a9y United States
12y Patent Application Publication (o) Pub. No.: US 2011/0119673 Al

Bloch et al.

US 20110119673A1

43) Pub. Date: May 19, 2011

(54)

(75)

(73)

(21)
(22)

(60)

CROSS-CHANNEL NETWORK OPERATION
OFFLOADING FOR COLLECTIVE

OPERATIONS

Inventors:

Assignee:

Appl. No.:

Filed:

Noam Bloch, Bat Shlomo (IL); Gil
Bloch, Zichron Yaakov (IL); Ariel
Shachar, Jerusalem (IL); Hillel
Chapman, Ein Ha’Emek (IL);
Ishai Rabinobitz, Haifa (IL); Pavel
Shamis, Haifa (IL); Gilad Shainer,
Sunnyvale, CA (US)

MELLANOX TECHNOLOGIES
LTD., Yokneam (IL)

12/945,904

Nov. 15, 2010

Related U.S. Application Data

Provisional application No. 61/261,339, filed on Nov.

15, 2009.

104
Host 1 ﬁ_ljl()
132
144
Memory | /—/
HPC
application Host
‘>
processor
MPI 148
library /
100 150

HCA Host interface
1 Mem

+—>

Comp. unit

152\

Control
Circuitry

L
156~ i ~~160

Queues

Publication Classification

(51) Int.CL
GOGF 13/14 (2006.01)
GOGF 9/46 (2006.01)

(52) US.Cl e 718/102;710/104

(57) ABSTRACT

A Network Interface (INI) includes a host interface, which 1s
configured to recerve from a host processor of a node one or
more cross-channel work requests that are derived from an
operation to be executed by the node. The NI includes a
plurality of work queues for carrying out transport channels to
one or more peer nodes over a network. The NI further
includes control circuitry, which 1s configured to accept the
cross-channel work requests via the host interface, and to
execute the cross-channel work requests using the work
queues by controlling an advance of at least a given work
queue according to an advancing condition, which depends
on a completion status of one or more other work queues, so
as to carry out the operation.

102

/

—164

116

Host 3 120

Host 4

108

' 1B interface ™
117 110
“~—J Host 2
124
" =
) Storage 1

—

_-—-l-':

Infiniband network

R‘::_ -
Storage 2

L‘-—-_ _--l':'

Patent Application Publication @ May 19, 2011 Sheet 1 of 4 US 2011/0119673 Al

FIG. 1
102
beél /
Host 1 ﬁbﬁlo
132
Memory /F_EM /—J
HPC
l application Host
<>
processor
MPI 148
library -
100 150 L 164
HCA
152\
Control .
o Comp. unit
Circuitry _
156\ ~160
Queues
] [— UQ
Host 3 IZOH
i Host 4

108

Infiniband network

e =
™ Storage 1 N 1

Storage 2

— A

:""--___ __-"]

Patent Application Publication @ May 19, 2011 Sheet 2 of 4 US 2011/0119673 Al

FIG. 2
204

|lssue a collective
operation
208

Convert to
collective work requests

} L 212
Host | . /—J

processor Forward to HCA

— 216
) S I B p——

232
l |
|

Send Calc results |

Apply requests to
HCA [gueues / counters
220
« v
Execute requests 74
‘ L/
[7
| Wait (CQ, PI) ‘
| | for Rx messages
| - 228
| : -
536 } Calculate :
B
|
|
|
|

Patent Application Publication

May 19, 2011 Sheet 3 of 4

US 2011/0119673 Al

FIG. 3 o
144
156R(N\ application
Queue array __ _w»{ CQE2 340
- 7 CQE4 Pl— 316
//""” P //{L346 \ 348 Y
msg2 ; rmsg3 X rmsg4 4 e \ e
328 332 336 2 \
304 308 312 320 \\ _
Rz I/ | rRaz UV | Ras I/ < %;h({)
A A A)
112 116 120 196
— ol ~ 324
Host2 Host3 Host4
FIG. 4 e
144
156 e application
H -] - -
Queue array [CQE2 ™340
"7 _w CQE3 ™~_344
-7 7 CQE4 Pl— 116
- Pl - /(1_346 \ 348 *
barrier2 |’ barrie@/—: barrierflj\ ca \ SO
428 432 436 \
304 308 312 AN
RQ2 RQ3 IJ a4 |/ < bmibfp
A A A
112 116 120 / 426
:.J — — 324
Host2 Host3 Host4

Patent Application Publication

May 19, 2011 Sheet 4 of 4

US 2011/0119673 Al

FIG. 5
504 508 — application
Ry / Rx Msg counter
buffer? buffer3 020
1 \/ I @
160
Comptation j f'@
unit P @
500 -7 | ——|» \
d (’:\ ~ oo A dseraTk AOA
SCF 21 & 75 SCI. \
dscr. 22K<\\ 58%/\ dscr.32 ,@\ \
502 TN T\% N\ 316y
™ . ~ N
~ HHK\\ ~ \\ CALC [™.560
?4 308 - SNl MW Y WAIT 556
~ J ~ _\ NRCV_EN/™.548
RQZ RQ3 > N RCV_ “ENI™.550
A A > \ CALC ™\.b36
_ ~ .« JRCV %24
_ ~RCV_EN
Host? Host3 12
- 120
H Y

Host4

US 2011/0119673 Al

CROSS-CHANNEL NETWORK OPERATION
OFFLOADING FOR COLLECTIVE
OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application 61/261,339, filed Nov. 15, 2009,

whose disclosure 1s incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates generally to computer
networks, and particularly to application communication
over computer networks.

