a9y United States
12y Patent Application Publication (o) Pub. No.: US 2009/0328048 A1l

Khan et al.

US 20090328048A1

43) Pub. Date: Dec. 31, 2009

(54)

(75)

(73)

(21)

(22)

(63)

DISTRIBUTED PROCESSING
ARCHITECTURE WITH SCALABLE
PROCESSING LAYERS

Shoab Ahmad Khan, Islamabad
(PK); M. Mohsin Rehmatullah,
Islamabad (PK); Sherjil Ahmed,
Irvine, CA (US); Mohammed
Usman, Mission Viejo, CA (US);
Mohammad Ahmad, Irvine, CA
(US)

Inventors:

Correspondence Address:
PATENTMETRIX

14252 CULVER DR. BOX 914
IRVINE, CA 92604 (US)

Assignee: Quartics, Inc., Irvine, CA (US)

Appl. No.: 12/335,644

Filed: Dec. 16,2008

Related U.S. Application Data

Continuation of application No. 11/390,558, filed on
Mar. 27, 2006, now Pat. No. 7,516,320, which 1s a
continuation of application No. 10/004,753, filed on

Dec. 3, 2001, now abandoned.

10052
¢ 1017a
- -
10702
e > 1020a [

107154

. 10254 e 10332
1027a
B " e
e 10352
10303

Publication Classification

(51) Int.Cl.

GOGF 9/46 (2006.01)
(52) UsSeCle oo 718/102
(57) ABSTRACT

The present invention 1s a system on chip archutecture having
scalable, distributed processing and memory capabilities

through a plurality of processing layers. In a preferred
embodiment, a distributed processing layer processor coms-
prises a plurality of processing layers, a processing layer
controller, and a central direct memory access controller. The
processing layer controller manages the scheduling of tasks
and distribution of processing tasks to each processing layer.

Within each processing layer, a plurality of pipelined process-
ing units (PUs), specially designed for conducting a defined
set of processing tasks, are in communication with a plurality
of program memories and data memories. One application of
the present mvention 1s 1n a media gateway that 1s designed to
enable the communication of media across circuit switched
and packet switched networks. The hardware system archi-
tecture of the said novel gateway 1s comprised of a plurality of
DPLPs, referred to as Media Engines that are interconnected
with a Host Processor or Packet Engine, which, 1n turn, 1s in
communication with interfaces to networks. Each of the PUs
within the processing layers of the Media Engines are spe-
cially designed to perform a class of media processing spe-
cific tasks, such as line echo cancellation, encoding or decod-
ing data, or tone signaling.

Patent Application Publication

100

107

104

106

147

Dec. 31, 2009 Sheet 1 of 25

US 2009/0328048 Al

170

110
)/

115

e
IR |

000

160

E

FIG. 1

Patent Application Publication Dec. 31, 2009 Sheet 2 of 25 US 2009/0328048 Al

3
\ N
0
-
3 :
/)
S
N\
S
N
s s
N N
N AN
ny -
3 S
3 3
N N
S
)
N

205a

Patent Application Publication Dec. 31, 2009 Sheet 3 of 25 US 2009/0328048 A1l

S Q
N N
S S S S
S N < S
N N N N
S
N}
Y
O
S
S J
)
O X~
8 | S
S N
b
N
0
s
. 3
‘_ll}_ N
N
N
N

FIG. 2b

Patent Application Publication Dec. 31, 2009 Sheet 4 of 25 US 2009/0328048 Al

300

310

340

326 330 335

305

320

315

Patent Application Publication Dec. 31, 2009 Sheet 5 of 25 US 2009/0328048 A1l

417
490

465

)
495

455
~

470

413

410

400
N

435

405

N

Patent Application Publication Dec. 31, 2009 Sheet 6 of 25 US 2009/0328048 A1l

- S
N

-

S
D
I|I |I|| |
gl
L)

520

505

US 2009/0328048 Al

Dec. 31, 2009 Sheet 7 of 25

Patent Application Publication

09

Qmm.

0L9

Patent Application Publication Dec. 31, 2009 Sheet 8 of 25 US 2009/0328048 A1l

730

/35

/70

/20

/15

/10

FIG. 7

US 2009/0328048 Al

Dec. 31, 2009 Sheet 9 of 25

Patent Application Publication

068

0cé

0l8

Patent Application Publication Dec. 31, 2009 Sheet 10 of 25 US 2009/0328048 Al

S S
N~

o (O /

Q) h

N

T |
Q.., II

S /

000 (Ii)

l)}

l. .

A

Patent Application Publication Dec. 31, 2009 Sheet 11 of 25 US 2009/0328048 Al

1000

1081
1071
1061

o
%‘
o
E eg——3-
=
- -
S S
E -
[l

__
1034

1T

1032 S 1033

1004
- _
- -
|

1006
_
_

1031
T
__
” _
_»I_L_
Y

1035
1030
1040
1005 <
1091

FIG. 10

US 2009/0328048 Al

Dec. 31, 2009 Sheet 12 of 25

Patent Application Publication

eGel!

eceol

e0E0)

€20}

eGcl}

e0l Ol

E0C0}

€410}

€610/

€0L0!

€600/}

Patent Application Publication Dec. 31, 2009 Sheet 13 0f 25 US 2009/0328048 Al

S
™
o,
c::‘
o
h
o
N
~
—— 0
L S lea|
™ b o
e '
t::>|
b
o
b

1110

20¢! 90c/ 50c}
£ 10/S aWi] ¢ 19/S aWi] } J0IS eWil]

US 2009/0328048 Al

g jauuey?
Z lauueyd

Dec. 31, 2009 Sheet 14 of 25

1,74

¢l Ol

Patent Application Publication

Patent Application Publication Dec. 31, 2009 Sheet 150f25 US 2009/0328048 Al

1300

1306

1310

FIG. 13

US 2009/0328048 Al

Dec. 31, 2009 Sheet 16 of 25

Patent Application Publication

€GO}
v #0/S eWl]

e
20d/

IXd

cXd

€L0E}
£ 10/S e/

N
40d/

%€/

€90¢}
¢ #0/S ell]

e
240d/

eqic}
} 0[S oWl

e09¢'}
p [auueyo

B09E |
¢ [ouuey

BGGE)
Z [auueyd

EQGE L

el 9ld

Patent Application Publication

o
0
O
- O g
<cé'%| <
b
L
Q!
o
O
L ™~ o
5 8| &
S
Q O D
I~ I~

1381b

Dec. 31, 2009 Sheet 17 of 25

D1
13300

CT1
13940
C2
1395b

1387D
B2

1386D
B3

1389b

1362b
A4
1383b

[ime Slot 3
13600

Time Slot 4
13650

Time Slot 5

13550
13700

US 2009/0328048 Al

Q
- D
= £ N
S v
L
iy
o L8
<+ N\ T
Ol S
= =
iy
L o
© S
o = %FS|
@ & e
han Y5
q:)t% E-Q
<& ---%|
L
©
S
E.ﬁg|
Q N
£ 3
I~

