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METHOD FOR RECONSTRUCTING SPARSE
SIGNALS FROM DISTORTED
MEASUREMENTS

FIELD OF THE INVENTION

[0001] This mvention relates generally to reconstructing
sparse signals, and more particularly to reconstructing sparse
signals from distorted measurements.

BACKGROUND OF THE INVENTION

[0002] To represent a signal without error, the signal must
be measured at a rate (the Nyquust rate) that 1s at least twice
the highest frequency. However, certain signals can be com-
pressed after measuring, which wastes resources 11 the signals
are measured at the Nyquist rate, and then compressed.

[0003] Instead, compressive sensing (CS) can be used to
eiliciently acquire and reconstruct signals that are sparse or
compressible. CS uses the structure of the signals measures at
rates significantly lower than the Nyquist rate to reconstruct.
CS can use randomized, linear, or non-adaptive measure-
ments, followed by non-linear reconstruction using convex
optimization or greedy searches.

[0004] The conventional solution without CS minimizes
the 1, norm, 1.e., the amount of energy in the system. However,
this leads to poor results for most practical applications
because 1t does not take 1nto account the sparsity 1in the mea-
sured signal. The desired CS solution should minimize the 1,
norm, which measures this sparsity. However, this 1s an NP-
hard problem. Therefore, the norm 1s usually minimized,
which also promotes sparsity and can be shown to be equiva-
lent to the 1, norm under certain conditions. Finding the can-
didate with the smallest 1, norm can be expressed as a linear
program, for which efficient solutions exist.

[0005] Using CS, a signal x with K nonzero coetlicients can
be reconstructed from linear non-adaptive measurements
obtained using

y=AX, (1)

where A 1s a measurement matrix. Exact signal reconstruction
1s guaranteed when the measurement matrix A has a restricted
isometry property (RIP). The RIP characterizes matrices,
which behave similarly to orthonormal ones, at least when
operating on sparse signals. A matrix A has RIP of order 2K
if there exists a constant 0., such that for all 2K sparse
signals z

(1—6QK)||ZH22§HAZH22§(1+62£)HZH22 (2)

[0006] If 0,, 1s small, then the matrix A approximately
maintains 1, norm distances between K sparse signals. In this

case, a convex optimization reconstructs the signal as

X = argmin||x]||; subject to v = Ax. (3)
xeRY
[0007] An alternative method uses a greedy sparse recon-

struction procedure. Similarly to optimization methods, the
guarantees are based on the RIP of the matrix A. Surprisingly,
random matrices with a suificient number of rows can achieve
small RIP constants with overwhelming probability. Thus,
random matrices are commonly used for CS signal acquisi-
tion and reconstruction.
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[0008] The randomness of the acquisition matrix also
ensures a well-formed statistical distribution of the measure-
ments. Specifically, 1f the matrix has independent and 1denti-
cally distributed (1.1.d.) random entries, then the measure-
ments 1n the vector y also follow an asymptotic, normal
distribution.

[0009] Measurements of signals can be quantized to a finite
number of bits, e.g., only the most significant (sign) bit.
However, reconstruction a signal from quantized measure-
ments 1s difficult. One method 1n the art combines the prin-
ciple of consistent reconstruction with 1, norm minimization
on a sphere of unit energy to reconstruct the signal. Specifi-
cally, a signal 1s measured using

y=signi{4x), (4)

where sign(.)==1. The reconstructed signal 1s consistent with
the signs of the measurements.

[0010] Because the signs of the measurements eliminate
any information about the magnitude of the signal, a con-
straint of unit energy, ||x||,=1, 1s imposed during the recon-
struction, 1.e., the reconstruction 1s performed on a unit
sphere. Sparsity 1s enforced by minimizing the 1, norm on the
sphere of unit energy.