BACKGROUND OF THE INVENTION

[0003] Operation of computers in High Performance Com-
puting (HPC) environment often mmvolves fast execution of
collective operations. A commonly used Application Pro-
gramming Interface (API) for imtiating collective operations
in HPC environment 1s specified by the Message-Passing
Interface (MPI) forum 1n “MPI: A Message-Passing Interface
Standard,” version 2.2, Sep. 4, 2009, which 1s incorporated
herein by reference.

[0004] Computers and storage devices in HPC environment
commonly 1nterconnect through a switched network that 1s
specified by the InfiniBand Trade Association in “Infini-
Band™ Architecture Specification,” release 1.2.1, January,
2008, which 1s incorporated herein by reference.

SUMMARY OF THE INVENTION

[0005] An embodiment of the present invention that is
described herein provides a Network Interface (INI), includ-
ng:

[0006] a host interface, which 1s configured to receive from

a host processor of a node one or more cross-channel work
requests that are derived from an operation to be executed by
the node;

[0007] aplurality of work queues for carrying out transport
channels to one or more peer nodes over a network; and
[0008] control circuitry, which 1s configured to accept the
cross-channel work requests via the host interface, and to
execute the cross-channel work requests using the work
queues by controlling an advance of at least a given work
queue according to an advancing condition, which depends
on a completion status of one or more other work queues, so
as to carry out the operation.

[0009] Insome embodiments, the operation includes a col-
lective operation to be executed by the node together with the
one or more peer nodes. In an embodiment, the operation 1s
iitiated by one or more Message Passing Interface (MPI)
commands. In a disclosed embodiment, the MPI commands
include non-blocking commands. In another embodiment,
the operation 1s initiated by one or more Shared Memory
(SHMEM) commands. In yet another embodiment, the con-
trol circuitry 1s configured to control the advance of the given
work queue by holding the given work queue 1n a wait state
until verilying that the advancing condition 1s met.

[0010] In some embodiments, the NI includes a computa-
tion umit that 1s configured to execute a calculation that 1s
specified in the cross-channel work requests, and the control
circuitry 1s configured to send one or more results of the
calculation to at least one target. The calculation may include

May 19, 2011

at least one operation selected from a group of operations
including maximum, minimum, sum, product, logical AND,
bit-wise AND), logical OR, bit-wise OR, logical exclusive OR
(XOR), and bit-wise exclusive OR (XOR). Additionally or
alternatively, the calculation may include arguments of at
least one data type selected from a group of data types includ-
ing a vector that 1s contiguously organized in memory, a
vector that 1s non-contiguously organized 1n memory and a
multidimensional vector. In some embodiments, the target
includes a peer node. In alternative embodiments, the target
includes a host memory.

[0011] In an embodiment, the control circuitry 1s config-
ured to control the advance of the given work queue by
enabling sending to a peer node a message that 1s stored at a
head of the given work queue only upon fulfillment of the
advancing condition. In another embodiment, the control cir-
cuitry 1s configured to control the advance of the given work
queue by enabling receiving in the given queue a message
from a peer node only upon fulfillment of the advancing
condition. In yet another embodiment, the control circuitry 1s
configured to estimate the completion status of the other work
queues according to one or more counting objects that are
indicative of the completion status.

[0012] In some embodiments, the network includes an
Infiniband network and the work queues include Infiniband
work queues. In some embodiments, the NI includes one or
more completion queues, and the control circuitry 1s config-
ured to estimate the completion status of the other queues
according to the completion status of the one or more comple-
tion queues. In an embodiment, the control circuitry 1s con-
figured to reuse at least one of the work queues for carrying
out multiple transport channels over the at least one work
queue. In another embodiment, the control circuitry and the
work queues are included i1n a chip-set. In yet another
embodiment, the control circuitry and the work queues are
included 1n a single chip.

[0013] There 1s additionally provided, 1n accordance with
an embodiment of the present invention, a method, including:
[0014] 1n a Network Interface (INI) that includes a plurality
of work queues for carrying out transport channels to one or
more peer nodes over a network, recerving from a host pro-
cessor of a node one or more cross-channel work requests that
are derived from an operation to be executed by the node; and
[0015] executing the cross-channel work requests using the
work queues by controlling an advance of at least a given
work queue according to an advancing condition, which
depends on a completion status of one or more other work
queues, so as to carry out the operation.

[0016] There 1s also provided, in accordance with an
embodiment of the present invention, a computer software
product, mcluding a computer-readable storage medium in
which program instructions are stored, which instructions,
when read by a computer, cause the computer to recerve from
a host processor of a node one or more cross-channel work
requests that are derived from an operation to be executed by
the node, and to execute the cross-channel work requests
using a plurality of work queues by controlling an advance of
at least a given work queue according to an advancing con-
dition, which depends on a completion status of one or more
other work queues, so as to carry out the operation.