Patent Application Publication Dec. 31, 2009 Sheet 18 0of 25 US 2009/0328048 Al

>
> sl wil

1400

1450

FIG. 14
1460

US 2009/0328048 Al

Dec. 31, 2009 Sheet 19 of 25

Patent Application Publication

085}

045}

US 2009/0328048 Al

Dec. 31, 2009 Sheet 20 of 25

Patent Application Publication

819/

G994

99 |

0991

91 Old

599/

7 0994

0594

009}

2191

Patent Application Publication Dec. 31, 2009 Sheet 21 of 25 US 2009/0328048 Al

1705

FIG. 17

1700

US 2009/0328048 Al

Dec. 31, 2009 Sheet 22 of 25

Patent Application Publication

eco/}
E9cl}

€Gl.1

eL0/] 8171

OO0
e0cl}

G0/}

e/l Ol

Patent Application Publication Dec. 31, 2009 Sheet 23 of 25 US 2009/0328048 Al

N
=
QO
N
Q L
: O
L

1 BOQ‘

1805

Patent Application Publication Dec. 31, 2009 Sheet 24 of 25 US 2009/0328048 Al

<
Mo
S
S
N[N -
NI NG
g NSl S g
- N QN
S .
o D
39.‘ e
N LL
Y,
™\
x
D
3 O
S
L
Y,
™\
NS ™~
E o | | c)
3 T
2| o E‘ - .
b
4 M- O
v,
h o
O

Patent Application Publication Dec. 31, 2009 Sheet 250f25 US 2009/0328048 Al

|

l 3

| N

|

|

|

|

| - - S Lo
N o ~— ~

|

| °N‘| ‘ﬁ| 5‘\1’| N

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: S

| N

S !
S § N
N N N

2220

US 2009/0328048 Al

DISTRIBUTED PROCESSING
ARCHITECTURE WITH SCALABLE
PROCESSING LAYERS

FIELD OF THE INVENTION

[0001] The present invention relates generally to a system
on chip architecture and, more specifically, to a scalable sys-
tem on chip architecture having distributed processing units
and memory banks in a plurality of processing layers.

BACKGROUND OF THE INVENTION

[0002] Media communication devices comprise hardware
and soltware systems that utilize interdependent processes to
enable the processing and transmission of analog and digital
signals substantially seamlessly across and between circuit
switched and packet switched networks. As an example, a
voice over packet gateway enables the transmission of human
voice from a conventional public switched network to a
packet switched network, possibly traveling simultaneously
over a single packet network line with both fax information
and modem data, and back again. Benefits of umifying com-
munication of different media across different networks
include cost savings and the delivery of new and/or improved
communication services such as web-enabled call centers for
improved customer support and more eflicient personal pro-
ductivity tools.

[0003] Such media over packet communication devices
(e.g., Media Gateways) require substantial, scalable process-
ing power with sophisticated software controls and applica-
tions to enable the eflective transmission of data from circuit
switched to packet switched networks and back again. Exem-
plary products utilize at least one communication processor,
such as Texas Instument’s 48-channel digital signal processor
(DSP) chip, to deploy a software architecture, such as the
system provided by Telogy Networks, which, 1n combination,
offer features such as adaptive voice activity detection, adap-
tive comiort noise generation, adaptive jitter buller, industry
standard codecs, echo cancellation, tone detection and gen-
eration, network management support, and packetization.
[0004] One form of a media communication device, a voice
over packet processing system, uses multiple DSPs to per-
form the conversion between voice data signals and packet-
based digital data. Each of the general-purpose DSPs per-
forms tasks such as encoding, decoding, echo cancellation,
and so forth; however, the use of general-purpose DSPs has
several disadvantages. First, a general-purpose DSP 1s not
optimized for performing any particular function. Therefore,
a DSP typically includes a large number of functional units.
Second, because each DSP typically completes processing of
one unit of incoming data before 1t starts processing the next
unit of mcoming data, units of incoming data may have to
wait for a DSP to become available. For example, assume that
it takes one second for a DSP to process one unit of incoming
data, then the DSP can accept new incoming data approxi-
mately once per second on average.

[0005] Exemplary processors are disclosed in U.S. Pat.
Nos. 6,226,735, 6,122,719, 6,108,760, 5,956,518, and 5,915,
123. The patents are directed to a hybrid digital signal pro-
cessor (DSP)/RISC chip that has an adaptive instruction set,
making 1t possible to reconfigure the interconnect and the
function of a series of basic building blocks, like multipliers
and arithmetic logic unmits (AL Us), on a cycle-by-cycle basis.
This provides an instruction set architecture that can be

Dec. 31, 2009

dynamically customized to match the particular requirements
of the running applications and, therefore, create a custom
path for that particular instruction for that particular cycle.
According to the patents, rather than separate the resources
for instruction storage and distribution from the resources for
data storage and computation, and dedicate silicon resources
to each of these resources at fabrication time, these resources
can be unified. Once unified, traditional instruction and con-
trol resources can be decomposed along with computing
resources and can be deployed i an application specific
manner. Chip capacity can be selectively deployed to
dynamically support active computation or control reuse of
computational resources depending on the needs of the appli-
cation and the available hardware resources. This, theoreti-
cally, results 1n improved performance.

[0006] While existing solutions are capable of generally
enabling the processing and transmission of certain media
types across circuit and packet switched networks, they sufier
from certain disadvantages. As designed, they are not able to
support a sufficiently high density of channels per chip while
still providing the features required by carrier-class telecom-
munication companies. Furthermore, expanding the number
of channels served and/or features provided to meet new or
different data volumes by adding new hardware or software
components 1s challenging and requires substantial redesign.
Moreover, existing architectures do not enable the scalable
addition of processing power or modification of processing
tasks without substantial redesigns.

[0007] Despite the atorementioned prior art, an improved
method and system for enabling the communication of media
across different networks 1s needed. More specifically, a sys-
tem on chip architecture 1s needed that can be efficiently
scaled to meet new processing requirements and 1s suifli-
ciently distributed to enable high processing throughputs and
increased production yields.

