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SPECTRUM SEARCHING METHOD THAT
USES NON-CHEMICAL QUALITIES OF THE
MEASUREMENT

REFERENCE TO PENDING PRIOR PATENT
APPLICATIONS

[0001] This patent application claims benefit of pending
prior U.S. Provisional Patent Application Ser. No. 60/635,
410, filed Dec. 10, 2004 by Christopher D. Brown et al. for
SPECTRUM SEARCHING METHOD THAT USES NON-
CHEMICAL QUALITIES OF THE MEASUREMENT (At-
torney’s Docket No. AHURA-33 PROV).

[0002] The above-identified patent application 1s hereby
incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0003] The 1dentification and quantification of chemical
entities 1s largely the domain of analytical chemistry. Both the
identification and quantification tasks are made easier with
the use of multi-element analytical instrumentation since
more analytical information 1s available to aid the analysis.
Examples of contemporary analytical instrumentation
capable of producing multi-element (vector) data include
multiwavelength inifrared and Raman spectrometers, mass
spectrometers, nuclear magnetic resonance (NMR) spec-
trometers, and chromatographic separation-detection sys-
tems. Conveniently, as these techniques became more preva-
lent 1n the analytical laboratory, computational power also
became more affordable and available, and analysts were
quick to recognize that computer-aided methods could dra-
matically speed up the identification and quantification tasks.

[0004] In the computer-aided 1dentification task, which 1s
the focus of this patent, the analytical data 1s submitted to a
system (the search appliance) which scours a library of
known materials looking for similarities in the instrument
response of the unknown material to the stored responses for
known materials. Typically, the search appliance returns to
the user a list of materials 1n the library along with their
associated similarity to the submitted data. This entire pro-
cess 1s usually termed “spectral library searching”. The vast
majority of proposed similarity measures cannot be inter-
preted absolutely, but the relative similarity of the measured
data to the various library records 1s deemed meaningtul for
ranking purposes. This 1s akin to today’s web search utilities
that return to the user a list of sites, ordered by a similarity
measure of site-to-query. As with web search utilities, the
critical differentiation among competing methods 1s usually
the definition of the similarity measure.

[0005] The most common similarity measure 1n use today
for spectral library searching is correlation based (see S. R.
Lowry, “Automated Spectral Searching In Infrared, Raman
And Near-infrared Spectroscopy”, J. Wiley & Sons, pp. 1948-
1961). This approach exploits a linear instrument response,
assuming that a chemical species and 1ts spectrum (InfraRed,
Raman, mass spectrum, etc.) are immutably tied, and the
vector orientation of the spectrum does not depend on the
concentration of the species. Other well-known measures of
similarly include Euclidean distance and least-squares meth-
odologies (see S. R. Lowry, “Automated Spectral Searching
In Infrared, Raman And Near-Infrared Spectroscopy”, .
Wiley & Sons, pp. 1948-1961), which are equivalent to the
correlation similarity within elementary scalar manipula-
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tions. These similarity measures are implemented in many
commercial spectral library search software packages.

[0006] In web searching, there are minimal end-user con-
sequences (other than wasted time and frustration) 1f a page 1s
suggested that does not actually pertain to the query (a “false-
positive”). However, many applications of spectral library
searching are used to guide actions, such as how chemaicals
are to be treated 1n hazardous materials situations, so 1t 1s
critical to know when an evidence-based decision can be
made, and when 1t cannot. The correlation similarity measure
does not suffice to guide actions, as we will illustrate by way
example.

[0007] FIGS. 1a and 15 1llustrate the challenges posed by
spectral library search methods using non-absolute similarity
measures such as correlation. In both FIGS. 14 and 15, the
measured material 1s 1n fact kerosene, a mixture of petroleum
distillates 1n the C, , to C, < range, but due to different mea-
surement conditions, 1t 1s apparent that the precision-states of
the two measurements are quite different. In FIG. 1a, the
measured kerosene 1s compared to a library record spectrum
of kerosene, vielding a correlation similarity measure of
0.950. In FIG. 15, the measured kersosene spectrum 1s com-
pared to a library record spectrum of Japan Drier, a common
solvent for painting (a mixture of lighter petroleum distil-
lates), vielding a correlation similarity measure of 0.945.
Recall that for any case at hand, the analyst needs to make one
of the following judgments based on the similarity measure:

[0008] (1) the measured matenal 1s likely the top-ranked
library matenal;
[0009] (1) the measured material 1s likely one of several

top-ranked library materials; or

[0010] (11) the measured material 1s not any of the top-
ranked materials (1.e., there 1s no library match).

[0011] FIGS. 1a and 15 1llustrate the complication 1n such
a decision based on the correlation similarity measure. The
different precision states of the two measurements mean that
ceven though the similarity measure 1s the same in the two
cases, one 1s a valid match (1.e., FIG. 1a), while the other 1s an
invalid match (1.e., FIG. 15). A simple rule cannot be formu-
lated based on correlation that allows one to reliably decide
between judgments (1), (1) and (111) above. This 1s because the
correlation similarity measure (and equivalently, least-
squares or Euclidean distance measures) does not account for
the precision state ol the measurement, and therefore does not
consistently retlect the amount of scientific evidence favoring
a judgment.

[0012] Counter-intuitively, when the signal-to-noise ratio
1s poor, similarity measures in the art tend to more emphati-
cally suggest that the measured material 1s not in the library;
in reality, the evidence provided by the data 1n such a circum-
stance 1s weak—Ilittle can be said about whether the material
1s or 1s not in the library. Furthermore, when the signal-to-
noise ratio increases, the similarity measure tends to increase
for all records 1n the library, when the analyst knows 1ntu-
itively that with higher quality data, 1t should be easier to
distinguish one library component from another. Indeed, even
in FIG. 156 with a very high correlation similarity measure,

several obvious mismatched spectral features can be 1denti-
fied (indicated by the arrows 1n the figure).

[0013] What 1s needed, and to date lacking, in spectral
library search algorithms, are similarity measures that are
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directly interpretable 1n terms of the scientific evidence sup-
porting one library “hit” over another.

PRIOR ART

[0014] Scientific evidence favoring one hypothesis over
another 1s most succinctly quantified in terms of probabilities.
Probabilistic inference 1s an old and well-explored field, and
some allusions to probability-based spectral library searching
have been made 1n the literature.

[0015] McLaftferty etal. proposed what they termed a prob-
ability-based similarity measure for mass spectrum library
searching, wherein a small set of features are extracted from
the mass spectrum of the query data (such as a list of major
peaks and their mass/charge values), they are compared to
analogous lists of features 1n library spectra, and the similar-
ity 1s made relative to the chance of finding a similar number
of matching features at random (see J. R. Chapman, “Com-
puters In Mass Spectrometry”, Academic Press, 1978).
[0016] Cle1y et al. discussed probabilistic similarity mea-
sures, wherein selected features of the query spectrum are
compared to related features with known uncertainty 1n the
library (see P. Cle1j, H. A. Van ’T Klooster, J. C. Van Hou-
welingen, “Reproducibility As The Basis Of A Similarity
Index For Continuous Variables In Straightforward Library
Search Methods™, Analytica Chimica Acta 150, 23-36, 1983).
Their examples include library searches for chemical shift
data (NMR spectroscopy), where the uncertainty in the
library chemical shift values was determined from measure-
ments at multiple laboratory sites, and chromatographic
retention indices where, again, the uncertainty in lhibrary
retention indices was determined from inter-laboratory varia-
tion. There were, however, several critical shortcomings of
these investigations.

