a9y United States

US 20100205408A1

12y Patent Application Publication o) Pub. No.: US 2010/0205408 A1

Chung et al.

43) Pub. Date: Aug. 12, 2010

(54) SPECULATIVE REGION: HARDWARE
SUPPORT FOR SELECTIVE
TRANSACTIONAL MEMORY ACCESS
ANNOTATION USING INSTRUCTION PREFIX

Jaewoong Chung, Bellevue, WA
(US); David S. Christie, Austin,
TX (US); Michael P. Hohmuth,
Dresden (DE); Stephan
Diestelhorst, Dresden (DE);
Martin Pohlack, Dresden (DE)

(75) Inventors:

Correspondence Address:
MEYERTONS, HOOD, KIVLIN, KOWERT &

GOETZEL (AMD)

P.O. BOX 398

AUSTIN, TX 78767-0398 (US)
(73) Assignee: ADVANCED MICRO DEVICES,
Sunnyvale, CA (US)

(21) Appl. No.: 12/764,024
(22) Filed: Apr. 20, 2010
Start
__________________ -
Begin transactional execution
205 |
4
Check prefix of next instruction
210

Preﬁ}_f in dfcates_
peculative execution?

Execute next instruction non-
speculatively 225

-~

Execute next instruction
speculatively 220

Related U.S. Application Data

(63) Continuation-in-part of application No. 12/510,884,
filed on Jul. 28, 2009.

(60) Provisional application No. 61/084,008, filed on Jul.
28, 2008.

Publication Classification

(51) Int.Cl.
GOGF 9/30 (2006.01)

(52) US.CL ... 712/216; 712/E09.028

(57) ABSTRACT

A computer system and method 1s disclosed for executing
selectively annotated transactional regions. The system 1s
configured to determine whether an mstruction within a plu-
rality of instructions 1n a transactional region includes a given
prefix. The prefix indicates that one or more memory opera-
tions performed by the processor to complete the instruction
are to be executed as part of an atomic transaction. The atomic
transaction can include one or more other memory operations
performed by the processor to complete one or more others of
the plurality of instructions in the transactional region.

200

y—

Yes Abort Retum to start of
Agg’g? g | 235 | ™| Transaction 240 |

No

More instructions?
245

No

Commit transaction
250

L J

End transactional execution
255

| Contihue program execution
260

Patent Application Publication

Processor
110a

ASF mechanisms
1208

Memory cache(s)
130a

Cache coh_erence
mechanisms
1324

Transactional memory
mechanisms
134a

Selective annoftation
mechanisms

1364

Interconnect

Aug. 12,2010 Sheet1 of 5

US 2010/0205408 Al

100

y—

Processor

1100

ASF mechanisms
1200

Memory cache(s)
130b

Cache coh_erence
mechanisms

1320

Transactional memory
mechanisms

134b

Selective annofation
mechanisms

1360

140

Shared memory

1250

FIG. 1

Patent Application Publication Aug. 12,2010 Sheet 2 of 5 US 2010/0205408 Al

Vi
o~

Start

Begin transactional execution
209

Check prefix of next instruction
210

Prefix indicales

peculative execution?
215

NO
Execute next instruction non-
speculatively 225
Yes Abort Retum to start of
ADOIt? Transaction 240
230
NoO

Yes

-
.'H
-\«.___H__

200

YeS | Execute next instruction
speculatively 220

More instructions?
245

NoO
Commit transaction
290
End transactional execution
299

FIG. 2

o Continue program execution
260

Patent Application Publication Aug. 12, 2010 Sheet 3 of 5 US 2010/0205408 Al

Processor 300

e

Instruction fetch 305
5 ; Shadow Register File
Microcode 3939

ROM 360

TX prefix signal Checkpoint

Scheduler 315 Register File 340

Dispatch +1TX
prefix signal

s LS Unit 320 ALU
N 345
X
S
Store queue Load queue
329 330
Store retire Data Load
Conflict Data cache
Detection < 220 354 3§6 3,§8
Unit N
370 s Tag
®
-
(N
S+ Tg | b W] R

On-chip network 380

FIG. 3

Patent Application Publication Aug. 12, 2010 Sheet 4 of 5 US 2010/0205408 Al

400

NO
Implicit memory operation?

405

Yes

Create explicit memory instruction(s) for
implicit memory operations
410

Dispatch explicit memory instruction to LS
Unit with speculate signal
4195

Store
operation?
420

NO

Set TW flag
425

Set IR flag
445

Send instruction data to cache
430

Retire instruction
450

Clear TW flag in store queue Clear TR flag in load queue
435 455

Set TW flag in cache
440

Set TR flag in cache
460

FIG. 4

Patent Application Publication Aug. 12, 2010 Sheet 5 of 5 US 2010/0205408 Al

Computer System 500

Shared Memory 510

Multithreaded
applications

222 Variables
and Data
Structures
Operating 230
System
224

Program
Instructions

920

Interconnect
240

Processor(s)
970

Persistent Storage _ _
Device(s) Selective annotation

550 mechanisms
o 2380

FIG. 5

US 2010/0205408 Al

SPECULATIVE REGION: HARDWARE
SUPPORT FOR SELECTIVE
TRANSACTIONAL MEMORY ACCESS
ANNOTATION USING INSTRUCTION PREFIX

[0001] This application 1s a continuation-in-part of U.S.
application Ser. No. 12/510,884, filed Jul. 28, 2009, which
claims the benefit of priority to U.S. Provisional Application
No. 61/084,008, filed Jul. 28, 2008, both of which are incor-

porated by reference herein in their entireties.