[0017] The present invention will be more tully understood
from the following detailed description of the embodiments
thereol, taken together with the drawings 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 1s a block diagram that schematically 1llus-
trates a Host Channel Adaptor (HCA) 1n a HPC environment,
in accordance with an embodiment of the present invention;

US 2011/0119673 Al

[0019] FIG. 2 1s a flowchart that schematically 1llustrates a
method for offloading collective operations, 1n accordance
with an embodiment of the present invention; and

[0020] FIGS. 3-5 are flow diagrams that schematically
illustrate examples of collective operation offloading, 1n
accordance with embodiments of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

[0021] Embodiments of the present invention provide
improved data communication and computation methods and
devices for use in parallel computing environments such as
High Performance Computing (HPC) systems, which 1n par-
ticular achieve fast execution of collective operations. In the
described embodiments, host servers 1ssue Message Passing
Interface (MPI) collective operation commands that perform
the collective operations over Infimiband (IB) switched net-
works. In an embodiment, an IB Host Channel Adaptor
(HCA) 1s typically implemented in a Network Card (NIC)
that 1s directly connected to a host server. The HCA commu-
nicates with other nodes, such as servers and storage systems,
over an IB network, in a HPC environment. The disclosed
techniques provide fast and host CPU independent execution
of the collective operations by offloading a considerable part
of the associated processing burden from the host processor to
the NIC. The offloaded part 1s executed by the NIC without
the need for software intervention, and therefore the effect of
Operating System (OS) noise on the communication 1s miti-
gated. This sort of offloading 1s especially important for col-
lective operations in large systems.

[0022] Inanembodiment, a HPC application runs on a host
server and 1ssues collective operations that necessitate fast
messaging transifer and accurate synchronization in time
among multiple hosts. The collective operations are con-
verted by the host software to “collective work requests,”
shortly denoted “requests,” and respective control com-
mands, which the host processor transfers to the HCA.
[0023] The HCA typically comprises multiple Work
Queues (WQs). Each WQ comprises Work Queue Entries
(WQEs), wherein each WQE comprises an information ele-
ment that 1s related to one or more network events such as
send/receive messages to/from peer nodes. A typical WQE
may comprise, for example, a recerved message, a message to
be transmitted, a Direct Memory Access DMA descriptor, a
collective request or a portion thereof. For example, a collec-
tive request may be broken down into multiple primitives by
the host processor, such that each WQE comprises a respec-
tive primitive.

[0024] The WQs are arranged in Queue Pairs (QQPs),
wherein each pair comprises one Recerve Queue (RQ) and
one Send Queue (SQ). A RQ typically queues recerve related
WQEs and a SQ typically queues send related WQEs. A QP 1s
normally associated with a corresponding QP 1n a peer node,
thus creating a point-to-point transport channel for message
transfer. The HCA comprises Completion Queues (CQ),
which reflect the completion status of WQEs by virtue of
associating each CQ entry with a corresponding WQj A
Producer Index (PI) points to the last completed entry 1n a CQ)
or to the last posted WQE 1n a WQ that 1s enabled for execu-
tion by the HCA.

[0025] In some embodiments, Control Circuitry (CC)
within the HCA loads the collective work requests coming,
from the host to corresponding WQs and executes them. The

May 19, 2011

request content and the respective control commands 1mply
advancing conditions that condition the advance of some
WQs on execution completion on other WQEs and/or on
reception ol peer messages i specified RQs. Thus, cross-
channel operation 1s achieved in the HCA, which carries out
the associated collective operations, thus offloading this bur-
den from the host processor.

[0026] It i1s noted that the disclosed techniques are not lim-
ited to collective operations, and can be used for executing
various other operation types. In other words, any operation
to be performed by a node can be converted to cross-channel
work requests, 1n which the advance of a WQ depends on the
completion status of one or more other WQEs. The cross-
channel work requests are provided to the HCA for execution,
thus offloading the host processor of the node from these
tasks. When the operation to be performed by the node com-
prises a collective operation, the cross-channel work requests
are referred to as collective work requests.

[0027] Insomeembodiments, this offloading is achieved by
having the CC execute requests that introduce cross channel
dependency between the HCA WQs such as the following: In
a WAIT request, the CC conditions the advance of a WQ on
completion of some operations in another WQ. In a
RECEIVE_ENABLE request, the CC conditions the advance
of a certain RQ on reaching the RECEIVE_ENABLE
request. Ina SEND_ENABLE request, the CC conditions the
advance of another SQ on reaching the SEND_ENABLE
request. In a CALC request, the CC executes a predefined
calculation on reaching the CALC request. (Note that CALC
1s not a cross-channel operation by 1tself, however 1ts execu-
tion oiten depends on execution of cross-channel requests).
The above example requests are described and demonstrated
in detail hereinbelow.

[0028] It 1s possible in principle to execute the above-de-
scribed Input/Output (1/0) operations driven by the MPI col-
lective operation commands in the host processor. Execution
in the host, however, would significantly degrade HPC per-
formance, for example due to Operating System (OS) noise,
since 1n many systems the jitter caused by OS noise accumu-
lates and becomes a major limiting factor of system perfor-
mance. Oftfloading this I/O burden according to the disclosed
techniques, as explained above and further detailed below,
climinates this performance degradation. Furthermore, elimi-
nating host CPU intervention in communication tasks frees
CPU resources, and therefore allows for better CPU perfor-
mance in computational tasks. The performance 1improve-
ment achieved by the disclosed techniques 1s also important
when executing non-blocking collective operations without
software intervention.

