US 20110041179A1

a9y United States
12y Patent Application Publication o) Pub. No.: US 2011/0041179 A1

STAHLBERG (43) Pub. Date: Feb. 17, 2011
(54) MALWARE DETECTION (52) US.Cl e, 726/23
(57) ABSTRACT
(75) Inventor: Mika STAHLBERG, Espoo (FI)

According to a first aspect of the present invention there 1s
provided a method of detecting potential malware. The
method comprises, at a server, receiving a plurality of code
samples, the code samples including at least one code sample
known to be malware and at least one code sample known to

Correspondence Address:
HARRINGTON & SMITH

4 RESEARCH DRIVE, Suite 202

SHELTON, CT 06484-6212 (US) be legitimate, executing each of the code samples in an emu-
lated computer system, extracting bytestrings from any
(73) Assignee: F-Secure Oyj changes 1n the memory of the emulated computer system that

result from the execution of each sample, using the extracted
bytestrings to determine one or more rules for differentiating
between malware and legitimate code, and sending the rule(s)
to one or more client computers. At the or each client com-
(22) Filed: Aug. 11, 2009 puter, for a given target code, executing the target code 1n an
emulated computer system, extracting bytestrings from any
changes 1n the memory of the emulated computer system that
result from the execution of the target code, and applying the
(51) Int. CL. rule(s) received from the server to the extracted bytestrings to

GO6lF 11/00 (2006.01) determine if the target code 1s potential malware.

(21) Appl. No.: 12/462,913

Publication Classification

A1. Malware and clean samples
supplied to the anti-virus server

Client Computer

A 4

A8. Execute target program in an
emulated environment

A9. Collect memory dump from

memory of the emulated
environment

'

Anti-Virus Server !

A2. Execute a sample program in
an emulated environment

!

A3. Collect memory dump from
memory of the emulated
environment

S

A4. Extract bytestrings and ‘

A10. Extract bytestrings and
associated metadata

5 5
i :
' ;
E :
5 s
a s
: 1
: i
i Y i
i A11. Apply malware detection :
: rules to extracted bytestrings and !
: i
5 s
: :
: ’
l :

associated metadala

!

A5. Use bytestrings and
associated metadata
to generate malware detection
rules

¥

AB. Store malware detection rules

4

A7. Provide malware detection rule
update to client computers

associated metadata

A12. Is target NO
potential

malware?

A13. Continue processing

YES

A14. Any YES

predefined
procedures?

A15. Follow predefined procedures

- ms ws wr B Sy e R A R e S ol S mk SR BN SR S ke e e B EE A S e oy W BN AL AN A G e e ml AN AN AN BN BN B e s - A B G s ol L ML S B B an B e e mh o oae B B B B BB
-_—ew o o wr wr v wh o S gy e e e el e SR S e W W TEF W TR TN BN BDF B WEN WS WD W WS B T B N T B S W W W W wr wle ome A S A - A A A B B B B e A B A e ol e e e
e

NO

A16. Prompt user

A A W BN EE WS W BT v e v e o s dem e - B AN Bk B N R A I A N R BN B A G B - S B B EE W W WY W TE S e sy e sk ke o i e e ol L SR S SR B G B S B B AN S G B Ee e am ol

US 2011/0041179 Al

Feb. 17,2011 Sheet 1 of 2

Patent Application Publication

AJows|\

L1

JEVVELEN

N

JUSWUOJIAUT
paje|nw3

Jun uondsIaQ

IEM|EIN

1s)iwisuel |

laindwo)

| ainbl

L.

L
. o ¢t

JUSWUOIIAUT
paje|nw3

yun sisAjeuy
aleM|B\

J1OAI908Y

JOAIOG SNIIA-IJUY [BJJUS)

US 2011/0041179 Al

Feb. 17,2011 Sheet 2 of 2

Patent Application Publication

- E S EE S I S S S I B S I T B A A N Ey e m e e e die o ahis bk G ol D O B BE B B BN BE BN B B T B W OB B OBF W T B T W B TE W ST = ok am o mh S i ol SR W S A | .

saJnpadoid pauljapald mojjo4 ‘GLY

Buissanold anujuo) ‘cLY

Jasn ydwold 9Ly

ON

;sainpanosd
pauljapaid
Auy pLY

S3IA

S3JA

jalemew
|lenuajod

ON jobiey s) "ZLv

ejepelow pajeIdosse

uonodjap asemew Alddy "Ly

pue sBulsa)iq paioesixs 0} sejn

BlepRIaW PIRIN0oSSE
pue sbBusajAq 10ex3 0Ly

I

JUSWIUOJIAUS
pajejnwa ay} jo Aowaw

| woy dwnp Aowaw 199)|10D 6V

1

JUSWUOIIAUS palejnwd

ue ul weibosd }abiey) an0axy gy

Jandwo) wualn

- e - ot ER EE EE EE B B BN BN E BN T T EF T S s sk ik R B B B T O T O T O O O O A O EE S B AR B O e e as s e oy min i B sy bk o ek e A W W A

s13)ndwiod Juai o) ajepdn
3jNJ UCND3}ap diem[ew apiAold LY

S3|NJ UONDS}ap SJEMBW 310]S OV

=Y
uon3ajap aJemjew ajelauab o)
EJEPE}SLU PBBIDOSSE
pue sbulsajAq as) GV

elepelaul paleloosse
pue sbuuisajAq 1oenxy vy

JuaLiuOliAug

paje|nwd ay) jo Alowawl
woJ) dwnp Alowauwl 93|10 gV

JUBLIUOIIAUS pajejniua ue
ul wesboud sjdwes e 9)noaxy "Zv

JBAIBS sniiA-ijue ay) o) palddns
sajdwes uea pue aJeMEW ‘LY

JONIBG SNIIA-RUY

- e e ey s A e R A O T T T T e s mmi W A O - BN O BF EE WS W OB T W I ED =D = Em -

o OE E Er wm wr s e oo L B W R B B A W W e R S B A T oam EE AR A T T R OO A OTE T A T A AR A AR ar W B B O e ne o W W OO A W OEE RO W W W B B o W IR

US 2011/0041179 Al

MAILWARE DETECTION

TECHNICAL FIELD

[0001] The present invention relates to a method of detect-
ing potential malware programs.