BACKGROUND

[0002] Shared-memory computer systems allow multiple
concurrent threads of execution to access shared memory
locations. Unfortunately, writing correct multi-threaded pro-
grams 1s difficult due to the complexities of coordinating
concurrent memory access. One approach to concurrency
control between multiple threads of execution 1s transactional
memory. In a transactional memory programming model, a
programmer may designate a section of code (1.e., an execu-
tion path or a set of program instructions) as a “transaction”,
which a transactional memory system should execute atomi-
cally with respect to other threads of execution. For example,
if the transaction includes two memory store operations, then
the transactional memory system ensures that all other
threads may only observe either the cumulative effects ol both
memory operations or of neither, but not the effects of only
one

[0003] To implement transactional memory, memory
accesses are sometimes executed one by one speculatively
and commiutted all at once at the end of the transaction. Oth-
erwise, 1I an abort condition 1s detected (e.g., data conflict
with another processor), those memory operations that have
been executed speculatively may be rolled back or dropped
and the transaction may be reattempted. Data from specula-
tive memory accesses may be saved in a speculative data
buifer, which may be implemented by various hardware
structures, such as an on-chip data cache.

[0004] Various transactional memory systems have been
proposed 1n the past, including those implemented by soft-
ware, by hardware, or by a combination thereof. However,
many traditional implementations are bound by various limi-
tations. For example, hardware-based transactional memory
proposals (HTMs) sometimes impose limitations on the size
of transactions supported (1.e., maximum number of specu-
lattve memory operations that can be executed before the
transaction 1s committed). Often, this may be a product of
limited hardware resources, such as the size of one or more
speculative data buffers used to butler speculative data during
transactional execution.

SUMMARY

[0005] Invarious embodiments, a computer processor may
be configured to implement a hardware transactional memory
system. The system may execute a transactional region of
code such that only a subset of the instructions in the trans-
actional region of code (e.g., those including a given instruc-
tion prefix) are executed as a single atomic memory transac-
tion while the other instructions in the transactional region
(c.g., those lacking the given prefix) are not necessarily
executed atomically.

Aug. 12,2010

[0006] In some embodiments, a computer system may be
configured to determine whether an 1nstruction within a plu-
rality of instructions 1n a transactional region includes a given
prefix. The prefix indicates that one or more memory opera-
tions performed by the processor to complete the 1nstruction
are to be executed as part of an atomic transaction. The atomic
transaction may imnclude memory operations performed by the
processor to complete one or more others of the plurality of
instructions 1n the transactional region.

[0007] In some embodiments, the one or more memory
operations performed atomically by the processor to com-
plete the instruction may correspond to implicit memory
operations. That 1s, 11 executing the mstruction with the given
prefix requires executing multiple implicit memory opera-
tions, then the processor may execute these multiple implicit
memory operations atomically as party of the atomic trans-
action.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG.11sablock diagram illustrating components of
a multi-processor computer system configured to implement
selective annotation of transactions, according to various
embodiments.

[0009] FIG. 2 1s atlow diagram of a method for executing a
transaction that uses selective annotation, according to some
embodiments.

[0010] FIG. 3 1s a block diagram illustrating the hardware
structures of a processor configured to implement selective
transactional annotation as described herein, according to
some embodiments.

[0011] FIG. 4 1s a flow diagram illustrating a method by
which processor 300 may execute a speculative memory
access operation (as 1 220), according to some embodi-
ments.

[0012] FIG. 51llustrates a computing system configured to
implement selective annotation as described herein, accord-
ing to various embodiments.

[0013] Any headings used herein are for organizational
purposes only and are not meant to limit the scope of the
description or the claims. As used herein, the word “may” 1s
used 1n a permissive sense (1.€., meaning having the potential
to) rather than the mandatory sense (1.€. meaning must). Simi-

larly, the words “include”, “including™, and “includes™ mean
including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

[0014] In transactional programming models, a program-
mer may designate a region of code as a transaction, such as
by using designated start and end instructions to demarcate
the execution boundaries of the transaction. In many 1mple-
mentations, hardware capacity limitations, such as specula-
tive buller sizes, constrain the number of speculative memory
access operations that can be executed together atomically by
a hardware transactional memory (HTM) system as part of a
single transaction.

[0015] Intraditional implementations, all memory accesses
that occur within a designated transaction are executed
together atomically. However, 1n some cases, correct program
semantics may not strictly require that all memory operations
within a given transaction be executed together atomically.

[0016] According to various embodiments, a computer
processor may be configured to determine a first non-empty
subset of instructions within a transactional region that are

US 2010/0205408 Al

speculative and another non-empty subset of instructions
within the transactional region that are non-speculative. The
processor may then execute the transactional region such that
the speculative subset 1s executed as a single atomic transac-
tion and the non-speculative subset of instructions i1s not
necessarily executed atomically.

[0017] In some embodiments, a processor may be config-
ured to differentiate between speculative instructions from
non-speculative instructions, at least 1in part based on a pre-
defined speculative-instruction prefix. For example, some
instruction set architectures (e.g., x86 and other CISC archi-
tectures) include various potentially variable-length 1nstruc-
tions that may include optional prefix fields. For instance, x86
instructions include one to five optional prefix bytes, fol-
lowed by an operation code (opcode) field, and optional
addressing mode byte, scale-index-base byte, displacement
field, and immediate data field. According to various embodi-
ments, a processor may be configured to determine that a
given 1nstruction of a transactional region 1s speculative
dependent at least on the value of the mstruction prefix. As
used herein, a “prefix” refers to a portion of an instruction that
1s distinct from the opcode field (as well as from any operands
of the instruction), where the opcode field specifies an opera-
tion to be performed by a processor. A prefix further specifies
the manner 1n which the processor performs the operation
specified by the opcode.

[0018] In various embodiments, the processor may com-
prise different transactional memory mechanisms for execut-
ing the speculative instructions of the transactional region as
a single atomic instruction while executing the non-specula-
tive mstructions without guarantee of atomicity. This differ-
entiation between speculative and non-speculative execution
for different subsets of instructions in a transaction may be
referred to herein as selective annotation, and therefore, a
processor 1n various embodiments may be configured to
implement selectively annotated transactions.