System Description

[0029] FIG. 1 15 a block diagram that schematically 1llus-
trates an IB HCA 100 1n a HPC environment 102, in accor-
dance with an embodiment of the present invention. In the
described embodiment a host server 104 1s connected to an IB
network 108 through an IB interface 110. Network 108 pro-
vides switched connectivity among the nodes that are con-
nected to 1t, 1n the present example hosts 104, 112, 116 and
120, and storage systems 124 and 128. The following sche-
matic description of host 104 typically represents the other
hosts as well.

[0030] A host processor 132 runs a HPC application 144
that uses a memory 140 as a dynamic memory. The HPC
application includes collective MPI commands that issue col-

US 2011/0119673 Al

lective operations over network 108 by executing code mod-
ules of a MPI library 148. MPI library 148 1s provided here as
an example only; any other suitable libraries, such as Shared
Memory (SHMEM), can be used as well in alternative
embodiments.

[0031] Inanembodiment, processor132, using MPI library
148 code modules, converts the collective operation com-
mands to collective work requests and respective control
commands, and transfers them to HCA 100 through a host
interface 150. (The distinction between collective work
requests and control commands 1s described by way of
example, and 1s not mandatory.) In an example embodiment,
HCA 100 1s implemented 1n a Network Interface Card (NIC).
In alternative embodiments HCA 100 1s implemented 1n a
chip-set or a single chip. Control Circuitry (CC) 152 within
HCA 100 recetves the requests from processor 132, parses
them and manages the HCA accordingly, as explained here-
inafter.

[0032] Queues 156 comprise IB queues, such RQs, SQs,
and CQs, which are further detailed heremnatiter. CC 152 loads
the requests coming from the host to corresponding WQs and
executes them. The W(QEs content and the respective control
commands 1imply control criteria according to which the CC
controls the WQs. In particular, the CC conditions the
advance of a given W(Q on completion of WQEs execution on
other WQ)s, and/or on reception of messages from peer nodes
in some RQs through interface 110. Thus the HCA enforces
cross-channel operations, which carry out the collective
operation commands that were specified in the work requests
as explained above.

[0033] Inanembodiment, CC 152 further comprises a com-
putation unit 160, which is configured in some embodiments
as an Arithmetic Logic Unit (ALU), for performing calcula-
tions that are specified by the requests. Computation unit 160
can be embedded within the CC, or it can be implemented
separately within the HCA and controlled by the CC. A
memory unit 164 1s connected to CC 152 and serves to store
code and data that the CC and the computation unit use.

[0034] CC 152 and computation unit 160 are realized in an
embodiment 1n hardware, which may comprise Field-Pro-
grammable Gate Arrays (FPGAs) and/or Application-Spe-
cific Integrated Circuits (ASICs). CC 152 may also comprise
a programmable element comprising one or more dedicated
or general-purpose processors, which run software for carry-
ing out the methods described herein. The software may be
downloaded to the processors 1n electronic form, over a net-
work, for example, or 1t may, alternatively or additionally, be
provided and/or stored on non-transitory tangible media, such
as magnetic, optical, or electronic memory. Queues 156 and
memory 160 are typically implemented 1n a random access
memory such as Static Random Access Memory (SRAM) or
Dynamic Random Access Memory (DRAM), which may be
embedded within the CC or assembled separately in the HCA.
In some embodiments WQ)s are stored 1n the host memory and
part of them 1s cached 1n to the HCA.

[0035] Interface 110 may comprise multiple IB ports con-
nected to multiple ports of network 108, thus achieving mul-
tiple simultaneous paths through the network. The disclosed
offloading techniques may be applicable as well to transport
technologies other than IB. For example, the disclosed cross
channel operations may be applicable to Ethernet, RDMA
over Converged Ethernet (RoCE) and other suitable inter-
taces. The configuration of HCA 100 shown in FIG. 1 1s an

example configuration, which i1s chosen purely for the sake of

May 19, 2011

conceptual clarity. In alternative embodiments, any other
suitable HCA configuration can also be used. HCA and host
clements that are not mandatory for understanding the dis-
closed techniques were omitted from the figure for the sake of
clanty.

Offloading Method Description

[0036] FIG. 2 1s a flowchart that schematically 1llustrates a
method for offloading collective operations, 1n accordance
with an embodiment of the present invention. The method
begins with an 1ssuing step 204, wherein HPC application 144
initiates a collective operation by issuing a collective opera-
tion command such as MPI BARRIER, MPI SCATTER,
MPI_GATHER, MPI_REDUCE, MPI_MAX, MPI_MIN,
MPI_SUM, MPI_PROD, MPI_LAND, MPI_BAND, MPI_
LLOR, MPI_BOR, MPI_LXOR, MPI_BXOR, MPI_MAX-
LOC and MPI_MINLOC, as defined in the MPI standard,
cited above. The above collective operation commands are
provided here as an example only. Other collective operation
commands and libraries, e.g. SHMEM, are applicable as well.
[0037] At a conversion step 208, host processor 132 con-
verts the collective operation command to work requests
using code modules of MPI library 148. Sample request
execution 1s exemplified heremnafter. At a forwarding step
212, processor 132 forwards the requests to HCA 100 via host
interface 150 after adapting them to the HCA format using an
appropriate HCA drniver code. At an application step 216,
HCA 100 (e.g., using CC 152) applies the requests to W(s,
CQs, counters and any other relevant logic 1n the HCA.
[0038] At an execution step group 220, execution of the
work requests 1s 1llustrated by example requests WAI'T and
CALC. Request execution 1s illustrated in more detail 1n
FIGS. 3-5 below. At a waiting step 224, CC 152 exerts the
WAIT request by holding a given WQ 1n a wait state until
reception of messages from some specified peer nodes.
[0039] In one embodiment, the CC 1dentifies reception of
the awaited messages by sensing a PI of a CQ, wherein the CQ
1s associated with a predetermined group of RQs that are
configured to accept the awaited messages. (Alternative
implementations, €.g., using counters, are described further
below.) At a calculation step 228, which 1s conditioned on
exiting the wait state, computation unit 160 carries out a
calculation that 1s specified by the CALC request. At a send-
ing step 232, CC 152 sends the calculation results to peer
nodes through IB interface 110 over 1B network 108.