BACKGROUND

[0002] Malware 1s short for malicious software and 1s used
as a term to refer to any soltware designed to infiltrate or
damage a computer system without the owner’s informed
consent. Malware can include computer viruses, worms, tro-
1an horses, rootkits, adware, spyware and any other malicious
and unwanted software.

[0003] When adevice is infected by malware, most often 1n
the form of a program or other executable code, the user will
often notice unwanted behaviour and degradation of system
performance as the infection can create unwanted processor
activity, memory usage, and network traffic. This can also
cause stability 1ssues leading to application or system-wide
crashes. The user of an infected device may incorrectly
assume that poor performance 1s a result of software tlaws or
hardware problems, taking inappropriate remedial action,
when the actual cause 1s a malware infection of which they are
unaware. Furthermore, even if a malware infection does not
cause a perceptible change 1n the performance of a device, 1t
may be performing other malicious functions such as moni-
toring and stealing potentially valuable commercial, personal
and/or financial information, or hijacking a device so that 1t
may be exploited for some illegitimate purpose.

[0004] Many end users make use of anti-virus soitware to
detect and possibly remove malware. In order to detect a
malware {ile, the anti-virus software must have some way of
identifying 1t amongst all the other files present on a device.
Typically, this requires that the anti-virus software has a data-
base containing the “signatures” or “fingerprints” that are
characteristic of individual malware program files. When the
supplier of the anti-virus software identifies a new malware
threat, the threat 1s analysed and its signature 1s generated.
The malware 1s then “known™ and 1ts signature can be dis-
tributed to end users as updates to their local anti-virus soft-
ware databases.

[0005] Inorderto evade these signature detection methods,
malware authors design their software to hide the malware
code from the anti-virus software. A relatively simple evasion
technique 1s to encrypt or “pack” the malware such that the
malware 1s only decrypted/unpacked at runtime. However,
that part of the code providing the decryption or unpacking,
algorithm cannot be hidden, as 1t must be capable of being
executed properly, such that 1t 1s possible that anti-virus sofit-
ware can be designed to identify these algorithms as a means
ol detection or, once identified, to use these algorithms to
unpack the code prior to scanning for a signature.

[0006] An advance on this evasion technique 1s to make use
of polymorphic malware programs. Polymorphic malware
typically also rely on encryption to obfuscate the main body
of the malware code, but are designed to modily the encryp-
tion/decryption algorithms and/or keys for each new replica-
tion, such that both the code and the decryption algorithm
contain no recognisable signature that 1s consistent between
infections. In addition, 1n order to make detection even more
difficult, some polymorphic malware programs pack their
code multiple times, each time using different algorithms
and/or keys. However, these polymorphic malware programs

Feb. 17, 2011

will decrypt themselves when executed such that, by execut-
ing them in an 1solated emulated environment or test system
(sometimes referred to as a “sandbox”), their decrypted 1n-
memory 1image can then be scanned for signatures.

[0007] So-called “metamorphic” malware programs also
change their appearance to avoid detection by anti-malware
software. Whilst polymorphic malware programs hide the
main body of their code using encryption, metamorphic mal-
ware programs modily their code as they propagate. There are
several techniques that can be employed by metamorphic
malware programs to change their code. For example, these
techniques can range from the insertion and removal of “gar-
bage™ instructions that have no effect on the function of the
malware, to the replacement of entire blocks of logic with
functionally equivalent blocks of logic. Whilst 1t can be very
difficult to detect metamorphic malware using signatures, the
mutation engine, 1.€. those parts of the malware program code
that act to transform the code, 1s included within the malware
program files. As such, 1t 1s possible to analyse this code to
develop signatures and behavioural models that can enable
detection of this malware and its variants. However, such
approaches for detecting metamorphic malware programs
require highly skilled individuals to perform the analysis,
which 1s difficult, time consuming and prone to failure.

[0008] A yetiurther advance on this detection evasion tech-
nique 1s server-side metamorphism, wherein the mutation
engine responsible for transtorming the malware 1nto differ-
ent variants does not reside within the malware code itself, but
remotely on a server. As such, the mutation engine cannot
casily be 1solated and analysed to determine ways of detecting
the variants. Furthermore, the malware designers can use
techniques to hide the 1dentity of the server distributing the
mutated variants, such that the mutation engine 1s difficult to
locate.

[0009] Signature scanning i1s of course only one of the
“weapons’ available to providers of anti-virus applications.
For example, another approach, commonly used in parallel
with signature scanning, 1s to use heuristics (that 1s rules) that
describe suspicious behaviour, indicative of malware. For
example, heuristics can be based on behaviours such as API
calls, attempts to send data over the Internet, etc.

SUMMARY

[0010] It 1s an object of the present invention to provide a
process for detecting polymorphic and metamorphic malware
that at least partially overcomes some of the problems
described above.