SUMMARY OF THE INVENTION

[0008] Thepresent invention 1s directed toward a system on
chip architecture having scalable, distributed processing and
memory capabilities through a plurality of processing layers.
In a preferred embodiment, a distributed processing layer
processor (DPLP) comprises a plurality of processing layers
cach in communication with a processing layer controller and
central direct memory access controller via communication
data buses and processing layer interfaces. Within each pro-
cessing layer, a plurality of pipelined processing units (PUs)
are 1n communication with a plurality of program memories
and data memories. Preferably, each PU should be capable of
accessing at least one program memory and one data memory.
The processing layer controller manages the scheduling of
tasks and distribution of processing tasks to each processing
layer. The DMA controller 1s a multi-channel DMA unit for
handling the data transfers between the local memory buiier
PUs and external memories, such as the SDRAM. Within
cach processing layer, there are a plurality of pipelined PUs
specially designed for conducting a defined set of processing
tasks. In that regard, the PUs are not general-purpose proces-
sors and can not be used to conduct any processing task.
Additionally, within each processing layer 1s a set of distrib-
uted memory banks that enable the local storage of instruc-
tion sets, processed mnformation and other data required to
conduct an assigned processing task.

[0009] One application of the present mvention 1s 1n a
media gateway that 1s designed to enable the communication

US 2009/0328048 Al

of media across circuit switched and packet switched net-
works. The hardware system architecture of the gateway 1s
comprised ol a plurality of DPLPs, referred to as Media
Engines, that are interconnected with a Host Processor and
Packet Engine which, 1n turn, 1s in communication with inter-
faces to networks, preferably an asynchronous transfer mode
(ATM) physical device or gigabit media independent inter-
tace (GMII) physical device. Each of the PUs within the
processing layers of the Media Engines are specially
designed to perform a class of media processing specific
tasks, such as line echo cancellation, encoding or decoding
data, or tone signaling.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] These and other features and advantages of the
present invention will be appreciated as they become better
understood by reference to the following Detailed Descrip-
tion when considered in connection with the accompanying
drawings, wherein:

[0011] FIG. 1 1s a block diagram of an embodiment of the
distributed processing layer processor;

[0012] FIG. 2a 1s a block diagram of a first embodiment of
a hardware system architecture for a media gateway;

[0013] FIG.2b1sablock diagram of a second embodiment
of a hardware system architecture for a media gateway;

[0014] FIG. 3 1s a diagram of a packet having a header and
user data;
[0015] FIG. 4 1s a block diagram of a third embodiment of

a hardware system architecture for a media gateway;

[0016] FIG. S 1s a block diagram of one logical division of
the software system of the present invention;

[0017] FIG. 6 1s a block diagram of a first physical imple-
mentation of the software system of FIG. 5;

[0018] FIG. 7 1s a block diagram of a second physical
implementation of the software system of FIG. 5;

[0019] FIG. 8 1s a block diagram of a third physical imple-
mentation of the software system of FIG. 5;

[0020] FIG. 9 1s a block diagram of a first embodiment of
the media engine component of the hardware system of the
present invention;

[0021] FIG. 10 15 a block diagram of a preterred embodi-
ment of the media engine component of the hardware system
of the present invention;

[0022] FIG. 10a 1s a block diagram representation of a
preferred architecture for the media layer component of the
media engine of FIG. 10;

[0023] FIG. 11 1s a block diagram representation of a first
preferred processing unit;

[0024] FIG. 12 1s a time-based schematic of the pipeline
processing conducted by the first preferred processing unit;

[0025] FIG. 13 1s a block diagram representation of a sec-
ond preferred processing unit;

[0026] FIG. 13qa 1s a time-based schematic of the pipeline
processing conducted by the second preferred processing
unit;

[0027] FIG. 14 1s a block diagram representation of a pre-

terred embodiment of the packet processor component of the
hardware system of the present invention;

[0028] FIG. 15 1s a schematic representation of one
embodiment of the plurality of network interfaces in the
packet processor component of the hardware system of the
present invention;

Dec. 31, 2009

[0029] FIG. 16 1s a block diagram of a plurality of PCI
interfaces used to facilitate control and signaling functions
tor the packet processor component of the hardware system of
the present invention;

[0030] FIG. 17 1s a first exemplary flow diagram of data
communicated between components of the software system
of the present invention;

[0031] FIG.17a1sasecond exemplary flow diagram of data
communicated between components of the software system
ol the present invention;

[0032] FIG. 1815 aschematic diagram of logical division of
the software system of the present invention;

[0033] FIG. 1915 a schematic diagram of preferred compo-
nents comprising the media processing subsystem of the soft-
ware system of the present invention;

[0034] FIG. 2015 a schematic diagram of preferred compo-
nents comprising the packetization processing subsystem of
the software system of the present invention;

[0035] FIG. 21 15 a schematic diagram of preferred compo-
nents comprising the signaling subsystem of the software
system of the present invention;

[0036] FIG. 22 1s a block diagram of a host application
operative on a physical DSP; and

[0037] FIG. 23 1s a block diagram of a host application
operative on a virtual DSP.

DETAILED DESCRIPTION OF T

[0038] The present invention 1s a system on chip architec-
ture having scalable, distributed processing and memory
capabilities through a plurality of processing layers. One
embodiment of the present invention 1s a novel media gate-
way, designed to enable the communication of media across
circuit switched and packet switched networks and encom-
passes novel hardware and software methods and systems.
The present invention will presently be described with refer-
ence to the aforementioned drawings. Headers will be used
for purposes of clarity and are not meant to limit or otherwise
restrict the disclosures made herein. It will further be appre-
ciated, by those skilled in the art that use of the term “media™
1s meant to broadly encompass substantially all types of data
that could be sent across a packet switched or circuit switched
network, including, but not limited to, voice, video, data, and
fax traffic. Where arrows are utilized 1n the drawings, 1t would
be appreciated by one of ordinary skill in the art that the
arrows represent the interconnection of elements and/or com-
ponents via buses or any other type of communication chan-
nel.

[0039] Referring to FIG. 1, a block diagram of an exem-
plary distributed processing layer processor (DPLP) 100 1s
shown. The DPLP 100 comprises a plurality of processing
layers 105 each in communication with a processing layer
controller 107 and central direct memory access (DMA) con-
troller 110 via communication data buses and processing
layer interfaces 115. Each processing layer 105 1s 1n commu-
nication with a CPU interface 106, which, in turn, 1s 1n com-
munication with a CPU 104. Within each processing layer
105, a plurality of pipelined processing units PUs) 130 are 1n
communication with a plurality of program memories 135
and data memories 140, via communication data buses. Pret-
erably, each program memory 133 and data memory 140 can
be accessed by at least one PU 130 via data buses. Each of the
PUs 130, program memories 135, and datamemories 1401s1n
communication with an external memory 147 via communi-
cation data buses.

L.