[0017] Neither McLatfterty or Cle1 discussed methods for
comparing complete spectra against alternative library
records (often called “full spectrum library searching™),
which 1s the approach of choice today because no information
1s discarded in the process; neither approach appropnately
controls for the increased probability of false-positives asso-
ciated with multiple tests of hypothesis (typically requiring a
Bonferroni-type correction), and, finally, neither approach
actually produces posterior probabilities—probabilities of
the form, for example, “P 1s the probability that the maternal
under study 1s library material A”. The McLatferty approach
does not account for the uncertainty in the instrumental mea-
surement conditions, and 1n Cle1;’s method, the uncertainty 1n
the library record dominates over the uncertainty in the mea-
surement state, which 1s presumed to be of indisputable qual-
ty.

[0018] A recent journal article by L1 et al. (see J. L1, D. B.
Hibbert, S. Fuller, J. Cattle, C. Pang Way, “Comparison Of
Spectra Using A Bayesian Approach. An Argument Using Oil
Spills As An Example”, Anal. Chem. 77, 639-644, 2005)
(which 1n turn claims to build on the work of Killeen and
Chien—see T. J. Killeen, Y. T. Chien, “Proc. Workshop Pat-
tern Recognition Appl. O1l Identit.”, 1977, pp. 66-72) dis-
cussed this general shortfall in spectral library searching, and
proposed what they termed a Bayesian approach for spectral
matching based on the correlation similarity measure. Their
method amounts to a natve Bayes classifier which has been
well-known 1n the art for some time but, unfortunately,
requires measuring many (large multiples of the entire spec-
tral library) specimens, and recording the calculated correla-
tion similarity measures. The distributions of matching and
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non-matching correlation similarity measures are then used
to determine the probability of a match by traditional meth-
ods. Even with this procedure, however, the probabilistic
assessment 1s not accurate because the distribution of corre-
lation similarity measures under “no match™ criteria only
encompasses known species 1n the library; all other possible
species are not represented—so unless the library encom-
passed “all possible chemical species™ (which 1s practically
precluded), the probabilities will be 1naccurate. The method
they discussed (1.e., a naive Bayes classifier) also does not
adapt to varying measurement conditions.

SUMMARY OF THE INVENTION

[0019] The invention disclosed herein resolves these prob-
lems, and several related situations that have not be consid-
ered 1n the prior art, for spectral library searching.

[0020] In one form of the mvention, there 1s provided a
method for determining the most likely composition of a
sample, comprising;:

[0021] obtaining data from a sample, wherein the data com-
prises a representation of a measured spectrum;

[0022] determining the precision state of the representation
of the measured spectrum;

[0023] providing a plurality of library candidates and, for
cach library candidate, providing data representing the same,
wherein the data comprises a representation of a library spec-
trum:

[0024] determining a representation of the similarity of the
sample to each library candidate using (1) the representation
of the measured spectrum; (11) the precision state of the rep-
resentation of the measured spectrum; and (111) the represen-
tation of the library spectrum for that library candidate; and

[0025] determining the most likely composition of the
sample based upon the determined representations of simi-
larity of the sample to each library candidate.

[0026] In another form of the invention, there 1s provided a
method for determining the most likely composition of a
sample, comprising:

[0027] obtaining data from a sample, wherein the data com-
prises a representation of a measured spectrum;

[0028] determining the precision state of the representation
of the measured spectrum;

[0029] providing a plurality of library candidates and, for
cach library candidate, providing data representing the same,
wherein the data comprises a representation of a library spec-
trum;

[0030] determining a representation of the similarity of the
sample to a mixture of library candidates using (1) the repre-
sentation of the measured spectrum; (11) the precision state of
the representation of the measured spectrum; and (111) the
representation of the library spectrum for that library candi-
date; and

[0031] determining the most likely composition of the
sample based upon the determined representations of simi-
larity of the sample to a mixture of library candidates.

[0032] Inanother form of the invention, there 1s provided a
method for determining the most likely classification of a

sample, comprising;:
[0033] obtaining data from a sample, wherein the data com-
prises a representation of a measured spectrum;

[0034] determining the precision state of the representation
of the measured spectrum;
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[0035] providing a plurality of library candidates and, for
cach library candidate, providing data representing the same,
wherein the data comprises a representation of a library spec-
{rum;

[0036] wherein the data for each of at least some of the
library candidates further comprises the identification of a
class to which the library candidate belongs;

[0037] determining a representation of the similarity of the
sample to each library candidate using (1) the representation
of the measured spectrum; (11) the precision state of the rep-
resentation of the measured spectrum; and (111) the represen-
tation of the library spectrum for that library candidate; and
[0038] determining the most likely classification of the
sample based upon the determined representations of simi-
larity of the sample to each library candidate.

[0039] In another form of the invention, there 1s provided a
method for determining the most likely classification of a
sample, comprising:

[0040] obtaining data from a sample, wherein the data com-
prises a representation of a measured spectrum;

[0041] determiming the precision state of the representation
of the measured spectrum; providing a plurality of library
candidates and, for each library candidate, providing data
representing the same, wherein the data comprises a repre-
sentation of a library spectrum;

[0042] wherein the data for each of at least some of the
library candidates further comprises the identification of a
class to which the library candidate belongs;

[0043] determining a representation of the similarity of the
sample to a mixture of library candidates using (1) the repre-
sentation of the measured spectrum; (11) the precision state of
the representation of the measured spectrum; and (111) the
representation of the library spectrum for that library candi-
date; and

[0044] determiming the most likely classification of the
sample based upon the determined representations of simi-
larity of the sample to a mixture of library candidates.
[0045] In another form of the invention, there 1s provided a
system for determining the most likely composition of a
sample, comprising:

[0046] apparatus for obtaining data from a sample, wherein
the data comprises a representation of a measured spectrum;
[0047] apparatus for determining the precision state of the
representation of the measured spectrum;

[0048] apparatus for providing a plurality of library candi-
dates and, for each library candidate, providing data repre-
senting the same, wherein the data comprises a representation
of a library spectrum;

[0049] apparatus for determining a representation of the
similarity of the sample to each library candidate using (1) the
representation ol the measured spectrum; (1) the precision
state of the representation of the measured spectrum; and (111)
the representation of the library spectrum for that library
candidate; and

[0050] apparatus for determining the most likely composi-
tion of the sample based upon the determined representations
of stmilarity of the sample to each library candidate.

[0051] In another form of the invention, there 1s provided a
system for determining the most likely composition of a
sample, comprising;:

[0052] apparatus for obtaining data from a sample, wherein
the data comprises a representation of a measured spectrum;
[0053] apparatus for determining the precision state of the
representation of the measured spectrum:;
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[0054] apparatus for providing a plurality of library candi-
dates and, for each library candidate, providing data repre-
senting the same, wherein the data comprises a representation
of a library spectrum;

[0055] apparatus for determining a representation of the
similarity of the sample to a mixture of library candidates
using (1) the representation of the measured spectrum; (11) the
precision state of the representation of the measured spec-
trum; and (111) the representation of the library spectrum for
that library candidate; and

[0056] apparatus for determining the most likely composi-
tion of the sample based upon the determined representations
of similarity of the sample to a mixture of library candidates.