[0011] According to a first aspect of the present invention
there 1s provided a method of detecting potential malware.
The method comprises, at a server, receiving a plurality of
code samples, the code samples including at least one code
sample known to be malware and at least one code sample
known to be legitimate, executing each of the code samples in
an emulated computer system, extracting bytestrings from
any changes 1n the memory of the emulated computer system
that result from the execution of each sample, using the
extracted bytestrings to determine one or more rules for dii-
ferentiating between malware and legitimate code, and send-
ing the rule(s) to one or more client computers. At the or each
client computer, for a given target code, executing the target
code 1 an emulated computer system, extracting bytestrings
from any changes in the memory of the emulated computer
system that result from the execution of the target code, and

US 2011/0041179 Al

applying the rule(s) received from the server to the extracted
bytestrings to determine 1f the target code 1s potential mal-
ware.

[0012] This method of detecting malware does not require
that the in-memory image of the executed code 1s not
mutated; 1t relies on the fact that even mutated variants of a
malware program will create 1dentical in-memory bytestrings
and memory structures.

[0013] The method may further comprise, at the server,
storing the one or more rules, recerving an additional code
sample, executing the additional code sample 1n an emulated
computer system, extracting bytestrings from any changes in
the memory of the emulated computer system that result from
the execution of the additional code sample, using the
extracted bytestrings to update the one or more stored rules,
and sending the updated rules to the client computer.

[0014] The method may further comprise, at the server,
gathering metadata associated with said extracted
bytestrings, and using said metadata together with said
extracted bytestrings to determine the one or more rules for
differentiating between malware and legitimate code. The
method may then further comprise, at the client computer,
gathering metadata associated with said extracted
bytestrings, and applying the rules received from the server to
said bytestrings and associated metadata.

[0015] The metadata may further comprise one or more of:
[0016] the location of a bytestring 1n the memory;

[0017] the string in its encrypted or plaintext form;

[0018] the encoding of the bytestring;

[0019] thetime or event at which the bytestring occurred;

[0020] thenumber of memory accesses to the bytestring;

[0021] the location of the function that created the
bytestring;

[0022] the memory injection type used and the target
pProcess;

[0023] whether the bytestring was overwritten or the

allocated memory de-allocated.

[0024] The one or more rules may comprise one or more
combinations of bytestrings and/or metadata associated with
bytestrings, the presence of which in the bytestrings and
associated metadata extracted during execution of the target
code 1s indicative of malware.

[0025] The bytestrings extracted from the memory of the
emulated computer system may include bytestrings extracted
from the heap and the stack sections of the memory.

[0026] The method may further comprise, at the server,
extracting bytestrings written into files that are created on the
disk of the emulated computer system by the sample code
during execution in the emulated computer system. The
method may then further comprise, at the or each client com-
puter, extracting bytestrings written into files that are created
on the disk of the emulated computer system by the target
code during execution 1n the emulated computer system.

[0027] The method may further comprise, using decoy
bytestrings 1n documents and when imitating user actions
within the emulated environment, and identifying any decoy
bytestrings extracted from the memory during execution of
the sample or target code 1n the emulated computer system.

[0028] The method may further comprise, at the server,
prior to determining one or more rules for differentiating,
between malware and legitimate code, removing from the
extracted bytestrings any bytestrings that match those con-
tained within a list of 1insignificant bytestrings.

Feb. 17, 2011

[0029] The method may further comprise, at the server,
prior to determining one or more rules for differentiating
between malware and legitimate code, measuring the differ-
ence between each of the extracted bytestrings and
bytestrings that have previously been identified as being asso-
ciated with both malware and legitimate code, and removing
from the extracted bytestrings any bytestrings for which this
difference does not exceed a threshold.

[0030] The method may further comprise, at the or each
client computer, prior to applying the rule(s) recerved from
the server, removing from the extracted bytestrings any
bytestrings that match those contained within a list of 1nsig-
nificant bytestrings.

[0031] The step of using the extracted bytestrings to deter-
mine one or more rules for differentiating between malware
and legitimate code may comprise, at the server, providing the
bytestrings to one or more artificial intelligence algorithms,
the artificial intelligence algorithm(s) being configured to
generate the one or more rules for differentiating between
malware and legitimate code.

[0032] According to a second aspect of the present mnven-
tion there 1s provided a method of detecting potential mal-
ware. The method comprises, at a server, receiving a plurality
of code samples, the code samples including at least one
sample known to be malware and at least one code sample
known to be legitimate, executing each of the code samples in
an emulated computer system, extracting bytestrings from
changes 1n the memory of the emulated computer system that
result from the execution of each sample, using the extracted
bytestrings to determine one or more rules for differentiating
between malware and legitimate code. At the or each client
computer, for a given target code, executing the target code 1n
an emulated computer system, extracting bytestrings from
changes 1n the memory of the emulated computer system that
result from the execution of the target code, and sending the
extracted bytestrings to the server. At the server, applying the
rule(s) to the extracted bytestrings received from the or each
computer to determine 11 the target code 1s potential malware
and sending the result to the or each computer.

[0033] According to a third aspect of the present invention
there 1s provided a server for use 1n provisioning a malware
detection service. The server comprises a recerver for receiv-
ing a plurality of code samples, the code samples including at
least one sample known to be malware and at least one code
sample known to be legitimate, a processor for executing each
of the code samples 1n an emulated computer system, and for
extracting bytestrings from changes in the memory of the
emulated computer system that result from the execution of
cach sample, an analysis unit for using the bytestrings
extracted from the or each code sample to determine one or
more rules for differentiating between malware and legiti-
mate code, and a transmitter for sending the rules to one or
more client computers.

[0034] The server may also comprise a database for storing
the one or more rules, wherein the receiver 1s further arranged
to recerve an additional code sample, the processor 1s further
arranged to execute the additional code sample 1n an emulated
computer system, to extract bytestrings from changes in the
memory of the emulated computer system that result from the
execution of the additional code sample, the analysis unit 1s
further arranged to use the bytestrings extracted from the
additional sample to update the one or more rules stored in the
database, and the transmitter 1s further arranged to send the
updated rules to the client computer.