[0019] For each of the speculative instructions, executing
the 1nstruction may include performing one or more explicit
or implicit memory access operations. As used herein, an
“explicit” memory access operation 1s one that the processor
performs as part of executing an explicit load or store mnstruc-
tion (e.g., an nstruction for loading from or writing to a given
target memory location specified by an operand, such as the
x86 MOV 1instruction). As used herein, an “implicit” memory
access operation 1s one that 1s performed by the processor as
part of executing a type of istruction other than a load/store
instruction, but one which necessitates that the processor
perform a memory access to one or more memory locations
specified by one or more operands. For example, an “ADD”
instruction having an operand that specifies a memory loca-
tion rather than a register or immediate value 1s an example of
instruction whose execution includes an implicit memory
access operation.

[0020] FIG.11sablock diagram illustrating components of
a multi-processor computer system configured to implement
selective annotation of transactions, according to various
embodiments. According to the illustrated embodiment,
computer system 100 may include multiple processors, such
as processors 110a and 11054. In different embodiments, the
processors (e.g., 110) may be coupled to each other and/or to
a shared memory (e.g., 150) over an interconnect, such as
140. In various embodiments, different interconnects may be
used, such as a shared system bus or a point-to-point network
in various topographies (e.g., fully connected, torus, etc.).

Aug. 12,2010

[0021] In some embodiments, processors 110 may com-
prise multiple physical or logical (e.g., SMT) cores, each
capable of executing a respective thread of execution concur-
rently. In some such embodiments, selective annotation may
be implemented by a single processor with multiple cores.
However, for clarity of explanation, the embodiments out-
lined herein are described using single-core processors.
Those skilled 1n the art will recognize that the methods and
systems described herein apply also to multi-core processors.

[0022] According to the illustrated embodiment, each pro-
cessor 110 may include one or more levels of memory caches
130. Levels of memory caches may be hierarchically
arranged (e.g., L1 cache, L2 cache, L3 cache, etc.) and may be
used to cache local copies of values stored 1n shared memory
150.

[0023] In various embodiments, memory caches 130 may
include various cache-coherence mechanisms 132. Cache-
coherence mechanisms 132 may, 1n some embodiments,
implement a cache coherence communication protocol
among the interconnected processors, which may ensure that
the values contained 1n memory caches 130 of each processor
110 are coherent with values stored 1n shared memory and/or
in the memory caches of other processors. Several such pro-
tocols exist (including the MESI (1.e., Illino1s protocol) and
MOESI protocols), and may be implemented in various
embodiments. Cache coherence protocols may define a set of
messages and rules by which processors may inform one
another ol modifications to shared data and thereby maintain
cache coherence. For example, according to the MESI proto-
col, each block stored 1n a cache must be marked as being 1n
one of four states: modified, exclusive, shared, or invalid. A
given protocol defines a set of messages and rules for sending
and interpreting those messages, by which processors main-
tain the proper markings on each block. Depending on the
state of a given cache block, a processor may be restricted
from performing certain operations. For example, a processor
may not execute program instructions that depend on a cache
block that 1s marked as invalid. Cache coherence mechanisms
may be implemented 1n hardware, software, or 1n a combina-
tion thereof, 1n different embodiments. Cache coherence
messages may be may be communicated across interconnect
140 and may be broadcast or point-to-point.

[0024] According to the illustrated embodiment, each pro-
cessor 110 may also include various transactional memory
mechanisms (e.g., 134) for mmplementing transactional
memory, as described herein. Transactional memory mecha-
nisms 134 may include selective annotation mechanisms 136
for implementing selective annotation using 1nstruction pre-
fixes, as described herein. In various embodiments, more
processors 110 may be connected to mterconnect 140, and
various levels of cache memories may be shared among mul-
tiple ones of such processors and/or among multiple cores on
cach processor.

[0025] FIG. 21s atflow diagram of a method for executing a
transaction that uses selective annotation, according to some
embodiments. Method 200 may be performed by a processor
(e.g., 110) 1n a multiprocessor system. In one embodiment,
method 200 may be performed by processor 110 executing a
thread, and 1s described in this manner below.

[0026] According to the illustrated embodiment, method
200 begins when the thread of execution encounters a trans-
actional region of code, and thus begins transactional execu-
tion, as i 205. In some embodiments, the processor may
begin transactional execution (1.e., enter a transactional mode

US 2010/0205408 Al

of execution) 1n response to executing an explicit instruction
that indicates the beginning of a transactional region of code
(e.g., TxBegin, SPECULATE, etc.).

[0027] Insomeembodiments, once the transactional execu-
tion begins, the processor examines each istruction encoun-
tered with the transactional region of code to determine
whether the instruction 1s speculative. In one embodiment,
the processor may be configured to ensure that the set of
instructions in the transaction that are determined to be specu-
lative are executed together as a single atomic memory trans-
action. However, the processor need not make such a guaran-
tee for any 1nstructions in the transactional region of code that
are not determined to be speculative.

[0028] According to various embodiments, the processor
may determine which of the instructions are speculative
based, at least 1n part, on a prefix (a “speculative instruction
prefix”) that indicates that a particular instruction 1s to be
executed speculatively (e.g., within a single atomic memory
transaction). For example, various Complex Instruction Set
Computers (CISC), such as x86, allow each instruction to
include (or exclude) a prefix field, which can be used to
provide the processor with special directions for executing an
instruction specified by the opcode portion of the instruction
encoding. In some embodiments, an instruction may include
an mstruction prefix informing the processor that the mstruc-
tion 1s speculative and should be executed atomically as part
ol the speculative instruction subset 1n the transaction body.
For example, the speculative-instruction prefix may be a one-
byte encoding using reserved register D6 or F1. In other
embodiments, the prefix may be implemented as a two-bye
encoding where the first byte 1s OF (escaping byte) and the
second byte 1s one of the unused encodings available. Various
other encodings may be possible.