E INVENTION

US 2009/0328048 Al

[0040] Inapreferred embodimentthe processing layer con-
troller 107 manages the scheduling of tasks and distribution
of processing tasks to each processing layer 105. The pro-
cessing layer controller 107 arbitrates data and program code
transier requests to and from the program memories 135 and
data memories 140 in a round robin fashion. On the basis of
this arbitration, the processing layer controller 107 fills the
data pathways that define how units directly access memory,
namely the DMA channels [not shown]. The processing layer
controller 107 1s capable of performing 1nstruction decoding
to route an mstruction according to 1ts datatlow and keep track
of the request states for all PUs 130, such as the state of a
read-in request, a write-back request and an 1nstruction for-
warding. The processing layer controller 107 1s further
capable of conducting interface related functions, such as
programming DMA channels, starting signal generation,
maintaining page states for PUs 130 1n each processing layer
105, decoding of scheduler instructions, and managing the
movement of data from and into the task queues of each PU
130. By performing the atorementioned functions, the pro-
cessing layer controller 107 substantially eliminates the need
for associating complex state machines with the PUs 130
present 1n each processing layer 103.

[0041] The DMA controller 10 1s a multi-channel DMA
unit for handling the data transfers between the local memory
bulfer PUs and external memories, such as the SDRAM. Each
processing layer 105 has independent DMA channels allo-
cated for transferring data to and from the PU local memory
butifers. Preferably, there 1s an arbitration process, such as a
single level of round robin arbitration, between the channels
within the DMA to access the external memory. The DMA
controller 110 provides hardware support for round robin
request arbitration across the PUs 130 and processing layers
105. Each DMA channel functions independently of each
other. In an exemplary operation, it 1s preferred to conduct
transiers between local PU memories and external memories
by utilizing the address of the local memory, address of the
external memory, size of the transier, direction of the transier,
namely whether the DMA channel 1s transferring data to the
local memory from the external memory or vice-versa, and
how many transfers are required for each PU 130. The DMA
controller 110 1s preferably further capable of arbitrating
priority for program code fetch requests, conducting link list
traversal and DMA channel information generation, and per-
forming DMA channel prefetch and done signal generation.

[0042] The processing layer controller 107 and DMA con-
troller 110 are 1n communication with a plurality of commu-
nication interfaces 160, 190 through which control informa-
tion and data transmission occurs. Preferably the DPLP 100
includes an external memory interface (such as a SDRAM
interface) 170 that 1s 1n communication with the processing
layer controller 107 and DMA controller 10 and 1s 1n com-
munication with an external memory 147.

[0043] Within each processing layer 103, there are a plu-
rality of pipelined PUs 130 specially designed for conducting
a defined set of processing tasks. In that regard, the PUs are
not general-purpose processors and can not be used to con-
duct any processing task A survey and analysis of specific
processing tasks yielded certain functional unit commonali-
ties that, when combined, yield a specialized PU capable of
optimally processing the universe of those specialized pro-
cessing tasks. The instruction set architecture of each PU
yields compact code. Increased code density results in a

Dec. 31, 2009

decrease in required memory and, consequently, a decrease 1n
required area, power, and memory traific.

[0044] Itis preferred that, within each processing layer, the
PUs 130 operate on tasks scheduled by the processing layer
controller 107 through a first-in, first-out (FIFO) task queue
[not shown]. The pipeline architecture improves perior-
mance. Pipelining 1s an implementation technique whereby
multiple mstructions are overlapped 1n execution. In a com-
puter pipeline, each step in the pipeline completes a part of an
instruction. Like an assembly line, different steps are com-
pleting different parts ol different instructions in parallel.
Each of these steps 1s called a pipe stage or a data segment.
The stages are connected on to the next one to form a pipe.
Within a processor, instructions enter the pipe at one end,
progress through the stages, and exit at the other end. The
throughput of an 1nstruction pipeline 1s determined by how
often an 1nstruction exits the pipeline.

[0045] Additionally, within each processing layer 105 1s a
set of distributed memory banks 140 that enable the local
storage of instruction sets, processed information and other
data required to conduct an assigned processing task. By
having memories 140 distributed within discrete processing
layers 105, the DPLP 100 remains flexible and, in production,
delivers high yields. Conventionally, certain DSP chips are
not produced with more than 9 megabytes of memory on a
single chip because as memory blocks increase, the probabil-
ity of bad waters (due to corrupted memory blocks) also
increases. In the present mvention, the DPLP 100 can be
produced with 12 megabytes or more of memory by incorpo-
rating redundant processing layers 103. The ability to 1ncor-
porate redundant processing layers 1035 enables the produc-
tion of chips with larger amounts of memory because, 1t a set
of memory blocks are bad, rather than throw the entire chip
away, the discrete processing layers within which the cor-
rupted memory units are found can be set aside and the other
processing layers may be used instead. The scalable nature of
the multiple processing layers allows for redundancy and,
consequently, higher production yields.

[0046] While the layered architecture of the present inven-
tion 1s not limited to a specific number of processing layers,
certain practical limitations may restrict the number of pro-
cessing layers that can be incorporated into a single DPLP.
One of ordinary skill n the art would appreciate how to
determine the processing limitations imposed by external
conditions, such as tratfic and bandwidth constraints on the
system, that restrict the feasible number of processing layers.

Exemplary Application

[0047] The present invention can be used to enable the
operation of a novel media gateway. The hardware system
architecture of the gateway 1s comprised of a plurality of
DPLPs, referred to as Media Engines, that are in communi-
cation with a data bus and interconnected with a Host Pro-
cessor or a Packet Engine which, in turn, 1s in communication
with interfaces to networks, preferably an asynchronous
transier mode (ATM) physical device or gigabit media inde-
pendent interface (GMII) physical device.

[0048] Referring to FIG. 2a, a first embodiment of the
top-level hardware system architecture 1s shown. A data bus
2034 1s connected to mterfaces 210q existent on a first novel
Media Engine Type 1 215aq and on a second novel Media
Engine Type I 220a The first novel Media Engine Type 1 215a
and second novel Media Engine Type 1 220q are connected
through a second set of communication buses 2254 to a novel

US 2009/0328048 Al

Packet Engine 230a which, 1n turn, 1s connected through
interfaces 233a to outputs 240a, 245a. Preferably, each of the

Media Engines Type I 2154, 2204 1s 1n communication with
a SRAM 246a and SDRAM 247a.

[0049] It 1s preferred that the data bus 205aq be a time-
division multiplex (TDM) bus. A TDM bus 1s a pathway for
the transmission of a number of separate voice, fax, modem,
video, and/or other data signals simultaneously over a single
communication medium. The separate signals are transmitted
by iterleaving a portion of each signal with each other,
thereby enabling one communications channel to handle mul-
tiple separate transmissions and avoiding having to dedicate a
separate communication channel to each transmission. Exist-
ing networks use TDM to transmit data {from one communi-
cation device to another. It 1s further preferred that the inter-
faces 210a existent on the first novel Media Engine Type 1
215a and second novel Media Engine Type 1 220a comply
with H.100, a hardware specification that details the neces-
sary information to implement a CT bus interface at the
physical layer for the PCI computer chassis card slot, inde-
pendent of software specifications. The CT bus defines a
single 1sochronous communications bus across certain PC
chassis card slots and allows for the relatively fluid inter-
operation of components. It 1s appreciated that interfaces
abiding by different hardware specifications could be used to
receive signals from the data bus 205a.