US 2011/0041179 Al

[0035] The processor may be further arranged to gather
metadata associated with said extracted bytestrings, and the
analysis unit may be further arranged to use said metadata
together with said extracted bytestrings to determine the one
or more rules for differentiating between malware and legiti-
mate code.

[0036] The one or more rules may comprise one or more
combinations of bytestrings and/or metadata associated with
bytestrings, the presence of which in the bytestrings and
associated metadata extracted during execution of the target
code 1s 1ndicative of malware.

[0037] The he processor may be turther arranged to extract
bytestrings from the heap and the stack sections of the
memory of the emulated computer system.

[0038] The processor may be further arranged to remove,
from the extracted bytestrings, any bytestrings that match
those contained within a list of insignificant bytestrings.
[0039] The analysis unit may be further arranged to imple-
ment one or more artificial intelligence algorithms, the arti-
ficial intelligence algorithm(s) being configured to generate
the one or more rules for differentiating between malware and
legitimate code.

[0040] According to a fourth aspect ol the present invention
there 1s provided a client computer. The client computer com-
prises arecerver for recerving from a server one or more rules
for differentiating between malware and legitimate code, a
memory for storing the one or more rules, and a malware
detection umit for executing a target code 1 an emulated
computer system, for extracting bytestrings from changes 1n
the memory of the emulated computer system that result from
the execution of each sample, and applying said one or more
rules received from the server to the extracted bytestrings to
determine 11 the target code 1s potential malware.

[0041] The malware detection unit may be further arranged
to extract bytestrings from the heap and the stack sections of
the memory of the emulated computer system.

[0042] Themalware detection umit may be further arranged
to gather metadata associated with said extracted bytestrings
from the memory during execution of the target code, and to
apply the rules received from the server to said bytestrings
and their associated metadata.

[0043] Themalware detection umit may be further arranged
to remove, from the extracted bytestrings, any bytestrings that
match those contained within a list of insignificant
bytestrings, prior to applying the rule(s) received from the
SErver.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] FIG. 1 illustrates schematically a system for detect-
ing malware according to an embodiment of the present
invention; and

[0045] FIG. 2 1s a flow diagram illustrating the process of
detecting malware according to an embodiment of the present
invention.

DETAILED DESCRIPTION

[0046] In order to at least partially overcome some of the
problems described above, it 1s proposed here to execute
samples of malware code and “clean” or bemign code 1n an
emulated environment, extract bytestrings (strings in which
the stored data does not necessarily represent text) from the
image oi the code 1in the memory of the emulated environment
and use these extracted bytestrings to develop heuristic logic

Feb. 17, 2011

that can be used to differentiate between malware code and
clean code. This method does not require that the in-memory
image 1s not mutated; 1t relies on the fact that even mutated
variants of a malware program will create 1dentical
in-memory bytestrings and memory structures. Furthermore,
the extracted strings can be used to train machine learning or
artificial intelligence algorithms to develop the heuristic
logic, 1n the form of mathematical models, which can then be
used to classity some target code either as clean or as potential
malware. The use of artificial intelligence algorithms to
develop this malware detection logic provides that the system
can be automated, thereby reducing the time taken to analyse
the continually increasing numbers of malware programs.

[0047] FIG. 1 1llustrates schematically a system according
to an embodiment of the present invention and which com-
prises a central anti-virus server 1 connected to a network 2
such as the Internet or a LAN. Also connected to the network
are a plurality of end user computers 3. The central anti-virus
server 1 1s typically operated by the provider of some malware
detection software that 1s run on each of the computers 3, and
the users of these computers will usually be subscribers to an
update service supplied by the central anti-virus server 1.
Alternatively, the central anti-virus server 1 may be thatof a
network administrator or supervisor, each of the computers 3
being part of the network for which the supervisor is respon-
sible. The central anti-virus server 1 comprises a receiver 4,
an analysis unit 5, a database 6 and a transmitter 7. Each of the
computers 3 comprises a recerver 8, a memory 9, a malware
detection unit 10 and a transmitter 11. The computers 3 may
be a desktop personal computer (PC), laptop, personal data
assistant (PDA) or mobile phone, or any other suitable device.
[0048] FIG. 2 1s a flow diagram further illustrating the
process of detecting malware according to an embodiment of
the present invention. The steps performed are as follows:

[0049] Al. Samples of malware code and clean code are
supplied to the central anti-virus server 1.

[0050] AZ2. For each of these samples, the analysis unit 5
executes the sample code 1n an emulated environment or
“goat” test system 12. The analysis umit 5 1s also
informed as to whether the sample 1s that of malware or
clean code.

[0051] A3. During execution of the sample the analysis
unit 3 collects snapshots or dumps of any changes 1n the
memory of the emulated environment that occur due to
execution of the sample code.

[0052] A4. The analysis unmit 5 then extracts any
bytestrings (strings 1 which the stored data does not
necessarily represent text) from within these memory
dumps and records any metadata associated with those

bytestrings. The analysis unit 3 may also performing
filtering of the extracted bytestrings to remove any
bytestrings i1t determines to be 1nsignificant. The analy-
s1s unit 5 may also identily any extracted bytestrings or
types of bytestrings that are considered to be of particu-
lar relevance and flag these, or may add a weighting for
any bytestrings or types of bytestrings that are consid-
ered to be significant indicators of malware.