[0057] Inanother form of the invention, there 1s provided a
system for determining the most likely classification of a
sample, comprising:

[0058] apparatus for obtaining data from a sample, wherein
the data comprises a representation of a measured spectrum;

[0059] apparatus for determining the precision state of the
representation of the measured spectrum:;

[0060] apparatus for providing a plurality of library candi-
dates and, for each library candidate, providing data repre-
senting the same, wherein the data comprises a representation
of a library spectrum;

[0061] wherein the data for each of at least some of the
library candidates further comprises the i1dentification of a
class to which the library candidate belongs;

[0062] apparatus for determining a representation of the
similarity of the sample to a mixture of library candidates
using (1) the representation of the measured spectrum; (11) the
precision state of the representation of the measured spec-

trum; and (111) the representation of the library spectrum for
that library candidate; and

[0063] apparatus for determining the most likely classifi-
cation of the sample based upon the determined representa-
tions of similarity of the sample to a mixture of library can-
didates.

BRIEF DESCRIPTION OF THE DRAWINGS

[0064] These and other objects and features of the present
invention will be more fully disclosed or rendered obvious by
the following detailed description of the preferred embodi-
ments of the mvention, which are to be considered together
with the accompanying drawings wherein like numbers refer
to like parts, and further wherein:

[0065] FIG. 1a 1s a view showing a spectral comparison
between a kerosene measurement and a kerosene library
record;

[0066] FIG. 156 1s a view showing a spectral comparison
between a kerosene measurement and a Japan Drier library
record;

[0067] FIG. 2: panel 1 1s a view showing the similarity
measure for aquery Q and library records A-E, where both the
query and library records are treated as points;

[0068] FIG. 2: panel 2 1s a view showing the similarity
measure for a query QQ and library records A-E, where the
query 1s treated as a point and the candidate library records are
treated as ellipses to represent the expected variability in

[

measurement of the materials A-E;

[0069] FIG. 2: panel 3 1s a view like that of FIG. 2: panel 2
except that there 1s considerable uncertainty 1n the expected
variability 1n measurement of the materials A-E;
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[0070] FIG.3a1s the dark field count, bright field count and
Raman spectrum for acetaminophen where there 1s substan-
tial broadband background flux;

[0071] FIG. 3b1s the dark field count, bright field count and
Raman spectrum for acetaminophen where there 1s little
background flux;

[0072] FIGS. 4a and 4b are the analytically estimated stan-
dard deviation for each measurement channel for the Raman
spectrum for acetaminophen;

[0073] FIG. 5 provides a comparative example of the
present invention for two measurements of polystyrene;
[0074] FIG. 6A 1llustrates the methodology used to deter-
mine (1) the discrepancies between a sample measurement
and various library records, and (11) the probability of observ-
ing that discrepancy for a particular library record;

[0075] FIG. 6B illustrates the methodology to determine
posterior probabilities of library record matches using (1) the
calculated probabilities of observing the determined discrep-
ancy for a particular library record, and (11) the collection of
prior probabilities;

[0076] FIG. 7 illustrates the methodology used to deter-
mine (1) the discrepancies between a sample measurement
and various library records, and (11) the probability of observ-
ing that discrepancy for a particular library record, using a test
for convergence;

[0077] FIG. 8 1s a composite of FIGS. 7 and 6B, further
modified to show adjustment of operating parameters so as to
improve the result;

[0078] FIG. 9 1s a schematic diagram showing one pre-
terred form of apparatus embodying the present invention;
[0079] FIG. 10 1s a schematic diagram showing another
preferred form of apparatus embodying the present invention;
[0080] FIG. 11 1s a schematic diagram showing another
preferred form of apparatus embodying the present invention;
and

[0081] FIG. 12 1s a schematic view showing a novel Raman
analyzer formed 1n accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0082] The critical question to be answered by the spectral
library search appliance 1s: given the mstrumental measure-
ment of the specimen, and the conditions under which 1t was
measured, (1) 1s 1t probable that any of the library records are
a match?, and (2) what are the probabilities P ,, P . . . that the
measured material 1s 1n fact pure A, B, etc.? These probabili-
ties must be directly dependent on the measurement data, and
its quality. Generally speaking, the measurement quality 1s a
tunction of the accuracy of the measurement and 1ts precision
(or variability). It can often be assumed that, 11 the instrument
has been designed appropriately and/or appropriate signal
conditioning methods have been used, the measurement will
be reasonably accurate, but inevitably sufiers from 1mpreci-
s1on to a degree dependent on the measurement conditions.
[0083] The mventiveness of the new approach discussed
herein, relative to prior art, 1s most generally described as:

Sf:.]((j]ffg??f’ymt?ﬂ.‘i?EI'?E}?IE‘{IS?T) (1)

where S, 1s the similarity measure between (1) the 1th library
spectrum, y,,, ., for a given library material I, and (11) the
measured spectrum vy, .. For the new approach of the
present invention, the similarity metric 1s conditional on 2,
> .., whichare representations of the “precision state” of the
library (2,) and the measured spectrum (X, ) under the
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circumstances, and m codifies other information available at
the time of the similarity analysis.

[0084] By direct comparison, conventional spectral library
search methods of the sort known to those skilled in the art are
best described as:

Sf:f@fib,i:ymeas) (2)

Certainly y__ _will be a consequence of the measurement
circumstances—for example, 1 the circumstance leads to
either particularly low signal, or high noise conditions, y,_
will “look noisy”—and for this reason, it 1s sometimes
(falsely) suggested that the conventional method of Equation
(2) automatically accounts for the precision state. The differ-
ence between the new method of Equation (1) and the con-
ventional method of Equation (2) 1s that the new method of
Equation (1) separately quantifies the degree of imprecision
in the data to provide the similarity measure that 1s a direct
measure of probabilistic evidence.

[0085] The contrast between an evidence-based similarity
measure and what 1s conventionally used in the art 1s illus-
trated 1n FIG. 2. In panel 1 the measurement, treated as a
query (Q) for the search appliance, 1s assessed for similarity
to 5 candidate library records (A-E). In panel 1, both the query
and library records are treated as points (like the method of
equation 2 above), and their stmilarity (Q to A, Q to B, etc.) 1s
usually a simple function of the distance between points. By
this rule, the similanty metrics of Q to A, B, and C are
comparable. In panel 2, the measurement query 1s assumed to
be 1mprecise, and the ellipses around the candidate library
records A-FE represent the expected variability (e.g., 99%) in
measurements of the various materials (A-E) under the pre-
cision state of the query. In this case, library record B 1s the
only library record that has a reasonable likelithood of gener-
ating the query data given the precision state (although even
this 1s somewhat improbable given the ellipse). Panel 3
reflects a measurement condition 1n which there 1s consider-
able uncertainty (e.g., strong sample fluorescence, which
contributes substantial noise to the measurement). The preci-
s10n state of the query 1s such that library records B, C and D
are all reasonably plausible, although records A and E are less
likely. The precision-state-based similarity metric 1s higher
for all 5 library records in panel 3 compared to panel 2,
because there 1s greater uncertainty in the measurement. In
the limait, 11 the imprecision was near infinite (that 1s, there 1s
very little signal relative to the noise), all library records
would be plausible matches, because there 1s very little (if
any) evidence from the measurement to favor one over the
other.