[0050] As described below, each of the two novel Media
Engines Type 1215a, 220a can support a plurality of channels
for processing media, such as voice. The specific number of
channels supported 1s dependent upon the features required,
such as the extent of echo cancellation, and type of codec
supported. For codecs having relatively low processing power
requirements, such as G.711, each Media Engine Type 1215a,
220a can support the processing of around 256 voice channels
or more. Each Media Engine Type 1 2154a, 2204 1s 1n commu-
nication with the Packet Engine 230a through a communica-
tion bus 225a, preferably a peripheral component 1ntercon-
nect (PCI) communication bus. A PCI communication bus
serves to deliver control information and data transfers
between the Media Engine Type I chip 213a, 220aq and the
Packet Engine chip 230aq. Because Media Engine Type 1
215a, 220a was designed to support the processing of lower
data volumes, relative to Media Engine Type 11 described
below, a single PCI communication bus can effectively sup-
port the transfer of both control and data between the desig-
nated chips. It 1s appreciated, however, that where data traffic
becomes too great, the PCI communication bus must be
supplemented with a second 1nter-chip communication bus.

[0051] The Packet Engine 230a receirves processed data
from each of the two Media Engines Type 121354, 220a viathe
communication bus 225q While theoretically able to connect
to a plurality of Media Engines Type 1, 1t 1s preferred that, for
this embodiment, the Packet Engine 230a be in communica-
tion with up to two Media Engines Type 1 215a, 220a. As will
be further described below, the Packet Engine 230a provides
cell and packet encapsulation for data channels, at or around
2016 channels 1n a preferred embodiment, quality of service
functions for traific management, tagging for differentiated
services and multi-protocol label switching, and the ability to
bridge cell and packet networks. While 1t 1s preferred to use
the Packet Engine 230a, 1t can be replaced with a different
host processor, provided that the host processor 1s capable of
performing the above-described functions of the Packet
Engine 230a.

Dec. 31, 2009

[0052] The Packet Engine 230q 1s 1n communication with
an ATM physical device 240a GMII physical device 245aq.
The ATM physical device 240a 1s capable of receiving pro-
cessed and packetized data, as passed from the Media
Engines Type 1 21354, 2204 through the Packet Engine 230aq,
and transmitting 1t through a network operating on an asyn-
chronous transfer mode (an ATM network). As would be
appreciated by one of ordinary skill 1n the art, an ATM net-
work automatically adjusts the network capacity to meet the
system needs and can handle voice, modem, fax, video and
other data signals. Each ATM data cell, or packet, consists of
five octets of header field plus 48 octets for user data. The
header contains data that identifies the related cell, a logical
address that identifies the routing, header error correction
bits, plus bits for priority handling and network management
functions. An AITM network 1s a wideband, low delay, con-
nection-oriented, packet-like switching and multiplexing net-
work that allows for relatively flexible use of the transmission
bandwidth. The GMII physical device 245a operates under a
standard for the receipt and transmission of a certain amount
of data, irrespective of the media types mvolved.

[0053] Theembodimentshown inFIG. 2a candeliver voice
processing up to Optical Carrier Level 1 (OC-1). OC-1 1s
designated at 51.840 million bits per second and provides for
the direct electrical-to-optical mapping of the synchronous
transport signal (STS-1) with frame synchronous scrambling.
Higher optical carrier levels are direct multiples of OC-1,
namely OC-3 1s three times the rate of OC-1. As shown below,
other configurations of the present invention could be used to
support voice processing at OC-12.

[0054] Referring now to FIG. 25, an embodiment support-
ing data rates up to OC-3 1s shown, referred to herein as an
OC-3 Tile 20056. A data bus 20556 1s connected to interfaces
2105 existent on a first novel Media Engine Type 11 2155 and
on a second novel Media Engine Type 11 2205. The first novel
Media Engine Type 11 21556 and second novel Media Engine
Type 11 2205 are connected through a second set of commu-
nication buses 2255, 2275 to a novel Packet Engine 23056
which, 1n turn, 1s connected through interfaces 2605, 2655 to
outputs 24056, 2455 and through interface 2505 to a Host
Processor 255b.

[0055] As previously discussed, 1t 1s preferred that the data
bus 2055 be a time-division multiplex (1 DM) bus and that the
interfaces 2105 existent on the first novel Media Engine Type
II 2155 and second novel Media Engine Type 11 2205 comply
with the H.100 a hardware specification. It 1s again appreci-
ated that interfaces abiding by different hardware specifica-
tions could be used to receive signals from the data bus 2055.

[0056] FEach of the two novel Media Engines Type 11 2155,
220b can support a plurality of channels for processing
media, such as voice. The specific number of channels sup-
ported 1s dependent upon the features required, such as the
extent of echo cancellation, and type of codec implemented.
For codecs having relatively low processing power require-
ments, such as G.711, and where the extent of echo cancel-
lation required 1s 128 milliseconds, each Media Engine Type
II can support the processing of approximately 2016 channels
of voice. With two Media Engines Type II providing the
processing power, this configuration is capable of supporting
data rates of OC-3. Where the Media Engines Type 11 2155,
2206 are implementing a codec requiring higher processing
power, such as G.729A, the number of supported channels
decreases. As an example, the number of supported channels
decreases from 2016 per Media Engine Type II when sup-

US 2009/0328048 Al

porting (G.711 to approximately 672 to 1024 channels when
supporting .729A. To match OC-3, an additional Media
Engine Type 11 can be connected to the Packet Engine 23056
via the common communication buses 2255, 2275.

[0057] FEach Media Engine Type 11 21556, 22056 1s 1n com-
munication with the Packet Engine 2305 through communi-
cation buses 225b, 227b, preferably a peripheral component
interconnect (PCI) communication bus 2255 and a UTOPIA
II/POS II communication bus 2275. As previously men-
tioned, where data traffic volumes exceed a certain threshold,
the PCI communication bus 2255 must be supplemented with
a second communication bus 2275. Preferably, the second
communication bus 2275 1s a UTOPIA 1I/POS-II bus and
serves as the data path between Media Engines Type 11 2155,
22006 and the Packet Engine 230b. A POS (Packet over
SONET) bus represents a high-speed means for sitting data
through a direct connection, allowing the passing of data 1n its
native format without the addition of any significant level of
overhead 1n the form of signaling and control information.
UTOPIA (Universal Test and Operations Interface for ATM)
refers to an electrical interface between the transmission con-
vergence and physical medium dependent sublayers of the
physical layer and acts as the interface for devices connecting
to an ATM network.