[0029] According to the illustrated embodiment, for each
instruction in the transaction, the processor checks for a
speculative-instruction prefix, as in 210. For example, 1n one
embodiment, the instruction decoding unit of the processor
(as shown 1n FIG. 3) 1s configured to determine whether a
given 1nstruction includes a speculative instruction prefix.

[0030] Ifthe examined instruction includes the speculative
istruction prefix, as indicated by the affirmative exit from
215, the processor executes the next instruction speculatively,
as 1n 220. Alternatively, if the next instruction does not
include the speculative-instruction prefix, as indicated by the
negative exit from 215, the processor executes the instruction
non-speculatively, as 1n 225. That 1s, instructions without the
speculative 1nstruction prefix may be executed and commit-
ted upon being retired, regardless of whether the transaction
has been committed. Executing such non-speculative mstruc-
tions may consume fewer or no transactional memory hard-
ware resources, such as transactional buifer space.

[0031] As discussed above, different instructions may
include one or more explicit or implicit memory access opera-
tions. For example, an explicit memory store (e.g., MOV)
instruction explicitly instructs the processor to perform a
memory access to a given memory location specified 1 an
operand. However, other structions (e.g., ADD) may
include one or more operands that specily memory locations
that contain data needed by the processor to execute the full
instruction. In such cases, the processor must perform one or
more memory read operations as part of executing the instruc-
tion, meaning that the instruction contains one or more
implicit memory references. For example, 1if an ADD 1nstruc-
tion includes three register operands (two that contain respec-

Aug. 12,2010

tive locations 1n memory where the values to be added are
stored and a third register operand for storing the summation)
then executing the ADD instruction may require the processor
to read the respective memory locations before performing
the summation. In this case, the ADD struction implicitly
requires two memory read operations.

[0032] Insomeembodiments, executing a set of speculative
instructions as a single atomic transaction includes perform-
ing both the explicit and implicit memory operations neces-
sitated by the speculative istructions as a single atomic trans-
action. For mstance, 11 the ADD instruction from the example
above 1s determined to be speculative, then the two implicit
memory operations involved in reading the operands are
included 1n the set of memory operations that are executed by
the processor as a single atomic transaction.

[0033] Asshownin FIG. 2, the processor continues execut-
ing instructions of the transaction (as indicated by the feed-
back loop from 245 to 210) until either an abort condition 1s
detected (aflirmative exit from 230) or no more instructions
ex1st 1n the transaction (negative exit from 245). It all instruc-
tions have been executed (as indicated by the negative exat
from 243), then the transaction 1s commuitted (as in 250), and
the processor exits the transactional execution mode (as in
255) and continues normal execution (as i 260). Normal

execution may include executing more transactions, as 1ndi-
cated by the feedback loop from 260 to 205.

[0034] Otherwise, 11 an abort condition 1s detected before
the transaction commits (as indicated by the affirmative exat
from 230), then the processor aborts the transaction attempt
(as 11 235), rolls back execution to the start of the transaction
(as 1n 240), and reattempts to execute the transaction (as
indicated by the feedback loop from 240 to 210). In some
embodiments, aborting the transaction attempt may include
dropping speculative data and/or metadata and/or undoing
various speculatively executed memory operations.

[0035] In various embodiments, aborts may be caused by
different conditions. For example, 11 there 1s insufficient hard-
ware capacity to bulfer speculative data in the transaction
(e.g., the transaction 1s too long), then the processor may
determine that the transaction attempt must be aborted (as 1n
235). Bullering speculative data 1s discussed in more detail
below. In another example, an abort may be caused by
memory contention—that 1s, interference caused by another
processor attempting to access one or more memory locations
accessed by the processor as part of executing one of the
speculative instructions. In various embodiments, the proces-
sor may include contention detection mechanisms configured
to detect various cache coherence messages (e.g., invalidating
and/or non-invalidating probes) sent by other processors. The
contention detection mechanisms may determine whether a
received probe 1s relevant to one or more memory areas
accessed as part of executing a speculative instruction and to
determine whether the probe indicates that a data conflict
exists. In response to detecting a data contlict, the processor
may abort the transactional attempt, as i 235.

[0036] According to various embodiments, a transaction
may be aborted 11 an 1validating probe relevant to a specu-
latively-read memory location 1s received and/or if a non-
invalidating probe relevant to a speculatively-written
memory location 1s received. In one example of detecting a
data contlict, consider a first thread executing 1n transactional
mode on a first processor and having an access to a memory
location as part of executing a speculative istruction. If a
second thread executing on a second processor subsequently

US 2010/0205408 Al

attempts a store to the speculatively-accessed memory loca-
tion, then the second processor may send an invalidating
probe to the first processor 1n accordance with the particular
cache coherence protocol deployed by the system. If the first
processor recetves the mvalidating probe while the memory
location 1s still protected (e.g., before the first thread commuts
its transaction or otherwise releases the memory location)
then a data contlict may exist and the first processor may abort
the transaction.

[0037] Once a transaction 1s committed, as 1n 250, all val-
ues written either explicitly and/or implicitly by the processor
as part of executing the speculative mstructions 1n the trans-
action become visible to all other threads in the system atomi-
cally. However, data values read or written as part of execut-
ing the non-speculative 1nstructions are not protected as part
of the transactional execution.

[0038] In various embodiments, different mechanisms and/
or techniques may be used to implement transactional
memory. For example, data accessed by one or more specu-
lative 1nstructions may be marked as speculative in a specu-
lattve data buifer, which may be implemented by various
processor structures, such as one or more data caches, a load
queue, store queue, combined load/store queues, etc.

