run at various locations, and these
smaller LADs send their recommendations to a central clear-
inghouse for collective evaluation and execution. In some
embodiments, the central clearinghouse just executes the
individual recommendations; 1n other embodiments, the cen-
tral clearinghouse evaluates each of the individual recom-
mendations 1n the context of the entire distributed storage
system, and makes decisions on the individual recommenda-
tions based on overall resource constraints.

[0177] The reason for the central clearinghouse 1s that the
LAD 1s the only subsystem that i1s ever allowed to remove a
replica of a blob. Without centralized control, there would be
very tricky synchronization 1ssues. For example, 1f there were
two LADs and two replicas of a certain blob, each LAD could
independently decide that 1t’s safe to remove one, and they
could remove different ones, eliminating all replicas of the
blob.

[0178] LAD decisions are based on policies for each 1ndi-
vidual blob. In some embodiments, blob policies are specified
by a set of predefined attributes. Other embodiments provide
a blob policy expression language, which allows greater flex-




US 2011/0196900 A1l

ibility in defining blob policies. Other embodiments provide
a hybrid approach, including both a predefined set of
attributes and an expression language for more complex
policy needs.

[0179] Embodiments of the LAD have multiple possible
implementations, but the implementations have a basic struc-
ture in common. The LAD processors examine each blob in
some specifled sequence. Some embodiments process the
blobs 1n a random or pseudo-random order; some embodi-
ments process the blobs 1n alphabetical order by the names
assigned to the blobs; some embodiments perform a quick
first-pass prioritization, then process the blobs 1n that priority
order. For each blob, LAD implementations look at the cur-
rent set of replicas of the blob and the replication policy for

the blob.

[0180] For each chunk store, a blob may be 1n one of four
states: absent, present, present and acting as the source of a
copy, or the destination of an active copy operation.

[0181] A blob may have multiple references, and each ret-
erence may have a policy. The policies must be mergeable 1n
a meaningtul way—basically, the “policy for a blob” 1s the
union of the policies for each of the references. For example,
if one policy says “two replicas on-disk, one of which must be
in the western United States” and another says “three replicas
on-disk, one of which must be 1n Europe,” the merged policy
would be “three replicas on-disk, one of which must be 1n the
western United States, and another of which must be in
Europe.”

[0182] The LAD compares the current state of the blob to
the policy, and decides whether 1t should add or remove any
replicas. Generally, the basis for such a decision 1s to compute
the cost and the benefit of any such operation. Benefits
include improved compliance with a policy, positioning of a
blob closer to where 1t 1s expected to be accessed soon, or
reduced storage cost 1 eliminating a no-longer-needed rep-
lica. Costs 1nclude storage costs and network transit costs.
The expected profit 1s the difference of these two, and 11 the
profit 1s positive, 1t establishes the priorty for performing this
particular operation.

[0183] The suggested operations are then inserted into a
priority queue and executed, either as-they-come or in
batches. When there 1s a request to add a new replica, the
profit computed by the LAD 1s used as the priority for the
ReplicateBlob( ) operation.

[0184] Although the basic structure of the LAD 1s common
across multiple implementations, there are some noteworthy
differences. As noted above, different LAD implementations
may process the blobs in different orders. Another difference
1s the set of algorithms used to assign costs and benefits for
cach proposed operation. Some LAD embodiments use a
simple rule-based algorithm, such as “if the number of repli-
cas 1s less than that specified by the policy, then adding new
replicas which would match the policy are worth a fixed
benefitof X.” Other LAD embodiments implement a continu-
ous auction of storage resources, where costs are determined
by an “open market” of storage and network capacity, and
individual blobs act as “bidders.” Another “cost” that 1s added
in some embodiments 1s a transaction overhead, which pre-
vents moving replicas from one mstance to another because
of a small benefit. Without the consideration of overhead
costs, there could be “oscillation™ of a replica back and forth
between two instances. This auction methodology generally
provides a better allocation of storage and network resources
because it considers the overall advantages for groups of
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blobs rather than doing the analysis for each blob 1n 1solation.
Finally, different LAD implementations execute operations
in different ways. For example, some implementations
execute operations singly, whereas other embodiments
execute operations in batches.

[0185] Some embodiments provide a LAD simulation sys-
tem. A LAD simulation system works by runming the real
LAD against an artificial world. The mputs are a statistical
summary of the current state of real blobs (rather than the
complete table of blob states, which 1s very large), and a
configuration indicating a sequence of events that may hap-
pen at various times in the future. For example, “at time X, we
will add 50 petabytes of capacity to the BigTable chunk store
at the mstance 1 Chicago” or “at time X, the entire instance
in southern India suddenly fails.” The simulator runs the LAD
against this simulated universe, and applies the LAD opera-
tions back to the universe, producing various graphs and
records of what would happen over time.

[0186] A LAD simulation system provides many advan-
tages. One advantage 1s that it allows testing of new algo-
rithms for the LAD: developers can see the consequences of
new algorithms without having to actually find out in the real
world (which would be both dangerous and expensive).
Another advantage 1s that 1t allows for capacity planning: by
teeding projections for changes i system usage and under-
lying capacity availability into the system, developers can see
what the distributed storage system will need over time, and
thus plan capital equipment acquisitions. Yet another advan-
tage provided by LAD simulation 1s that 1t facilitates disaster
readiness: by simulating disaster events ol various sorts,
developers can verily that the system will respond appropri-
ately 1n those cases. If not, developers can modify the LAD
algorithms so that the distributed storage system does
respond well when real disasters occur. An additional advan-
tage of a LAD simulation system 1s to provide a near term
view of the future. By continually running the LAD simulator
against the “plan of record,” using statistical data periodically
derived from the actual state of the world, developers can
predict how the distributed storage system will respond over
a period of weeks or months, and thus be aware of future
events before they happen.

[0187] Some embodiments implement a micro-LAD that
pays an important role for newly created blobs. When a blob
has finished writing (i.e., when 1t 1s marked as finalized), the
LAD algorithm 1s immediately run at the blobmaster where
the blob was created. This execution of the LAD algorithm 1s
allowed to create new replicas, but 1sn’t allowed to remove
any replicas. In some embodiments, the micro-LAD executes
only for the newly created blob; in other embodiments, the
micro-LAD executes for all blobs stored at the instance where
the new blob was created. In general, one or more additional
replicas of the blob will be needed to reach the policy goal, so
creating additional replicas immediately 1s important. Until
the new replicas are made, the blob 1s vulnerable to becoming,
unavailable 1t the instance becomes unavailable, or even lost
if the 1instance 1s suddenly destroyed. This immediate micro-
LAD run bypasses the usual wait time for a whole cycle of the
LAD to complete.

Tape Backup

[0188] Embodiments of the disclosed distributed storage

system 1mplement a novel approach to tape backup. Unlike
most databases, which use a separate scan and backup sys-
tem, embodiments of the present invention treat tape as sim-
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ply another storage type. In some embodiments, tapes create
multiple storage types, such as tapes that are kept in the tape
library versus tapes that are carted oif to a vault somewhere.
In some embodiments, the difference between tape stores and
other data stores 1s that, because tape 1s so slow, one 1s not
allowed to directly read from or write to a tape store. In these
embodiments, one may only replicate to and from a tape store,
which 1s typically implemented as a background operation.
Embodiments of the present invention include a tape manager
module that manages a large tape butler. The tape butfer acts
as a staging area for data going to or from tape. In some
embodiments, implementations of the tape manager allow a
client to read or write to tape. Because tape operations are
very slow, client read and write operations will typically be
directed to other data stores, even when tape 1s directly avail-
able. Therefore, either by design or by the practical consid-
erations, reading and writing to tape generally does not hap-
pen 1n a real-time way.

[0189] Conceptually, backups are therefore driven by blob
replication policies. For example, a user or user application
may specily the policy “2 copies on-disk, and one copy on-
tape, 1n three different cities.” This 1s a typical policy a user
might choose. Multiple copies on disk give both increased
data integrity, in case a single copy fails, as well as increased
availability, 1n case one replica 1s at an 1nstance that 1s tem-
porarily unavailable. By having the replicas at distinct loca-
tions, 1t can also provide faster access to a greater number of
users near each replica. Tape copies improve data integrity but
not availability. On the other hand, tape copies are consider-
ably cheaper. The multiple-city requirement in this example
policy provides protection against events such as blackouts,
which can disrupt multiple instances at the same time. LAD
replication will write a copy to tape 1n some appropriate
location.

[0190] Blob policies effectively address what will happen
at a distributed storage system when a catastrophic event
occurs (such as failure of an instance). An operator indicates
to the system that all chunk stores at this instance are now
invalid. In some embodiments, an operator does this by updat-
ing a central configuration file. When the LAD next examines
a blob with replicas at the instance marked as invalid, the
LAD will discover that the blob 1s now under-policy: one of
its replicas has gone away. The LAD therefore triggers a new
replication to restore equilibrium. The cost of reading from
tape 1s generally higher than the cost of reading from disk,
because it often involves physically picking up tapes and
moving them to a tape drive device. Therefore, the LAD will
generally choose to create a new replica from a surviving
on-disk replica. However, there may be no such replica. For
example, the policy may specily one replica on-disk and one
replica on-tape, or the blob may not have been fully replicated
yet. In these cases, the LAD will initiate replication from tape.

[0191] Another kind of catastrophic event involves over-
writing or deleting a blob due to operator error or malice. In
this case, an operator can recover the old version by manually
requesting that an earlier generation of the same blob be
replicated to various locations, and that the new (bad) gen-
crations be deleted. In some embodiments, this 1s 1mple-
mented by calls to ReplicateBlob( ).

[0192] Inorder to handle these sorts of catastrophic events,
some embodiments implement tape as a type of chunk store.

Atavery high level, this works by maintaining a staging area.
In some embodiments, the staging area 1s a set of files on an
ordinary distributed file system. In other embodiments, the
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staging area 1s a large memory buffer, which may comprise
either volatile or non-volatile storage. Blobs going to or from
tape are written to designated locations in this staging area. A
tape master module monitors the staging area, and assigns
blobs to batches, which are then committed to the underlying
tape system using appropriate commands. Tape storage 1s
described 1n more detail 1n co-pending application U.S. Pro-
visional Patent Application Ser. No. 61/302,909, “Method
and System for Providing Efficient Access to a Tape Storage
System,” filed Feb. 9, 2010, which 1s incorporated herein by
reference 1n 1ts entirety.

Accounting

[0193] It 1s important to keep track of how much storage
and network traific each user uses for a number of reasons:
billing, capacity planning, usage quotas, etc. A usage quota
specifies a maximum allowed usage of a resource for a user.
This 1s important so that an ordinary user does not use up a
disproportionately large percentage of the disk space or net-
work bandwidth, which can adversely aflect other users,
including other users with higher priority tasks. In some
embodiments, quotas are stored in a set of quota servers
distinct from the blob and metadata storage at an instance.
(Quota servers essentially store a set of [tag, usage] pairs,
which allow easy look up, and produce logs for auditing
purposes. Some embodiments use the following keys for
accounting: username, chunk store name, and storage mode.
In some embodiments, storage usage 1s specified as a num-
bers of bytes.

[0194] Some embodiments include four or more storage
modes, including

[0195] TOTAL: All bytes owned by a given user 1n a
given chunk store.

[0196] HYLIC: Bytes in chunks that have been written

via the bitpusher, but not yet attached to any blob via a
metadata update.

[0197] LIVE: Bytes in chunks that belong to a blob for
which the user owns at least one reference (and the
reference has not yet been marked as deleted).

[0198] ZOMBIE: Bytes in chunks that belong to a blob
for which all of the user’s references have been deleted,

although the blob 1tself has not yet vanished.

[0199] As these exemplary storage modes illustrate, the
storage modes are not necessarilly mutually exclusive. For
example, LIVE bytes and ZOMBIE bytes are mutually exclu-
stve, but both of these are included 1n the TOTAL bytes.

[0200] These byte counters are incremented by bitpushers
when chunks are created or destroyed, and by the blobmaster
at delta compaction time. However, managing these transi-
tions (such as bytes going from HYLIC to LIVE) 1s surpris-
ingly complicated. To achieve accurate accounting of bytes,
some embodiments have the blobmaster maintain a state
machine, which tracks blob states at each chunk store for each
user who owns a reference to that blob and the chunk store.
That 1s, there 1s a state assigned to each triple (blob, user,
chunk store). The states essentially track the stages of a blob,
from early creation to eventual deletion. Within this lifespan,
some embodiments 1dentily four states:

[0201] HYLIC: A blob 1s “hylic” for a user 1f the chunks
have been written to a bitpusher under ownership of that
particular user, but the chunks have not yet been attached
to any blob. In this inchoate state, the blob 1s not acces-
sible to anyone.
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[0202] LIVE: A blob 1s “live” for a user 1f that user has at
least one reference that does not have a tombstone on 1t.

[0203] ZOMBIE: A blob 1s a “zombie” for a user 11 that
user has at least one reference, but all of the user’s
references have tombstones.

[0204] DEAD: A blob 1s “dead” for that user it the user
owns no references to that blob, and/or that blob does not
exist 1n the given chunk store. This 1s the default state.

[0205] Insummary, foreach (blob, user, chunk store) triple,
some embodiments track both the state of the blob and the
number of bytes that the blob uses i1n the chunk store. Note
that two replicas of the same blob may use different numbers
of bytes. For example, some embodiments count byte usage
according to the block sizes used in the chunk stores. For
example, a file system chunk store may implement 4K blocks,
so each blob would use an iteger number of these blocks.
[0206] Every eventin the life of a blob can be considered as
moving the blob between the four states 1dentified above, and
transitions between these four states correspond to changes in
the usage for the four storage modes. The first two storage
usage rules depend on the original state of the blob, and the
last two storage usage rules depend on the new state of the
blob. For each transition, two of the following transition rules
will apply:

[0207] If a number of bytes are moving (for a particular
user and chunk store) from the DEAD state to any other
state, the TOTAL usage 1s incremented by that number.

[0208] If a number of bytes are moving from any state
other than DEAD, the usage for that storage mode 1s
decremented by that number of bytes. For example, 1n a
transition from a HYLIC state to a LIVE state, the
HYLIC usage 1s decremented.

[0209] If a number of bytes are moving (for a particular
user and chunk store) to the DEAD state, the TOTAL
usage 1s decremented by that number.

[0210] Ifanumber of bytes are moving to any state other
than DEAD, the usage for that storage mode 1s incre-
mented by that number of bytes. For example, 1n a tran-
sition from a HYLIC state to a LIVE state, the LIVE
usage 1s mcremented.

[0211] The following sample sequence of events 1llustrates
the accounting process. User Jim writes a 100-byte chunk to
the bitpusher. The bitpusher increments the usage for (Jim,
chunkstore, HYLIC) and (Jim, chunkstore, TOTAL) by 100.
Jim then calls FlushMetadata( ) on his blob writer object,
causing those chunks to be added to a blob. The blobmaster
records that the size of this blob 1n the particular chunk store
has increased by 100, and notes that 100 bytes have moved
from (Jim, chunkstore, HYLIC) to (Jim, chunkstore, LIVE).
Under unusual circumstances, the 100 bytes would instead be
moved to (Jim, chunkstore, ZOMBIE) if Jim’s reference(s) to
this blob all have tombstones. If any other users have refer-
ences to this blob, then for each of them, 100 bytes move from
(username, chunkstore, DEAD) to (username, chunkstore,
LIVE). Just like Jim, these could be 1n the ZOMBIE storage

mode depending on the state of each user’s references.