[0011] Consistency with the measurements 1s imposed by
relaxing strict constraints, and introducing a one-sided qua-
dratic penalty when a constraint 1s violated. This can be
expressed as a squared norm of the measurements that violate
the constraint. Specifically, the negative part of a scalar 1s
denoted by (.), 1.€.,

2 —x otherwise

- _ x| — x {0, 1f x=0 (5)
(x) = —min(x, 0) = =

10012]

c(£)=(diag(y)4£)7II; (6)

Then, the penalty 1s

where diag(y) 1s a matrix with the signs of the measurements
on the diagonal. The negative operator (.)—is applied ele-
ment-wise to 1dentily the constraint violations, and the ampli-
tude of the violation.

[0013] An estimate of the signal that 1s consistent with the
measurements produces no constraint violations and the pen-
alty c(X) 1s zero. Using Equation (6), the reconstruction prob-
lem becomes

Y N A‘ . Mo T 2 (7)
X = aﬁﬁfm}”x”l + zll(dmg(y)ﬂﬂcf) II5.
AL ||1X 3=

[0014] Equation (7) 1s non-convex, and convergence to a
global optimum cannot be guaranteed.

[0015] Greedy search procedures attempt to greedily deter-
mine a sparse minimum for the penalty function. The Match-
ing Sign Pursuit (MSP) procedure performs an iterative
greedy search similar to Compressive Sampling Matching
Pursuit (CoSaMP) and the Subspace Pursuit. Specifically, the
MSP procedure updates a sparse estimate of the signal x by
iteration, see related Application. The MSP modifies
CoSaMP significantly to enable reconstruction using only the
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sign of measurements by enforcing a consistency constraint
and an 1, unit energy constraint.

SUMMARY OF THE INVENTION

[0016] Theembodiments ofthe invention provide a method
for reconstructing a sparse signal from measurements that are
distorted nonlinearly, even when the nonlinearity 1s unknown
but monotonic. Since the nonlinearity 1s monotonic, the
method uses reliable information 1n the distorted measure-
ments, which 1s an ordering based on the amplitudes of the
measurements. The ordered amplitudes are sufficient to
reconstruct the sparse signal with a high precision.

[0017] Oneembodiment uses order statistics of the ordered
amplitudes to determine a minimum mean square (MMSE)
estimate of the undistorted measurements, and use the MMSE
with any conventional compressive sensing (CS) reconstruc-
tion procedure.

[0018] Another embodiment uses a principle of consistent
reconstruction 1n a deterministic nonlinear reconstruction
procedure that ensures that the amplitudes of the measure-
ments of the reconstructed signal have an ordering that 1s
consistent with the ordering of the amplitudes of the distorted
measurements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1-2 are a flow diagram of a method for recon-
structing spare signals based on an ordering of amplitudes of

the signals according to embodiments of the invention; and
[0020] FIG. 3 1saprior art pseudo code for a Matching Sign

Pursuit procedure used by the method described with refer-
ence to FI1G. 2.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0021] In this description, the following conventional sym-
bols are used above variables. The symbols 1n the description
and claims may be omitted for clarity: “” estimate,
and “~” working estimate.

[0022] As shown 1n FIG. 1, one embodiment of the inven-
tion provide a method for reconstructing an estimate of X 109
a sparse signal from a measurement vector y 101 of the a
sparse signal x that 1s distorted nonlinearly, and a measure-
ment matrix A 102. The steps of the method can be performed
in a processor icluding memory and mput/output interfaces
as known 1n the art.

[0023] Order Statistics

[0024] The measurements v, 1n the vector y follow a normal
distribution, denoted 1(y), which 1s a cumulative distribution

tunction (CDF), denoted ®(y). The CDF indicates the prob-
ability that a variable 1s less than or equal to a given value.

[0025] The M measurements y, 101 are ordered 110 1n
order of their amplitudes, that 1s

Ge—22

mean,

y(f):yh:izla L M. (8)

The order of the amplitudes can be increasing or decreasing,
€., Y )=V ) - - =Y ap- Inthis ordering, the subscripts (1) are
the indices of the ordering and k, the indices of the corre-
sponding unordered measurements.