[0039] Additionally, different transactional memory
mechanisms may follow different policies with respect to
speculative data values resulting from speculative write
operations (1mplicit and/or explicit). For example, 1n some
embodiments, the processor may implement a redo protocol
where speculative data values are kept 1n a private speculative
data builer until commit time (e.g., 250), when they are then
collectively exposed to other threads 1n the system. In the case
of an abort, the speculative data 1n the speculative buifer may
simply be dropped. In other embodiments, the processor may
implement an undo policy, where the processor records a
checkpoint at the start of the transaction and restores the
checkpoint in the case of an abort, thereby overriding any data
modified as part of executing one or more speculative instruc-
tions during the transaction. Various other combinations are
possible. Such techniques for redoing or undoing modifica-
tions to memory 1n response to a transaction committing or
aborting may be referred to herein broadly as “versioning”
and the metadata recorded to enable versioning may be
referred to as “versioning data.”

[0040] In various embodiments, the ISA may support
nested transactions so that another transaction can begin
within a currently executing transaction. In different embodi-
ments, the HTM implementation may support such nesting in
different ways, such as by subsuming the outer transactions
(1.e., flatteming) or by treating an 1nner transaction as separate
independent transaction from a transaction that contains it.

[0041] FIG. 3 1s a block diagram illustrating the hardware
structures of a processor configured to implement selective
transactional annotation as described herein, according to
some embodiments. In the illustrated embodiment, processor
300 includes an instruction fetch unit 305 configured to fetch
program instructions to execute, a decoder 310 configured to
decode/interpret the fetched instructions, and a scheduler 315
configured to schedule the istructions for execution. In vari-
ous embodiments, decoder 310 may be configured to recog-
nize various transactional memory instructions, such as
TxBegin for starting a transaction, TxEnd for ending a trans-
action, and the Tx prefix for determining which instructions
in a transaction are speculative based on the use of selective
annotation.

Aug. 12,2010

[0042] Intheillustrated embodiment, scheduler 315 1s con-
figured to dispatch instructions to the proper execution units,
such as Load Store Unit 320 for memory instructions and
Arnithmetic Logic Umt 345 for arithmetic instructions. Both
execution units 320 and 345 are configured to communicate
with a register file 340, which contains operand data and/or
various other register values.

[0043] According to the illustrated embodiment, processor
300 may include a shadow register file 335 configured to store
a register file checkpoint of register file 340. For example, as
part of executing a TxBegin instruction, processor 300 may
take a register checkpoint, such as by storing a backup copy of
the current values held in various registers of register file 340
(e.g., program counter register). In the event of a transaction
abort, the checkpoint values may be restored from the shadow
register file 335 to the register file 340. For instance, if the
transaction 1s aborted, program control flow may be returned
to the start of the transaction by restoring the value of the
program counter register stored in shadow register file 335 to
register file 340. In some embodiments, the transaction 1niti-
ating instruction may accept a parameter indicating an alter-
native address for the program counter saved 1n the check-
point operation, such that in case of an abort and/or rollback
operation, the program execution could be made to jump to
the alternative address.

[0044] When processor 300 1s executing 1n a transactional
mode (e.g., a TxBegin istruction has been executed and no
corresponding TxEnd instruction has been executed), it may
perform some 1nstructions speculatively and perform other
instructions non-speculatively. The processor may be config-
ured to determine which 1nstructions to execute speculatively
based at least 1n part on decoder 310 detecting a speculative
instruction prefix. For example, the processor may be config-
ured to execute those instructions that include a given Tx
prefix speculatively, while executing those instructions with-
out the given prefix non-speculatively.

[0045] In various embodiments, the processor may be con-
figured to store versioning data 1n various components, such
as data cache 350 and/or load-store unit 320. For example, 1n
the illustrated embodiment, processor 300 includes data
cache 350, which 1s configured to store data from recently-
accessed memory regions. The data cache 350 may be
arranged ito multiple cache lines 352a-352#, each identified
by one or more tags and each storing data (e.g., data 254) from
recently-accessed regions of memory (e.g., shared memory

150 of FIG. 1).

[0046] Inaddition to buifering data from recently-accessed
regions, data cache 350 may be used to implement a specu-
lative butfer for bufiering speculative transactional data. For
example, 1n some embodiments, each cache line 352 1n data
cache 350 may include versioning data, such as one or more
associated transaction flags usable to indicate whether the
data in the cache line has been accessed by the processor as
part of executing a speculative instruction and/or the nature of
such accesses. For example, 1n the 1llustrated embodiment,
processor 300 includes TW flag 356, which 1s usable to indi-
cate whether data in the cache line has been transactionally
written (1.e., written as part of executing a speculative mnstruc-
tion) and TR flag 358 usable to indicate whether data 1n the
cache line has been transactionally read. In various embodi-
ments, TW tlag 356 and/or TR tlag 358 may comprise any
suitable number of bits.

[0047] In addition to buflering speculative data in data
cache 350, processor 300 may also buller speculative data 1n

US 2010/0205408 Al

a load and/or store queue, such as store queue 325 and load
queue 330 1n load/store unmit 320. In some embodiments, load
queue 330 may hold data indicative of an 1ssued load nstruc-
tion that has not yet been retired and store queue 325 may hold
data indicative of an 1ssued store instruction that has not yet
been retired. For example, store queue 325 and load queue
330 may include one or more entries 322a-322#» for storing
such data. In various embodiments, each such entry may
comprise a TW flag or TR flag, such as flags 356 and 358,
indicating whether the data 1s associated with a speculative
instruction.

[0048] In different embodiments, the speculative data
builer may be implemented by one or more data caches (e.g.,
350), in load and store queues (e.g., 330 and 3235 respec-
tively), a combined load/store queue, or any combination
thereot. For example, 1n some embodiments, speculative data
from retired instructions may be moved from store queue 3235
or load queue 330 1nto data cache 350. In some embodiments,
LS unit 320 may be configured to detect whether such a
transter would overtlow the capacity of data cache 350 to
butfer all the speculative data of an active transaction, and in
response, to delay flushing the speculative data and 1nstead
maintain it in the load or store queues.

[0049] According to the illustrated embodiment, processor
300 also includes an on-chip network 380 usable by multiple
processors (and/or processing cores) to communicate with
one another. In some embodiments, on-chip network 380 may
be analogous to interconnect 140 of FIG. 1, and may imple-
ment various network topologies.