[0053] AS5. Once the analysis unit 3 has a number of
samples 1t uses this information, together with the infor-
mation that identifies each of the associated sample as
being either malware or clean, to learn how to identify
patterns that are indicative of a malware program and to
develop logic that can be applied for their detection. This
learning can be achuieved using artificial intelligence (Al)

US 2011/0041179 Al

or machine learning techmiques, and may take into
account any flags and/or weightings that have been asso-
ciated with the extracted bytestrings.

[0054] AG6. This logic 1s stored 1n the database 6 and can
be continually updated or modified as the analysis unit 5
analyses more samples.

[0055] A7. This logic, or a subset of this logic, 1s then
provided to the computers 3 1n the form of updates. For
example, these updates can be provided in the form of
uploads from the central anti-virus server 1 accessed
over the network. These updates can occur as part of a
regular schedule or 1n response to a particular event,

such as the generation of some new logic, a request by a
user, or upon the 1dentification of a new malware pro-
gram.

[0056] AR. In order to make use of this logic when per-
forming a malware scan, the malware detection unit 10
of a computer 3 executes the code that 1s the target of the
scan 1n emulated environment or test system 13 (other-
wise known as a sandbox). This scan can be performed
on-demand or on-access.

[0057] A9. During execution of the target code the mal-
ware detection unit 10 collects snapshots or dumps of
any changes in the memory of the test system that occur
due to execution of the target code.

[0058] AI10. The malware detection unit 10 then extracts
any bytestrings from within these memory dumps and
records any metadata associated with those bytestrings.
The malware detection unit 10 may also performing
filtering of the extracted bytestrings to remove any
bytestrings 1t determines to be 1nsignificant.

[0059] All. The malware detection unmit 10 then applies
the logic provided by central anti-virus server 1 to the
extracted bytestrings and their metadata.

[0060] A12. The application of the malware detection
logic determines 11 the target program 1s potential mal-
ware.

[0061] A1l3. 11, according to the malware detection logic,
the extracted bytestrings and/or their metadata do not
indicate that the target code 1s likely to be malware, then
the computer 3 can continue to process the code accord-
ing to standard procedures.

[0062] Al4. 11, according to the malware detection logic,
the extracted bytestrings and/or their metadata do 1ndi-
cate that the target code 1s likely to be malware, then the
malware detection unit 10 will check 1f there are any
predefined procedures, in the form of a user-definable
profile or centrally administered policy, for handling
such suspicious code.

[0063] A1l3. If there are some predefined procedures,
then the malware detection unit 10 will take whatever
action 1s required according to these policies.

[0064] Al6. If there are no predefined procedures, the

malware detection unit 10 prompts the user to select
what action they would like to take regarding the sus-
pected malware. For example, the malware detection
unit 10 could request the user’s permission to delete the
code or perform some other action to disinfect their
computer.

[0065] When the analysis unit has analysed a number of

samples it may, for example, develop malware detection logic

that requires a combination of bytestring types, specific
bytestrings and/or bytestring metadata be present within the

in-memory 1image of a program 1n order to identify that pro-

Feb. 17, 2011

gram as potential malware. The malware detection unit at a
client computer can then emulate a program and scan it’s
in-memory image for the combination of bytestrings and/or
metadata defined by the malware detection logic.

[0066] As an alternative to the process outlined above, a
client computer 3 can execute some target code 1n an emu-
lated environment, extract any bytestrings and associated
metadata and send this information to the anti-virus server 1.
The anti-virus sever 1 would then apply the malware detec-
tion logic to this information and return the result, and pos-
sibly any disinfection procedures or other relevant informa-
tion, to the client computer 3. Furthermore, whilst the process
outlined above relates to performing a malware scan of a
program 1n an emulated environment, the method could
equally be used to scan the actual memory of a computer
when attempting to disinfect/clean-up an already infected
computer.

[0067] The memory dumps taken from the emulated envi-
ronment, by both the malware analysis unit 5 of the server 1
and the malware detection unit 10 of a computer 3, are not
simply the representation of the code in the memory, but also
includes the heap and stack. This 1s important as, whilst
malware authors generally focus on obluscating the disk
image ol the malware code, they sometimes also obfuscate
the in-memory 1mage. For example, human-readable strings
may be separately encrypted in the in-memory image but
must be decrypted and stored in the heap when accessed.

[0068] Malware very commonly writes bytestrings into on-
disk files such as 1ts log file, config file, or system files. These
bytestrings can also be extracted and used to develop the
malware detection logic. However, the metadata associated
with such a bytestring should include an indication as to
whether or not the target/sample code wrote the bytestring to
the file or read it from a file created by another program on the
system.

[0069] Some malware can also write into the memory of
other processes. Therelore, 1 bytestrings were only to be
extracted from the memory of the actual malware process,
something particularly relevant might be missed in the analy-
s1s. To counter this, WrteProcessMemory or other such
memory 1njection functions should be monitored, and
bytestrings that are written to other processes should be
extracted. The metadata associated with such bytestrings
should also include information about the 1njection type used
and the target process.

[0070] Itisalso important that a number of memory dumps
are collected during the runtime of the code to capture all of
the information, 1n particular that in the heap. As such, the
point (1.¢. the time or event) at which a bytestring occurs may
also be useful metadata that can be used to develop the mal-
ware detection logic. Furthermore, it 1s preferable that
memory dumps are taken on-the-tly, as bytestrings appear, to
prevent them from being lost if they are overwritten or reused
betore they can be extracted. In addition, 1t a bytestring 1s
extracted and later that bytestring 1s overwritten or the
memory allocated to that bytestring 1s de-allocated, then the
fact that the bytestring was overwritten or the memory space
de-allocated 1s recorded as metadata associated with that
bytestring, and used for analysis and/or detection of potential
malware.