[0086] One skilled in the art will recognize that there are
many possible embodiments of a precision-state-based simi-
larity measure, but all of these embodiments will be critically
reliant on a method of characterizing the precision-state of the
measurement. For a dispersive Raman spectrometer measure-
ment using charge coupled device (CCD) detection, as an
example, many distinct sources of variability contribute to the
precision state of the measurement:

Zm eds :ﬁf Ral IR{I??I’ {ﬁ? { ambient’ { dark?Oread Q: D CCL» GC L)
C THtL) (3)
1s the

[0087] 1, , 1s the Raleigh scatter intensity, I .

Raman scatter intensity, 1, 1s the fluorescence intensity, and
I ... 1sthe ambient light intensity. All of these terms aifect
the uncertainty of the analytical measurement because they
cach contribute photon shot noise. 1, . 1s the dark current
intensity in the CCD, the spontaneous accumulation of detec-
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tor counts without impinging photons, which also contributes
shot noise. o, ,1s the read noise (imprecision 1n reading out
the CCDresponse), Q 1s quantization error (a consequence of
the analog-to-digital conversion ADC), D .-, 1s a term relat-
ing to variability that 1s a consequence of detects 1n the CCD
construction, G, 1s the gain on the CCD (the conversion
factor from electrons to counts), T and H are the temperature
and humidity conditions of the measurement, t 1s the time
spent integrating the signals, C 1s physicochemical effects
that can alter the exact Raman intensities of the sample (note
that each of these effects has a potential wavelength depen-
dence), and L 1s a “long-term™ variability term that reflects
changes 1n the system performance over a time period greater
than that of any individual sample measurement, e.g., cali-
bration related variability. As 1s apparent from the above
discussion, some sources of imprecision are determined by
the measurement conditions (e.g., photon shot noise, dark
noise), some are determined by the unit taking the measure-
ments (e.g., system gain, read noise, quantization noise), and
some are determined by the overall design of the platform
(c.g., wavelength axis and linewidth stability, temperature/
humidity sensitivity).

[0088] Many of the sources of variability i library spectra
are similar, although since library spectra are often desired to
be of very high quality, signal averaging can effectively
reduce the magmitude of these variances.

[0089] There are at least two routes for determining the
functional relationship between the measurement parameters
and the corresponding precision state: empirical observation
and analytical estimation. There are also foreseeable circum-
stances 1n which the precision state of the measurement can
be inferred from experience, e.g., a measurement being made
under very bright ambient lighting conditions will be less
precise than a measurement of the same material made 1n a
dark room.

[0090] Furthermore, the precision state may be determined
by a combination of two or more of empirical observation,
analytical estimation and experience.

[0091] In empirical observation, many measurements are
acquired under a set of conditions, and the imprecision
observed over the measurements 1s characterized using, for
example, a variance-covariance matrix. Further, the depen-
dence of such a variance-covariance matrix on other factors
can be discerned by focused studies. However, this 1s rather
cumbersome and time-consuming, particularly if rapid simi-
larity judgments are desired and the precision state can vary
(as in Raman spectroscopy, FTIR and similar techniques). In
many measurement modalities (including Raman, FTIR and
other spectroscopies), much about the precision state can
often be inferred directly from the properties of the device
and/or the environment in which the measurement was
acquired. In Raman spectroscopy, for example, read noise
and quantization noise are solely functions of the instrument
clectronics, which are usually fixed for a given spectrometer,
and constant across CCD pixels. The total shot noise at a
given pixel 1s dependent on the total counts from all sources
registered at that pixel, the gain on the CCD electronics, and
a defect factor of that pixel. The temperature and humidity
conditions can be determined by on-board transducers, the
integration time 1s known, and the L term can be predeter-
mined from the statistical properties ol the system calibration,
and 1its behavior over accelerated life testing. The precision
state can change dramatically, however, 11 the measurement 1s
acquired under different circumstances. For example, a mea-
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surement acquired outdoors in bright diffuse sunlight versus
a dimly lit room; a meat-storage freezer versus an uncooled
storage building; a 0.5 second measurement versus a 5 second
measurement.

[0092] In FTIR spectroscopy the precision state 1s also
contingent on the measurement conditions, and instrumental
aspects such as the detector attributes, data acquisition/signal
processing electronics and software, and source flux and
tlicker.

[0093] o give an example of the analytical determination
of precision state under two different measurement condi-
tions, we show data from a Raman spectrometer in FIGS. 3a
and 3b. Both measurements are of acetaminophen 1na Raman
inactive container for similar exposure times (8 seconds). In
FIG. 3a there is sizable broadband background flux from
outdoor light pollution evident 1n both the dark and bright
field spectra, while 1n FIG. 356 there 1s little background flux.
So-called “hot-pixels” are evident in both FIG. 3a and FIG.
3b. The net result, after the usual elementary signal process-
ing operations, are the Raman spectra at the bottom of FI1G. 3a
and FIG. 3b. The precision-state of these two measurements
can be determined at each individual channel as:

o, =(total counts dark+total counts bright)/G

[0094] {G is the effective gain in counts/e”, which is
impacted by the ADC as well as defects in the pixel }

2_ 2 sk 2 sk 2
Ootal ~ Oshor +2 Oread +2 G_:r'n

{read, Johnson and flicker noise}

Thus a variance can be determined for each channel of mea-
surement data. There 1s an excess of shot noise 1 FIG. 3a
because of the background flux, so while the Raman mea-
surements 1 FIG. 3a and FIG. 35 look similar 1n terms of
signal, F1G. 3a has higher noise due to the ambient shot noise.
The precision states are markedly different in these two com-
mon cases, as shown 1n FIGS. 4aq and 45, where the analyti-
cally estimated standard deviation at each measurement
channel 1s plotted.

[0095] The two cases above were measured on the same
system under different ambient conditions, but a stmilar com-
parison could have been made on two different systems under
the same conditions. The differences 1n precision states in
such a case will be a consequence of the system collection
elliciencies, filter/detector responses, as well as the charac-
teristics of the electronics, and ADC. Moreover, in comparing
multiple systems under the same measurement conditions,
other sources ol imprecision will be evident, such as subtle
variations 1n lineshape between systems, wavelength calibra-
tion settings, system throughput detector and responsivities.
Staying with the variance-covariance representation, these
clfects generally manifest as covariance terms (off-diagonal
non-zero elements 1n the variance covariance matrix).
[0096] Finally, there are physical effects 1n analytical mea-
surements that can cause distortions 1n measured data. For
example, the Raman scattering intensity at a particular
Raman shift value can vary slightly over varying excitation
laser wavelengths (leading to slightly different Raman cross-
sections), and changes 1n local polarizability due to solvent
and surface eflects. In attenuated total retlectance FTIR spec-
troscopy the refractive index and alignment of the ATR crystal
can distort the measured reflectance data. These effects which
lead to imprecision across instruments can all be approxi-
mated with varying degrees of success using analytic means.
[0097] There are other means of representing the precision
state of the measurement, for example, Fourier and wavelet-
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domain representations and reduced-rank representations.
The choice of precision-state representation 1s 1n large part
coupled with a chosen representation of similarity.