[0040] A loopback 236 signifies a transition, managed by
CC 152, to the next WQE 1n a given WQ. A loopback 240
depicts indication to host processor 132 that the collective
operation has been terminated and a transition to the next
collective operation. Loopback 240 emphasizes the fact that
the host 1s not mnvolved 1n the execution of a collective opera-
tion once 1t 1s transierred to HCA 100 1n step 212. The above
loopbacks illustrate request and operation sequencing. How-
ever, 1n an embodiment, CC 152 typically manages multiple
sequences of collective operations and requests concurrently.
The flowchart shown 1n FI1G. 2 1s an example flowchart, which
1s chosen purely for the sake of conceptual clarity. In alterna-
tive embodiments, any other suitable flowchart can also be
used for realizing the disclosed methods.

Collective Request Examples

[0041] FIG. 3 1s a tlow diagram that schematically 1llus-
trates example execution of WAIT and CALC requests, in

US 2011/0119673 Al

accordance with an embodiment of the present invention.
Queues 156 comprise RQs RQ2 304, RQ3 308 and RQ4 312,

aSQ 316 anda(CQ 320. RQs 304, 308 and 312 are configured
to recerve messages from peer hosts 112, 116 and 120, respec-
tively. CC 152, not shown 1n the figure, queues WAIT and
CALC requests, denoted 324 and 326, respectively, in SQ
316. These requests were originally originated from HPC
application 144. A typical syntax of the WAIT request 1s
WAIT(CQ, PI). The “WAIT” instructs CC 152 to halt the
advance of the WQ 1n which the WAIT request 1s queued, SQ
316 in the present example. The CC thus holds SQ 316 1n a
wait state. The CQ and PI parameters specily for the CC a
condition for resuming SQ 316 advance. The condition 1s, 1n
the present example, that a PI 348, which points CQ 320,
reaches the position that 1s depicted 1n the figure. Processor
132 further instructs CC 152, upon providing it with the
WAIT request, to assign CQ entries CQE2 340, CQE3 344
and CQE4 346 to recerved messages 328, 232 and 336. Upon
reception of the above messages, at any time order, PI 348
reaches CQE4 346 position. This position of PI 348 consti-
tutes an indication for CC 152, that SQ 316 advance shall be

resumed.

[0042] Inalternative embodiments ol the WAIT request, the
CC may queue 1t in any WQ and condition 1t on any other W(Q).
In an embodiment, CC 152 polls the other WQ, or any other
suitable indication, for verifying whether the wait condition
has been met. In alternative embodiments, the indication may
actively notily the CC when an awaited condition 1s met, by
an interrupt, doorbell or any other suitable mechanism.

[0043] Uponresuming SQ 316 advance, CC 152 executes a
CALC request, denoted 326, which follows WAIT request
324, while the CALC uses the data recerved in RQs 304, 308
and 312. CALC 1s a calculation type request comprising a
typical syntax: CALC(Opcode, List of argument addresses,
Target addresses). CC 152 executes the calculation that 1s
specified by the request opcode, by means of computation
unit 160, on arguments whose addresses 1n memory 164 are
specified 1n the request. The specified targets, to which CC
152 will send the CALC results, are typically one or more
peer nodes over network 108, and/or an address i1n host
memory 140. At this point the CALC collective operation 1s
completed, and the CC reports 1t to the host processor by
means of a predefined CQ, which 1s not shown 1n the figure for
the sake of simplicity.

[0044] Example CALC operations are: maximum, mini-
mum, sum, product, logical AND, bitwise AND, logical OR,
bitwise OR, logical exclusive OR (XOR), bit-wise exclusive
OR (XOR), or any other suitable operation. When the CALC
opcode 1s “minimum” or “maximum’”, an index can be
attached to each argument, and the index of the result will be
that of the minimal argument (for minimum operation), or
that of the maximal argument (for maximum operation).
CALC results can be posted on either Datagram or connec-
tion oriented SQ).

[0045] Arguments of CALC operation can be of various
data types, mcluding vectors. A vector of N elements 1s
denoted 1n this description V[N]. A collective operation may
involve many vectors Vi N] that reside in multiple nodes over
network 108, which compose a general vector R[N]. In an
embodiment, the elements of vector V[N] may be stored 1n
HCA memory 164 1n either contiguous memory addresses or
in non-continuous addresses, for example having a fixed
“stride” 1n the memory between adjacent elements. In alter-
native embodiment, V[N] and R[N] may be of any dimension.