[0071] There are a variety of bytestring types that can com-
monly be found within the in-memory image of a malware
program, and 1t 1s these bytestrings in particular that the
malware analysis unit 5 1s likely to be able to use to develop

US 2011/0041179 Al

the malware detection logic. For example, these common
bytestring types can include but are not limited to:

[0072] URLs, particularly those of sites related to exist-
ing malware, and those of interest to the perpetrators of
the malware such as banking websites etc;

[0073] email addresses;

[0074] strings related to botnet command channels, such
as those of the Internet Relay Chat (IRC) communica-
tion protocol;

[0075] strings related to spamming, such as “MAIL
10O:7;

[0076] profanity;

[0077] strings in languages used in countries that are
known to be sources of significant quantities of mal-
ware;

[0078] names of anti-virus companies or strings related

to shutting down antivirus or firewall products;
[0079] mutex (mutual exclusion) names used by mal-
ware families:

[0080] memory structures used by malware; and
[0081] debug information (.pdb path).
[0082] In addition to human-readable bytestrings, such as

those listed above, there may be bytestrings indicative of
memory structures allocated by malware. For example, 1
malware assembles network packets in memory before send-
ing them (i.e. to other victims or to control servers) or if
malware parses configurations recerved from control servers,
then there can be invariant bytestrings 1n heap memory that
may 1ndicate the presence of malware. It1s bytestrings such as
these that may be flagged or given additional weighting that 1s
to be taken 1nto account when generating the malware detec-
tion logic.

[0083] The metadata associated with a bytestring can, for
example, include:

[0084] thelocation of the bytestring 1n the memory of the
emulated environment (1.e. its address, module name,
heap or stack);

[0085] the string 1n 1ts encrypted (1.e. XOR, ROT13 efc)
or plaintext form;

[0086] the encoding of the bytestring (1.e. Unicode,
ASCII etc);

[0087] the point at which the bytestring occurs 1n the
memory (1.€. the time or event at which the bytestring
OCCUrs);

[0088] whether the bytestring was overwritten or the
allocated memory de-allocated;

[0089] the number of memory accesses to the bytestring;

[0090] the location of the function that created the string;;
or
[0091] whether the bytestring was supplied as a param-
cter to an OS function call that shows output to a user
(1.e. a message box function).
[0092] The analysis can also make use of bytestrings that
are not part of the malware code 1tself but that are specific to
the local environment, such as the name or email address of
the user, or IP address of the computer. It 1s not uncommon for
malware to collect this sort of data 1n order to provide 1t to
some malware control server or the like. Similarly,
bytestrings in documents or entered by the user into password
fields or browser address bars often end up in the memory of
a running malware process. By using decoy bytestrings 1n
documents or when 1mitating user actions within the emu-
lated environment, the presence of these decoys within the
memory ol a running process can be located and may well be

Feb. 17, 2011

indicative of a malware process spying on a user. Such
bytestrings are therefore also extremely useful when per-
forming malware analysis and developing malware detection
logic. Any decoy bytestrings extracted from the 1n memory
image could be tagged as a “decoy” in their metadata,
together with the inclusion of their location information.

[0093] It 1s not necessary to use all extracted strings 1n
developing the malware detection logic. As such, it 1s prefer-
able to provide a “white list” of bytestrings that are not of
interest for the purpose of detecting malware. For example,
this white list could include bytestrings that are common to
both malware and non-malicious code, or at least those
bytestrings that appear in both almost as frequently, such as
those that typically come from operating system libraries
used by programs or that are created by compiler stubs.
Bytestrings extracted from the in-memory image of a sample
or target and that also appear on the white list can then be
filtered out, and any analysis 1s then performed on those
remaining bytestrings.

[0094] Alternatively, feature selection (also known as vari-
able reduction) techniques can be used to improve perfor-
mance and accuracy. For example, a straightforward feature
selection method 1s to use a scoring algorithm, such as the
Fisher scoring algorithm. The difference between the feature,
in this case a bytestring, and traiming sets of bytestrings asso-
ciated with both malware and benign code 1s calculated. It the
score 1s very small, the string does not provide much value 1n
terms of separating between malicious and clean strings and
can be excluded from any further analysis.

[0095] Inaddition, both malware and clean programs often
have pseudo-random or changing content in memory. This
content 1s not significant for malware detection and can pos-
s1bly skew the classification. In order to overcome this, these
randomly changing bytestrings can be detected by runming
the sample or target code 1n an emulator several times, each
time 1n a different environment or using different parameters.
Any bytestrings that appears to be random can either be
disregarded or can be tagged as “random™ 1n the associated
metadata.

[0096] It1s possible that some malware code may be 1n the
form of a dynamic link library (DLL) or may imnject a DLL
into another host process, such that all strings written by that
process should be extracted. However, bytestrings written by
a benign host process will not be of interest when developing
malware detection logic. As such, 1t 1s preferable that only
those bytestrings written by a function of the sample/target
DLL or by a function of a benign process called by the
sample/target code are taken into account when developing
the malware detection logic. To achieve this only those
bytestrings written when a function of the DLL under analy-
s1s 1s 1n the stack (list of functions and their child-parent,
caller-callee relationships) are extracted.

[0097] Those extracted bytestrings remaining aiter any {il-
tering has been performed can then be used, together with
their associated metadata, to develop the heuristic malware
detection logic. Most heuristics methods are based on feature
extraction. The antivirus engine extracts static features, such
as file size or number of sections, or dynamic features based
on behaviour. Classification of the code as either malware or
benign 1s then made based on which features the sample
possesses. In more traditional heuristic methods an antivirus
analyst creates either rules (e.g. 1f target has feature 1 and
feature 2 then 1t 1s malicious) or thresholds (e.g. if target has
more than 10 features it 1s malicious).