[0098] Given a representation of the precision state, there
are several possible similarity measures that implicitly relate
to the scientific evidence favoring library records. For
example, 1 a least-squares formulation, one could assume
the model for the system 1s

Vimeas = Po + B1 - Yip,j + € (4)

Po

|

+ €

:[1y%J4

=yiff+e

where [3, and 3, are constant and multiplicative parameters
(assembled 1nto a vector 3), and e 1s a realization of the
variability in the measurement ot'y,,, ., with distribution e~N
(0,2,). One precision-state-based similarity measure can be
determined by estimating the generalized lack of {it from the
normal equation

éf:(fn_Y(YTZE_IY)_IYTZE_I)ymeas (5)

and then comparing the residual to the expected distribution
of e. If €, 1s not anticipated from the expected distribution of
¢, then a match 1s highly improbable. The probability 1tself 1s
dependent on the distribution of e. If 1t 1s multivariate normal,
as 1s the assumption 1n the case illustrated above, the prob-

ability (L) of € given e~N(0,X)) 1s

-1 (6)
exp[— % E?Z %5]

\/ Qnpl3)

where n 1s the number of elements 1n e, and the enclosure |hl
indicates the determinant. For very large n, this formula can
be challenging to evaluate, so any of a number of numerically
ellicient alternatives can be exploited. For instance, one can
take advantage of the fact that part of the numerator, &,'X ¢,
is v~ with n degrees of freedom. To determine the precision-
state-based similarity metric, then, one could determine the
probability of seeing instantiations of ¢ more extreme than the
measurement at hand, the cumulative probability from
e,’>."¢e, to o on the y* distribution. If the cumulative prob-
ability 1s very low, then if the material represented by the
query data 1s really the same material represented by the
library record, it 1s a very unusual occurrence. Higher prob-
abilities are indicative of much more likely measurements.
One skilled 1n the art will recognize that the precision of
various types of mstrumentation may be more appropriately
characterized by different density functions, such as log-
normal, Poisson, or inverse-Gaussian. In these cases the
appropriate density function 1s used to determine the L, val-
ues

[0099] In situations 1n which the exact distribution of e 1s
approximated empirically rather than being analytically
determined, other well-known statistical approximations can
be used. For example, empirically estimated normal densities
are olten characterized using the Wishart distribution, and the

L =
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chi-squared analog 1s represented by Snedecor’s F-distribu-
tion. If the distributional form of e 1s not known, or cannot be
casily parametrically described, empirical cumulative den-
sity functions (estimated by, for example, the Kaplan-Meier
method—see Cox, D. R. and D. Oakes, “Analysis Of Survival

Data”, Chapman & Hall, London, 1984 ) can be used to deter-
mine L.. Non-parametric analogs can also be used.

[0100] The least-squares formulation above provides a
convenient route to a precision-based similarity metric 1n
some circumstances, but other preferred embodiments
include a correlation-based similarnity measure, where the
correlation measure 1s explicitly adjusted for the precision-
state. Discriminant functional representations, neural net-
work architectures, and support vector machines are also all
capable of being modified to produce similarity measures that
are conditional on the precision-state of the measurement.

[0101] In one embodiment, the L, values are used as mea-
sures ol precision-state-based similarity. Alternatively, or as a
continuation of this embodiment, with a series of L,’s calcu-
lated for multiple library spectra, one can determine the
exclusive probability that the measured material 1s a pure
representation ol one library entry versus another, often
termed the “posterior probability”. Bayes theorem gives the
posterior probability, P, (exclusive) for a given library com-
ponent:

0:1; (7)

where there are k elements 1n the library, or k elements under
consideration. The symbol 0 codifies other information
regarding a given library component independent of the
instrument measurement under the constraint that the sum of
all O values must equal 1 (an aspect of W discussed above).
For a simple example, consider the case where the analyst
knows the unknown specimen of interest 1s a white powder.
Some of the library records may be associated with matenals
that are white powders 1n pure form. Therefore, the 0 values
for each library entry can be chosen to reflect the fact that
white-powder library materials are more probabilistically
likely than non-white-powder materials. There 1s an 1mpor-
tant distinction between what 1s commonly done by those
practicing the art—which 1s to exclude from the search library
records which do not correspond to white powders—and the
above approach, which quantitatively reflects probabilities
and comprises the other novel aspect of the disclosed spectral
library search method. We detail this aspect and 1ts utility
next.

[0102] If no extra (1.e., non-instrument measurement)
information 1s available at the time of the measurement, each
0 1s set to 1/k, indicating that no prior preference exists for any
particular library component, a condition usually termed a
“flat prior” 1n the probability literature. The evidence-based
similarity measure of this embodiment allows for “scenarios”
that do make some library species more likely than others, but
never with 0=0 or 1. For example, 11 a white powder 1s being
analyzed (a characterization which 1s an input from the user),
then all library components that could be 1n white powder
form are given preferred prior probability, for example, O
might favor white-powders over organic liquids 4:1. This 1s
preferred over setting 0 equal to zero for non-white powder
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substances, because users cannot be completely relied upon
for perfect mnput, and phase changes of materials are possible
in different measurement conditions. Further, prior probabili-
ties can never be O or 1 1n any circumstance (except, perhaps
for some pathological cases), because these states convey
absolute certainty about the as yet unknown outcome.

[0103] Other attributes that can be used to determine the
prior probability include, but are not limited to, odor, appear-
ance, texture, crystallimity, color, etc. Inthese cases, auser can
cither be prompted for other information (e.g., “What 1s the
color of the substance? Is it solid, liquud?” etc.), or they may
choose one or more predefined scenarios that represent one
attribute, or a combination of attributes. For example, hazard-
ous materials and drug enforcement personnel often refer to
“white powder” scenarios. In this case, the prior probabilities
can be automatically set to reflect pre-measurement odds
favoring materials in the library that meet these critena.
Therefore, the user could either be presented with the prob-
ability L., which represents the probability that library mate-
rial 1 and precision state could lead to the observed measure-
ment, or P, which 1s the probability that the material under
study 1s library material 1 given the precision state and other
prior information encoded 1n the various 0, values.

[0104] In one embodiment of this invention, the 0, values
are determined by a multinomial logistic model on physico-
chemical properties of samples including color, odor, form
(e.g., solid, liquid, gas), while 1n another embodiment the 0
values are determined from text searches of a database of
matenal properties with correspondences to the spectral
library. In yet another embodiment, the 0’s are modified
according the “hazardousness”™ of the library matenal, which
1s advantageous in preventing false-negative search results
when such errors could be highly dangerous, a risk-based
prior probability.

[0105] FIG. 5 gives a comparative example of this entire
process for two measurements of polystyrene. Case A has a
relatively low signal-to-noise ratio (SNR), and case B has a
slightly better SNR. The tables below the graphs compare (1)
a correlation-based search to (1) an evidence-based approach
contingent on the precision state. For the evidence-based
search, we also compare search under a flat prior to search
using a state-based prior (solid, liquid, gas). Correlation simi-
larities for the top 6 hits are all in excess of 0.7. Use of the
precision-state 1 Case A, however, reveals that a match for
polystyrene 1s probabilistically favored approximately 3:1
over the next best match, and when the state-based prior 1s
used, polystyrene 1s favored 20:1 over benzyl alcohol. With
the SNR 1mproved slightly in Case B, the correlation simi-
larities all increase (although the differences between simi-
larity measures 1s essentially the same). The evidence-based
search 1s emphatic that polystyrene 1s favored almost 10:1
over benzyl alcohol, and, with the state-based prior included,
this increases to almost 50:1 odds.