[0212] Continuing the sample sequence of events, assume
someone adds a reference to a blob. This results in increment-
ing the count of the user’s total references to the blob and the
user’s count of live references to the blob. The user’s usage
transitions from (username, chunkstore, state) to (username,
chunkstore, new state). The state may change between LIVE
and ZOMBIE. Similar things happen when a reference 1s

removed, or when a tombstone expires. ITa replica 1s removed
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from an instance, then for all users who have references to that
blob, the state changes from whatever 1t was to DEAD.
[0213] The above explanation demonstrates how embodi-
ments of the present invention naturally express every event
in the life of a blob 1n terms of the four primitive modes. The
values for those four modes are saved 1n a log and subse-
quently used to compute usage over time in each chunk store
for each user. This 1s used to produce billing information. In
some embodiments, billing information depends only on
TOTAL bytes. Monitoring of hylic, live and zombie bytes 1s
important so that users can see where their bill 1s coming
from. An anomalously high fraction of hylic or zombie bytes
could indicate a problem. In some embodiments, different
billing rates apple to different storage modes. For example,
the billing rate for LIVE storage may be higher than storage of
HYLIC or ZOMBIE storage.

[0214] Some embodiments of the disclosed distributed
storage system track other information in addition to blob
storage usage. For example, some embodiments track counts
of read and write operations to each chunk store, and usage of
cach network link by the user. These items translate directly to
billing 1n a natural way, but generally do not involve anything
as complicated as the complicated state transitions outlined
above.

Logging

[0215] Some embodiments log events 1n the life of a blob
for debugging and auditing purposes. In some embodiments,
thelogis structured as a database, which may be implemented
in a BigTable or a relational database. In a BigTable imple-
mentation, the key for each row 1s a blob 1D, and the value 1s
simply the sequence of every metadata delta that has been
applied to this blob. In some embodiments, certain informa-
tion stripped out to limit the size, and to prevent blob contents
from being nadvertently revealed by the log data.

[0216] A “life of a blob” server 1s an exemplary front-end
tor this eventlog. The server may be queried for any particular
blob ID by an authorized user, who can then see the full
history of all mutations. This information can be used for
debugging purposes. Additionally, metadata deltas may have
human-readable annotations indicating the author and pur-
pose. Certain metadata changes require such annotations,
such as setting of the “administrative bits” 1n a blob. These are
flags that may be used for legal purposes. Two exemplary
administrative bits are:

[0217] “blocked:” When this bit 1s set, the system does
not return the contents of this blob to any user, except for
designated superusers. However, the blob itself 1s not
actually deleted. One intended purpose of this flag 1s to
respond to legally imposed takedown orders. Even when
taken down, there may be reasons not to actually discard
the copy.

[0218] “‘preserved:” When this bit 1s set, the system will
not delete the specified generation unless the entire blob
1s deleted. If this 1s set 1n combination with the caller
adding a new reference, the blob contents will always be
preserved by the system until the reference 1s released or
the flag 1s cleared. One intended purpose of this tlag 1s to
respond to legal preservation orders.

Coprocessors

[0219] Because network links are expensive, sometimes 1t
1s usetul for a user to be able to execute a function to transform
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a replica of a blob close to where that blob 1s stored, and
transmit the transtormed copy to the user. For example, a user
may store digital images 1n embodiments of the distributed
storage system, and want to generate small thumbnail images.
Rather than shipping a large image across the planet and then
computing the thumbnail, 1t 1s more efficient to first compute
a thumbnail and ship just the thumbnail to the destination.
Some embodiments of the disclosed distributed storage sys-
tem 1include coprocessor functionality to implement these
types of transformations.

[0220] In some embodiments, coprocessors are programs
iitiated by a user of the system that execute within the
distributed storage system. Some embodiments expose a net-
work RPC API (Remote Procedure Call 1n an Application
Programmer Interface), which may be accessed by a load
balancing system under some particular service name. Some
embodiments extend the “read” function 1n the interface to
take as arguments the load-balancer name of a coprocessor,
and the name of the RPC to be called. Such a “read” command
requests that the given blob be passed through the given
function call, with the transformed blob returned to the user.
[0221] In some embodiments, the client receives the meta-
data from the blobmaster as usual, and when the client
requests the actual contents of the blob from the bitpusher, the
bitpusher initiates the transformation. That 1s, the bitpusher
reads the contents of the blob, calls a nearby coprocessing,
server (via a load-balancer call) to perform the indicated
RPC, and returns that result to the user rather than the blob
contents. In the case of inline blobs, the blobmaster does this
instead of the bitpusher.

[0222] In other embodiments, the “derived blobs™ created
from the coprocessor call are cached and ultimately saved as
part of the original blob. For example, if the blobmaster
received a request for the output of passing blob X through the
thumbnailer, 1t could look at the replicas and say, “there 1s an
unthumbnailed copy close by, or a thumbnail copy a bit far-
ther away,” and make an efficient decision of whether 1t would
be more efficient to re-run the coprocessor or to fetch remote
data. This 1s similar to decisions about serving data from a
remote instance versus performing a real-time replication to a
closer 1nstance.

[0223] “‘Representations™ of blobs support this concept of
creating derived blobs from an original blob. When a copro-
cessor call 1s made, 11 this call has been marked as cacheable,
the bitpusher will write out the results of the coprocessor call
as chunks to one of 1ts own local data stores, and then inform
the blobmaster that 1t has created a new representation of the
blob. In some embodiments, the representation ID of the
derived blob 1s the name of the coprocessor call and the set of
arguments that were passed to the coprocessor call. This
representation 1s considered to be a part of the generation
from which the derived blob was created. Representations
created as deritved blobs are replicated and propagated 1n the
usual way.

[0224] Saving copies of transformed blobs provides for
on-demand performance of potentially expensive operations.
In the thumbnailing example, 1t means that one does not need
to precompute thumbnails for every image in order to have
them quickly available. Once an 1mage 1s thumbnailed, the
thumbnail persists 1n the blob store, and future reads can
access 1t. This 1s especially important for operations that are
expensive 1 both computation and storage, such as conver-

sion of file formats.

The Stable Clock System

[0225] In some embodiments, the timestamps used to con-
struct sequence 1dentifiers just read the time from the com-
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puter’s clock. However, computer clocks are imperfect for
several reasons. First, many computer clocks do not track
time with suificient accuracy. Second, computer clocks some-
times jump forward or backward for unknown reasons.
Implementations of the disclosed distributed storage systems
require a clock that 1s both accurate and guaranteed to be
monotonically increasing, so some embodiments implement
a stable clock system.

[0226] In a stable clock system, the timestamps need to be
monotonically increasing. Specifically, within the lifetime of
a single UNIX process, successive sequence identifiers need
to be increasing. In some embodiments, this 1s implemented
by running a simple monotonic clock on top of an underlying
clock. This guarantees strictly increasing sequence identifiers
within a single process (e.g., blobmaster task), but does not
guarantee that sequence 1dentifiers 1ssued by different tasks
will appear 1n the right order. In particular, 1f two successive
operations are routed to different blobmaster tasks (e.g., due
to load-balancing), they may be 1ssued sequence 1dentifiers
that are out of order because the internal time clocks are
different. This 1s contrary to user expectations, and can lead to
unexplainable results.

[0227] Someembodiments avoid this problem by function-
ality 1n the client library. Whenever the client library receives
a response from a blobmaster about any operation that 1ssued
a new sequence identifier, the client library stores that
sequence 1dentifier in memory. When the client library sends
future requests, 1t attaches that sequence identifier to the call,
so that any new sequence 1dentifiers 1ssued are greater than
that one. This solves the ordering problem, but introduces
another one. Since each blobmaster’s clock must be mono-
tonic, a blobmaster may have to manually advance 1ts own
clock by some amount 1n order to generate a sequence 1den-
tifier that 1s greater than the one passed from the client library.
If a client were to send a malformed request, 1t could corrupt
the entire state of the blobmaster, pushing its internal clock
into the distant future.

[0228] Some embodiments avoid this new problem, by
placing a limit on how far forward the clock can be manually
adjusted. If the timestamp portion of the sequence 1dentifier
passed from the client 1s too far in the future (e.g., a gap of
more than a minute), the blobmaster assumes that the clock
value 1s bogus, and returns an error. However, this creates yet
another problem: there 1s no obvious remediation that a client
can do 1n response to these errors. At best, the system can
make sure that these errors are rare and meaningful.

[0229] There are two things that could cause this type of
irremediable error. One source of the error 1s a problem on the
client side that sent a bogus sequence 1dentifier value. This
could be due to a bug 1n the client library, or memory corrup-
tion 1n the chient application, which resulted in overwriting
the real value. There 1s no way to avert these problems with
certainty, but eliminating all other sources of the 1ssue would
help to identify these potential problems as the source. The
other class of problem 1s that another blobmaster 1ssued a
bogus sequence identifier, far in the future, and the client
would then (correctly) propagate a bad value everywhere so
that all blobmasters had the incorrect future time.

[0230] This problem can be averted by ensuring that no
blobmaster’s clock suddenly jumps forward. Unfortunately,
this can easily happen with a machine’s system clock for a
variety of reasons, mcluding NTP (network time protocol)
updates, or sporadic hardware failures. Theretfore, to avoid
these problems, some embodiments do not use the machine’s
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system clock as the underlying clock for sequence generation.
Instead, these embodiments use a stable clock system.
[0231] Some embodiments of a stable clock system com-
prise three layers, as illustrated 1n FIG. 26. At the bottom are
the quorum clock servers 2606-1 to 2606-5, which are servers
that stmply report their own machine system time in response
to a query. The middle layer 1s the “reliable clock™ 2604,
which 1s a software library running on the blobmaster that
determines the current time by querying a number of clock
servers, and veritying that they agree about what time 1t 1s to
within some specified precision. In some embodiments, the
precision 1s specified as a small number of milliseconds. In
other embodiments, precision had a predefined value 1n the
range of 100-1000 microseconds. If the clock servers 2606 do
not agree, the reliable clock server 2604 re-polls the clocks. IT
there still 1sn’t a reasonable quorum after a few tries, the
reliable clock 2604 alerts a human that something has gone
seriously wrong. The reliable clock server 2604 1s not prone
to skewing, but it responds to requests relatively slowly. The
reliable clock 2604 calls up each of the clock servers to
determine a quorum, rather than reading a single hardware
register on a local computer. Therefore, some embodiments
include a third layer on top of this, which 1s sometimes
referred to as the “cached clock™ server 2602. The cached
clock server 2602 periodically queries the reliable clock
server 2604, and uses the time from the reliable clock server
2604 to calibrate 1ts own machine system clock. That 1s,
whenever the cached clock server 2602 gets a result from the
reliable clock server 2604, the cached clock server 2602
redefines “now” to be the value it recerved. At any time 1n the
tuture, the system clock on the cached clock server 2602 will
be the elapsed time as measured by the machine system clock,
plus that reliable clock value. If the elapsed time as measured
by the system clock ever exceeds the time 1nterval between
reliable clock retests, the cached clock server 2602 instead
rechecks the reliable clock server 2604. In this way, 1f the
machine clock on the cached clock server 2602 does suddenly
skew forward, it will trigger a recheck of the reliable clock
server 2604, rather than allowing a bogus timestamp to be
returned to the caller.

Detailed Description of Some Embodiments

[0232] The present specification describes a distributed
storage system. In some embodiments, as illustrated in FIG.
1A, the distributed storage system 1s implemented on a global
or planet-scale. In these embodiments, there are a plurality of
instances 102-1, 102-2, .. . 102-N at various locations on the
Earth 100, connected by network communication links 104-
1,104-2, ...104-M. In some embodiments, an instance (such
as 1stance 102-1) corresponds to a data center. In other
embodiments, multiple instances are physically located at the
same data center. Although the conceptual diagram of FIG. 1
shows a limited number of network communication links
104-1, etc., typical embodiments would have many more
network communication links. In some embodiments, there
are two or more network communication links between the
same pair of instances, as illustrated by links 104-5 and 104-6
between instance 2 (102-2) and instance 6 (102-6). In some
embodiments, the network communication links are com-
posed of fiber optic cable. In some embodiments, some of the
network communication links use wireless technology, such
as microwaves. In some embodiments, each network commu-
nication link has a specified bandwidth and/or a specified cost
for the use of that bandwidth. In some embodiments, statistics
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are maintained about the transfer of data across one or more of
the network communication links, including throughput rate,
times of availability, reliability of the links, etc. Each instance
typically has data stores and associated databases (as shown
in FIGS. 2 and 3), and utilizes a farm of server computers
(“instance servers,” see FIG. 4) to perform all of the tasks. In
some embodiments, there are one or more instances that have
limited functionality, such as acting as a repeater for data
transmissions between other instances. Limited functionality
instances may or may not have any of the data stores depicted

in FIGS. 3 and 4.

[0233] FIG. 1B illustrates data and programs at an instance
102-:; that store and replicate data between instances. The
underlying data items 122-1, 122-2, etc. are stored and man-
aged by one or more database units 120. Each instance 102-;
has areplication unit 124 that replicates data to and from other
instances. The replication unit 124 also manages one or more
egress maps 134 that track data sent to and acknowledged by
other instances. Similarly, the replication unit 124 manages
one or more mgress maps, which track data received at the

instance from other instances. Egress maps and ingress maps

are described in more detail below with respect to FIGS.
14A-14D, 15A, and 17.

[0234] Each instance 102-; has one or more clock servers
126 that provide accurate time. In some embodiments, the
clock servers 126 provide time as the number of microsec-
onds past a well-defined point in the past. In some embodi-
ments, the clock servers provide time readings that are guar-
anteed to be monotonically increasing. In some
embodiments, each instance server 102-; stores an instance
identifier 128 that uniquely 1dentifies itself within the distrib-
uted storage system. The instance identifier may be saved in
any convenient format, such as a 32-bit integer, a 64-bit
integer, or a fixed length character string. In some embodi-
ments, the instance identifier 1s incorporated (directly or indi-
rectly) into other unique 1dentifiers generated at the instance.
In some embodiments, an instance 102-i stores a row 1denti-
fier seed 130, which 1s used when new data i1tems 122 are
inserted into the database. A row 1identifier 1s used to uniquely
identify each data item 122. In some embodiments, the row
identifier seed 1s used to create a row 1dentifier, and simulta-
neously incremented, so that the next row identifier will be
greater. In other embodiments, unique row identifiers are
created from a timestamp provided by the clock servers 126,
without the use of a row 1dentifier seed. In some embodi-
ments, a tie breaker value 132 1s used when generating row
identifiers or unique 1dentifiers for data changes (described
below with respect to FIGS. 6-9). In some embodiments, a tie
breaker 132 i1s stored permanently in non-volatile memory
(such as a magnetic or optical disk).