US 2011/0041179 Al

[0098] In the recent years there has been work to perform
the classification in heuristic analysis based on machine
learning. The 1dea 1n machine learning 1s simple, features of a
set of known clean and known malicious files 1s extracted. A
classifier equation 1s then automatically generated. This clas-
sifier 1s then used to analyze new samples. There are many
different classifiers that can be used for this, but the basic i1dea
1s always the same.

[0099] As such, the extracted bytestrings are used to train
machine learning or artificial intelligence algorithms to
develop the heuristic logic for classitying some target code
cither as clean or as potential malware. The use of artificial
intelligence or machine learning techmques 1s beneficial
compared to manually created heuristics since they can be
created automatically and quickly. This 1s especially impor-
tant as the appearance and/or characteristics of both malware
and clean programs are constantly changing. Furthermore,
creating rules manually also requires a lot of expertise. Using
appropriate artificial intelligence or machine learning tech-
niques an analyst only need maintain a collection of malware
and clean files, and add or remove files that are subsequently
identified as false positives or false negatives. By constantly
providing new data, the algorithms/logic developed using
artificial intelligence or machine learning techniques can be
refined and updated continuously to be aware of new malware
trends.

[0100] Some examples of artificial intelligence or machine
learning techniques that can be used include:

[0101] Bayesian logic/networks: A joint probability
function that can answer question such as “what 1s the

probability of a sample being malware 1f it has both
features 1 and 2”.

[0102] Bloom filters: A probabilistic data structure. Used
to test if an element (e.g. a sample) 1s a member of a set
(e.g. “set of all malware™).

[0103] Artificial Neural Networks: A mathematical
model consisting of artificial neurons and connections
between them. During learning the weights of the neu-
ron inputs are updated.

[0104] Self-organizing maps: A type of artificial neural
network that produces a low-dimensional view of the
input space of the training samples.

[0105] Decision trees: A tree where nodes are features
and leaves are classifications.

[0106] Support Vector Machines: Training data sets are
considered to be two sets of vectors 1n an n-dimensional
space. The classification 1s performed by calculating a
hyperplane that can separate the two sets.

[0107] Itwill be appreciated by the person of skill 1in the art
that various modifications may be made to the above
described embodiments without departing from the scope of
the present mvention. For example, the method described
above could also be used to analyse and detect potential
document exploits, which take advantage of an error, bug or
glitch 1n an application 1n order to infect a device, and script
malware. In order to do so the emulated environment would
be required to have an application for opening the document
or for running the script. In the case of exploits the application
needs to be vulnerable to the particular exploit (1.e. not a
version ol the application that has been updated and/or
patched to correct the bug). The bytestrings 1in the memory of
the emulate computer system that are generated by the appli-
cation when opening samples of benign and malicious docu-

Feb. 17, 2011

ments or running malicious and harmless scripts are extracted
and analysed to generate the malware detection logic.

1. A method of detecting potential malware, the method
comprising:

at a server, recerving a plurality of code samples, the code
samples including at least one code sample known to be
malware and at least one code sample known to be
legitimate, executing each of the code samples 1 an
emulated computer system, extracting bytestrings {from
any changes in the memory of the emulated computer
system that result from the execution of each sample,
using the extracted bytestrings to determine one or more
rules for differentiating between malware and legitimate
code, and sending the rule(s) to one or more client com-
puters; and

at the one of more client computers, for a given target code,
executing the target code 1n an emulated computer sys-
tem, extracting bytestrings from any changes in the
memory of the emulated computer system that result
from the execution of the target code, and applying the
rule(s) received from the server to the extracted
bytestrings to determine 1f the target code 1s potential
malware.

2. A method as claimed 1n claim 1, and further comprising:

at the server, storing the one or more rules, recerving an
additional code sample, executing the additional code
sample 1n an emulated computer system, extracting
bytestrings from any changes in the memory of the emu-
lated computer system that result from the execution of
the additional code sample, using the extracted
bytestrings to update the one or more stored rules, and
sending the updated rules to the one of more client
computers.

3. A method as claimed in claim 1, and further comprising:

at the server, gathering metadata associated with said
extracted bytestrings, and using said metadata together
with said extracted bytestrings to determine the one or
more rules for differentiating between malware and
legitimate code.

4. A method as claimed 1n claim 3, and further comprising:

at the one or more client computers, gathering metadata
associated with said extracted bytestrings, and applying
the rules recerved from the server to said bytestrings and
associated metadata.

5. A method as claimed 1n claim 3, wherein the metadata
comprises one or more of:

the location of a bytestring 1n the memory;

the string 1n its encrypted or plaintext form;

the encoding of the bytestring;

the time or event at which the bytestring occurred;

the number of memory accesses to the bytestring;

the location of the function that created the bytestring;
the memory 1njection type used and the target process;

whether the bytestring was overwritten or the allocated
memory de-allocated.

5. (canceled)

6. A method as claimed 1n claim 1, wherein the bytestrings
extracted from the memory of the emulated computer system
includes bytestrings extracted from the heap and the stack
sections of the memory.

US 2011/0041179 Al

7. A method as claimed 1n claim 1, and further comprising;:

at the server, extracting bytestrings written into files that
are created on the disk of the emulated computer system
by the sample code during execution in the emulated
computer system.

8. A method as claimed 1n claim 7, and further comprising:

at the one of more client computers, extracting bytestrings

written 1nto files that are created on the disk of the
emulated computer system by the target code during
execution 1n the emulated computer system.

9. A method as claimed 1n claim 1, and further comprising;:

using decoy bytestrings in documents and when 1mitating

user actions within the emulated environment, and iden-
tifying any decoy bytestrings extracted from the
memory during execution of the sample or target code 1n
the emulated computer system.