[0106] FIGS. 6A and 6B illustrate a general embodiment of
this novel process.

[0107] Insome situations 1t 1s advantageous to use manipu-
lations of the measurement or library data to improve signal-
to-noise ratio, favorably alter the signal character, or com-
press the data for ease of calculation and storage. Further, for
some applications of spectral library searching parametric
similarity functions may be difficult to formulate, and 1nstead
non-parametric alternatives are advantageously employed,
and the measurement data and library data must be repre-
sented 1 a form that 1s amenable for the non-parametric
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similarity analysis. Common examples of signal manipula-
tions/compression include Fournier and wavelet filtering,
compression by principal components, polynomial smooth-
ing and derivative filters, and spline-based manipulations.
Non-parametric manipulations include binary representa-
tions of spectrum band positions/heights, tabulated func-
tional values, etc. One skilled 1n the art will recognize that, in
these cases, the representation of the precision-state (e.g., the
variance-covariance matrix) must also be manipulated so that
it 1s representative of the precision state of the representation
of the measurement data.

[0108] Some variability terms depend on the magnitude of
the library spectrum that most closely matches the measured
spectrum. For example, one might examine the probability
that a particular library spectrum could give rise to the mea-
surement (the measurement 1s a random observation from a
distribution around the library spectrum), in which case the
Raman shot noise will depend on the magnitude of the library
spectrum that best describes the measurement. Therefore, the
Raman shot term of X and the best fit parameters 3 must be
determined simultaneously. This can solved by any number of
means well known 1n the art, including alternating least-
squares (ALS) (see Young, F. W., “Quantitative Analysis Of
Qualitative Data”, Psychometrika 46, 357-388, 1981), itera-
tive majorization, or nonlinear optimization methods such as
Levenberg-Marquardt (see Levenberg, K., “A Method For
The Solution Of Certain Problems In Least Squares™, Quart.
Appl. Math. 2, 164-168, 1944, and Marquardt, D., “An Algo-
rithm For Least-Squares Estimation Of Nonlinear Param-
cters”, SIAM J. Appl. Math. 11, 431-441, 1963), or the sim-
plex method (see J. A. Nelder and R. Mead, “A Simplex
Method For Function Minimization”, Computer Journal 7,
308-313, 1965). We have used the ALS and iterative
majorization approaches and found that convergence 1s usu-
ally achieved 1n less than 20 iterations. FIG. 7 1llustrates an

embodiment of this novel sub-process.

Variability 1n the Measured and Library Spectra

[0109] Ideally, the information in the library 1s known to
infinite or extremely high precision, and one assumes that the
imprecision of the measurement condition results 1n a distri-
bution of potential observations around the library spectrum.
But, 1n practice, library spectra are never periectly deter-
mined. This can be problematic for contemporary library
search methods, because all presently used approaches
assume the library spectrum 1s known to infinite accuracy. If
the signal-to-noise in the measured spectrum 1s high enough,
part ol the dissimilarity between a measurement and the
library record may in fact be due to the maccuracy of the
library spectrum itself. The remedy for this problem 1s to
define the variability of the library spectrum itself, again
cither by measurement or first principles or both, and deter-
mine the similarity measures under the constraint that some
imprecision 1s expected in the hibrary spectrum itself. One
general approach to this 1s the extension of Equation 5 by
Tikhonov regularization:

éf:(fn_ Y( YTEE_IY_ZHE?)_I YTEf_l)ymeas (10)

which constrains the solution according to the variability in
the library record X,.,. One skilled 1n the art will recognize
that a constraint of this form could be implemented by any
number of isubstantially different means (such as further
correction of a correlation-based measure for the imprecision
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of the library spectrum), but the critical aspect 1s that the
similarity measures depend on 2, , .

Non-Linear Discrepancy Approaches

[0110] One skilled in the art will recognize that, while we
have 1llustrated a linear discrepancy analysis approach, the
use of variability information in the derivation of a similarity
metric for the user could equally apply to non-linear discrep-
ancy estimating methods such as neural networks, support
vector machines, nearest-neighbor methods, etc.

Use of Variability to Direct Operation of
Measurement Device

[0111] Anaspectofthe described invention 1s to control the
operation of a measurement device such that a precision state
1s achieved that allows for a more definitive assessment of the
probable matches, that i1s, the measurement device 1s operated
such that substantial evidence favors only one or two possi-
bilities. This can be thought of as occurring by forcing non-
similar candidates have an even lower similarity measure by
altering the conditions of the measurement. Provided that the
variability term X can be influenced by controllable device
operating parameters, such as source intensity, integration
time, aperture, resolution, etc., such a device could make a
measurement with known operating parameters, determine
the precision state of such a measurement, and 11 the evidence
1s 1mnsuilficient to make a sound determination of the compo-
sition of the sample 1n question, alter the device operating
parameters 1 such a way that the precision state 1s more
tavorable. FIG. 8 1llustrates an embodiment of this approach.
Additionally or alternatively, the device could instruct 1n the
user to alter the measurement characteristics 1n a way that 1s
tavorable for the precision state, e.g., ‘shield the sample from
impinging light pollution’, ‘reposition the measurement
device for more eflicient collection’, ‘change the device oper-
ating characteristics.’

Mixture Extension

[0112] The use of variability information to assess the simi-
larity of a measurement to a library component, extends
seamlessly to the assessment of the similarity of a measure-
ment to a mixture of library components. Instead of

Y=| 13’3:‘3:-,:‘] (11)

as 1n Equations 4, 5 and 10 above, Y 1s expanded to include
possible mixture library components

Yzl.lyfib,iyfbe . y.-:’z'b,qJ (12)

[0113] The procedures discussed above all apply by simple
extension, although now the discrepancy, e, 1s distributed
with terms that depend on the precision of the measurement
state contributed by each possible library component. None-
theless, similarity measures can still be derived that depend
on the precision state, and many are simple extensions of the
non-mixture similarity measures. For example, the probabil-
ity determinations discussed above remain valid for mixtures
of library records, and the method can provide the user with
the probability that the measured sample 1s a mixture of q
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library components, rather than the probability the measured
sample 1s a pure library component.

Classification

[0114] The use of precision-state imnformation can also be
usetul 11 the desire 1s to 1dentily the class of chemical mate-
rials that 1s similar to the measured sample. One could, for
instance, determine the precision-based similarity of the mea-
surement to a number of candidates, and the joint probability
for the class of compounds can be used for classification
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purposes, e€.2., “explosives”, “non-steroidal anti-inflamma-
tory drugs™, “narcotics”, etc. This 1s generally termed classi-
fication, rather than identification, as the class of compounds
1s believed to be indicated by the aggregate similarity of the

query to collections of library records with similar properties.
Utility
[0115] The above invention 1s extremely useful for mater-
als 1dentification or classification, as 1t provides the user with
a similarity, or similarities measures, that directly quantify
the amount of knowledge that exists at the time of the analy-
s1s. Actions that follow the analysis are then directly depen-
dent on the knowledge provided by the method, for example,
evacuate the immediate area, clean up material using hazard
suits, etc. In many instances the knowledge provided by this

approach over current methods 1s expected to yield dramatic
savings 1n money, time, and human lives.