[0235] The elements described 1n FI1G. 1B are incorporated
in embodiments of the distributed storage system 200 1llus-
trated 1n FIGS. 2 and 3. In some embodiments, the function-
ality described 1n FI1G. 1B 1s included 1n a blobmaster 204 and
metadata store 206. In these embodiments, the primary data
storage (1.€., blobs) 1s in the data stores 212, 214, 216, 218,
and 220, and managed by bitpushers 210. The metadata for
the blobs 1s 1n the metadata store 206, and managed by the
blobmaster 204. The metadata corresponds to the functional-
ity identified 1n FIG. 1B. Although the metadata for storage of
blobs provides an exemplary embodiment of the present
invention, one of ordinary skill in the art would recognize that
the present invention 1s not limited to this embodiment.
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[0236] Insomeembodiments the disclosed distributed stor-
age system 200, the distributed storage system 1s used by one
or more user applications 308, which are provided by appli-
cation servers, such as 150-1, 150-2, 150-3, 150-4, and 150-5
illustrated 1n FIGS. 1C-1G. Exemplary user applications that
use embodiments of the disclosed distributed storage system
include Gmail, You'Tube, Orkutt, Google Docs, and Picassa.
Some embodiments of the disclosed distributed storage sys-
tem simultaneously provide storage for multiple distinct user
applications, and impose no limit on the number of distinct
user applications that can use the distributed storage system.
For example, a single implementation of the disclosed dis-
tributed storage system may provide storage services for all of
the exemplary user applications listed above. In some
embodiments, a user application 308 runs in a web browser
306, on auser computer system 304. A user 302 interacts with
a user application 308 according to the interface provided by
the user application. Each user application 308 uses a client
library 310 to store and retrieve data from the distributed
storage system 200.

[0237] FIG. 1C 1llustrates an embodiment 1n which a user
application 1s provided by one or more application servers
150-1. In some embodiments, the web browser 306 down-
loads user application 308 over a network 328 from the appli-
cation servers 150-1. In addition to communication between
the application server 150-1 and the user system 304, the
application server(s) 150-1 communicate over network 328
with the distributed storage system 200. In particular, the
application servers may establish storage policies 326 that are
applicable to all data stored by the supplied user application.
For example, administrators of the Gmail Application servers
may establish storage policies 326 that are applicable to mil-
lions of user of Gmail.

[0238] In some embodiments, communication between the
client library 310 and the distributed storage system utilizes a
load balancer 314, which can distribute user requests to vari-
ous instances within the distributed storage system based on
various conditions, such as network traffic and usage levels at
each 1nstance. In the embodiment illustrated 1n FIG. 1C, the
load balancer 314 i1s not an integrated component of the
distributed storage system 200. The load balancer 314 com-
municates with both the client library 310 and the distributed
storage system 200 over one or more networks 328. The
network 328 may include the Internet, one or more local area
networks (LANSs), one or more wide are networks (WANSs),
one or more wireless networks (WiF1 networks), or various
combinations of these.

[0239] FIG. 1D 1illustrates an embodiment that 1s similar to
FIG. 1C, except that the load balancing system 314 just
returns information to the client library 310 to specity which
instance 102 within the distributed storage system 200 should
be contacted. The client library 310 then contacts the appro-
priate mstance 102 directly.

[0240] FIG. 1E 1llustrates an embodiment that 1s similar to
FIG. 1C, except that the load balancing system 314 1s an
integrated part of the distributed storage application 200. In
some embodiments, load balancers 314 are included at some
or all of the mstances within the distributed storage system
200. Even 1n these embodiments, a load balancer 314 may
direct the communication to a different instance.

[0241] FIG. 1F 1llustrates an embodiment that 1s simailar to
FIG. 1C, except that the load balancing service 314 is
included in the application servers 150-4. This embodiment is
more commonly used when the distributed storage system
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200 1s being used by a single user application provided by the
application servers 150-4. In this case, the load balancer 314
has a complete picture of the load because the application
servers 150-4 receive all of the traflic directed to the distrib-
uted storage system.

[0242] FIG. 1G 1llustrates a variation of FIG. 1F, in which
the client library 310 1s maintained at the application servers

150-5 rather than integrated within the running user applica-
tion 308.

[0243] The distributed storage system 200 shown 1n FIGS.

2 and 3 includes certain global applications and configuration
information 202, as well as a plurality of instances 102-1, . .
. 102-N. In some embodiments, the global configuration
information includes a list of instances and information about
each instance. In some embodiments, the information for
cach istance includes: the set of storage nodes (data stores)
at the instance; the state information, which 1n some embodi-
ments includes whether the metadata at the instance 1s global
or local; and network addresses to reach the blobmaster 204
and bitpusher 210 at the instance. In some embodiments, the
global configuration information 202 resides at a single
physical location, and that information 1s retrieved as needed.
In other embodiments, copies of the global configuration
information 202 are stored at multiple locations. In some
embodiments, copies of the global configuration information
202 are stored at some or all of the mstances. In some embodi-
ments, the global configuration information can only be
modified at a single location, and changes are transierred to
other locations by one-way replication. In some embodi-
ments, there are certain global applications, such as the loca-
tion assignment daemon 346 (see FIG. 3) that can only run at
one location at any given time. In some embodiments, the
global applications run at a selected instance, but in other
embodiments, one or more of the global applications runs on
a set of servers distinct from the instances. In some embodi-
ments, the location where a global application 1s runming 1s
specified as part of the global configuration information 202,
and 1s subject to change over time.

[0244] FIGS. 2 and 3 illustrate an exemplary set of pro-
grams, processes, and data that run or exist at each instance,
as well as a user system that may access the distributed
storage system 200 and some global applications and con-
figuration. In some embodiments, a user 302 interacts with a
user system 304, which may be a computer or other device
that can run a web browser 306. A user application 308 runs
in the web browser, and uses functionality provided by data-
base client 310 to access data stored 1n the distributed storage
system 200 using network 328. Network 328 may be the
Internet, a local area network (LAN), a wide area network
(WAN), a wireless network (WiF1), a local intranet, or any
combination of these. In some embodiments, a load balancer
314 distributes the workload among the instances, so multiple
requests 1ssued by a single client 310 need not all go to the
same 1nstance. In some embodiments, database client 310
uses mformation 1n a global configuration store 312 to 1den-
tify an appropriate instance for a request. The client uses
information from the global configuration store 312 to find
the set of blobmasters 204 and bitpushers 210 that are avail-
able, and where to contact them. A blobmaster 204 uses a
global configuration store 312 to identily the set of peers for
all of the replication processes. A bitpusher 210 uses infor-
mation 1 a global configuration store 312 to track which
stores 1t 1s responsible for. In some embodiments, user appli-
cation 308 runs on the user system 304 without a web browser
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306. Exemplary user applications are an email application
and an online video application.

[0245] Insome embodiments, each instance has a blobmas-
ter 204, which 1s a program that acts as an external interface
to the metadata table 206. For example, an external user
application 308 can request metadata corresponding to a
specified blob using client 310. In some embodiments, every
instance 102 has metadata 1n 1ts metadata table 206 corre-
sponding to every blob stored anywhere i the distributed
storage system 200. In other embodiments, the instances
come 1n two varieties: those with global metadata (for every
blob 1n the distributed storage system 200) and those with
only local metadata (only for blobs that are stored at the
instance). In particular, blobs typically reside at only a small
subset ol the instances. The metadata table 206 includes ifor-
mation relevant to each of the blobs, such as which instances
have copies of a blob, who has access to a blob, and what type
of data store 1s used at each instance to store a blob. The
exemplary data structures 1n FIGS. 18 A-18E illustrate other
metadata that 1s stored 1n metadata table 206 1n some embodi-
ments.

[0246] When a client 310 wants to read a blob of data, the
blobmaster 204 provides one or more read tokens to the client
310, which the client 310 provides to a bitpusher 210 1n order
to gain access to the relevant blob. When a client 310 writes
data, the client 310 writes to a bitpusher 210. The bitpusher
210 returns write tokens indicating that data has been stored,
which the client 310 then provides to the blobmaster 204, in
order to attach that data to a blob. A client 310 communicates
with a bitpusher 210 over network 328, which may be the
same network used to communicate with the blobmaster 204.
In some embodiments, communication between the client
310 and bitpushers 210 1s routed according to a load balancer
314. Because of load balancing or other factors, communica-
tion with a blobmaster 204 at one 1nstance may be followed
by communication with a bitpusher 210 at a different
instance. For example, the first instance may be a global
instance with metadata for all of the blobs, but may not have
a copy of the desired blob. The metadata for the blobs 1den-
tifies which instances have copies of the desired blob, so the
subsequent communication with a bitpusher 210 to read or
write 1s at a different instance.

[0247] A bitpusher 210 copies data to and from data stores.
In some embodiments, the read and write operations com-
prise entire blobs. In other embodiments, each blob com-
prises one or more chunks, and the read and write operations
performed by a bitpusher are on solely on chunks. In some of
these embodiments, a bitpusher deals only with chunks, and
has no knowledge of blobs. In some embodiments, a bit-
pusher has no knowledge of the contents of the data that 1s
read or written, and does not attempt to interpret the contents.
Embodiments of a bitpusher 210 support one or more types of
data store. In some embodiments, a bitpusher supports a
plurality of data store types, including inline data stores 212,
BigTable stores 214, file server stores 216, and tape stores
218. Some embodiments support additional other stores 220,
or are designed to accommodate other types of data stores as
they become available or technologically feasible.

[0248] Inline stores 212 actually use storage space 208 1n
the metadata store 206. Inline stores provide faster access to
the data, but have limited capacity, so inline stores are gener-
ally for relatively “small” blobs. In some embodiments, inline
stores are limited to blobs that are stored as a single chunk. In
some embodiments, “small” means blobs that are less than 32

Aug. 11,2011

kilobytes. In some embodiments, “small” means blobs that
are less than 1 megabyte. As storage technology facilitates
greater storage capacity, even blobs that are currently consid-
ered large may be “relatively small” compared to other blobs.

[0249] BigTable stores 214 store data in BigTables located
on one or more BigTable database servers 316. Biglables are
described 1n several publicly available publications, includ-
ing “Bigtable: A Distributed Storage System for Structured
Data,” Fay Chang et al, OSDI 2006, which is incorporated
herein by reference 1n 1ts entirety. In some embodiments, the
BigTable stores save data on a large array of servers 316.

[0250] File stores 216 store data on one or more file servers
318. In some embodiments, the file servers use file systems
provided by computer operating systems, such as UNIX. In
other embodiments, the file servers 318 implement a propri-
ctary file system, such as the Google File System (GFS). GFS
1s described i multiple publicly available publications,
including “The Google File System,” Sanjay Ghemawat et
al., SOSP’03, Oct. 19-22, 2003, which 1s incorporated herein
by reference 1n 1ts entirety. In other embodiments, the file
servers 318 implement NFS (Network File System) or other
publicly available file systems not implemented by a com-
puter operating system. In some embodiments, the file system
1s distributed across many individual servers 318 to reduce
risk of loss or unavailability of any individual computer.

[0251] Tape stores 218 store data on physical tapes 320.
Unlike a tape backup, the tapes here are another form of
storage. This 1s described 1n greater detail in co-pending U.S.
Provisional Patent Application Ser. No. 61/302,909, “Method
and System for Providing Efficient Access to a Tape Storage
System,” filed Feb. 9, 2010, which 1s incorporated herein by
reference 1n its entirety. In some embodiments, a Tape Master
application 222 assists 1n reading and writing from tape. In
some embodiments, there are two types of tape: those that are
physically loaded 1n a tape device, so that the tapes can be
robotically loaded; and those tapes that physically located 1n
a vault or other oifline location, and require human action to
mount the tapes on a tape device. In some 1nstances, the tapes
in the latter category are referred to as deep storage or
archived. In some embodiments, a large read/write butler 1s
used to manage reading and writing data to tape. In some
embodiments, this buffer 1s managed by the tape master appli-
cation 222. In some embodiments there are separate read
bufiters and write butfers. In some embodiments, a client 310
cannot directly read or write to a copy of data that 1s stored on
tape. In these embodiments, a client must read a copy of the
data from an alternative data source, even 1f the data must be
transmitted over a greater distance.

[0252] In some embodiments, there are additional other
stores 220 that store data in other formats or using other
devices or technology. In some embodiments, bitpushers 210
are designed to accommodate additional storage technologies
as they become available.

[0253] Each of the data store types has specific character-
istics that make them useful for certain purposes. For
example, inline stores provide fast access, but use up more
expensive limited space. As another example, tape storage 1s
very mexpensive, and provides secure long-term storage, but
a client cannot directly read or write to tape. In some embodi-
ments, data 1s automatically stored 1n specific data store types
based on matching the characteristics of the data to the char-
acteristics of the data stores. In some embodiments, users 302
who create files may specity the type of data store to use. In
other embodiments, the type of data store to use 1s determined
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by the user application 308 that creates the blobs of data. In
some embodiments, a combination of the above selection
criteria 1s used. In some embodiments, each blob 1s assigned
to a storage policy 326, and the storage policy speciiies stor-
age properties. A blob policy 326 may specity the number of
copies ol the blob to save, 1n what types of data stores the blob
should be saved, locations where the copies should be saved,
etc. For example, a policy may specity that there should be
two copies on disk (Big Table stores or File Stores), one copy
on tape, and all three copies at distinct metro locations. In
some embodiments, blob policies 326 are stored as part of the
global configuration and applications 202.

[0254] In some embodiments, each instance 102 has a quo-
rum clock server 228, which comprises one or more servers
with internal clocks. The order of events, including metadata
deltas 608, 1s important, so maintenance of a consistent time
clock 1s important. A quorum clock server regularly polls a
plurality of independent clocks, and determines 1f they are
reasonably consistent. If the clocks become inconsistent and
it 1s unclear how to resolve the inconsistency, human inter-
vention may be required. The resolution of an inconsistency
may depend on the number of clocks used for the quorum and
the nature of the inconsistency. For example, if there are five
clocks, and only one 1s inconsistent with the other four, then
the consensus of the four 1s almost certainly right. However,
if each of the five clocks has a time that differs significantly
from the others, there would be no clear resolution.

[0255] In some embodiments, each instance has a replica-
tion module 224, which identifies blobs or chunks that will be
replicated to other instances. In some embodiments, the rep-
lication module 224 may use one or more queues 226-1,
226-2, . ... Items to be replicated are placed 1n a queue 226,
and the 1tems are replicated when resources are available. In
some embodiments, items 1n a replication queue 226 have
assigned priorities, and the highest priority items are repli-
cated as bandwidth becomes available. There are multiple
ways that items can be added to a replication queue 226. In
some embodiments, 1tems are added to replication queues
226 when blob or chunk data i1s created or modified. For
example, 11 an end user 302 modifies a blob at instance 1, then
the modification needs to be transmitted to all other instances
that have copies of the blob. In embodiments that have pri-
orities 1n the replication queues 226, replication items based
on blob content changes have a relatively high priority. In
some embodiments, 1tems are added to the replication queues
226 based on a current user request for a blob that 1s located
at a distant instance. For example, 11 a user 1n California
requests a blob that exists only at an instance 1n India, an 1item
may be inserted 1nto a replication queue 226 to copy the blob
from the imstance 1n India to a local instance 1n California.
That 1s, since the data has to be copied from the distant
location anyway, it may be usetul to save the data at a local
instance. These dynamic replication requests receive the
highest priority because they are responding to current user
requests. The dynamic replication process 1s described in
more detail 1n co-pending U.S. Provisional Patent Applica-
tion Ser. No. 61/302,896, “Method and System for Dynami-
cally Replicating Data Within a Distributed Storage System,”
filed Feb. 9, 2010, incorporated herein by reference in 1ts
entirety.