[0026] The sorted amplitudes form the order statistics of
the measurements. Variables p=1/(M+1) and g,=1-p, asymp-
totically account for the probabilities of measurements with
amplitudes less than and greater than the amplitude of the
measurement y,,, respectively.
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[0027] Generally, moments of the order statistics do not
have a closed form.

[0028] An asymptotically accurate unbiased approxima-
tion 1s
E(yw) = Q(pi), (9)
Qi) = 250 (p0'(a)), 1o

where Q(x)=® ' (x) is the inverse of the CDF, often referred
to as a quantile function, and Q' (x) 1s the dertvative evaluated
at Xx. The quantile function of a probability distribution returns
the value below which random selected values fall px100% of
the time.

[0029] Measurement Model

[0030] The embodiments of the invention consider linear
measurements of the sparse signal X using inner products with
rows a, of the measurement matrix A. The measurements are

y=g(4x), (11)

where the function g 1s nonlinearly increasing or decreasing,
and applied element—wise to the coetlicients of the elements
of the signal vector x.

[0031] Because the nonlinear distortion 1s unknown, only
limited information 1s provided by g(.). For example, the
unknown distortion g(x) eliminates any amplitude informa-
tion of the signal x. Thus, the signal x can only be recon-
structed within a positive scalar factor. Furthermore, any
other monotonic distortion of the measurements can originate
from the same signal because the composition of two mono-
tonic functions 1s also monotonic. The nonlinearity maintains
the ordering of the amplitudes of the measurements.

[0032] The ordering property 1s exploited by the invention.
From Equation (8) and the ordering property, 1t follows that

sign@x(f)—yg)zsign(ij ). (12)
[0033] Theindex sequence {k; ...,k 1} ispreserved among
all monotonic distortions g(x), including the identity. Further-
more, after the sequence {k, } is known, the exact values of'y ,,
provide no further information, and are not used during the
reconstruction. This 1s because a nonlinear monotonic distor-
tion that maps y,, to any other y' ,, that has the same ordering
Ik} can always be constructed.

[0034] Because elements 1n the measurement matrix A are
random and normally distributed, the undistorted measure-
ments are also random and normally distributed. Asymptoti-
cally, this 1s true even if the matrix entries are random 1.1.d.,
but not normally distributed, due to the central limit theorem.
[0035] Measurement Substitution

[0036] The statistics of the order of the measurements are
used to reconstruct an estimate X of the sparse signal x.
Because the nonlinearity g(.) 1s unknown, the ordering of the
amplitude of the measurements 1s the only reliable informa-
tion obtained from the measurement vector y. Using the ran-
domness and the normality of the undistorted measurements,
an estimator for the undistorted measurements 1s provided.
[0037] Instead of using the distorted measurements, the
distorted measurements are replaced with the MMSE esti-
mate of the undistorted values, conditioned only on the order-
ing of the amplitudes of the measurements. The estimator 1s a
function of the measurement ordering ¥ ({k,}). Specifically
the MMSE estimator 1s the conditional expectation:

ﬁ({kf}):E@{kf})- (13)
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[0038] As stated above, the measurement process removes
all amplitude information from the signal, other than their
order. Thus, the signal can only be identified within a positive
scaling factor. Because the reconstructed signal 1s normalized
to have a unit 1, norm, the measurements follow a standard
normal distribution.

[0039] Adter the ordering, the reconstruction 120 proceeds
as Tollows. Using the asymptotic approximation of Equation
(9) 1n Equation (13), the estimation 121 of the measurements
1s according to the mverse CDF

Yiy=Ve =9 ;) (14)

where ®(.) denotes the mverse CDF of the standard normal
distribution

() 11+ rf( X ” (15)
X) = = erfl — |I.
V2

2

where erf 1s the error function.