[0058] The physical interface 1s configured to operate 1n
POS-II mode, which allows for variable size data frame trans-
ters. Each packet 1s transferred using POS-II control signals
to explicitly define the start and end of a packet. As shown in
FIG. 3, each packet 300 contains a header 305 with a plurality
of mformation fields and user data 310. Preferably, each
header 305 contains information fields including packet type
315 (e.g., RTP, raw encoded voice, AAL2), packet length 320
(total length of the packet including information fields), and
channel identification 3235 (1dentifies the physical channel,
namely the TDM slot for which the packet 1s intended or from
which the packet came). When dealing with encoded data
transiers between a Media Engine Type II 2155, 22056 and
Packet Engine 2305, 1t 1s further preferred to include coder/
decoder type 330, sequence number 335, and voice activity
detection decision 340 1n the header 305.

[0059] The Packet Engine 2305 1s 1n communication with
the Host Processor 2555 through a PCI target interface 25056.
The Packet Engine 2305 preferably includes a PCI to PCI
bridge [not shown] between the PCI interface 2265 to the PCI
communication bus 22556 and the PCI target interface 2505.
The PCI to PCI bridge serves as a link for communicating
messages between the Host Processor 2356 and two Media
Engines Type 11 2155, 2205.

[0060] The novel Packet Engine 23056 recerves processed
data from each of the two Media Engines Type 11 21355, 22056
via the communication buses 2255, 2275. While theoretically
able to connect to a plurality of Media Engines Type 11, it 1s
preferred that the Packet Engine 2305 be 1n communication
with no more than three Media Engines Type 11 2155, 2205
lonly two are shown in FIG. 2b]. As with the previously
described embodiment, Packet Engine 23056 provides cell and
packet encapsulation for data channels, up to 2048 channels
when 1implementing a G.711 codec, quality of service func-
tions for tratfic management, tagging for differentiated ser-
vices and multi-protocol label switching, and the ability to
bridge cell and packet networks. The Packet Engine 23056 1s in
communication with an ATM physical device 2405 and GMII
physical device 2455 through a UTOPIA II/POS II compat-

ible interface 2606 and GMII compatible interface respec-

Dec. 31, 2009

tively 265b6. In addition to the GMII interface 263556 1n the
physical layer, referred to herein as the PHY GMII interface,
the Packet Engine 23056 also preferably has another GMII
interface [not shown] i the MAC layer of the network
referred to herein as the MAC GMII interface. MAC 1s
media specific access control protocol defining the lower half
of the data link layer that defines topology dependent access
control protocols for industry standard local area network
specifications.

[0061] Aswill befurther discussed, the Packet Engine 2305
1s designed to enable ATM-IP internetworking. Telecommu-
nication service providers have built independent networks
operating on an ATM or IP protocol basis. Enabling ATM-IP
internetworking permits service providers to support the
delivery of substantially all digital services across a single
networking infrastructure, thereby reducing the complexities
introduced by having multiple technologies/protocols opera-
tive throughout a service provider’s entire network. The
Packet Engine 2305 1s therefore designed to enable a common

network infrastructure by providing for the mternetworking,
between ATM modes and IP modes.

[0062] More specifically, the novel Packet Engine 2305
supports the internetworking of ATM AALs (ATM Adapta-
tion Layers) to specific IP protocols. Divided into a conver-
gence sublayer and segmentation/reassembly sublayer, AAL
accomplishes conversion from the higher layer, native data
format and service specifications into the ATM layer. From
the data originating source, the process includes segmenta-
tion of the original and larger set of data into the size and
format of an ATM cell, which comprises 48 octets of data
payload and 5 octets of overhead. On the receiving side, the
AAL accomplishes reassembly of the data. AAL-1 functions
in support of Class A tratfic that 1s connection-oriented Con-
stant Bit Rate (CBR), time-dependent traflic, such as uncom-
pressed, digitized voice and video, and which 1s stream-ori-
ented and relatively intolerant of delay. AAL-2 functions 1n
support ol Class B traific that 1s connection-oriented Variable
Bit Rate (VBR) 1sochronous traffic requiring relatively pre-
cise timing between source and sink, such as compressed
voice and video. AAL-5 functions 1n support of Class C traffic
which 1s Variable Bit Rate (VBR) delay-tolerant connection-
oriented data traffic requiring relatively minimal sequencing
or error detection support such as signaling and control data.

[0063] These ATM AALs are iternetworked with proto-
cols operative 1n an IP network, such as RTP, UDP, TCP and
IP. Internet Protocol (IP) describes software that tracks the
Internet’s addresses for different nodes, routes outgoing mes-
sages, and recognizes incoming messages while allowing a
data packet to traverse multiple networks from source to
destination. Realtime Transport Protocol (RTP) 1s a standard
for streaming realtime multimedia over IP 1n packets and
supports transport of real-time data, such as iteractive video
and video over packet switched networks. Transmission Con-
trol Protocol (TCP) 1s a transport layer, connection oriented,
end-to-end protocol that provides relatively rehable,
sequenced, and unduplicated delivery of bytes to a remote or
a local user. User Datagram Protocol (UDP) provides for the
exchange of datagrams without acknowledgements or guar-
anteed delivery and 1s a transport layer, connectionless mode
protocol. In the preferred embodiment represented 1n FI1G. 25

it 1s preferred that ATM AAL-1 be internetworked with RTP,
UDP, and IP protocols, AAL-2 be imnternetworked with UDP
and IP protocols, and AAL-5 be internetworked with UDP
and IP protocols or TCP and IP protocols.

US 2009/0328048 Al

[0064] Multiple OC-3 tiles, as presented 1n FI1G. 2b, can be
interconnected to form a tile supporting higher data rates. As
shown in FI1G. 4, four OC-3 tiles 405 can be interconnected, or
“daisy chained”, together to form an OC-12 tile 400. Daisy
chaining 1s a method of connecting devices 1n a series such
that signals are passed through the chain from one device to
the next. By enabling daisy chaining, the present invention
provides for currently unavailable levels of scalability in data
volume support and hardware implementation. A Host Pro-
cessor 455 1s connected via communication buses 425, pret-
erably PCI communication buses, to the PCI interface 435 on
cach of the OC-3 tiles 405. Each OC-3 tile 405 has a TDM
interface 460 that operates via a TDM communication bus
465 to receive TDM signals via a TDM 1nterface [not shown].
Each OC-3 tile 405 1s further in communication with an ATM
physical device 490 through a communication bus 495 con-
nected to the OC-3 tile 405 through a UTOPIA II/POS 11
interface 470. Data received by an OC-3 tile 405 and not
processed, because, for example, the data packet 1s directed
toward a specific packet engine address that was not found in
that Speciﬁc OC-3 tile 405, 1s sent to the next OC-3 tile 4035 in
the series via the PHY GMII interface 410 and received by the
next OC-3 tile via the MAC GMII interface 413. Enabling
daisy chaining eliminates the need for an external aggregator
to mterface the GMII interfaces on each of the OC-3 tiles in
order to enable integration. The final OC-3 tile 405 1s 1n

communication with a GMII physical device 417 viathe PHY
GMII interface 410.