[0256] In some embodiments, there 1s a background repli-
cation process that creates and deletes copies of blobs based
on blob policies 326 and blob access data provided by a
statistics server 324. The blob policies specily how many
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copies of a blob are desired, where the copies should reside,
and 1n what types of data stores the data should be saved. In
some embodiments, a policy may specily additional proper-
ties, such as the number of generations of a blob to save, or
time frames for saving different numbers of copies. E.g., save
three copies for the first 30 days after creation, then two
copies thereafter. Using blob policies 326, together with sta-
tistical iformation provided by the statistics server 324, a
location assignment daemon 322 determines where to create
new copies of a blob and what copies may be deleted. When
new copies are to be created, records are imserted into a
replication queue 226, with the lowest priority. The use of
blob policies 326 and the operation of a location assignment
daemon 322 are described in more detail 1n co-pending U.S.
Provisional Patent Application Ser. No. 61/302,936, “System
and Method for managing Replicas of Objects 1in a Distrib-

uted Storage System,” filed Feb. 9, 2010, which 1s incorpo-
rated herein by reference 1n 1ts entirety.

[0257] FIG. 4 1s a block diagram 1llustrating an Instance
Server 400 used for operations 1dentified in FIGS. 2 and 3 1n
accordance with some embodiments of the present invention.
An Instance Server 400 typically includes one or more pro-
cessing units (CPU’s) 402 for executing modules, programs
and/or instructions stored in memory 414 and thereby per-
forming processing operations; one or more network or other
communications interfaces 404; memory 414; and one or
more communication buses 412 for interconnecting these
components. In some embodiments, an Instance Server 400
includes a user interface 406 comprising a display device 408
and one or more put devices 410. In some embodiments,
memory 414 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices. In some embodiments, memory
414 includes non-volatile memory, such as one or more mag-
netic disk storage devices, optical disk storage devices, tlash
memory devices, or other non-volatile solid state storage
devices. In some embodiments, memory 414 includes one or
more storage devices remotely located from the CPU(s) 402.
Memory 414, or alternately the non-volatile memory device
(s) within memory 414, comprises a computer readable stor-
age medium. In some embodiments, memory 414 or the com-
puter readable storage medium of memory 414 stores the
following programs, modules and data structures, or a subset
thereof:

[0258] an operating system 416 that includes procedures
for handling various basic system services and for per-
forming hardware dependent tasks;

[0259] a communications module 418 that 1s used for
connecting an Instance Server 400 to other Instance
Servers or computers via the one or more communica-
tion network interfaces 404 (wired or wireless) and one
or more communication networks 328, such as the Inter-
net, other wide area networks, local area networks, met-
ropolitan area networks, and so on;

[0260] one or more server applications 420, such as a
blobmaster 204 that provides an external interface to the
blob metadata; a bitpusher 210 that provides access to
read and write data from data stores; a replication mod-
ule 224 that copies data from one 1nstance to another; a
quorum clock server 228 that provides a stable clock; a
location assignment daemon 322 that determines where
copies of a blob should be located; and other server
functionality as 1illustrated in FIGS. 2 and 3. As 1llus-
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trated, two or more server applications 422 and 424 may
execute on the same physical computer;

[0261] one or more database servers 426 that provides
storage and access to one or more databases 428. The
databases 428 may provide storage for metadata 206,
replication queues 226, blob policies 326, global con-
figuration 312, the statistics used by statistics server 324,
as well as ancillary databases used by any of the other
functionality. Each database 428 has one or more tables
with data records 430. In some embodiments, some
databases 1include aggregate tables 432, such as the sta-
tistics used by statistics server 324; and

[0262] one or more file servers 434 that provide access to
read and write files, such as file #1 (436) and file #2
(438). File server functionality may be provided directly
by an operating system (e.g., UNIX or Linux), or by a
soltware application, such as the Google File System
(GES).

[0263] FEach ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of istructions for performing a
tfunction described above. The above 1dentified modules or
programs (1.€., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 414 may store a subset of the modules
and data structures identified above. Furthermore, memory
414 may store additional modules or data structures not
described above.

[0264] Although FIG. 4 shows an instance server used for
performing various operations or storing data as 1llustrated in
FIGS. 2 and 3, FIG. 4 1s intended more as functional descrip-
tion of the various features which may be present 1n a set of
one or more computers rather than as a structural schematic of
the embodiments described herein. In practice, and as recog-
nized by those of ordinary skill in the art, items shown sepa-
rately could be combined and some items could be separated.
For example, some items shown separately in FIG. 4 could be
implemented on individual computer systems and single
items could be implemented by one or more computer sys-
tems. The actual number of computers used to 1implement
cach ol the operations, databases, or file storage systems, and
how features are allocated among them will vary from one
implementation to another, and may depend 1n part on the
amount of data at each instance, the amount of data traffic that
an instance must handle during peak usage periods, as well as
the amount of data traflic that an instance must handle during,
average usage periods.

[0265] To provide faster responses to clients and to provide
fault tolerance, each program or process that runs at an
instance 1s generally distributed among multiple computers.
The number of mstance servers 400 assigned to each of the
programs or processes can vary, and depends on the work-
load. FIG. 3 provides exemplary information about a typical
number of instance servers 400 that are assigned to each of the
functions. In some embodiments, each instance has about 10
instance servers performing (502) as blobmasters. In some
embodiments, each instance has about 100 instance servers
performing (504) as bitpushers. In some embodiments, each
instance has about 50 1nstance servers performing (506) as
BigTable servers. In some embodiments, each instance has
about 1000 1nstance servers performing (508) as file system
servers. File system servers store data for file system stores

22

Aug. 11,2011

216 as well as the underlying storage medium for BigTable
stores 214. In some embodiments, each instance has about 10
instance servers performing (510) as tape servers. In some
embodiments, each instance has about 5 instance servers
performing (512) as tape masters. In some embodiments,
cach instance has about 10 instance servers performing (514)
replication management, which includes both dynamic and
background replication. In some embodiments, each instance
has about 5 instance servers performing (516) as quorum
clock servers.

[0266] FIG. 61llustrates the storage of metadata data 1tems
600 according to some embodiments. Each data item 600 has
a unique row 1dentifier 602. Each data item 600 1s a row 604
that has a base value 606 and zero or more deltas 608-1,
608-2, ...,608-L. When there are no deltas, then the value of
the data 1item 600 1s the base value 606. When there are deltas,
the “value” of the data item 600 1s computed by starting with
the base value 606 and applying the deltas 608-1, etc. in order
to the base value. A row thus has a single value, representing
a single data item or entry. Although 1n some embodiments
the deltas store the entire new value, 1n some embodiments
the deltas store as little data as possible to identify the change.
For example, metadata for a blob includes speciiying what
instances have the blob as well as who has access to the blob.
If the blob 1s copied to an additional instance, the metadata
delta only needs to specily that the blob 1s available at the
additional instance. The delta need not specity where the blob
1s already located. The reading of metadata data items 600 1s
described 1n more detail with respect to FIG. 13. As the
number of deltas increases, the time to read data increases, so
there 1s also a compaction process 1200 described below 1n
FIGS. 8 and 12A-12B. The compaction process merges the
deltas 608-1, etc. into the base value 606 to create a new base
value that incorporates the changes 1n the deltas.

[0267] Although the storage shown in FIG. 6 relates to
metadata for blobs, the same process 1s applicable to other
non-relational databases, such as columnar databases, in
which the data changes 1n specific ways. For example, an
access control list may be implemented as a multi-byte 1nte-
ger 1n which each bit position represents an 1tem, location, or
person. Changing one piece of access information does not
modily the other bits, so a delta to encode the change requires
little space. In alternative embodiments where the data 1s less
structured, deltas may be encoded as instructions for how to
make changes to a stream of binary data. Some embodiments
are described 1n publication RFC 3284, “The VCDIFF
Generic Differencing and Compression Data Format,” The
Internet Society, 2002. One of ordinary skill in the art would
thus recognize that the same techmque applied here for meta-
data 1s equally applicable to certain other types of structured
data.

[0268] FIG. 71llustrates an exemplary data structure to hold
a delta. Each delta applies to a unique row, so the delta
includes the row 1dentifier 702 of the row to which it applies.
In order to guarantee data consistency at multiple instances,
the deltas must be applied 1n a well-defined order to the base
value. The sequence 1dentifier 704 1s globally unique, and
specifies the order 1n which the deltas are applied. In some
embodiments, the sequence 1dentifier comprises a timestamp
706 and a tie breaker value 708 that 1s uniquely assigned to
cach instance where deltas are created. In some embodi-
ments, the timestamp 1s the number of microseconds past a
well-defined point 1n time. In some embodiments, the tie
breaker 1s computed as a function of the physical machine
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running the blobmaster as well as a process 1d. In some
embodiments, the tie breaker includes an instance 1dentifier,
either alone, or 1n conjunction with other characteristics at the
instance. In some embodiments, the tie breaker 708 1s stored
as a tie breaker value 132. By combining the timestamp 706
and a tie breaker 708, the sequence 1dentifier 1s both globally
unique and at least approximately the order in which the
deltas were created. In certain circumstances, clocks at dif-
ferent instances may be slightly different, so the order defined
by the sequence identifiers may not correspond to the “actual™
order of events. However, in some embodiments, the “order,”

by definition, 1s the order created by the sequence 1dentifiers.
This 1s the order the changes will be applied at all instances.

[0269] A change to metadata at one instance 1s replicated to
other mstances. The actual change to the base value 712 may
be stored in various formats. In some embodiments, data
structures similar to those in FIGS. 18 A-18E are used to store
the changes, but the structures are modified so that most of the
fields are optional. Only the actual changes are filled 1n, so the
space required to store or transmit the delta 1s small. In other
embodiments, the changes are stored as key/value pairs,
where the key uniquely 1dentifies the data element changed,
and the value 1s the new value for the data element.

[0270] In some embodiments where the data items are
metadata for blobs, deltas may include information about
forwarding. Because blobs may be dynamically replicated
between instances at any time, and the metadata may be
modified at any time as well, there are times that a new copy
of ablob does not imitially have all of the associated metadata.
In these cases, the source of the new copy maintains a “for-
warding address,” and transmits deltas to the instance that has
the new copy of the blob for a certain period of time (e.g., for
a certain range ol sequence identifiers).

[0271] FIG. 8 1illustrates a compaction process that reduces
the number of deltas. If compaction were not performed, the
number of deltas would grow without limit, taking up storage
space and slowing down performance for reading data. The
idea 1s to apply the deltas to the base value, effectively merg-
ing the base values and the deltas 1nto a single new base value.
However, because of the existence of multiple copies of the
same data at distinct instances, there are some constraints
imposed on which deltas may be merged with the base value.
In some embodiments, a compaction horizon 1s selected that
specifies the upper limit on which deltas will be merged. In
some embodiments, the compaction horizon 1s selected for a
group of data items 600, although a compaction horizon could
be selected for an individual data 1tem 600.

[0272] Before the compaction process begins, each data
item 600 1s a row 604 A with an original base value 606 A, and
a set of zero or more deltas 608-1, etc. For a data item 600 with
zero deltas, there 1s nothing to compact. The data item 600
illustrated 1n FIG. 8 initially has five deltas 608-1 to 608-5. In
the embodiment shown, the compaction horizon 610 1s some-
where between the sequence 1dentifier of delta 4 (608-4) and
the sequence 1dentifier of delta 5 (608-5). More specifically,
FIG. 8 depicts an example 1n which the sequence 1dentifier of
delta 4 1s less than or equal to the compaction horizon 610,
and the compaction horizon 1s strictly less than the sequence
identifier of delta 5. Delta 1 (608-1) through delta 4 (608-4)
are applied to the base value 606 A 1n sequence, to produce a
new base value 606B that has been merged with the deltas.
Delta 1 to delta 4 are then deleted from original row 604 A,
leaving the new row 604B with the merged base value 6068
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and a set with the single delta 608-5. If the compaction hori-
zon had included delta 608-5, the new row 604B would not
have included any deltas.

[0273] The compaction process 1s also described below 1n
FIGS.12A-12B, and 17. In particular, the discussion of FIGS.
12A and 12B includes examples of why the compaction hori-
zon may not include all of the deltas at an 1nstance (as 1llus-
trated in FIG. 8). Although shown here 1n the context of a
single data item 600, compaction 1s generally a batch process
because of the very large quantities of data and the fact that
deltas are generally transmitted between instances in batches.

[0274] FIG. 91llustrates an exemplary process for replicat-
ing metadata from one 1instance to another instance. Although
the simple 1llustration 1n FIG. 9 shows only a single metadata
data item 600 and a single delta 608, the method 1s generally

applied to much larger batches as illustrated below with
respect to FIGS. 15A-15B.

[0275] The replication process described here applies to
ex1isting copies of data at multiple instances. When metadata
at one instance changes, the changes must be replicated to all
other 1nstances that have metadata for the same underlying
data. Co-pending application U.S. patent application Ser. No.
12/703,167/7, “Method and System for Efficiently Replicating
Data 1n Non-Relational Databases,” filed Feb. 9, 2010,
describes a different replication process, where a new copy of
data 1s replicated to a new 1nstance. In this latter instance, a
complete copy of the metadata must be sent to the new
instance, and any recent changes to the metadata must get to
the new instance as well.

[0276] The replication process effectively begins when a
change to metadata occurs (902) at one instance that will
require replication to other instances. When the change (also
known as a mutation) occurs, a delta 1s created (904) to
specily the change. An exemplary format is illustrated 1n FIG.
7 and described above. In principle, the delta could be repli-
cated immediately, but deltas are generally transmitted 1n

batches as more fully illustrated 1n the exemplary processes
shown 1n FIGS. 15A-15B.

[0277] At some point, the replication process 1s 1nitiated
(906). In some embodiments, replication can be initiated
manually. In other embodiments, replication 1s a scheduled
background process (e.g., triggered at certain time ntervals,
certain times of the day, or when the workload 1s low). In
some embodiments, replication runs continuously in the
background. In some embodiments, every instance has meta-
data for each of the blobs, regardless of whether the blobs are
physically stored at the instance. In other embodiments, there
are a limited number of global instances that maintain meta-
data for all of the blobs, and a greater number of local
instances that maintain metadata only for the blobs stored at
the mstance. For replication targets that are local instances,
the replication process determines (908) whether the meta-
data item 600 resides at the replication target. In some
embodiments, the replication process determines all
instances that require the changed metadata.

[0278] For the target instances that have the metadata data
item 600, the replication process determines (910) whether
the target instance has recetved delta 608. In some embodi-

ments, this determination uses an egress map 134, as shown in
FIGS. 14A and 14B and described 1n more detail in FIGS.

15A-15B. Based on the deltas to send, and which deltas have
already been recerved at each target instance, the replication
process builds (912) a transmission matrix that specifies a
group of deltas to transmit to each target instance. In some
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embodiments, the transmission matrix 1s a two-dimensional
shape (e.g., a rectangle) as illustrated 1n FIGS. 15A-15B. In
other embodiments, the transmission matrix 1s a list or one-
dimensional array. The replication process then transmits
(914) the selected deltas to each target instance.

[0279] Atatargetinstance, the deltas are received (916) and
cach delta 1s inserted (918) into the set of deltas for the
corresponding metadata data item 600. In some embodi-
ments, the replication process updates (920) an ingress map
136 to indicate that the delta (or batch of deltas) has been
incorporated into the metadata at the target instance. The
replication process at the target instance also sends an
acknowledgement back to the sender to indicate that the
deltas have been received and incorporated.

[0280] The oniginal sender of the deltas receives (924) the
acknowledgement from the target instance, and updates (926)
an egress map 134. By updating the egress map, the same
deltas will not be transmitted to the same target again in the
tuture. The updated egress map also enables compaction of

deltas, as explained in more detail with respect to FIGS. 12A
and 12B.