Various Systems for Analyzing a Specimen

[0116] It 1s possible to embody the present invention 1n
many different constructions. Such constructions will be
apparent to those skilled 1n the art in view of the present
disclosure.

[0117] Thus, for example, and looking now at FIG. 9, there
1s shown a system 3 for determining the most likely compo-
sition of a sample, comprising: apparatus 10 for obtaining
data from a sample, wherein the data comprises a represen-
tation of a measured spectrum; apparatus 15 for determining
the precision state of the representation of the measured spec-
trum; apparatus 20 for providing a plurality of library candi-
dates and, for each library candidate, providing data repre-
senting the same, wherein the data comprises a representation
of a library spectrum; apparatus 23 for determining the pre-
cision state of the representation of each library spectrum;
apparatus 30 for determining a representation of the similar-
ity of the sample to each library candidate using (1) the rep-
resentation of the measured spectrum, (11) the precision state
of the representation of the measured spectrum, (111) the rep-
resentation of the library spectrum for that library candidate,
and (1v) the precision state of the representation of the library
spectrum for that library candidate; and apparatus 35 for
determining the most likely composition of the sample based
upon the determined representations of similarity of the
sample to each library candidate.

[0118] Furthermore, and looking now at FIG. 10, there 1s
shown a system 3A for determining the most likely compo-
sition of a sample, comprising:

[0119] apparatus 10 for obtaimning data from a sample,
wherein the data comprises a representation of a measured
spectrum; apparatus 15 for determining the precision state of
the representation of the measured spectrum; apparatus 20 for
providing a plurality of library candidates and, for each
library candidate, providing data representing the same,
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wherein the data comprises a representation of a library spec-
trum; apparatus 25 for determining the precision state of the
representation of each library spectrum; apparatus 30A for
determining a representation of the similarity of the sample to
a mixture of library candidates using (1) the representation of
the measured spectrum, (11) the precision state of the repre-
sentation of the measured spectrum, (111) the representation of
the library spectrum for the library candidates, and (1v) the
precision state of the representation of the library spectrum
tor the library candidates; and apparatus 35A for determining
the most likely composition of the sample based upon the
determined representations of similarity of the sample to a
mixture of library candidates.

[0120] Furthermore, and looking now at FIG. 11, there 1s
shown a system 3B for determiming the most likely classifi-
cation of a sample, comprising: apparatus 10 for obtaining
data from a sample, wherein the data comprises a represen-
tation of a measured spectrum; apparatus 13 for determining,
the precision state of the representation of the measured spec-
trum; apparatus 20 for providing a plurality of library candi-
dates and, for each library candidate, providing data repre-
senting the same, wherein the data comprises a representation
of a library spectrum; apparatus 23 for determining the pre-
cision state of the representation of each library spectrum;
wherein the data for each of at least some of the library
candidates further comprises the identification of a class to
which the library candidate belongs; apparatus 30B for deter-
mimng a representation of the similarity of the sample to a
mixture of library candidates using (1) the representation of
the measured spectrum, (11) the precision state of the repre-
sentation of the measured spectrum, and (111) the representa-
tion of the library spectrum for that library candidate; and
apparatus 35B for determining the most likely classification
ol the sample based upon the determined representations of
similarity of the sample to a mixture of library candidates.

Raman Spectroscopy Applications

[0121] Itispossible to utilize the present invention in many
applications.
[0122] It 1s particularly useful in applications 1nvolving

Raman spectroscopy.

[0123] Thus, for example, in FIG. 12 there 1s shown (in
schematic form) a novel Raman analyzer 100 formed 1in
accordance with the present mnvention. Raman analyzer 100
generally comprises an appropriate light source 105 (e.g., a
laser) for delivering excitation light to a specimen 110 so as to
generate the Raman signature for the specimen being ana-
lyzed, a spectrometer 103 for receiving the Raman signature
of the specimen and determining the wavelength characteris-
tics of that Raman signature, and analysis apparatus 115
formed 1n accordance with the present invention for receiving
the wavelength information from spectrometer 105 and,
using the same, identifying specimen 110.

Further Modifications

[0124] It will be appreciated that still further embodiments
ol the present invention will be apparent to those skilled 1n the
art in view of the present disclosure. It is to be understood that
the present invention 1s by no means limited to the particular
constructions herein disclosed and/or shown 1n the drawings,
but also comprises any modifications or equivalents within
the scope of the invention.
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1-39. (canceled)

40. A method, comprising:

measuring spectral information for a sample 1n a plurality

of measurement channels; and

comparing the measured spectral information to reference

information for one or more candidates to determine
information about the sample,

wherein for each of the one or more candidates the com-

paring COmprises:

for each of multiple measurement channels, determining
a quantity related to a distribution of a portion of the
spectral information corresponding to the channel;
and

comparing information derived from the measured spec-
tral information and the quantities corresponding to
the measurement channels to reference information
for the candidate.

41. The method of claim 40, wherein the spectral informa-
tion comprises at least one of Raman scattering information,
infrared absorption information, infrared retlectance infor-
mation, and fluorescence information.

42. The method of claim 40, wherein the measurement
channels comprise spectral channels corresponding to differ-
ent regions of the electromagnetic spectrum.

43. The method of claim 40, wherein the measurement
channels comprise different portions of a total measurement
time.

44. The method of claim 40, wherein the quantity com-
prises a mean value of the portion of the spectral information
corresponding to the channel.

45. The method of claim 40, wherein the quantity com-
prises a variance of the portion of the spectral information
corresponding to the channel.

46. The method of claim 40, wherein the quantity com-
prises a single measured value.

4'7. The method of claim 40, turther comprising, for each of
the one or more candidates, determining an expected distri-
bution of spectral mnformation, and comparing the expected
distribution to the derived information.

48. The method of claim 47, wherein the expected distri-
bution corresponds to at least one of a normal distribution, a
Poisson distribution, a log-normal distribution, an inverse
(Gaussian distribution, a Wishart distribution, and a Snede-
cor’s F-distribution.

49. The method of claim 47, wherein the derived informa-
tion comprises a distribution of possible values of the mea-
sured spectral information.

50. The method of claim 47, wherein the derived informa-
tion comprises multiple distributions of possible values of the
measured spectral information, each one of the distributions
corresponding to a particular one of the multiple measure-
ment channels.

51. The method of claim 49, wherein comparing the
expected distribution to the derived information comprises
determining an extent of overlap between the expected dis-
tribution and the derived information.

52. The method of claim 49, wherein comparing the
expected distribution to the dertved information comprises, 1n
cach of multiple measurement channels, determining an
extent of overlap between the expected distribution and the
derived imnformation corresponding to the channel.

53. The method of claim 51, wherein the extent of overlap
1s a first overlap value, and further comprising determining a
probability that an extent of overlap between the expected
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distribution and a distribution corresponding to additional
measured spectral information would be smaller than the first
overlap value.