[0065] Operating on the above-described hardware archi-
tecture embodiments 1s a plurality of novel, integrated soft-
ware systems designed to enable media processing, signaling,
and packet processing. Referring now to FIG. 5, a logical
division of the software system 500 1s shown. The software
system 500 1s divided into three subsystems, a Media Pro-
cessing Subsystem 305, a Packetization Subsystem 3540, and
a Signaling/Management Subsystem 570. Fach subsystem
505, 540, 570 turther comprises a series of modules 520
designed to perform different tasks in order to effectuate the
processing and transmission of media it 1s preferred that the
modules 520 be designed 1n order to encompass a single core
task that 1s substantially non-divisible. For example, exem-
plary modules include echo cancellation, codec implementa-
tion, scheduling, IP-based packetization, and ATM-based
packetization, among others. The nature and functionality of

the modules 520 deployed 1n the present invention will be
turther described below.

[0066] The logical system of FIG. 5 can be physically
deployed in a number of ways, depending on processing
needs, due, 1 part, to the novel software architecture, to be
described below. As shown 1n FIG. 6, one physical embodi-
ment of the software system described 1n FIG. S1stobeon a
single chip 600, where the media processing block 610, pack-
ctization block 620, and management block 630 are all opera-
tive on the same chip. If processing needs increase, thereby
requiring more chip power be dedicated to media processing,
the software system can be physically implemented such that
the media processing block 710 and packetization block 720
operate on a DSP 715 that 1s in commumnication via a data bus
770 with the management block 730 that operates on a sepa-
rate host processor 735, as depicted 1n FIG. 7. Stmilarly, 1
processing needs further increase, the media processing
block 810 and packetization block 820 can be implemented
on separate DSPs 860, 865 and communicate via data buses
870 with each other and with the management block 830 that

Dec. 31, 2009

operates on a separate host processor 833, as depicted in FIG.
8. Within each block, the modules can be physically separated
onto different processors to enable for a high degree of system

scalability.

[0067] Inapreferred embodiment, four OC-3 tiles are com-
bined onto a single integrated circuit (IC) card wherein each
OC-3 tile 1s configured to perform media processing and
packetization tasks. The IC card has four OC-3 tiles 1n com-
munication via data buses. As previously described, the OC-3
tiles each have three Media Engine I processors in commu-
nication via interchip communication buses with a Packet
Engine processor. The Packet Engine processor has a MAC
and PHY interface by which communications external to the
OC-3 tiles are performed. The PHY interface of the first OC-3
tile 1s in communication with the MAC interface of the second
OC-3 tile. Similarly, the PHY interface of the second OC-3
file 1s 1n communication with the MAC interface of the third
OC-3 tile and the PHY 1nterface of the third OC-3 tile 1s 1n
communication with the MAC interface of the fourth OC-3
tile. The MAC interface of the first OC-3 tile 1s 1n communi-
cation with the PHY interface of a host processor. Operation-
ally, each Media Engine II processor implements the Media
Processing Subsystem of the present invention, shown 1n
FIG. 5 as 505. Each Packet Engine processor implements the
Packetizaton Subsystem of the present invention, shown 1n
FIG. 5 as 540. The host processor implements the Manage-
ment Subsystem, shown in FIG. 3 as 570.

[0068] The primary components of the top-level hardware
system architecture will now be described in turther detail,
including Media Engine Type I, Media Engine Type 11, and
Packet Engine. Additionally, the software architecture, along
with specific features, will be further described 1n detail.
[0069] Media Engines

[0070] Both Media Engine I and Media Engine 11 are types
of DPLPs and therefore comprise a layered architecture
wherein each layer encodes and decodes up to N channels of
voice, fax, modem, or other data depending on the layer
configuration. Each layer implements a set of pipelined pro-
cessing units specially designed through substantially opti-
mal hardware and software partitioning to perform specific
media processing functions. The processing units are special-
purpose digital signal processors that are each optimized to
perform a particular signal processing function or a class of
functions. By creating processing units that are capable of
performing a well-defined class of functions, such as echo
cancellation or codec implementation, and placing them 1n a
pipeline structure, the present invention provides a media
processing system and method with substantially greater per-
formance than conventional approaches.

[0071] Referring to FIG. 9, a diagram of Media Engine 1
900 1s shown. Media Engine I 900 comprises a plurality of
Media Layers 905 each in communication with a central
direct memory access (DMA) controller 910 via communi-
cation data buses 920. Using a DMA approach enables the
bypassing of a system processing unit to handle the transfer of
data between 1tself and system memory directly. Each Media
Layer 905 further comprises an interface to the DMA 925
interconnected with the communication data buses 920. In
turn, the DMA interface 925 1s 1n communication with each
of a plurality of pipelined processing units (PUs) 930 via
communication data buses 920 and a plurality of program and
data memories 940, via communication data buses 920, that
are situated between the DMA interface 925 and each of the
PUs 930. The program and data memories 940 are also 1n

US 2009/0328048 Al

communication with each of the PUs 930 via data buses 920.
Preferably, each PU 930 can access at least one program
memory and at least one data memory unit 940. Further, 1t 1s
also preferred to have at least one first-1n, first-out (FIFO) task
queue [not shown] to recerve scheduled tasks and queue them
for operation by the PUs 930.

[0072] While the layered architecture of the present mven-
tion 1s not limited to a specific number of Media Layers,
certain practical limitations may restrict the number of Media
Layers that can be stacked into a single Media Engine 1. As the
number of Media Layers increase, the memory and device
input/output bandwidth may increase to such an extent that
the memory requirements, pin count, density, and power con-
sumption are adversely affected and become incompatible
with application or economic requirements. Those practical
limitations, however, do not represent restrictions on the
scope and substance of the present invention.

[0073] Media Layers 9035 are in communication with an
interface to the central processing unit 950 (CPU IF) through
communication buses 920. The CPU IF 950 transmits and
receives control signals and data from an external scheduler
955, the DMA controller 910, a PCI interface (PCI IF) 960, a
SRAM interface (SRAM IF) 975, and an interface to an
external memory, such as an SDRAM interface (SDRAM IF)
970 through communication buses 920. The PCI IF 960 1s
preferably used for control signals. The SDRAM IF 970
connects to a synchronized dynamic random access memory
module whereby the memory access cycles are synchronized
with the CPU clock 1n order to eliminate wait time associated

with memory {fetching between random access memory
(RAM) and the CPU. In a preferred embodiment, the

SDRAM IF 970 that connects the processor with the SDRAM
supports 133 MHz synchronous DRAM and asynchronous
memory. It supports one bank of SDRAM (64 Mbit/256 Mbit
to 256 MB maximum) and 4 asynchronous devices (8/16/32
bit) with a data path of 32 bits and fixed length as well as
undefined length block transiers and accommodates back-to-
back transiers. Eight transactions may be queued for opera-
tion. The SDRAM [not shown] contains the states of the PUs
930. One of ordinary skill in the art would appreciate that,
although notpreferred, other external memory configurations
and types could be selected in place of the SDRAM and,
therefore, that another type of memory interface could be

used 1 place of the SDRAM IF 970.