[0281] FIG. 10 1s a block diagram illustrating a client com-
puter system 304 that 1s used by a user 302 to access data
stored at an instance 102 1n accordance with some embodi-
ments of the present invention. A client computer system 304
typically includes one or more processing units (CPU’s) 1002
for executing modules, programs and/or instructions stored 1n
memory 1014 and thereby performing processing operations;
one or more network or other communications interfaces
1004; memory 1014; and one or more communication buses
1012 for interconnecting these components. The communi-
cation buses 1012 may include circuitry (sometimes called a
chupset) that interconnects and controls communications
between system components. A client computer system 304
includes a user interface 1006 comprising a display device
1008 and one or more mput devices 1010 (e.g., a keyboard
and a mouse or other pointing device). In some embodiments,
memory 1014 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices. In some embodiments, memory
1014 includes non-volatile memory, such as one or more
magnetic disk storage devices, optical disk storage devices,
flash memory devices, or other non-volatile solid state stor-
age devices. Optionally, memory 1014 includes one or more
storage devices remotely located from the CPU(s) 1002.
Memory 1014, or alternately the non-volatile memory device
(s) within memory 1014, comprises a computer readable stor-
age medium. In some embodiments, memory 1014 or the
computer readable storage medium of memory 1014 stores
the following programs, modules and data structures, or a
subset thereot:

[0282] an operating system 1016 that includes proce-
dures for handling various basic system services and for
performing hardware dependent tasks;

[0283] a communications module 1018 that 1s used for
connecting the client computer system 304 to other com-
puters via the one or more communication network
interfaces 1004 (wired or wireless) and one or more
communication networks 328, such as the Internet, other
wide area networks, local area networks, metropolitan
area networks, and so on; and

[0284] a web browser 306 (or other client application)
that enables a user to communicate over a network 328
(such as the Internet) with remote computers. In some
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embodiments, the web browser 306 uses a JavaScript
run-time module 1020 to perform some functions.

[0285] one or more user applications 308 that provide
specific functionality. For example, user applications
308 may include an email application 308-1 and/or an
online video application 308-2.

[0286] one or more database clients, such as email data-
base client 310-1 or video database client 310-2, that
provide an API for the data stored at mstances 102 to
user applications 308.

[0287] FEach ofthe above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above 1dentified modules or
programs (1.€., sets of instructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 1014 may store a subset of the mod-
ules and data structures identified above. Furthermore,
memory 1014 may store additional modules or data structures
not described above.

[0288] Although FIG. 10 shows a client computer system
304 that may access data stored at an instance 102, FIG. 10 1s
intended more as functional description of the various fea-
tures which may be present 1n a set of one or more computers
rather than as a structural schematic of the embodiments
described herein. In practice, and as recognized by those of
ordinary skill 1n the art, items shown separately could be
combined and some items could be separated.

[0289] FIGS. 11A-11C provide a tlowchart of an exem-

plary process 1100 for replicating (1102) data between a
plurality instances of a distributed database. In one embodi-
ment, the distributed database holds metadata for a distrib-
uted storage system. In some embodiments, each instance of
the distributed database 1s stored on one or more server com-
puters, each having memory and one or more processors
(1104).

[0290] Thereplication process 1100 1dentifies (1106) a first
instance of the database at a first geographic location and
identifies (1108) a second 1nstance of the database at a second
geographic location. In some embodiments, the second geo-
graphic location 1s distinct from the first location (1110). In
some embodiments, a third instance of the database 1s 1den-
tified (1112) at a third geographic location, which 1s distinct
from the first and second geographic locations. In some
embodiments, there are four or more 1nstances of the data-
base. In some embodiments, two or more instances of the
database reside at the same geographic location. One reason
for having multiple instances at the same geographic site 1s to
provide for maintenance zones. In some embodiments, a
single data center has multiple maintenance zones, and each
such zone comprises an 1stance in the distributed database
system. In some embodiments, when an istance 1s going to
be taken down for maintenance, the data 1s replicated to one or
more other instances beforechand, which may be other
instances at the same data center.

[0291] For example, there may be single istances of the
database 1n Atlanta, Seattle, and Los Angeles, and two
instances of the database in Boston. In some embodiments,
there are mstances of the database on every continent except
Antarctica, and even some instances on 1slands. The disclosed
distributed storage system imposes no limit on the number or
location of instances.
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[0292] To facilitate efficient replication, changes to the dis-
tributed database are tracked as deltas (1114). Each delta has
a row 1dentifier that i1dentifies the piece of data modified
(1116). Each delta also has a sequence identifier that specifies
the order in which the deltas are applied to the data (1118).
The sequence 1dentifiers are globally unique throughout the
distributed storage system, so there 1s no ambiguity about the
order in which the deltas are applied to the data. In some
embodiments, the sequence identifier comprises (1120) a
timestamp and a unique tie breaker value that 1s assigned
based on hardware and/or soitware at each instance. In some
embodiments, the timestamp specifies the number of micro-
seconds after a designated point of time 1n the past. In some
embodiments, the tie breaker value 1s computed based on one
or more of the following values: an identifier of a physical
machine at the instance, such as a unique serial number or a
network interface card (NIC) address; an instance 1dentifier; a
process 1d of a specific process running at the instance (e.g., a
UNIX process ID assigned to the database process). Because
the tie-breaker 1s a unique value assigned to each instance, the
combination of a timestamp and the tie breaker provides a
sequence 1dentifier based on time, but guaranteed to be
unique.

[0293] The time clocks at each instance are not guaranteed
to be synchronized to the microsecond and thus the ordering
defined by the sequence 1dentifiers 1s not guaranteed to match
exactly what happened. However, 1f two changes to the same
metadata 1tem 600 occur about the same time at two distant
locations on the globe (e.g., Los Angeles and Paris), the exact
order 1s umimportant. Having a well-defined unique order that
will be applied to every instance of the database 1s the more
relevant issue, and this 1s provided by sequence 1dentifiers.
Moreover, 1n embodiments that use a timestamp or something
similar to create the sequence 1dentifiers, the sequence 1den-
tifiers are 1n the right time sequence order virtually all of the
time because multiple changes to the same metadata rarely
occur at the same time at two distinct 1nstances.

[0294] Fach delta includes an instance 1dentifier (1122) as

well. Each instance 1s responsible for pushing out 1ts changes
(1.., deltas) to all of the other instances, so each instance must
be ableto recognize the deltas that it created. In some embodi-
ments, the instance identifier 1s saved as part of the data
structure for each individual delta. In other embodiments, the
association between deltas and instances 1s stored differently.
For example, deltas may include a bit flag that indicates which
deltas were created at the current instance. In other embodi-
ments, the instance identifier 1s not stored as a separate data
clement because 1t 1s stored as part of the sequence 1dentifier,
or can be readily derived from the sequence 1dentifier.

[0295] The replication process 1100 determines (1124)
which deltas are to be sent to the second instance using a
second egress map 134 at the first instance, where the second
egress map specifies which combinations of row identifier
and sequence 1dentifier have been acknowledged as recerved
at the second 1nstance. An egress map 134 can be stored 1n a
variety of ways, as 1llustrated 1n FIGS. 14A and 14B. FIG.
14B 1llustrates a map that might be used 1f the egress map
were stored 1n a typical database. In this example, each row
represents a single delta that 1s to be transmitted to a single
destination. The destination instance 1412 specifies to what
instance the delta has been (or will be) sent. The row 1dentifier
1414 and sequence 1dentifier 1416 specily the row identifier
and sequence 1dentifier of a delta. In some embodiments,
presence of a row in this egress table indicates that the delta
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has been acknowledged as recerved at the destination
istance. In other embodiments, there 1s an additional field,
such as “acknowledged,” which 1s updated when the deltas
are acknowledged. In these embodiments, rows may be
inserted 1nto the egress table as soon as deltas are created, or
prior to transmission of the deltas to destination instances. In
some embodiments, there 1s a separate egress table for each
destination instance, so the rows in each egress table do not
need to specily a destination instance.

[0296] Although the egress table 1n FIG. 14B 1s conceptu-
ally simple, 1t consumes considerable resources, both in time
and disk space. In some embodiments, a structure similar to
the one shown 1n FIG. 14 A may be used. In the egress table
134 shown 1n FI1G. 14 A, each record specifies a two dimen-
sional rectangle of deltas. In one dimension, the start row
1404 and end row 1406 specily the beginming and ending of
a range ol row 1dentifiers. In a second dimension, the start
sequence 1408 and end sequence 1410 specity the beginning,
and ending of a range of sequence i1dentifiers. Although this
two dimensional region could theoretically contain a very
large number of deltas, this two dimensional region 1s actually
sparse for three reasons. First, within the continuous range of
row 1dentifiers, few of the rows will actually have any
changes. Second, very few of the potential sequence 1denti-
fiers within the range are actually used. For example, an
exemplary timestamp used to form sequence identifiers uses
microseconds, but there are not changes to metadata occur-
ring every microsecond. Third, each sequence 1dentifier that
1s used applies to a single delta, and that single delta applies to
a unique row of data.

[0297] In some embodiments that use egress maps similar
to the one depicted 1n FIG. 14 A, there 1s no overlap between
distinct rows 1n the table. In these embodiments, each delta
corresponds to a unique record 1n the egress table for each
destination instance. In other embodiments, overlapping rect-
angles are allowed. Even when the same delta 1s transmuitted
to another instance multiple times, it will only be inserted one
time, so multiple acknowledgements for the same delta donot
indicate an error condition.

[0298] In some embodiments, there 1s a separate egress
table for each destination 1instance, so the rows in each egress
table do not need to specily a destination instance. The usage
of egress tables 1s described 1n more detail below with respect

to FIGS. 15A-15B.

[0299] Attention 1s directed back to the replication process
1100, which continues 1n FIG. 11B. In some embodiments,
the replication process 1100 determines (1126) which deltas
are to be sent to the third instance using a third egress map at
the first instance, where the third egress map specifies which
combinations of row 1dentifier and sequence 1dentifier have
been acknowledged as received at the third instance. This
process 1s analogous to the process used to determine which
deltas to send to the second instance.

[0300] The use of “second” 1n “second egress map” and
“third” within “third egress map™ are solely to i1dentily a
specific egress map, and do not imply or suggest the existence
of a first egress map. This same use of “second” and “third”
appears below with respect to transmission matrices as well.

[0301] Thereplicationprocess 1100 builds (1128) a second
transmission matrix for the second instance that identifies
deltas that have not yet been acknowledged as received at the
second 1nstance. In some embodiments, the replication pro-
cess 1100 selects a range of row 1dentifiers, and manages all
deltas that correspond to rows with row 1dentifiers within the
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specified range, regardless of sequence identifier. The selec-
tion without regard to sequence identifier 1s equivalent to
selecting a range of sequence 1dentifiers from O (or the lowest
value) to the highest sequence 1dentifier currently in use. This
1s a two dimensional rectangle that contains all possible deltas
for the rows contained 1n the rectangle. Because this large
rectangle contains all possible deltas of interest, and the
egress map 134 indicates which deltas have already been
transmitted to the second instance and acknowledged, the
difference (1.e., the set-theoretic difference) 1dentifies the set
to send to the second instance. This process 1s described in

more detail with respect to FIGS. 15A-15B below.

[0302] In some embodiments, the transmission matrix 1s
built using information from the egress map about what deltas
have been acknowledged as received by the second 1nstance.
In this case, 1t 1s possible (and sometimes desirable) to re-send
deltas that have already been transmitted to the second
instance. In some cases resending 1s usetul because there was
a failure at some point in the previous attempt (e.g., the
transmission did not reach the destination, the destination was
down and therefore could not recerve the transmission, there
was a failure at the destination in the middle of processing the
deltas, or an acknowledgement was sent back but never
received at the first instance). Even 1f a previous transmission
was fully or partially incorporated into the destination
instance, re-sending the deltas does not create a problem
because only the missing deltas will be inserted. When the
re-sent transmission 1s complete, an acknowledgement will
be sent to the first instance for the entire batch of deltas,
potentially including some deltas that were already 1ncorpo-
rated 1nto the second 1nstance but not yet acknowledged.

[0303] In some embodiments, the replication process
builds (1130) a third transmission matrix for the third instance
that identifies deltas that have not yet been acknowledged as
received at the third instance. This process 1s analogous to
building (1128) the second transmission matrix as described
above.

[0304] Once transmission matrices have been created for
multiple instances, the transmission matrices and their desti-
nations can be modified 1 several ways to better utilize
resources. In this context, network bandwidth 1s one 1mpor-
tant resource that 1s both limited and costly. One simple
example 1s 1llustrated 1n FI1G. 16. In this example, suppose the
transmission matrices to the second and third instances are
the same, and suppose the deltas corresponding to these trans-
mission matrices use one unit of bandwidth. The total cost
would be $5+87=%12 ifthe deltas were transmitted directly to
the second and third instances using network links 104-8 and
104-7. However, 11 the deltas were transmitted to Instance 2
using network link 104-8, and then on to Instance 3 using
network link 104-9, the total cost would be only $5+$4=%$9. In
general, other factors would be considered, including the
availability of the network bandwidth, the reliability of the
network links, processing power at each of the instances, eftc.

[0305] The previous example was based on the assumption
that the same transmission matrices applied to both the sec-
ond and third instances. Although this 1s commonly true, they
may be diflerent. However, even when they are different, the
difference 1s often small, so modifying the transmission
matrices may produce new ones that are more efficient, as
explained 1 more detail with respect to FIGS. 15A-15B
below.

[0306] Insome embodiments, the replication process 1100
modifies (1132) the transmission matrices for the second and

Aug. 11,2011

third instances to form one or more revised transmission
matrices. The deltas 1dentified 1n each revised transmission
matrix are transmitted (1132) to a respective location to
update the mstance at the respective location, and deltas 1den-
tified 1n at least one of the revised transmission matrices are
transmitted to the second location for subsequent transmis-
sion from the second location to the third location. In some
embodiments, the modification of the transmission matrices
1s based on analysis of the total cost for transmitting the deltas
to the second and third geographic locations (1134), and
includes assigning (1134) a cost for transmissions between
cach pair of geographic locations. In some embodiments, the
modification to the transmission matrices includes determin-
ing (1136) bandwidth availability between the geographic
locations of the instances. In some circumstances, the trans-
mission matrices for the second and third instances are the
same. Sometimes when this occurs, there 1s only one revised
transmission matrix, which 1s the same as the transmission
matrices, and deltas identified in the revised transmission
matrix are transmitted to the second geographic location for
subsequent transmission to the third geographic location
(1138). However, having two (or more) transmission matrices
that are the same does not necessarily lead to revising the
transmission matrices, or sending the deltas to one instance
for subsequent forwarding to another instance. For example,
if the cost of network link 104-9 in FIG. 16 were $10/Unit of
Bandwidth instead of $4/Unit as depicted in the figure, then it
would be more cost effective to transmit the deltas to instance
2 and 1nstance 3 directly.

[0307] The replication process 1100 transmits (1140) del-
tas 1dentified 1n the second transmission matrix to the second
instance. If the process does not fail, the first instance ulti-
mately recerves (1142) acknowledgement that transmitted
deltas have been incorporated 1n the second instance. The
replication process updates (1146) the second egress map to
indicate the acknowledged deltas. In some embodiments, the
first stance receives (1144) acknowledgement that deltas
transmitted to the third instance, either directly or indirectly
via the second instance, have been incorporated into the third
instance. When the first instance receives (1144) acknowl-
edgement regarding deltas transmitted to the third instance,
the replication process updates (1148) the third egress map to
indicate acknowledged deltas.