[0040] The estimated measurements y can be used as input
to any reconstruction procedure A, to reconstruct 130 the
signal X 109 as

X=A4().

[0041]

[0042] In another embodiment as shown 1n FIG. 2, a con-
sistent constraint 221 on the ordering of the measurements 1s
satisfied 221 during the reconstruction. The constraint
ensures that the measurements of the reconstructed signal
have the same ordering as the measurements of the input
signal. Therefore, an implicit measurement matrix A can be
derived from the matrix A and the ordering of the measure-
ment amplitudes such that

Consistent Reconstruction

P=sign(Ax)

where sign(.)==1.

[0043] Ifa, denotes the k' row of the matrix A, then
Yoy Y, vkoyk < (ak, x)>(ak; x) (16)
= <(agay,X)>0 (17)
= sign(<a;-a, x> )=sign(i-j) (18)

where Equation (16) follows from the monotonicity of the
nonlinear distortion in Equations (11), and Equation (18)
follows from Equation (12), 1.e. from the properties of the
ordered index sequence {k.}.

[0044] In other words, the matrix A can be constructed
using rows of the matrix A of the form a, —a, such that the
constraint

R (19)

[] &=
Rt

sign (ﬂx) =sign| [— ]

1s satisfied 221.
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For example,

_ﬂz—ﬂ3_

y=|3|,ordered=|3|,and A =| a3 —ay |,

_3_ _5_ |y — ) |

where 1 and j are 1indices of the first and second row respec-
tively.

[0045] The matrix A and the corresponding sign measure-
ments are mput to the MP procedure, see above, to estimate
222 the sparse signal X as an estimate

¥ = MSP;($).

[0046] Equation (19) holds for index pairs (k;, k;) and,
theretore, for vector pairs (a,, a, ) selected to construct the
matrix A. Using the (M-1) pairs (i{l+l, k), for1=1, ..., M-1
guarantees that the reconstruction 1s consistent with every
pair (k;, k;). This 1s the recommended approach. However, 1t is
possible to use other design choices. The design 1s equivalent
to selecting pairs (k;, k;) of rows of the matrix A that are used
to construct the rows of the matrnx A.

[0047] The mtial seed value for the reconstruction 1s
another design choice. Because this embodiment attempts to
solve a non-convex problem, a correct initial value facilitates
convergence to a global optimum. Even though the MSP
procedure has better convergence performance than the 1,
optimization on the unit sphere described 1n the prior art,
convergence 1ssues can still exist 1t the number of measure-
ments M 1s small. Thus, to improve convergence, measure-
ment substitution and/or a few iterations of a conventional CS

decoding can be used to provide the mitial value.
[0048] Matching Pursuit Procedure

[0049] FIG. 3 shows the steps of the MP procedure
described with reference to FIG. 2. The MSP procedure uses
a greedy search that attempts to find a sparse minimum to the
penalty function in Equation (6).

[0050] Specifically, the MSP procedure updates a sparse
estimate of the signal X using the following iteration:

[0051] steps 3 and 4 identily sign constraints that are
violated:;
[0052] steps 5 and 6 i1dentily the signal components

mostly effective in minimizing the cost function and
reducing the sign violations

[0053] step 7 minimizes the cost function over those
signal components; and

[0054] step 8 truncates the signal to the desired sparsity,
normalizes, and updates the estimate.

EFFECT OF THE INVENTION

[0055] The embodiments of the invention reconstruct a
sparse signal subject to an unknown monotonic nonlinear
distortion of measurements. Surprisingly, the distortion
maintains suificient information to reconstruct the signal. The
key 1dea 1s that arelative ordering of signal values 1s preserved
because the distortion 1s monotonic. The ordering preserves
suificient information for the signal reconstruction.