[0050] Processor 300 may be configured to detect cache
coherency probes sent from other processors via on-chip
network 380, such as by using contlict detection unit 370.
Contlict detection umit 370 may receive a cache coherency
probe (e.g., sent as part of a cache coherency protocol, such as
MESI) and in response, check the speculative butler imple-
mented by data cache 350 and/or LS Unit 320 to determine 11
a data contlict exists. For example, conflict detection unit 370
may check the tag of each cache line 352 to determine 1f the
received probe matches the cache line tag and check the TW
flag 356 and/or TR flag 358 to determine whether the data
contained 1n the cache line 1s speculative. In some embodi-
ments, based on these determinations, the conflict detection
unit 370 may determine whether the probe indicates a data
conflict.

[0051] In some embodiments, a data contlict occurs 1f two
processors have accessed a location 1n shared memory and at
least one processor has written to 1t. Therefore, contlict detec-
tion unit 370 may detect a conflict if a recerved probe matches
an entry in data cache 350 or LS Unit 320 and the entry has the
TW flag set. Also, contlict detection unit 370 may detect a
contlict 1f a recerved probe matches an entry and the probe
indicates a write operation (e.g., an invalidating probe). In one
example, 1f the probe 1indicates that the sending processor has
read data from a memory location that matches the tag of
352a 1n data cache 350, and TW tlag 356 indicates that pro-
cessor 300 has modified that data speculatively within an
active (1.e., not yet committed) transaction, then conflict
detection umt 370 may determine that the probe indicates a
data conflict and therefore signal an abort condition.

[0052] Inresponse to detecting a contlict, contlict detection

unit 370 may mvoke the microcoded transaction abort han-

dler 365 1n microcode ROM 360, which may invalidate the
cache entries with the TW bits, clear all TW/TR bats, restore
the register checkpoint taken when the transaction began,

Aug. 12,2010

and/or flush the 1mstruction pipeline. Since the checkpoint has
been restored, including the old program counter, the execu-
tion tflow then returns to the start of the transaction. Alterna-
tively, if the transaction reaches TxEnd, it may be commutted,
which may include clearing all TW/TR bits and discarding
the register checkpoint.

[0053] In some embodiments, processor 300 may 1mple-
ment transaction workflow 200 of FIG. 2. For example, pro-
cessor 300 may begin a transaction (1.e., enter transactional
execution mode) as 1n 203 by executing a TxBegin instruction
recognized by decoder 310. Executing the TxBegin instruc-
tion may include storing a checkpoint 1n shadow register file
335. This checkpoint may include the values held 1n various
register 1n register file 340, including the program counter
value that can be used to roll back the transaction in case of an
abort.

[0054] For each instruction 1n the transaction, the decoder
310 may determine 11 the instruction includes the speculative
instruction prefix (e.g., TX), as in 210. If the instruction
includes the prefix, then decoder 310 determines that the
instruction should be executed speculatively as part of the
transaction, as indicated by the affirmative exit from 215. As
in method 200 of FIG. 2, each instruction determined to be
speculative 1s executed speculatively, as 1n 220.

[0055] FIG. 4 1s a flow diagram illustrating a method by
which processor 300 may execute a speculative memory
access operation (as 1n 220), according to some embodi-
ments.

[0056] Method 400 begins when the decoder (and/or other
component(s) of the processor) determines (as in 405)
whether executing the given prefixed instruction necessitates
executing one or more 1implicit memory operations. If so, as
indicated by the affirmative exit from 405 to 410, the proces-
sor may split the instruction into multiple stmpler instructions
(e.g., RISC-style instructions), which may include a respec-
tive explicit memory access instruction (e.g., MOV) for each
of the implicit memory operations that executing the prefixed
instruction requires. However 1f the prefixed instruction is
already an explicit memory access struction, then the pro-
cessor may skip step 410, as indicated by the negative exit

from 405.

[0057] In the illustrated embodiment, method 400 then
includes dispatching the explicit memory instruction(s) to
load/store unit 320 with a speculate signal, as in 415. The
speculate signal may indicate to LS unit 320 that the instruc-
tion 1s to be executed speculatively. This dispatching may be

performed via an instruction scheduler, such as scheduler
315.

[0058] According to method 400, 11 the instruction 1s a store
operation, as indicated by the affirmative exit from 420, then
it may be transierred to store queue 325 for execution. Thus,
the store operation data may be stored 1n store queue 323 in
one of entries 322, and the TW tlag of the entry may be set, as
in 425. Once the 1instruction 1s executed, the data in the respec-
tive entry 322 may be sent to data cache 350 for buffering, as
in 430, the TW flag in the store queue may be cleared as 1n
435, and the TW flag of the new entry in the data cache may
be set, as 1n 440.

[0059] According to method 400, 1f the explicit memory
access operation 1s not a store operation, as indicated by the
negative exit from 420, then the instruction may be a load
operation and may be transferred to load queue 330 for execu-
tion. Thus, the load operation may be stored in load queue 330
in one of entries 322, and the TR flag of the entry may be set,

US 2010/0205408 Al

as 1n 445. Once the 1nstruction 1s executed, the 1instruction 1s
retired (as 1 450), the TR flag of the respective load queue
entry 1s cleared (as in 455), and the TR flag of the data cache
entry for the loaded data 1s set (as in 460).

[0060] For instructions that do no have the speculative
istruction prefix (e.g., negative exit from 215 i FIG. 2),
decoder 310 does not send a speculate signal to LS unit 320.
Thus, such 1nstructions may be executed non-speculatively,
as 1n 225. When an 1nstruction 1s executed non-speculatively,

the processor 1s configured to notrecord versioning data, such
as the TR and/or TW flags, for the instruction.