[0308] FIGS. 12A and 12B illustrate an exemplary com-
paction process 1200 that compacts (1202) data for rows 1n a
distributed database with a plurality of istances. Each
instance of the database stores (1204) data on one or more
server computers, and each server computer has (1204)
memory and one or more processors. Each row 1n the distrib-
uted database has (1206) a base value and a set of zero or more
deltas as illustrated 1n FIG. 6. Each delta specifies (1208) a
change to the base value, includes a sequence 1dentifier that
specifies (1208) the order in which the deltas are to be applied
to the base value, and specifies (1208) the instance where the
delta was created. In some embodiments, each sequence 1den-
tifier comprises (1210) a timestamp and a unique tie breaker
value that 1s assigned based on hardware and/or software at
cach instance.

[0309] The compaction process 1200 identifies (1212) a
first 1stance of the distributed database. Compaction will
occur at this mnstance. In some embodiments, the compaction
process 1200 1dentifies (1214) a plurality of other instances of
the distributed database. In some embodiments, one or more
ol the other 1nstances are at other geographic locations dis-
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tinct from the geographic location of the first instance. The
compaction process 1200 selects (1216) a set of one or more
row 1dentifiers that identily rows of data in the distributed
database. In some embodiments, the set of rows comprises a
contiguous range of TOWS,

[0310] Thecompaction process 1200 selects (1218) a com-
paction horizon for the selected set of one or more row 1den-
tifiers. In some embodiments, the compaction horizon 1s a
sequence 1dentifier of a delta for a row corresponding to a row
identifier 1n the selected set. The compaction horizon has the
same data format as sequence identifiers so that sequence
identifiers can be compared to the compaction horizon. L.e.,
cach sequence identifier 1s erther less than the compaction
horizon, equal to the compaction horizon, or greater than the
compaction horizon. The compaction horizon need not be

equal to any of the sequence identifiers that are assigned to
deltas.

[0311] In some embodiments, the compaction horizon
must satisfy one or more criteria. In some embodiments,
deltas at the first instance with corresponding sequence 1den-
tifiers less than or equal to the compaction horizon must have
been transmitted to all other appropriate mnstances (1220):
specifically, all deltas that (1) were created at the first instance,
(11) are for rows corresponding to row identifiers in the
selected set of one or more row 1dentifiers, and (111) have
sequence 1dentifiers less than or equal to the compaction
horizon, have been transmitted to and acknowledged by all of
the other instances that maintain data for the corresponding,
row 1dentifiers (1220). In some embodiments, the transmis-
s1on of deltas to other mstances 1s verified using one or more
egress maps (which are described above with respect to the
replication process 1100). In some embodiments, the first
instance must have received all deltas from other 1nstances
that are relevant to the selected set of rows and have sequence
identifiers less than or equal to the compaction horizon
(1222): specifically, all deltas that (1) were created at
instances 1n the plurality of other instances, (i1) are for rows
corresponding to row 1dentifiers 1n the selected set of one or
more row 1dentifiers, and (111) have sequence 1dentifiers less
than or equal to the compaction horizon, have been received
at the first instance (1222). In some embodiments, receipt of
deltas from other instances 1s verified using one or more
ingress maps (which are described in more detail below with
respectto FIGS. 14C and 14D). The selection of a compaction
horizon 1s also described 1n more detail below with respect to
FIG. 17.

[0312] Adter the compaction horizon is selected, the com-
paction process applies (1224), 1n sequence, all deltas for the
selected set of one or more row 1dentifiers that have sequence
identifiers less than or equal to the compaction horizon, to the
base value for the corresponding row 1dentifier. This 1s shown
graphically in FIG. 8, where data 1item 600 has original base
value 606A and set of deltas 608-1 to 608-35. In the example of
FIG. 8, the sequence 1dentifiers for the first four deltas are less
than or equal to the compaction horizon, but the fifth delta
608-5 has a sequence 1dentifier greater than the compaction
horizon. The compaction process applies (or merges) the
deltas with the original base value 606 A to create a new base
value 606B. The compaction process also deletes (1226) the
deltas that have been applied to the base value. In the example
in FI1G. 8, the first four deltas have been deleted, leaving only
the fifth delta 608-5 (which was greater than the compaction
horizon).
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[0313] FIG. 13 1illustrates an exemplary process 1300 for
reading (1302) a data item from a distributed database with a
plurality of data rows. Each row comprises (1304) a base
value and zero or more deltas that specily modifications to the
base value. This 1s illustrated in FIG. 6. The reading process
1s performed (1306) by one or more server computers, each
having memory and one or more processors.

[0314] The reading process 1300 recerves (1308) a request
from a client for a specified data item 600. The request
includes (1308) a row 1dentifier that identifies the data 1tem
600. The process 1300 reads (1310) the base value 606 for the
specified data item from the distributed database, and stores
(1310) the base value in memory. The process 1300 also reads
(1312) the deltas 608-1 to 608-L for the specified data item, 11
any, from the distributed database. Each delta includes (1314)
a sequence 1dentifier 704 that specifies the order 1n which the
deltas are to be applied to the base value. Typically there are
no deltas at all for any individual data item 600, so the value
for the data 1tem 1s just the base value 606.

[0315] The process 1300 applies (1316) the deltas 608 to
the base value stored 1n memory, 1n sequence, resulting in a
current base value stored in memory. Unlike compaction, the
reading process does not change the based value 606 stored in
the database. The current base value 1n memory 1s distinct
from the base value 606 in the database. When there are no
deltas for a data 1tem, there 1s no work to perform 1n applying
the deltas. As used herein, the operation of “applying deltas to
the base value” occurs even when there are no deltas. The
process returns (1318) the current base value stored in
memory to the client.

[0316] Because the read process 1300 reads and applies all
of the deltas, the reading time and disk space usage for the
deltas will increase over time. Therefore, some embodiments
utilize a compaction process 1200 as described above, which
merges deltas into the corresponding base values, which
reduces both disk space usage and the time required to read
data items.

[0317] FIGS. 14C and 14D provide exemplary data struc-
tures for ingress maps 136. Ingress maps 136 identily deltas
that have been received at an 1nstance from other instances.
The ingress map shown 1n FIG. 14D 1s a typical map for use
in a database. Each record 1n the ingress map of FIG. 14D
represents a single delta. The mngress map 1includes the source
instance 1428, which specifies the original source of the delta.
As described above with respect to replication, transmissions
may be forwarded from one instance to another, so a delta
need not be received from the instance where the delta was
created. The ingress map tracks the original instance. Option-
ally, some embodiments also track the instance that transmiut-
ted the delta to the current instance.

[0318] Theingress map also includes a row 1dentifier 1430,
which specifies the row to which the delta applies, and a
sequence 1dentifier 1432, which 1s globally unique and speci-
fies the order 1n which the deltas are to be applied. In general,
an 1nstance 1s not aware of deltas created at other instances
until the deltas are received, so presence of a record 1n the
ingress table indicates receipt of the delta. In alternative
embodiments, the ingress table includes a field such as
“received” to indicate that the delta has been recetved. For
large scale distributed databases, the ingress map of F1G. 14D
1s 1neflicient both 1n 1ts use of disk space and in the time
required to 1nsert a very large number of records. Therelore,
in some embodiments, an ingress map has a data structure
similar to the one 1llustrated 1n FIG. 14C.
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[0319] The ingress map in FIG. 14C specifies two dimen-
sional rectangles of deltas, so each individual record 1denti-
fies a very large set of deltas. In one dimension, each record 1in
the 1ngress map specifies a start row 1420 and an end row
1422, which specifies a contiguous range of row 1dentifiers. In
a second dimension, the ingress map 1n FIG. 14C specifies a
start sequence 1424 and an end sequence 1426, which creates
a contiguous range of sequence identifiers. In some embodi-
ments, deltas are included in the sequence range 11 a delta has
a sequence 1dentifier greater than or equal to the start
sequence and less than or equal to the end sequence. In other
embodiments, there 1s a strict inequality on the upper end, so
that deltas are included only when the sequence identifier 1s
strictly less than the end sequence. (The strict mmequality
could also be placed on the lower end. ) In these latter embodi-
ments, the start sequence 1424 of one record 1s equal to the
end sequence of the previous record. In still other embodi-
ments, records 1n the ingress table do not specily a start
sequence 1424, making the assumption that the starting
sequence for one record 1s the end sequence of the previous
record. In some embodiments, the imgress table includes an
identifier of the source instance. In other embodiments, there
1s a separate ingress table for each other instance, so the
source 1nstance need not be saved in the table.

[0320] An ingress map may be used in the compaction
process to 1dentify which deltas have been received from
other 1nstances. In some embodiments, the sets of row 1den-
tifiers used 1n transmissions and compaction are the same, and
are contiguous ranges that are reused. See FIGS. 15A-15B
and the associated discussion below. Because the same start
row 1420 and end row 1422 are reused, the compaction pro-
cess can read the ingress records for these start and end rows,
and determine 11 there are any sequence gaps. This 1s 1llus-

trated in F1G. 17.

[0321] FIGS. 15A and 15B 1llustrate a process for develop-
ing a plan to transmit deltas to other instances 1n an efficient
manner according to some embodiments. In these embodi-
ments, a range of row 1dentifiers 1s selected, beginning with
transmission start row 1504 and ending with transmission end
row 1506. In some embodiments, the transmission start row
1504 and end row 1506 match the start row 1404 and end row
1406 used 1n the egress maps 1516-2 and 1516-3. In addition
to the selection of row 1dentifiers, the process determines the
highest sequence 1dentifier 1514 that has been used for any
deltas at the first instance. At this point, all deltas within the
transmission rectangle 1518 should be sent to the other
instances.

[0322] Because many of the deltas have already been trans-
mitted to other imnstances (and acknowledged as received), the
actual transmission matrices (also known as Shapes to Send)
are much smaller. The egress maps 1516-2 and 1516-3 1den-
tify which deltas have already been transmitted and acknowl-
edged, so the deltas 1n each egress map are “subtracted” from
the transmission rectangle 1518 to create the transmission
matrices 1508-2 and 1508-3 for each of the other instances.
As 1llustrated 1n FIG. 15A, the egress map 1516-3 includes
individual egress records 1510-1, 1510-2, 1510-3, etc., which
jointly 1dentity the deltas already sent to instance 3 and
acknowledged. The egress records are stored in an egress
table 134 such as the one illustrated 1n FIG. 14C. Subtracting,
the individual egress records 1510-1, etc. from transmission
rectangle 1518 yields transmission matrix 1508-3.

[0323] The egress map 1516-2 to instance 2 1s a little dii-
ferent in the 1llustration because there 1s a notch 1520 of deltas
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that have not been acknowledged as received at instance 2.
This may occur, for example, when the start row 1504 and end
row 1506 for the transmission do not match the start row 1404
and end row 1406 of records 1n the egress map. The transmis-
sion matrix 1508-2 for mstance 2 1s thus not a simple rect-
angle. The original transmission plan 1512-1 1s thus to trans-
mit matrix A 1508-2 to instance 2 and transmit matrix B
1508-3 to instance 3. In some instances, this transmission
plan will be used. However, other transmission plans are
contemplated, and the costs for each of the transmission plans
are compared. In this context, “costs” come 1n many forms:
the actual dollar cost for use of certain bandwidth, the oppor-
tunity cost for using bandwidth that could have been used for
another process, the risk associated with network links
(which could incur other costs to retransmit or resolve), the
cost 1n time it takes to transmit deltas to other instances, etc.

[0324] To mvestigate other transmission plans, several set

theoretic operations are performed on the transmission matri-
ces A1508-2 and B 1508-3. In some embodiments, difference

A-B 1508-4 and difference B—A 1508-5 are computed. In the
example illustrated in FIGS. 15A and 15B, A-B 1s a small
transmission matrix C 1508-4, and B-A 1s the empty set
1508-5. In some embodiments, the intersection AUB 1508-6
1s computed, which 1n this case yields a large revised trans-
mission matrix D. Transmission matrix C 1508-4 only needs
to go to mstance 2, but transmission matrix D 1508-6 needs to
g0 to instance 2 and instance 3. If the cost of transmitting data
between 1nstance 2 and instance 3 1s lower than the cost of
transmitting data from instance 1 to instance 3, then a good
option 1s transmission plan 1512-2, which transmits the deltas
for matrix D 1508-6 to instance 2, which incorporates the data
and forwards the deltas for matrix D to instance 3. The deltas
for matrix C 1508-4 are transmitted only to instance 2. A
simple cost analysis example 1s illustrated mn FIG. 16,
described above.

[0325] Because the data in matrix D 1506 must go to
instance 2 and instance 3 1n the illustration, an alternative
transmission plan 1512-4 sends the deltas for matrix D
1508-6 to 1instance 3, which incorporates the deltas and trans-
mits them to instance 2. This alternative transmission plan
may be more cost effective if the cost of bandwidth directly
from 1nstance 1 to 1nstance 2 1s more costly than bandwidth
from 1nstance 1 to instance 3. In some embodiments, “over-
transmission’ 1s permitted, as illustrated 1n transmission plan
1512-3. In this transmission plan, transmission matrix A
1508-2 1s sent to 1nstance 2 (as needed), then transmitted to
instance 3, even though it contains an extra portion of deltas
that are already at the third instance. Generally, intentional
over-transmission of deltas 1s undesirable, but if the over-
transmission 1s small and there are suificient other benefits to
the transmission plan, 1t may be a good option.

[0326] FIG. 17 illustrates how mgress maps 1712-2, 1712-
3, and 1712-4 at instance 1 may be used 1n compaction opera-
tion 1222. Ingress map 1712-2 identifies deltas received from
instance 2, and so on. In some embodiments, the ingress maps
all use the same ranges of row 1dentifiers, as depicted by start
row 1420 and end row 1422 1n FIG. 17. In other embodi-
ments, or under certain circumstances, different ranges may
be used. In fact, different ranges may be used even within a
single ingress map 136. Each rectangle 1in an egress map, such
as rectangles 1714-1, 1714-2, and 1714-3 1n ingress map
1712-4, identifies a batch of deltas that was received. Typi-
cally, recerved batches arrive 1n order as illustrated by ingress

records 1714-1, 1714-2, and 1714-3. In some embodiments,
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the start sequence of one batch 1s the end sequence of the
previous batch. In these embodiments, deltas are included in
a batch if there sequence identifiers are strictly greater than
the start sequence and less than or equal to the end sequence.
In other embodiments, the mngress map table saves only the
ending sequence, and each batch includes deltas that have
sequence 1dentifiers greater than the previous end sequence.
In some rare circumstances there are gaps in the ingress map
as 1llustrated by gap 1704 for ingress map 1712-3 1n FI1G. 17.
The gap 1704 shows a range of sequence 1dentifiers that have
not yet been recerved from instance 3.

[0327] To calculate a compaction horizon 610, the largest
received sequence 1dentifier for each mstance 1s determined.
For instance 2, the highest recetved sequence identifier 1s
1702-2, which 1s the end sequence of the most recent trans-
mission from instance 2. For instance 4, the highest recerved
sequence 1dentifier 1s 1702-4, which 1s the end sequence of
the most recent transmission from instance 4. For instance 3,
the highest sequence 1dentifier recetved 1s 1706 from the most
recent transmission, but the gap 1704 prevents compaction
beyond point 1702-3, which represent the highest usable
sequence 1dentifier. The sequence 1dentifiers 1702-2, 1702-3,
and 1702-4 1dentity the highest usable sequence 1dentifiers
for each individual 1nstance, so the compaction horizon can-
not be greater than any of these values. For example, there
may be deltas at instance 2 with sequence identifiers greater
than 1702-2, so the compaction horizon cannot be greater
than the sequence 1dentifier at 1702-2. Therefore, the com-
paction horizon 1s less than or equal to min(1702-2, 1702-3,
1702-4). In the example 1llustrated i FIG. 17, the minimum
of these 1s 1702-2, so the compaction horizon 1s at most the
sequence 1dentifier at 1702-2. Of course the compaction hori-
zon 1s also limited based on what deltas have been transmaitted
from 1nstance 1 to the other instances.