May 19, 2011

In other embodiments, however, CALC operations may com-
prise any other suitable data types.

[0046] FIG. 4 1s a flow diagram that schematically 1llus-
trates execution of WAIT request in accordance with an
embodiment of the present invention. FIG. 4 differs from
FIG. 3 inthe type of the messages that HCA 100 recerves from
the peer hosts. Here, the received messages 428, 432 and 436
are barrier messages, which are used for host synchronization
over network 108, as part of MPI_BARRIER operation. This
1s 1n contrast to the received messages 1n FIG. 3 that carry data
to be processed by the CALC request. Correspondingly, a
message 426 1s a barrier message that host1 will send to other

nodes over the network upon receiving messages 428, 432
and 436.

[0047] FIG. 5 1s a flow diagram that schematically 1llus-
trates a synchronized use of recerve butlers within HCA 100
for cross channel calculations, 1n accordance with an embodi-
ment of the present invention. RQ2 304 1s loaded with DMA
descriptors 501 and 502, both pointing to a Rx buiier 504 1n
memory 164. When the software posts these receive WQEs, 1t
does not enable them (1.e., does not increase the RQ Producer

Index—PI). Correspondingly, a RQ3 308 1s loaded with
DMA descriptors 505 and 506, both pointing to a Rx buifer
508 (disabled as well). RQ2 and RQ3 are configured to
receive messages from peer hosts 112 and 116, respectively.
CC 152 loads RQs 304 and 308, as well as a SQ 316, and also
sets their status, according to instructions from host 104 fol-
lowing a collective operation that was 1nitiated by HPC appli-
cation 144.

[0048] In particular, CC 152 sets RQJs 304 and 308 entries
in a disabled status. This setting disables reception of mes-
sages from the network mto RQs 304 and 308 until disabled
WQEs are enabled by RECEIVE_EN requests, as explained

hereinatter.

[0049] CC 152 loads a request, denoted as “RECEIVE_EN
(QP, PI)” in WQEs 512, 524, 540 and 548 of SQ 316.

RECEIVE_EN(QP, PI), When executed, enables reception of
messages 1nto the RQ of the specified QP, 1n the WQE that 1s
specified by PI. Until the RECEIVE_EN execution, any mes-
sage that arrives from a peer node and targets the specified
WQE would be discarded, and the peer would be notified
about this discard, provided that the status of that WQE was
set as disabled before the RECEIVE_EN execution. The
above enabling 1s illustrated in FIG. 5, by dashed arrows
going from W(QEs 512, 524, 540 and 548 to WQEs 501, 505,
502 and 506 respectively. Some embodiments also 1mple-
ment a RECEIVE_EN(QP) version of the recetve enabling
request, wherein the specified RQ 1s advanced by a single
increment of 1ts corresponding PI.

[0050] FIG. 5 illustrates a sequence of operations that
begins with enabling WQEs 501 and 505 by W(QEs 512 and

524 respectively. Then CC 152 halts the advance of SQ 316
due to WAIT request 332 that 1s conditioned on a control
counter 520 (or similar counting object) reaching state “2”.
When RQ2 304 recerves a message from host 112, CC 152
transter this message to Rx butier2 504, according to descrip-
tor 501, and advances counter 520. When RQ3 308 receives a
message from host 116 CC 152 transier this message to Rx

butiler3 508 according to descriptor 505 and advances counter
520.

[0051] Following reception of both messages, counter 520
reaches state 1s “2”°, which causes CC 152 to advances SQ
316, thus executing CALC request 536. This advancing con-
dition 1s depicted by a dashed arrow from the counter state “2”

US 2011/0119673 Al

to WQE 532. The CALC causes CC 152 to execute, by means
of computation unit 160, a calculation that 1s specified by the
CALC, using parameters that reside in buffers 504 and 508.
The data 1n the buffers 1s not atfected by succeeding messages

that RQs 304 and 308 may receive during the calculation,
since W(QEs 502 and 506 are still 1n a disabled status.

[0052] In an embodiment, CC 152 sends the CALC results
to other nodes over network 108, as depicted 1n FIG. 5 by the
line from SQ 316 to host 120. In alternative embodiments CC
152 may send the CALC results to host processor 132 or to
host memory 140. CC 152 completes CALC 536 operation 1t
advances SQ 316, thus exerting RCV_EN 540 and 548, and
sets SQ 316 1n a wait state due to WAIT request 356. RCV_
EN 540 and 548 enable descriptors 502 and 506 respectively,
thus allowing advance of counter 520 to state 4 upon receiv-
ing additional two messages from hosts 112 and 116 respec-
tively. CC 152 then advances SQ 316 over WAIT request 556,
which 1s conditioned on counter state 4, thus allowing execu-
tion of CALC 560, which reuses Rx bulters 504 and 508. FIG.
5 shows, 1n principle, two non-blocking REDUCE collective
operations over a tree: Messages, which include data, from
hosts 112 and 116, are reduced by host 104 to one message,
which includes CALC results based on that data, destined to
host 120.

[0053] Another example for the usage of the RECEIVE_
EN request is an implementation of a PIPELINE operation. In
a PIPELINE operation, a large message (e.g., 1 MB) 1s to be
sent to a destination node via an intermediate node. In some
embodiments, the intermediate node comprises several (e.g.,
tour) small butfers (e.g., 8 KB each), which serve as a pipe-
line. Betfore sending the large message to the intermediate
node, the message 1s broken down 1nto multiple 8 KB mes-
sages, and the 8 KB messages are sent to the intermediate
node.