[0061] If conflict detection unit 370 detects an abort con-
dition (as 1 230), then 1t may invoke abort handler 365 to
perform an abort, as 1n 235. In some embodiments, perform-
ing the abort may include invalidating entries of data cache
350 and/or of LS umt 320 whose TW flag 1s set and then
clearing all TR and/or TW flags. In performing the abort,
abort handler 365 may then restore the register checkpoint
taken at the start of the transaction, including the old program
counter value. Thus, the abort procedure may return program
control to the start of the transaction, as in 240, allowing the
processor to reattempt execution.

[0062] In some instances, 1t may be desirable for every
instruction 1n a transaction to be treated as speculative. For
example, if an application 1nvokes a function implemented 1n
legacy code that does not use transactions, but correct pro-
gram semantics dictate that the legacy function should be
executed transactionally, then 1t may be desirable to indicate
the system that all explicit and/or implicit memory access
operations performed by the legacy function should be treated
as speculative. To accommodate such use cases, 1n some
embodiments, decoder 310 may be configured to detect
whether an mstruction that 1nitiates transactional execution
(e.g., FxBegin) includes the speculative instruction prefix
(e.g., FX). In such embodiments, 11 the transaction-imitiating
istruction (e.g., FxBegin) includes the speculative mstruc-
tion prefix, the processor 1s configured to treat every explicit
and 1implicit memory access istruction within the transaction
as speculative.

[0063] FIG. 51llustrates a computing system configured to
implement selective annotation as described herein, accord-
ing to various embodiments. The computer system 500 may
be any of various types of devices, including, but not limited
to, a personal computer system, desktop computer, laptop or
notebook computer, mainirame computer system, handheld
computer, workstation, network computer, a consumer
device, application server, storage device, a peripheral device
such as a switch, modem, router, etc, or in general any type of
computing device.

[0064] Computer system 300 may include one or more
processors 570, each of which may include multiple cores,
any ol which may be single or multi-threaded. The processor
may be manufactured by configuring a semiconductor fabri-
cation facility through the use of various mask works. These
mask works may be created/generated by the use of netlists,

HDL, GDS data, etc.

[0065] The computer system 500 may also include one or
more persistent storage devices 530 (e.g. optical storage,
magnetic storage, hard drive, tape drive, solid state memory,
etc) and one or more memories 510 (e.g., one or more of

cache, SRAM, DRAM, RDRAM, EDO RAM, DDR 12
RAM, SDRAM, Rambus RAM, EEPROM, etc.). Various
embodiments may include fewer or additional components
not illustrated in FIG. 5 (e.g., video cards, audio cards, addi-

Aug. 12,2010

tional network interfaces, peripheral devices, a network inter-
face such as an ATM interface, an Fthernet interface, a Frame
Relay interface, etc.)

[0066] The one or more processors 570, the storage device
(s) 350, and the system memory 510 may be coupled to the
system interconnect 540. One or more of the system memo-
ries 510 may contain program instructions 520. Program
instructions 520 may include program instructions execut-
able to implement one or more multithreaded applications
522 and operating systems 524. Program instructions 520
may be encoded 1n platform native binary, any interpreted
language such as Java™ byte-code, or 1n any other language
such as C/C++, Java™, etc or 1n any combination thereof.

[0067] Any number of program instructions 520 may
include a speculative mstruction prefix as described herein for
selective annotation of speculative regions. Each processor
570 may 1nclude a decoder unit for recognizing instructions
ol program instructions 520 usable to signal the start of a
transactional region (e.g., TxBegin), the end of a transactional

region (e.g., TxEnd), and/or a speculative-instruction prefix
(e.g., TX), as described herein.

[0068] Program instructions 520, such as those used to
implement multithreaded applications 522 and/or operating
system 524, may be provided on a computer readable storage
medium. The computer-readable storage medium may
include any tangible (non-transitory) mechanism for storing
information in a form (e.g., soltware, processing application)
readable by a machine (e.g., a computer). The computer-
readable storage medium may include, but 1s not limited to,
magnetic storage medium (e.g., floppy diskette); optical stor-
age medium (e.g., CD-ROM); magneto-optical storage
medium; read only memory (ROM); random access memory
(RAM); erasable programmable memory (e.g., EPROM and
EEPROM); flash memory; electrical, or other types of
medium suitable for storing program instructions.

[0069] A computer-readable storage medium as described
above can be used 1n some embodiments to store istructions
read by a program and used, directly or indirectly, to fabricate
the hardware comprising system processor 570. For example,
the instructions may describe one or more data structures
describing a behavioral-level or register-transier level (RTL)
description of the hardware functionality mn a high level
C
C
t.

esign language (HDL) such as Verilog or VHDL. The

escription may be read by a synthesis tool, which may syn-
nesize the description to produce a netlist. The netlist may
comprise a set of gates (e.g., defined 1n a synthesis library),
which represent the functionality of processor 370. The
netlist may then be placed and routed to produce a data set
describing geometric shapes to be applied to masks. The
masks may then be used 1n various semiconductor fabrication
steps to produce a semiconductor circuit or circuits corre-
sponding to processor 570. Alternatively, the database may be
the netlist (with or without the synthesis library) or the data
set, as desired.

[0070] The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or mmplicitly), or any generalization thereof,
whether or not it mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu-
lated during prosecution of this application (or an application
claiming priority thereto) to any such combination of fea-
tures. In particular, with reference to the appended claims,
teatures from dependent claims may be combined with those
of the independent claims and features from respective inde-

US 2010/0205408 Al

pendent claims may be combined 1n any appropriate manner
and not merely 1n the specific combinations enumerated 1n the
appended claims.

[0071] Although the embodiments above have been
described in considerable detail, numerous variations and
modifications will become apparent to those skilled 1n the art
once the above disclosure 1s fully appreciated. It 1s intended
that the following claims be interpreted to embrace all such
variations and modifications.

What 1s claimed:

1. An apparatus, comprising:

a computer processor configured to determine whether an
instruction within a plurality of nstructions in a trans-
actional region of code includes a prefix indicating that
one or more memory operations performed by the com-
puter processor to complete the instruction are to be
executed as part of an atomic transaction that includes
memory operations performed by the computer proces-
sor to complete at least one other of the plurality of
instructions.