[0328] In some embodiments, a process analogous to the
process just described for using ingress maps in the calcula-
tion o a compaction horizon also applies to the use of egress
maps. This 1s operation 1220 in FIG. 12B. For each instance
other than the current instance, a maximum sequence identi-
fier 1s determined, and the compaction horizon 1s limited by
cach of these. This 1s similar to the compaction horizon being
limited to the sequence identifiers 1702-2, 1702-3, and
1702-4 1n the ingress maps.

[0329] In the embodiments just described, deltas with
sequence 1dentifiers less than or equal to the compaction
horizon are merged with the corresponding base values. In
alternative embodiments, the deltas are merged only when
their sequence 1dentifiers are strictly less than the compaction
horizon. In these embodiments, the compaction horizon 1s
selected slightly differently. Specifically, the compaction

horizon 1s selected to be a sequence 1dentifier S such that, for
all S'<S,

[0330] (a) Every delta for relevant entries with sequence
identifier S' has been transmitted to every other mstance
that potentially has an interest in these entries (and the
other 1nstances have acknowledged receipt of the del-
tas), and

[0331] (b) There 1s certainty that no delta will ever arrive
in the future for one of these relevant entries with
sequence 1dentifier S'. In particular, (1) no delta with
such a sequence 1dentifier will be created at the current
instance, and (2) all deltas for the relevant entries with
sequence 1dentifier S' have already been received locally
and been acknowledged.
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[0332] The manner of ensuring these conditions depends
on the immplementation. In some embodiments, where
sequencer 1dentifiers are assigned by a blobmaster 204, the
compaction horizon S can be calculated using “first missing
sequence 1dentifiers™ 1n the ingress maps 136 and egress maps
134. Some embodiments define a function called ‘FirstMiss-
ingSequencer’, which returns the least sequence identifier S
that 1s not an element of an ingress or egress map. In this way,
condition (a) 1s satisfied 1 S<=the first missing sequence
identifier for each egress map. Condition (b)(2) 1s satisfied 1f
S<=the first missing sequence 1dentifier for each ingress map.
And (b)(1) follows from (a) because the sequence 1dentifiers
generated at an instance are monotonically increasing. There-
fore, the mimimum of the various first missing sequencer
identifiers provides an exemplary compaction horizon. One
of ordinary skill 1n the art would recognize that other embodi-
ments could compute the compaction horizon differently.

[0333] FIGS. 18A-18E illustrate data structures that are
used to store metadata 1n some embodiments. In some
embodiments, these data structures exist within the memory
space ol an executing program or process. In other embodi-
ments, these data structures exist in non-volatile memory,
such as magnetic or optical disk drives. In some embodi-
ments, these data structures form a protocol butler, facilitat-
ing transier of the structured data between physical devices or
processes. See, for example, the Protocol Bullfer Language
Guide, available at hittp://code.google.com/apis/protocol-
butters/docs/proto.html.

[0334] The overall metadata structure 1802 includes three
major parts: the data about blob generations 1804, the data
about blob references 1808, and i1nline data 1812. In some
embodiments, read tokens 1816 are also saved with the meta-
data, but the read tokens are used as a means to access data
instead of representing characteristics of the stored blobs.

[0335] The blob generations 1804 can comprise one or
more “generations” of each blob. In some embodiments, the
stored blobs are immutable, and thus are not directly editable.
Instead, a “change” of a blob 1s implemented as a deletion of
the prior version and the creation of a new version. Each of
these blob versions 1806-1, 1806-2, ctc. 1s a generation, and
has 1ts own entry. In some embodiments, a fixed number of
generations are stored before the oldest generations are physi-
cally removed from storage. In other embodiments, the num-
ber of generations saved 1s set by a blob policy 326. (A policy
can set the number of saved generations as 1, meaning that the
old one 1s removed when a new generation 1s created.) In
some embodiments, removal of old generations 1s intention-
ally “slow,” providing an opportunity to recover an old
“deleted” generation for some period of time. The specific
metadata associated with each generation 1806 1s described
below with respect to FIG. 18B.

[0336] Blob references 1808 can comprises one or more
individual references 1810-1, 1810-2, etc. Each reference 1s
an independent link to the same underlying blob content, and
cach reference has 1ts own set of access information. In most
cases there 1s only one reference to a given blob. Multiple
references can occur only 1if the user specifically requests
them. This process 1s analogous to the creation of a link (a
hard link) 1n a desktop file system. The mformation associ-
ated with each reference 1s described below with respect to

FIG. 18C.

[0337] Inline data 1812 comprises one or more inline data
items 1814-1, 1814-2, etc. Inline data 1s not “metadata”—it 1s
the actual content of the saved blob to which the metadata




US 2011/0196900 A1l

applies. For blobs that are relatively small, access to the blobs
can be optimized by storing the blob contents with the meta-
data. In this scenario, when a client asks to read the metadata,
the blobmaster returns the actual blob contents rather than
read tokens 1816 and information about where to find the blob
contents. Because blobs are stored 1n the metadata table only
when they are small, there 1s generally at most one inline data
item 1814-1 for each blob. The information stored for each
inline data 1tem 1814 1s described below 1n FIG. 18D.

[0338] As illustrated in the embodiment of FIG. 18B, each
generation 1806 includes several pieces of iformation. In
some embodiments, a generation number 1822 (or generation
ID) uniquely identifies the generation. The generation num-
ber can be used by clients to specily a certain generation to
access. In some embodiments, 1f a client does not specity a
generation number, the blobmaster 204 will return informa-
tion about the most current generation. In some embodi-
ments, each generation tracks several points 1n time. Specifi-
cally, some embodiments track the time the generation was
created (1824). Some embodiments track the time the blob
was last accessed by auser (1826). In some embodiments, last
access refers to end user access, and 1n other embodiments,
last access 1ncludes administrative access as well. Some
embodiments track the time the blob was last changed (1828).
In some embodiments that track when the blob was last
changed, changes apply only to metadata because the blob
contents are immutable. Some embodiments provide a block
flag 1830 that blocks access to the generation. In these
embodiments, a blobmaster 204 would still allow access to
certain users or clients who have the privilege or seeing
blocked blob generations. Some embodiments provide a pre-
serve flag 1832 that will guarantee that the data 1n the gen-
eration 1s not removed. This may be used, for example, for
data that 1s subjectto a litigation hold or other order by a court.
In addition to these individual pieces of data about a genera-
tion, a generation has one or more representations 1818. The
individual representations 1820-1, 1820-2, etc. are described
below with respect to FIG. 18E.

[0339] FIG. 18C 1llustrates a data structure to hold an 1ndi-
vidual reference according to some embodiments. Each ref-
erence 1810 includes a reference 1D 1834 that uniquely 1den-
tifies the reference. When a user 302 accesses a blob, the user
application 308 must specily a reference 1D 1n order to access
the blob. In some embodiments, each reference has an owner
1836, which may be the user or process that created the
reference. Fach reference has its own access control list
(“ACL”), which may specily who has access to the blob, and
what those access rights are. For example, a group that has
access to read the blob may be larger than the group that may
edit or delete the blob. In some embodiments, removal of a
reference 1s intentionally slow, 1n order to provide for recov-
ery from mistakes. In some embodiments, this slow deletion
of references 1s provided by tombstones. Tombstones may be
implemented 1n several ways, including the specification of a
tombstone time 1840, at which point the reference will be
truly removed. In some embodiments, the tombstone time 1s
30 days after the reference 1s marked for removal. In some
embodiments, certain users or accounts with special privi-
leges can view or modily references that are already marked
with a tombstone, and have the rights to remove a tombstone
(1.e., revive a blob).

[0340] In some embodiments, each reference has its own
blob policy, which may be specified by apolicy 1D 1842. The
blob policy specifies the number of copies of the blob, where
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the copies are located, what types of data stores to use for the
blobs, etc. When there are multiple references, the applicable
“policy” 1s the union of the relevant policies. For example, 1f
one policy requests 2 copies, at least one of which 1s 1n
Europe, and another requests 3 copies, at least one of which 1s
in North America, then the minimal union policy 1s 3 copies,
with at least one 1n Europe and at least one 1n North America.
In some embodiments, individual references also have a
block flag 1844 and preserve flag 1846, which function the
same way as block and preserve tlags 1830 and 1832 defined
for each generation. In addition, a user or owner of a blob
reference may specily additional information about a blob,
which may include on disk information 1850 or in memory
information 1848. A user may save any mnformation about a

blob 1n these fields.

[0341] FIG. 18D illustrates inline data 1tems 1814 accord-

ing to some embodiments. Each inline data item 1814 1is
assigned to a specific generation, and thus includes a genera-
tion number 1822. The inline data item also specifies the
representation type 18352, which, 1n combination with the
generation number 1822, umiquely 1dentifies a representation
item 1820. (See FIG. 18E and associated description below.)
In embodiments that allow multiple inline chunks for one
blob, the inline data item 1814 also specifies the chunk ID
1856. In some embodiments, the inline data item 1814 speci-
fies the chunk offset 1854, which specifies the offset of the
current chunk from the beginning of the blob. In some
embodiments, the chunk offset 1s specified 1n bytes. In some
embodiments, there 1s a Preload Flag 1858 that specifies
whether the data on disk 1s preloaded into memory for faster
access. The contents 1860 of the inline data 1item 1814 are
stored with the other data elements.

[0342] FIG. 18E illustrates a data structure to store blob
representations according to some embodiments. Represen-
tations are distinct views of the same physical data. For
example, one representation of a digital image could be a high
resolution photograph. A second representation of the same
blob of data could be a small thumbnail 1mage corresponding
to the same photograph. Each representation data item 1820
specifies arepresentation type 1852, which would correspond
to “high resolution photo” and “thumbnail image” 1n the
above example. The Replica Information 1862 identifies
where the blob has been replicated, the list of storage refer-
ences (1.¢., which chunk stores have the chunks for the blob).
In some embodiments, the Replica Information 1862
includes other auxiliary data needed to track the blobs and
their chunks. Each representation data item also includes a
collection of blob extents 1864, which specily the oflset to

each chunk within the blob, to allow reconstruction of the
blob.

[0343] When a blob 1s mitially created, i1t goes through
several phases, and some embodiments track these phases 1n
cach representation data item 1820. In some embodiments, a
finalization status field 1866 indicates when the blob 1s
UPLOADING, when the blob 1s FINALIZING, and when the
blob 1s FINALIZED. Most representation data items 1820
will have the FINALIZED status. In some embodiments,
certain finalization data 1868 1s stored during the finalization
Process.

[0344] FIG. 19 1llustrates a process 1900 of utilizing tapes
as a direct storage medium 1n a distributed storage system
(1902). The method 1s implemented on one or more servers,
cach having one or more processors and memory (1904).
Initially, a request 1s recerved (1906) to store a blob of data 1n
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a tape store. In some embodiments, these requests are limited
to background replication because reading and writing to tape
1s a comparatively slow process. The request includes (1908)
the contents of the blob to be stored. When the request 1s
received, the contents of the blob are written (1910) to a tape
store bulfer. In some embodiments, a tape store builer com-
prises non-volatile memory, but 1n other embodiments, a tape
store bulfer may comprise volatile memory or a combination
ol volatile and non-volatile memory.

[0345] The blobs in the tape store butler are written (1912)
to tape when a predefined condition 1s met. In some embodi-
ments, the predefined condition 1s that the tape store builer
f1lls to a first threshold percentage of capacity (1914). In some
embodiments, the predefined condition 1s that a predefined
length of time has passed since the last time content was
written from the tape store buller to tape (1916). Some
embodiments have a predefined condition that combines both
percent of capacity and time (e.g, when the butfer fills to a
certain percent of capacity or a certain amount of time has
clapsed).

[0346] At some point 1n the future, a request 1s recerved
(1918) from a client to read the blob of data from the tape
store. In some embodiments, the request must come from
background replication. When the read requests reach a cer-
tain threshold, the contents of the blob are read from tape. In
some embodiments, the request threshold 1s based on the
number of read requests. In some embodiments, the request
threshold 1s based on the number of bytes in the read requests.
In some embodiments, the request threshold i1s based on the
amount of time elapsed since the first request, or the weighted
average wait time for multiple requests (e.g., weighted by the
s1ze of the blob, or a priority level). In some embodiments, the
request threshold includes a combination of above (e.g, total

requested bytes or maximum length of time).

[0347] The bytes that are read from tape are written to
another tape store buffer (1922). The tape store buffer for
reading data from tape may be the same bufler used for
writing data to tape, or partitions of the same computer read-
able medium. In some embodiments, the two bullers are
distinct, and may comprise distinct media. For example, 1n
some embodiments, the media used for writing 1s more reli-
able than the media use for reading because data loss during
reading could be resolved by reading the data from tape again.
Once the blob has been written to the tape store builer, a
message 1s sent to the client indicating that the blob 1s avail-
able for reading.

[0348] FIG. 20 1llustrates a process 2000 for storing blobs
of data that incorporates content-based de-duplication. The
process 1s implemented (2002) on one or more servers, each
having memory and one or more processors. Process 2000
receives (2004) a first blob, and splits (2006) the first blob into
one or more chunks. A small blob typically consists of a
single chunk, but a large blob may be split into a large number
of chunks. For example, a one gigabyte blob may be split into
roughly 100 individual chunks of 10 megabytes. In some
embodiments, the splitting into chunks creates chunks of a
fixed size (except for the last chunk, which holds the remain-
ing bytes of the blob). In other embodiments, chunks are
selected to optimize processing or storage. For example,
chunks may be selected in order to match chunks that are
already stored, to take advantage of the content-based de-
duplication described here. For each chunk, the process 2000
computes (2008) a content fingerprint as a function of the
chunk contents. In some embodiments, the content finger-
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print 1s a fixed-length bit string. In some embodiments, the
content fingerprint 1s a 128 bit hash value. In some embodi-
ments, the content fingerprint 1s a 256 bit (or larger) hash
value. In some embodiments, the content fingerprint 1s a
cryptographic hash. Some embodiments use MD4, MD?3,
SHA-1, or SHA-2 hash functions to compute the content
fingerprint.

[0349] The process 2000 stores (2010) the first chunks in a
chunk store. The process 2000 also stores (2012) the content
fingerprints of the first chunks 1n a store distinct from the
chunk store. In some embodiments, the content fingerprints
are stored with the metadata for each blob. In other embodi-
ments, the bitpusher 210 stores content fingerprints in an
index to facilitate lookup.

[0350] The process 2000 receives (2014) a second blob,
and splits (2016) the second blob 1nto one or more chunks.
The process 2000 computes (2018) the content fingerprint for
cach of the second chunks. The process 2000 compares the
content fingerprints for each of the second chunks to previ-
ously saved content fingerprints.

[0351] For each second chunk whose content fingerprint
matches (2020) a content fingerprint of a chunk that1s already
stored, the respective second chunk i1s not stored (2024);
instead, the process 2000 stores (2022) a reference to the
existing stored chunk with matching content fingerprint.