[0056] One embodiment uses a statistical framework that
estimates undistorted measurements using order statistics of
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the distorted measurements. The measurements can be input
to any reconstruction procedure to reconstruct the signal.
[0057] Another embodiment uses a deterministic frame-
work that directly incorporates the ordering information in
the reconstruction procedure. In this framework, a greedy
reconstruction procedure produces a signal estimate consis-
tent with the information in the measurement ordering.
[0058] Both embodiments have better performance than
conventional CS reconstruction of distorted measurements.
[0059] One 1dea 1s to exploit the randomized measurement
process. Randomization makes individual measurements
normally distributed, random variables. Standard estimation
theory 1s combined with order statistics to determine a mini-
mum mean squared error (MMSE) estimate of the undistorted
measurements. The estimate 1s based only on the ordering of
the distorted measurements. No assumption 1s made on the
signal structure, or the reconstruction procedure. Although
the invention 1s described 1n the context of CS, the invention
can also be used to reconstruct a variety of signals from
randomized distorted measurements of the signals using an
appropriate reconstruction procedure.

[0060] Another 1dea 1s to use nonlinear reconstruction,
which incorporates the ordering of the measurements as a
constraint 1n the reconstruction process. Thus, 1n addition to
prior knowledge of the signal structure, the mvention also
exploits knowledge of the measurement system.

[0061] Applications for the mnvention are numerous. Driit
and vanations of nonlinear properties of measurement
devices are common 1n most acquisition systems, and vary
due to manufacturing and runtime conditions. For example, 1n
optical systems, the operating temperature and ambient light
can make the device drift to a nonlinear region of the acqui-
s1tion.

[0062] Although the invention has been described by way
of examples of preferred embodiments, it 1s to be understood
that various other adaptations and modifications can be made
within the spirit and scope of the invention. Theretfore, 1t 1s the
object of the appended claims to cover all such vanations and

modifications as come within the true spirit and scope of the
invention.

I claim:
1. A method for reconstructing a signal x, comprising the
steps of:

measuring a signal X as a vector y ol measurements v,
wherein the measurements vy, are distorted, and each
measurement y, has an associated value;

ordering the measurements y, in the vector vy according to
the associated values, wherein each sorted measurement
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has an imndex corresponding to the ordering to form an
ordered index sequence; and

applying a reconstruction method to the ordered index

sequence to produce an estimate X of the signal X,
wherein the signal x 1s sparse.

2. The method of claim 1, wherein the distortion 1s nonlin-
car and unknown.

3. The method of claim 2, wherein the nonlinearity 1s
monotonic.

4. The method of claim 1, wherein the measurements vy, 1n
the vector v follow a normal distribution 1(y), which 1s a
cumulative distribution function (CDF) ¢(v).

5. The method of claim 1, wherein the ordering 1s increas-
ng.

6. The method of claim 1, wherein the ordering 1s decreas-
ng.

7. The method of claim 1, wherein the measuring 1s accord-
ing to

y=g(4x),

wherein A 1s a measurement matrix, and wherein the function
g 1s nonlinearly increasing or decreasing and applied ele-
ment-wise to the signal x.
8. The method of claim 4, wherein a number of the mea-
surements 1s M, and wherein the applying further comprises:
estimating measurements y according to y,,=y, =®_,(p,),
wherein p~=1/(M+1), and the compressive reconstruc-
tion 1s X=A ,(y), wherein A , 1s a reconstruction proce-
dure.
9. The method of claim 7, wherein the applying further
COmMprises:
satisfying a consistent constraint

[] &=
Rt

Sign(ﬂx) =sign| [— ]

to the ordering of the measurements y,, wherein A is a mea-
surement matrix, and wherein sign(.)=x1, and 1 and 7 are
indices of a first and a second row of the measurement matrix
A used to form the matrix A, and the compressive reconstruc-
tion 1s

o

X=MSP ,(y), wherein MSP 1s a Matching Sign Pursuit

procedure.
10. The method of claim 1, wherein the values are ampli-
tudes of the signal x.
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