2. The apparatus of claim 1, wherein the computer proces-
sor 1s Turther configured to determine that at least some other
of the plurality of instructions do not include the prefix and 1n
response, to execute those mstructions non-atomically.

3. The apparatus of claim 1, wherein the one or more
memory operations performed by the computer processor to
complete the mstruction are implicit memory operation of the
instruction.

4. The apparatus of claim 1, wherein execution of the one or
more memory operations includes buffering versioming data
for the instruction 1n a data cache of the processor.

5. The apparatus of claim 1, wherein the computer proces-
sor comprises a decoder unit and at least one execution unit,
wherein the decoder 1s configured to determine that the
instruction includes the prefix and to send the mstruction to
the at least one execution unit with an indication that the
instruction 1s speculative.

6. The apparatus of claim 1, wherein the computer proces-
sor 1s configured to execute all of the plurality of instructions
as speculative mstructions in response to an opcode portion of
the nstruction indicating the start of the transactional region
of code.

7. The apparatus of claim 1, wherein at least one other of
the plurality of instructions also includes the prefix indicating
that one or more memory operations performed by the com-
puter processor to complete the at least one other 1nstruction
are to be executed as part of the atomic transaction.

8. The apparatus of claim 1, wherein the computer proces-
sor 1s configured to detect an abort condition while executing
the transactional region of code, and, 1n response thereto, to
abort execution of the transactional region of code, at least by
undoing modifications to values stored 1n memory as a result
ol executing one or more speculative mstructions within the
plurality of instructions without undoing modifications to one
or more other values stored in memory as a result of executing
one or more non-speculative instructions within the plurality
ol 1nstructions.

9. A method comprising:

a computer processor detecting a transactional region of
code having a plurality of mstructions; and

the computer processor determining that an instruction
within the transactional region includes a prefix indicat-
ing that the mstruction 1s to be executed as part of an

Aug. 12,2010

atomic memory transaction that includes one or more
other 1nstructions in the transactional region.
10. The method of claim 9, further comprising:
the computer processor determining that at least some
other of the plurality of instructions are not to be
executed as part of the atomic memory transaction; and

executing the at least some other instructions non-atomi-
cally.

11. The method of claim 9, turther comprising:

determining that execution of the instruction includes at

least one 1mplicit memory operation and 1n response,
executing the at least one implicit memory operation as
part of the atomic memory transaction.

12. The method of claim 9, further comprising: executing
the 1nstruction as part of the atomic memory transaction,
wherein said executing includes bulfering versioning data for
the 1struction.

13. The method of claim 9, wherein the 1nstruction indi-
cates the start of the transactional region of code.

14. The method of claam 13, further comprising: in
response to the instruction indicating the start of the transac-
tional region of code, determiming that all of the plurality of
instructions are to be executed as part of the atomic memory
transaction.

15. The method of claim 9, wherein the one or more other
instructions in the transactional region included 1n the atomic
transaction also include the prefix.

16. The method of claim 9, further comprising:

attempting to execute the atomic memory transaction,
wherein said attempting includes:

detecting an abort condition; and

in response to detecting the abort condition, aborting
execution of the transactional region of code at least
by undoing memory eifects of one or more 1nstruc-
tions within the transactional region that include the
prefix without undoing memory eifects of one or
more 1structions within the transactional region that
do not 1include the prefix; and

reattempting to execute the transactional region of code.

17. A computer-readable storage medium having stored
thereon program instructions executable by a processor,
wherein the program instructions comprise:

a plurality of instructions 1n a transactional region of code,
the instructions executable by the processor 1n a trans-
actional mode of execution;

wherein at least some of the instructions in the transac-
tional region include a prefix that indicates to the pro-
cessor that memory operations performed by the proces-
sor as part of executing the mstructions that include the
prefix are to be performed as a single atomic memory
transaction.

18. The computer-readable storage medium of claim 17,
wherein the plurality of instructions include:

a transaction-initiating instruction executable by the pro-
cessor to begin the transactional mode of execution;

a transaction-terminating instruction executable by the
processor to exit the transactional mode of execution;

wherein the processor 1s configured to determine that the
transaction-initiating instruction icludes the prefix and
in response, to execute all memory operations per-
formed as part of executing the plurality of istructions
in the transactional region as part of the atomic memory
transaction.

US 2010/0205408 Al

19. The computer-readable storage medium of claim 17,
wherein the plurality of mstructions include:
a transaction-imitiating instruction executable by the pro-
cessor to begin the transactional mode of execution;
a transaction-terminating instruction executable by the
processor to exit the transactional mode of execution;
intermediate 1nstructions appearing between the transac-
tion-initiating instruction and transaction-terminating,
instruction 1n program execution order;
wherein each of two or more of the intermediate instruc-
tions includes a prefix indicating to the processor that the
two or more intermediate instructions are to be executed
together as part of the atomic memory transaction, and
wherein at least one of the intermediate instructions does
not include the prefix.
20. The computer-readable storage medium of claim 17,
wherein the transaction-initiating instruction includes an
operand indicating a memory address to which execution

Aug. 12,2010

should jump 1n the event that an attempt to atomically execute
two or more 1mtermediate 1nstruction appearing between the
transaction-initiating instruction and transaction-terminating,
instruction 1n program execution order 1s aborted.

21. A computer readable storage medium comprising a
data structure that 1s operated upon by a program executable
on a computer system, the program operating on the data
structure to perform a portion of a process to fabricate an
integrated circuit including circuitry described by the data
structure, the circuitry described in the data structure includ-
ng:

a computer processor configured to determine whether an
istruction within a plurality of mstructions 1n a trans-
actional region of code includes a prefix indicating that
the mstruction 1s to be executed speculatively within a
single atomic memory transaction.

e e e e e

	Front Page
	Drawings
	Specification
	Claims