[0054] Once an 8 KB message arrives in the intermediate
node, 1t occupies one of the above-described bulfers (making,
it non-valid to receive another message). The relevant SEND
WQE (that points to this buffer) 1s enabled by SEND_EN
WQE once sending 1s completed, and the data in the buffer 1s
no longer needed in the intermediate node. The buller 1s

B

enabled again by RECEIVE_EN for enabling reception of a

new message on this buffer.

[0055] Note that the number of WQEs to be post to the

queues 1n the pipeline implementation 1s on the order of the
original message size (1 MB 1n the example above) divided by
the size of the small message (8 KB 1n the example above).
This number can be quite large. In alternative embodiments to
the pipeline implementation, the software does not generate
this large number of WQESs. This task 1s offloaded to the NIC
hardware. The software will use a WQE of type PIPE. For
example: PIPE(recetve_qgp_number, send_qp_number, inter-
mediate_bulfer list, number_ ol _messages).

[0056] In alternative embodiments a given control counter,
such as counter 520, may be incremented upon arrival of a
message that indicates increment of the given counter. In
further alternative embodiments, the counter to be incre-
mented upon reception of a message 1s not a property of the
QP butis set by the send WQE. Using this technique, different
WQEs on the same SQ that send messages to the same RQ
will cause different counters to increment based on the coun-
ter_1d parameter 1in the send WQE. In further alternative
embodiments, the number of QPs that are depicted 1n FIGS.
3-5 may be significantly reduced by dynamically carrying out
multiple transport channels with one work queue, thus pro-

May 19, 2011

viding a Dynamically Connected Transport (DCT) service
mode. A transport service of this sort 1s described mn U.S.
patent application Ser. No. 12/621,523, which 1s assigned to
the assignee of the present patent application and whose
disclosure 1s incorporated herein by reference.

[0057] Intheextreme case of this approach the CC dynami-
cally allocates a single QP, comprising a RQ and a SQ), and a
single CQ, for implementing different transport channels that
are mvolved 1n collective operations that HPC application
144 mitiates. The CC then applies all the cross-channel opera-
tions that are illustrated in FIGS. 3, 4 and 3 to the single QP
and single CQ. The only resource that scales when HCA 100
olfloads multiple concurrent collective requests 1s the number
of counters.

[0058] The tlow diagrams that are illustrated 1n FIGS. 3-5
are example diagrams, which were chosen purely for the sake
ol conceptual clarity. In alternative embodiments, other suit-
able applications and cross channel requests can also be used
for realizing the disclosed methods. As an example, a SEND_
EN(QP, PI) request may be applied for enabling a send mes-
sage event, wherein the message 1s stored at or pointed by the
head WQE of a given SQ, following, e.g., receiving and
processing messages from a predefined group of peer nodes.
Some embodiments also implement a SEND_EN(QP) ver-
s1on of the send enabling request, wherein the specified SQ 1s
advanced by a single increment of 1ts corresponding PI.
[0059] Although the embodiments described herein mainly
address offloading of collective operations 1n HPC environ-
ment, the methods and systems exemplified by these embodi-
ments can also be used in other applications that mvolve
computer networks and clusters, such as message gathering
and distribution.

[0060] It will thus be appreciated that the embodiments
described above are cited by way of example, and that the
present mnvention 1s not limited to what has been particularly
shown and described heremnabove. Rather, the scope of the
present invention mcludes both combinations and sub-com-
binations of the various features described hereinabove, as
well as vanations and modifications thereof which would
occur to persons skilled in the art upon reading the foregoing
description and which are not disclosed 1n the prior art.

1. A Network Intertace (NI), comprising:

a host interface, which is configured to receive from a host
processor of a node one or more cross-channel work
requests that are derived from an operation to be
executed by the node;

a plurality of work queues for carrying out transport chan-
nels to one or more peer nodes over a network; and

control circuitry, which 1s configured to accept the cross-
channel work requests via the host interface, and to
execute the cross-channel work requests using the work
queues by controlling an advance of at least a given work
queue according to an advancing condition, which
depends on a completion status of one or more other
work queues, so as to carry out the operation.

2. The NI according to claim 1, wherein the operation
comprises a collective operation to be executed by the node
together with the one or more peer nodes.

3. The NI according to claim 1, wherein the operation 1s
initiated by one or more Message Passing Interface (MPI)
commands.

4. The NI according to claim 3, wherein the MPI com-
mands comprise non-blocking commands.

US 2011/0119673 Al

5. The NI according to claim 1, wherein the operation 1s
initiated by one or more Shared Memory (SHMEM) com-
mands.

6. The NI according to claim 1, wherein the control cir-
cuitry 1s configured to control the advance of the given work
queue by holding the given work queue 1n a wait state until
veritying that the advancing condition 1s met.

7. The NI according to claim 1, and comprising a compu-
tation unit that 1s configured to execute a calculation that 1s
specified 1n the cross-channel work requests, wherein the
control circuitry 1s configured to send one or more results of
the calculation to at least one target.