10. A method as claimed in claim 1, and further compris-
ng:

at the server, prior to determining one or more rules for

differentiating between malware and legitimate code,
removing from the extracted bytestrings any bytestrings
that match those contained within a list of 1nsignificant
bytestrings.

11. A method as claimed in claim 1, and further compris-
ng:

at the server, prior to determining one or more rules for

differentiating between malware and legitimate code,
measuring the difference between each of the extracted
bytestrings and bytestrings that have previously been
identified as being associated with both malware and
legitimate code, and removing from the extracted
bytestrings any bytestrings for which this difference
does not exceed a threshold.

12. A method as claimed in claim 1, and further compris-
ng:

at the one of more client computers, prior to applying the

rule(s) recetved from the server, removing from the
extracted bytestrings any bytestrings that match those
contained within a list of insignificant bytestrings.

13. A method as claimed 1n claim 1, wherein the step of
using the extracted bytestrings to determine one or more rules
for differentiating between malware and legitimate code
COmMprises:

at the server, providing the bytestrings to one or more

artificial intelligence algorithms, the artificial intelli-
gence algorithm(s) being configured to generate the one
or more rules for differentiating between malware and
legitimate code.

14. A method of detecting potential malware, the method
comprising;

at a server, receiving a plurality of code samples, the code

samples including at least one code sample known to be
malware and at least one code sample known to be
legitimate, executing each of the code samples 1 an
emulated computer system, extracting bytestrings from
changes 1n the memory of the emulated computer sys-
tem that result from the execution of each sample, using
the extracted bytestrings to determine one or more rules
for differentiating between malware and legitimate
code;

at one of more client computers, for a given target code,

executing the target code 1n an emulated computer sys-
tem, extracting bytestrings from changes in the memory
of the emulated computer system that result from the

Feb. 17, 2011

execution of the target code, and sending the extracted
bytestrings to the server; and

at the server, for each of the one of more client computers
applying the rule(s) to the extracted bytestrings recerved
from the client computer to determine 11 the target code
1s potential malware and sending the result to the client
computer.

15. A server for use 1n provisioning a malware detection

service, the server comprising;

a recewver for receiving a plurality of code samples, the
code samples including at least one sample known to be
malware and at least one code sample known to be
legitimate;

a processor for executing each of the code samples 1n an
emulated computer system, and {for extracting
bytestrings from changes in the memory of the emulated
computer system that result from the execution of each
sample;

an analysis unit for using the bytestrings extracted from the
or each code sample to determine one or more rules for
differentiating between malware and legitimate code;
and

a transmitter for sending the rules to one or more client
computers.

16. A server as claimed in claim 15 and comprising a
database for storing the one or more rules, wherein the
receiver 1s further arranged to receive an additional code
sample, the processor 1s further arranged to execute the addi-
tional code sample in an emulated computer system, to
extract bytestrings from changes 1n the memory of the emu-
lated computer system that result from the execution of the
additional code sample, the analysis unit is further arranged to
use the bytestrings extracted from the additional sample to
update the one or more rules stored 1n the database, and the
transmuitter 1s further arranged to send the updated rules to the
client computer.

17. A server as claimed 1n claim 15, wherein the processor
1s further arranged to gather metadata associated with said
extracted bytestrings, and the analysis unit 1s further arranged
to use said metadata together with said extracted bytestrings
to determine the one or more rules for differentiating between
malware and legitimate code.

18. A server as claimed 1n claim 17, wherein the one or
more rules comprise one or more combinations of bytestrings
and/or metadata associated with bytestrings, the presence of
which in the bytestrings and associated metadata extracted
during execution of the target code 1s indicative of malware.

19. A server as claimed 1n claim 135, wherein the processor
1s further arranged to extract bytestrings from the heap and the
stack sections of the memory of the emulated computer sys-
tem.

20. A server as claimed 1n claim 15, wherein the processor
1s further arranged to remove, from the extracted bytestrings,
any bytestrings that match those contained within a list of
insignificant bytestrings.

21. A server as claimed 1n claim 15, wherein the analysis
unit 1s further arranged to implement one or more artificial
intelligence algorithms, the artificial intelligence algorithm
(s) being configured to generate the one or more rules for
differentiating between malware and legitimate code.

22. A client computer comprising:

a recerver for receiving from a server one or more rules for
differentiating between malware and legitimate code;

a memory for storing the one or more rules; and

US 2011/0041179 Al

a malware detection unit for executing a target code in an
emulated computer system, for extracting bytestrings
from changes in the memory of the emulated computer
system that result from the execution of each sample,
and applying said one or more rules recerved from the

server to the extracted bytestrings to determine if the
target code 1s potential malware.

23. A client computer as claimed 1n claim 22, wherein the
malware detection unit 1s further arranged to extract
bytestrings from the heap and the stack sections of the
memory of the emulated computer system.

24. A client computer as claimed 1n claim 22, wherein the
malware detection unit 1s further arranged to gather metadata
associated with said extracted bytestrings from the memory

Feb. 17, 2011

during execution of the target code, and to apply the rules
received from the server to said bytestrings and their associ-
ated metadata.

25. A client computer as claimed 1n claim 22, wherein the
malware detection umit 1s further arranged to remove, from
the extracted bytestrings, any bytestrings that match those
contained within a list of insignificant bytestrings, prior to
applying the rule(s) recerved from the server.

26. A method as claimed 1n claim 3, wherein the one or
more rules comprise one or more combinations of bytestrings
and/or metadata associated with bytestrings, the presence of
which 1n the bytestrings and associated metadata extracted
during execution of the target code 1s indicative of malware.

S e S e e

	Front Page
	Drawings
	Specification
	Claims