[0352] For each second chunk whose content fingerprint
does not match (2026) a content fingerprint of any chunk that
1s already stored, the process 2000 stored the respective sec-

ond chunk 1n a chunk store.

[0353] The process of content-based de-duplication 1s also
described below with respect to FIG. 23. In general, chunks of
one blob may match chunks from a blob saved earlier. How-
ever, 1t 1s also possible for two or more chunks within a single
blob to have the same content (and thus have matching con-
tent fingerprints). In some embodiments, a chunk whose con-
tent fingerprint matches the content fingerprint of a chunk that
has already been stored will not be stored, regardless of
whether the earlier stored chunk 1s from the same blob or a
different blob. In addition, chunks from different generations
of the same blob may match. For example, a later generation
of a file may be nearly 1dentical to an earlier version, and thus
there may be multiple chunks that are the same. Although the
generations are conceptually different versions of the blob,
the storage space may overlap 11 some of the chunks are the
same across generations.

[0354] FIG. 21 illustrates a process 2100 of utilizing blob
representations. The process 2100 1s implemented (2102) on
one or more servers, each having memory and one or more
processors. The process receives (2104) a first representation
of a blob having a specified representation type. In some
embodiments, each blob has a default representation type 1f
the representation type 1s not specified. In some embodi-
ments, an empty string ““ ” denotes the default representation
type. The process 2100 stores (2106) the first representation
of the blob. In addition, the process 2100 stores (2108) meta-
data for the blob, including a name of the blob, the represen-

tation type, and a storage location for the first representation
of the blob.

[0355] The process 2100 later recerves (2110) a request to
create a second representation of the blob with a second
representation type. In some embodiments, a client requests
the second representation type using a remote procedure call.
Rather than send the entire blob back (over expensive net-
work bandwidth) to the client to build the second representa-
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tion, the second representation 1s created (2112) with the
second representation type at or near the data center where the
first representation of the blob 1s stored. The process stores
(2114) the second representation of the blob. The second
representation of the blob does not necessarily use the same
chunk store as the original representation of the blob. For
example, 11 the second representation 1s a thumbnail version
of a higher resolution first representation, the thumbnail may
be stored as an inline chunk, whereas the first representation
may be stored 1n a file system store or a BigTable store. When
the second representation 1s created, the metadata for the blob
1s updated (2116) to indicate the presence of the second
representation ol the blob with the second representation

type.
[0356] Subsequently, a client may request to read either

representation of the blob. In particular, the process 2100
receives (2118) a request from the clients for a copy of the
blob, and the request includes a specified representation type.
As noted above, some embodiments allow an empty string to
specily the default representation. In these embodiments, to
identify the non-default representation, the client must
specily the approprate representation type with a non-empty
string. In response, the process 2000 retrieves (2120) either
the first representation of the blob or the second representa-
tion of the blob. The retrieval corresponds (2120) to the rep-
resentation type requested by the client. The process 2100
then returns (2122) the retrieved representation of the blob to
the client.

[0357] The creation and retrieval of blob representation 1s
also described below with respect to FIGS. 24A-24C.

[0358] FIG. 22 1llustrates an exemplary process 2200 for
reading a blob of data. This process 1s also described below
with respect to FIG. 25. At a high level, this 1s a two-stage
process. First, find the metadata. Then, using the metadata,
find the actual blob and retrieve it.

[0359] The process 2200 executes (2202) at a client on a

computer with one or more processors and memory. The
process 2200 recerves (2204) a request from a user applica-
tion 308 for a blob. The process 2200 locates (2206) an
instance within the distributed storage system that 1s geo-
graphically close to the client. At this point there 1s no guar-
antee that the located instance has the requested blob or even
knows about the blob (i.e., has the metadata for the requested
blob). The client contacts (2208) a blob access module (e.g.,
a blobmaster) at the located 1nstance to request the metadata
for the requested blob. The request includes (2208) user
access credentials.

[0360] The client receives (2210) from the blob access

module a collection of metadata for the requested blob, and a
set of one or more read tokens. The metadata includes mfor-
mation that specifies which instances have copies of the blob.
From this list of instances, the client selects (2212) an
instance that has a copy of the requested blob. The client then
contacts (2214) a data store module (e.g., a bitpusher 210) at
the selected instance, and provides (2214) the data store mod-
ule with the set of one or more read tokens. In some embodi-
ments, read tokens correspond to the chunks that comprise the
selected blob. The read tokens indicate to the data store mod-
ule that the client has been authornized to read the specified
chunks. In some embodiments, the read tokens are chunk-
specific, so a client cannot acquire read tokens for one blob
and use them to access chunks for a different blob.

[0361] The client recerves (2216) the content of the
requested blob 1n one or more chunks, then assembles (2218)
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the one or more chunks to form the requested blob. For
one-chunk blobs, assembly requires little work. The client
then returns (2220) the blob to the user application.

[0362] Note that the process illustrated 1n FIG. 22 1s the
simple case. There are two common varnations. First, 1f the
blob 1s stored as 1inline chunks, and the chunks are stored at the
instance that the client initially contacts, the blob access
module just returns the blob contents to the client rather than
returning read tokens. In some embodiments the blob access
module returns the metadata as well, but in other embodi-
ments, only the content 1s returned. This one-step process to
retrieve inline chunks 1s one reason that retrieval from inline

chunks 1s fast.

[0363] On the other hand, the blob access module (e.g., the

blobmaster) may not have the metadata for the requested
blob. In this case, the local instance passes the request onto a
global 1nstance that has the metadata for all of the blobs. As
long as the requested blob does exist, and the end user has
access rights, the global instance passes the metadata back to
the original local 1nstance, and from there back to the client.
Once the client has the metadata, the process 2200 proceeds
to select (2212) an instance with a copy of the blob.

[0364] FIG. 23 illustrates graphically an exemplary process
to implement content-based de-duplication. Blob #1 (2302-1)
1s recerved first, and 1s split into three chunks 2304-1, 2304-2,
and 2304-3. The process computes the content fingerprints
2306-1, 2306-2, and 2306-3 for these three chunks. All three
ol the chunks have distinct content fingerprints, so all three of
the chunks are stored 1n chunk store 2312. In addition, meta-
data 2310-1 1s stored 1n the metadata store 206, and identifies
the three chunks that comprise the first blob.

[0365] Blob#2(2302-2)1s processed in the same way. Blob
#2, however, 1s split into four chunks 2304-4, 2304-5, 2304-6,
and 2304-7. The split into four chunks could be based on a
selected fixed size for chunks, or other chunk algorithm. For
cach of these four chunks, the process computes the associ-
ated content fingerprint 2306-4, 2306-5,2306-6, and 2306-7.
Content fingerprints 2306-4, 2306-6, and 2306-7 do not
match the content fingerprints of any chunks that are already
saved, so the corresponding chunks are saved into the chunks
stores 2312. However, the content fingerprint 2306-5 matches
(2308) content fingerprint 2306-3, so chunk 2304-5 has
already been saved in the chunk stores as chunk 2304-3.
Rather than save this chunk again, the metadata for blob#2
(2310-2) identifies the existing chunk (Chunk 1.3) as part of
the blob contents.

[0366] This simple example illustrates some points. First,
the source of the matching chunks 1s irrelevant. In this
example, the second chunk from one blob matches the third
chunk of another blob. Second, the process compares the
content fingerprints, not the entire content of the blobs. While
chunks may be relatively large (e.g., 16K bytes), some
embodiments create content fingerprints that are small and
fixed 1n s1ze (e.g., 128 bits). Some embodiments of the dis-
closed distributed storage system utilize a hash function that
virtually eliminates the risk of creating two 1dentical content
fingerprints from chunks with distinct content.

[0367] FIGS. 24A-24C graphically 1llustrate a process of
creating and using multiple representations of the same blob.
In FIG. 24A, the client 310 writes (2408) a blob 2402 to
chunks stores at an instance 102. Initially, the blob has a
single representation 2404. Later, a user requests creation of
a second representation 2406 of the same blob 2402. The
request 1s transmitted (2410) to the istance 102 using a
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remote procedure call. A coprocessor module at or near
instance 102 creates a second representation 2406 with the
requested second representation type. In some embodiments,
a request to create a new representation may include a request
to recerve a copy of the new representation once it 1s created.
In that case, the second representation 2406 1s transmitted

(2410) back to the client for presentation 1n the user applica-
tion 308.

[0368] Once the second representation 2406 1s created and
saved, 1t can be retrieved (and replicated) like any other rep-
resentation. Therefore, 1n the future, a user 302 may request
(2412) a copy of the second representation 2406 of the blob
2402, and the second representation 2406 will be returned to
the client. A more detailed description of reading a blob was
presented above with respect to FIG. 22, and 1s described
below with respect to FIG. 25.

[0369] FIG.2351llustrates graphically an exemplary process
flow for reading a blob. Initially, a user application 308
requests (2510) a blob from the client library 310. In some
embodiments, the client library 310 contacts (2512) a load
balancer 314 to i1dentily an appropriate instance to call for
metadata lookup. Once the load balancer 314 selects an
instance 102-1 to contact, the load balancer will either for-
ward (2514) the request to the selected instance 102-1, or
return the identity of the selected instance to the client 310. In
the latter case, client 310 would then call the selected instance
102-1 directly. In the simple case where the metadata for the
requested blob 1s at the mstance 102-1, the blobmaster 204-1
retrieves the relevant metadata from the metadata store 206-1
and returns (2516) the metadata to the client, along with one
or more read tokens.

[0370] The clientthen contacts (2518) a load balancer 314,
and provides (2518) the load balancer 314 with a list of
instances that have the requested blob. Based on known loads
and/or network traffic, the load balancer selects an instance
102-2 to provide the blob contents. FIG. 25 illustrates a case
where the mstance 102-2 1s not the same as the instance 102-1
that provided the metadata. However, in many cases the
source of the metadata and the source of the blob contents will
be the same.

[0371] The load balancer 314 either forwards (2520) the
blob content request to the instance 102-2, or returns the
identity of the selected instance 102-2 to the client. In the
latter case, the client then contacts the instance 102-2 directly.
In some embodiments, requests for blob contents are directed
to a bitpusher 210-2 at the instance 102-2. The bitpusher
210-2 retrieves the chunks for the requested blob from the
appropriate chunk stores 2502-2, and returns (2522) the
chunks to the client 310. The client assembles (2524) the one
or more chunks to reconstruct the desired blob, then delivers
(2526) the blob to the user application that made the original
request.

[0372] In this illustrated example, the bitpusher 210-1 and
chunk stores 2502-1 at the initial instance 102-1 were not
contacted, whereas the blobmaster 204-2 and metadata store
206-2 at the second 1nstance 102-2 were not contacted. FIG.
25 1llustrates the simple case of reading a blob, as noted above
with respect to FIG. 22. To address inline data and the case

where the 1nstance contacted 102-1 does not have the meta-
data for the desired blob, refer to the discussion for FI1G. 22.

[0373] FIG. 27 1llustrates some basic blob policies that may
be applied to blobs stored 1n embodiments of the disclosed
distributed storage system 200. Policy 2702 1s atypical policy
for storing a blob on “disk.” In this policy, the actual chunk
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store used depends on the size of the blob. Policies 2704 and
2706 represent policies that specily a combination of storage
on disk and storage on tape, which are typically 1n different
cities. Policies 2708 and 2710 demonstrate that policies can
specily geographic information about where blobs are stored
or not stored. Policy 2712 illustrates a policy that has a time
component, so that the desired number of copies changes over
time. Although not depicted in this figure, a blob policy may

specily the quality of service (QOS) that will be used when
replicating a blob over the network.

[0374] FIG. 27 also illustrates the relationship between
policies and the blobs that use those policies. Blobs 2714,
2716, 2724, and 2726 each has a blob policy that applies to 1t
alone. Although this 1s allowed, policies are rarely created for
individual blobs. In general, a user application specifies a
small number of blob policies (e.g., 3) that apply to all blobs
created or used by that user application. The policies may
apply to millions of blobs. This 1s 1llustrated by policy 2706,
which applies to blobs 2718, 2720, . . ., 2722. Similarly,
policy 2712 applies to all blobs between blob 2828 and blob
2730.

[0375] FIG. 28 1illustrates how chunks and the associated
metadata and indexes are stored according to some embodi-
ments. Blob metadata 2802 indicates that the first generation
of blob 1 1s split into two chunks C1 and C2. Chunk C1
comprises bytes 0 to 1000 of the blob, and chunk C2 com-
prises bytes 1001 to 2596 of the blob. In some embodiments,
this metadata 1s saved 1n metadata store 206 and accessed by
blobmaster 204. The bitpusher 210 manages a chunk imndex
that specifies where each of the chunks are located, and which
blobs use each of the chunks. The chunk index portion 2806
corresponding to the first chunk C1 indicates that the first
chunk 1s used in both the first generation of blob 1 and the first
generation of blob 2. The actual contents 2812 of chunk C1
are 1n a chunk store. In particular, there 1s only one physical
copy of the contents of chunk C1 even though there are two
distinct blobs using this chunk.

[0376] The chunk index portion 2808 corresponding to
chunk C2 indicates that 1t 1s used by the first generation of
blob 1. The corresponding chunk contents 2814 of chunk C2
(bytes 1001 to 2596) are stored in a chunk store. The 1llustra-
tion i FIG. 28 also shows a second generation of blob 1, with
metadata 2804. The second generation comprises a single
chunk C3, which 1s different from both chunks C1 and C2.
The corresponding chunk index portion 2810 indicates that
this chunk i1s 1n use by the second generation of blob 1, and the
contents 2816 of this chunk are stored 1n a chunk store.

[0377] The foregoing description, for purpose of explana-
tion, has been described with reference to specific embodi-
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the prin-
ciples of the mvention and its practical applications, to
thereby enable others skilled 1n the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A method of storing data for files, implemented on one or
more servers, having memory and one or more processors
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storing one or more programs for execution by the one or
more processors, the method comprising:
receiving a lirst blob of data;
splitting the first blob of data into one or more first chunks
of data;
computing a content fingerprint for respective first chunks
of data;
storing the first chunks of data in a chunk store;
storing the content fingerprints of the first chunks of data 1n
a store distinct from the chunk store:
receiving a second blob of data;
splitting the second blob of data into one or more second
chunks of data;
computing a content fingerprint for respective second
chunks of data;
for a respective second chunk of data whose content fin-
gerprint matches a content fingerprint of a first chunk of
data:
storing a second reference to the corresponding first
chunk of data that has a matching content fingerprint;
and
not storing the second chunk of data; and
for each second chunk of data whose content fingerprint
does not match a content fingerprint of a first chunk of
data:
storing the second chunk of data 1n a chunk store.
2. A method of storing data for files, implemented on one or
more servers, having memory and one or more processors
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storing one or more programs for execution by the one or
more processors, the method comprising:

recerving a first representation of a blob of data having a
specified first representation type;

storing the first representation of the blob of data;

storing metadata for the blob of data, including a name of
the blob, the representation type, and a storage location
for the first representation of the blob;

receving a request to create a second representation of the
blob with a second representation type;

creating a second representation of the blob having the
second representation type;

storing the second representation of the blob of data;

updating the metadata for the blob of data to indicate the
presence of the second representation of the blob with
the second representation type;

receving a request from a client for a copy of the blob,
wherein the request includes a specified representation
type;

retrieving either the first representation of the blob or the
second representation of the blob, the retrieved repre-
sentation of the blob corresponding to the representation
type requested by the client; and

sending the retrieved representation of the blob to the
client.
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