8. The NI according to claim 7, wherein the calculation
comprises at least one operation selected from a group of
operations comprising maximuim, mimmum, sum, product,
logical AND, bit-wise AND), logical OR, bit-wise OR, logical
exclusive OR (XOR), and bit-wise exclusive OR (XOR).

9. The NI according to claim 7, wherein the calculation
comprises arguments of at least one data type selected from a
group of data types comprising a vector that 1s contiguously
organized 1n memory, a vector that 1s non-contiguously orga-
nized 1n memory and a multidimensional vector.

10. The NI according to claim 7, wherein the target com-
prises a peer node.

11. The NI according to claim 7, wherein the target com-
prises a host memory.

12. The NI according to claim 1, wherein the control cir-
cuitry 1s configured to control the advance of the given work
queue by enabling sending to a peer node a message that 1s
stored at a head of the given work queue only upon fulfillment
of the advancing condition.

13. The NI according to claim 1, wherein the control cir-
cuitry 1s configured to control the advance of the given work
queue by enabling receiving in the given queue a message
from a peer node only upon fulfillment of the advancing
condition.

14. The NI according to claim 1, wherein the control cir-
cuitry 1s configured to estimate the completion status of the
other work queues according to one or more counting objects
that are indicative of the completion status.

15. The NI according to claim 1, wherein the network
comprises an Infinitband network and the work queues com-
prise Infinitband work queues.

16. The NI according to claim 1, and comprising one or
more completion queues, wherein the control circuitry 1s
configured to estimate the completion status of the other
queues according to the completion status of the one or more
completion queues.

17. The NI according to claim 1, wherein the control cir-
cuitry 1s configured to reuse at least one of the work queues for
carrying out multiple transport channels over the at least one
work queue.

18. The NI according to claim 1, wherein the control cir-
cuitry and the work queues are comprised 1n a chip-set.

19. The NI according to claim 1, wherein the control cir-
cuitry and the work queues are comprised 1n a single chip.

20. A method, comprising:

in a Network Interface (NI) that includes a plurality of
work queues for carrying out transport channels to one
or more peer nodes over a network, recerving from a host
processor of a node one or more cross-channel work
requests that are derived from an operation to be
executed by the node; and

May 19, 2011

executing the cross-channel work requests using the work
queues by controlling an advance of atleast a given work
queue according to an advancing condition, which
depends on a completion status of one or more other
work queues, so as to carry out the operation.

21. The method according to claim 20, wherein the opera-
tion comprises a collective operation to be executed by the
node together with the one or more peer nodes.

22. The method according to claim 20, wherein the opera-
tion 1s 1nitiated by one or more Message Passing Interface
(MPI) commands.

23. The method according to claim 22, wherein the MPI
commands comprise non-blocking commands.

24. The method according to claim 20, wherein the opera-
tion 1s mitiated by one or more Shared Memory (SHMEM)
commands.

25. The method according to claim 20, wherein controlling
the advance of the given work queue comprises holding the
given work queue in a wait state until verifying that the
advancing condition 1s met.

26. The method according to claim 20, wherein executing,
the cross-channel work requests comprises executing a cal-
culation that 1s specified in the cross-channel work requests,
and sending one or more results of the calculation to at least
one target.

277. The method according to claim 26, wherein the calcu-
lation comprises at least one operation selected from a group
of operations comprising maximum, minimum, sum, prod-
uct, logical AND, bit-wise AND, logical OR, bit-wise OR,
logical exclusive OR (XOR), and bit-wise exclusive OR
(XOR).

28. The method according to claim 26, wherein the calcu-
lation comprises arguments of at least one data type selected
from a group of data types comprising a vector that 1s con-
tiguously organized in memory, a vector that 1s non-contigu-
ously organized in memory and a multidimensional vector.

29. The method according to claim 26, wherein the target
comprises a peer node.

30. The method according to claim 26, wherein the target
comprises a host memory.

31. The method according to claim 20, wherein controlling
the advance of the given work queue comprises enabling
sending to a peer node a message that 1s stored at a head of the
given work queue only upon fulfillment of the advancing
condition.

32. The method according to claim 20, wherein controlling,
the advance of the given queue comprises enabling receiving
in the given work queue a message from a peer node only
upon fulfillment of the advancing condition.

33. The method according to claim 20, wherein controlling,
the advance of the given queue comprises estimating the
completion status of the other work queues according to one
or more counting objects that are indicative of the completion
status.

34. The method according to claim 20, wherein the net-
work comprises an Infiniband network and the work queues
comprise Infiniband work queues.

35. The method according to claim 20, wherein the NI
includes one or more completion queues, and wherein con-
trolling the advance of the given queue comprises estimating
the completion status of the other queues according to the
completion status of the one or more completion queues.

36. The method according to claim 20, wherein executing,
the cross-channel work requests comprises reusing at least

US 2011/0119673 Al

one of the work queues for carrying out multiple transport
channels over the at least one work queue.

37. A computer software product, comprising a computer-
readable storage medium 1n which program instructions are
stored, which istructions, when read by a computer, cause

the computer to recerve from a host processor of a node one or
more cross-channel work requests that are derived from an

May 19, 2011

operation to be executed by the node, and to execute the
cross-channel work requests using a plurality of work queues
by controlling an advance of at least a given work queue
according to an advancing condition, which depends on a
completion status of one or more other work queues, so as to

carry out the operation.

ke i o e 3k

	Front Page
	Drawings
	Specification
	Claims