54. The method of claim 52, wherein, for each of the
multiple measurement channels, the extent of overlap 1s a first
overlap value, and further comprising determining a prob-
ability that an extent of overlap between the expected distri-
bution and a distribution corresponding to additional spectral
information would be smaller than the first overlap value.

55. The method of claam 49, wherein comparing the
expected distribution to the derived information comprises
determining a distance between the expected distribution and
the dertved information.

56. The method of claim 49, wherein comparing the
expected distribution to the dertved information comprises, 1n
cach of the multiple measurement channels, determining a
distance between the expected distribution and the dertved
information corresponding to the channel.

57. The method of claim 55, wherein the distance 1s a first
distance, and further comprising determining a probability
that a distance between the expected distribution and a distri-
bution corresponding to additional measured spectral infor-
mation would be larger than the first distance.

58. The method of claim 56, wherein, for each of the
multiple measurement channels, the distance 1s a first dis-
tance, and further comprising determinming a probability that a
distance between the expected distribution and a distribution
corresponding to additional spectral information would be
larger than the first distance.

59. The method of claim 40, wherein the information about
the sample comprises an estimate ol how many of the one or
more candidates can correspond to the sample.

60. The method of claim 40, wherein the information about
the sample comprises an 1dentity of the sample.

61. The method of claim 40, wherein the information about
the sample comprises an i1dentification of the sample as a
mixture comprising two or more components.

62. The method of claim 40, wherein the information about
the sample comprises a determination that the sample does
not comprise any of the candidates.

63. The method of claim 40, wherein the quantity 1s deter-
mined based on an expected noise or error level for a detection
system used to measure the spectral information.

64. The method of claim 63, wherein the expected noise or
error level comprises at least one of a dark current noise level
in the detection system, a read noise level 1n the detection
system, a quantization error in the detection system, a defect
error level 1n the detection system, a gain error level 1n the
detection system, a viability error level in the detection sys-
tem, and a shot noise level 1n the detection system.

65. The method of claim 40, wherein the quantity 1s deter-
mined based on a temperature of a detection system or a
humidity of an environment around the detection system used
to measure the spectral information.

66. The method of claim 40, wherein the quantity 1s deter-
mined based on one or more conditions at the time the spectral
information 1s measured.

67. The method of claim 66, wherein the one or more
conditions comprise one or more operating parameters of a
detection system used to measure the spectral information.

68. The method of claim 66, wherein the one or more
conditions comprise at least one of an amount of ambient light
in an environment around the sample, a position of the sample
relative to a detection system used to measure the spectral
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information, an intensity of 1llumination light incident on the
sample, and a spectral distribution of 1llumination light 1nci-
dent on the sample.

69. The method of claim 66, wherein the one or more
conditions comprise calibration information about a detec-
tion system used to measure the spectral information.

70. A method, comprising:

measuring spectral information for a sample 1n a plurality

of measurement channels;

determiming, for each of the channels, a distribution of

possible measurement values based on the measured
spectral information;

determining a combined distribution of possible measure-

ment values based on the distributions corresponding to
each of the channels; and

comparing the combined distribution of possible measure-

ment values to reference information to determine infor-
mation about the sample.

71. The method of claim 70, wherein comparing the com-
bined distribution to reference imformation comprises, for
cach of one or more candidates, determining an expected
distribution of measurement values, and comparing the
expected distribution of measurement values to the combined
distribution of measurement values.

72. The method of claim 71, wherein the comparing com-
prises determining an extent of overlap between the expected
distribution and the combined distribution.

73. The method of claim 71, wherein the comparing com-
prises determining a distance between the expected distribu-
tion and the combined distribution.

74. The method of claim 71, wherein the expected distri-
bution comprises a plurality of distributions each correspond-
ing to a different one of the channels, and the comparing
comprises, for each of the channels, comparing a correspond-
ing expected distribution to the distribution of possible mea-
surement values for the channel.

75. The method of claim 70, wherein the information about
the sample comprises at least one of an estimate of how many
of the candidates can correspond to the sample, an 1dentity of
the sample, an 1dentification of the sample as a mixture com-
prising two or more components, and a determination that the
sample does not comprise any of the candidates.

76. A system, comprising;:

a detector configured to measure radiation from a sample in

a plurality of measurement channels; and
an electronic processor configured to:
determine spectral mformation for the sample corre-
sponding to each of the measurement channels based
on the measured radiation; and
compare the spectral information to a reference infor-
mation for one or more candidates to determine infor-
mation about the sample,
wherein for each of the one or more candidates the
comparing comprises:
for each of multiple measurement channels, deter-
mining a quantity related to a distribution of a por-
tion of the spectral information corresponding to
the channel; and
comparing information derived from the measured
spectral information and the quantities correspond-
ing to the measurement channels to reference infor-
mation for the candidate.

77. The system of claim 76, wherein the measurement

channels comprise at least one of spectral channels corre-
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sponding to different regions of the electromagnetic spec-
trum, and different portions of a total measurement time.

78. The system of claim 76, wherein the quantity comprises
a variance of the portion of the spectral information corre-
sponding to the channel.

79. The system of claim 76, wherein the electronic proces-
sor 1s configured to determine, for each of the candidates, an
expected distribution of spectral information, and to compare
the expected distribution to the derived information.

80. The system of claim 79, wherein the electronic proces-
sor 1s configured to compare the expected distribution to the
derived information by determining an extent of overlap
between the expected distribution and the derived informa-
tion.

81. The system of claim 79, wherein the electronic proces-
sor 1s configured to compare the expected distribution to the
derived information in each of multiple measurement chan-
nels by determining an extent of overlap between the
expected distribution and derived information corresponding
to the channel.

82. The system of claim 80, wherein the extent of overlap
1s a first overlap value, and the electronic processor 1s further
configured to determine a probabaility that an extent of overlap
between the expected distribution and a distribution corre-
sponding to additional measured spectral information would
be smaller than the first overlap value.

83. The system of claim 81, wherein, for each of the mul-
tiple measurement channels, the extent of overlap 1s a first
overlap value, and the electronic processor 1s Turther config-
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ured to determine a probability that an extent of overlap
between the expected distribution and a distribution corre-
sponding to additional spectral information would be smaller
than the first overlap value.

84. The system of claim 76, wherein the information about
the sample comprises at least one of an estimate of how many
of the candidates can correspond to the sample, an 1dentity of
the sample, an 1dentification of the sample as a mixture com-
prising two or more components, and a determination that the
sample does not comprise any of the candidates.

85. The system of claim 76, wherein the electronic proces-
sor 1s configured to determine the quantity based on an
expected noise or error level for the detector.

86. The system of claim 85, wherein the expected noise or
error level comprises at least one of a dark current noise level
in the detector, a read noise level 1n the detector, a quantiza-
tion error 1n the detector, a defect error level 1n the detector, a
gain error level 1n the detector, a viability error level 1n the
detector, and a shot noise level 1n the detector.

87. The system of claim 76, wherein the electronic proces-
sor 1s configured to determine the quantity based on at least
one of a temperature of the detector, a humidity of an envi-
ronment around the detector, an amount of ambient light in an
environment around the sample, a position of the sample
relative to the detector, an intensity of illumination light inci-
dent on the sample, and a spectral distribution of 1llumination
light incident on the sample.
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