[0074] The SDRAM IF 970 1s further in communication
with the PCI IF 960, DMA controller 910, the CPU IF 950,
and, preferably, the SRAM interface (SRAM IF) 975 through
communication buses 920. The SRAM [not shown] 1s a static
random access memory that 1s a form of random access
memory that retains data without constant refreshing, otfer-
ing relatively fast memory access. The SRAM IF 975 1s also
in communication with a TDM 1intertace (ITDM IF) 980, the
CPU IF 950, the DMA controller 910, and the PCI IF 960 via
data buses 920.

[0075] In apreferred embodiment, the TDM IF 980 for the
trunk side 1s preferably H.110/H.110 compatible and the
TDM bus 981 operates at 8.192 MHz. Enabling the Media
Engine 1900 to provide 8 data signals, therefore delivering a
capacity up to 512 full duplex channels, the TDM IF 980 has
the following preferred features: a H.100/H.110 compatible
slave, frame size can be set to 16 or 20 samples and the
scheduler can program the TDM IF 980 to store a specific
butiler or frame size, programmable staggering points for the
maximum number of channels. Preferably, the TDM IF inter-

Dec. 31, 2009

rupts the scheduler after every N samples of 8,000 Hz clock
with the number N being programmable with possible values
of 2, 4, 6, and 8. In a voice application, the TDM IF 980

preferably does not transier the pulse code modulation
(PCM) data to memory on a sample-by-sample basis, but
rather buffers 16 or 20 samples, depending on the frame size
that the encoders and decoders are using, of a channel and
then transiers the voice data for that channel to memory.

[0076] The PCI IF 960 1s also in communication with the

DMA controller 910 via communication buses 920. External
connections comprise connections between the TDM IF 980

and a TDM bus 981, between the SRAM IF 975 and a SRAM
bus 976, between the SDRAM IF 970 and a SDRAM bus 971,
preferably operating at 32 bit (@ 133 MHz, and between the
PCI IF 960 and a PCI 2.1 Bus 961 also preferably operating at
32 bit (@ 133 MHz.

[0077] External to Media Engine I, the scheduler 955 maps
the channels to the Media Layers 905 for processing. When
the scheduler 955 1s processing a new channel, 1t assigns the

channel to one of the layers, depending upon processing
resources available per layer 905. Each layer 905 handles the
processing of a plurality of channels such that the processing
1s performed 1n parallel and 1s divided into fixed frames, or
portions of data. The scheduler 955 communicates with each
Media Layer 9035 through the transmission of data, 1n the form
of tasks, to the FIFO task queues wherein each task 1s a
request to the Media Layer 905 to process a plurality of data
portions for a particular channel. It 1s therefore preferred for
the scheduler 955 to initiate the processing of data from a
channel by putting a task in a task queue, rather than program-
ming each PU 930 individually. More specifically, 1t 1s pre-
terred to have the scheduler 955 1nitiate the processing of data
from a channel by putting a task in the task queue of a
particular PU 930 and having the Media Layer’s 905 pipeline
architecture manage the data flow to subsequent PUs 930.

[0078] The scheduler 955 should manage the rate by which
cach of the channels 1s processed. In an embodiment where
the Media Layer 905 1s required to accept the processing of
data from M channels and each of the channels uses a frame
size of T msec, then 1t 1s preferred that the scheduler 955
processes one frame of each of the M channels within each T
msec mterval. Further, 1n a preferred embodiment, the sched-
uling 1s based upon periodic mterrupts, 1n the form of units of
samples, from the TDM IF 980. As an example, 11 the inter-
rupt period 1s two samples then 1t 1s preferred that the TDM IF
980 interrupts the scheduler every time 1t gathers two new
samples of all channels. The scheduler preferably maintains a
“tick-count”, which 1s incremented on every interrupt and
reset to zero when time equal to a frame size has passed. The
mapping of channels to time slots 1s preferably not fixed. For
example, 1 voice applications, whenever a call starts on a
channel, the scheduler dynamically assigns a layer to a pro-
visioned time slot channel. It 1s further preferred that the data
transter from a TDM butfer to the memory 1s aligned with the
time slot 1n which this data 1s processed, thereby staggering
the data transier for different channels from TDM to memory,
and vice-versa, in amanner that 1s equivalent to the staggering
of the processing of different channels. Consequently, 1t 1s
turther preferred that the TDM IF 980 maintains a tick count
variable wherein there 1s some synchronization between the
tick counts of TDM and scheduler 9355. In the exemplary
embodiment described above, the tick count variable 1s set to
zero on every 2 ms or 2.5 ms depending on the butifer size.

US 2009/0328048 Al

[0079] Referring to FIG. 10, a block diagram of Media
Engine 11 1000 1s shown. Media Engine II 1000 comprises a
plurality of Media Layers 1005 each 1n communication with
processing layer controller 1007, referred to herein as a
Media Layer Controller 1007, and central direct memory
access (DMA) controller 1010 via communication data buses
and an interface 1015. Each Media Layer 1003 1s 1n commu-
nication with a CPU interface 1006 that, in turn, 1s 1n com-
munication with a CPU 1004. Within each Media Layer 1005,
a plurality of pipelined processing units (PUs) 1030 are 1n
communication with a plurality of program memories 10335
and data memories 1040, via communication data buses.
Preferably, each PU 1030 can access at least one program
memory 1035 and one data memory 1040. Each of the PUs
1030, program memories 1035, and data memories 1040 1s 1n
communication with an external memory 1047 via the Media
Layer Controller 1007 and DMA 1010. In a preferred
embodiment, each Media Layer 1005 comprises four PUs
1030, each of which 1s 1n communication with a single pro-

gram memory 1035 and data memory 1040, wherein the each
of the PUs 1031, 1032, 1033, 1034 1s 1n communication with

each of the other PUs 1031, 1032, 1033, 1034 in the Media
Layer 1005.

[0080] Shown in FIG. 10q, a preferred embodiment of the
architecture of the Media Layer Controller, or MLC, 1s pro-
vided. A program memory 1005a, preferably 512x64, oper-
ates 1n conjunction with a controller 1010aq and data memory
10154 to deliver data and 1instructions to a data register file
1017a, prefterably 16x32, and address register file 1020a,
preferably 4x12. The data register file 10174 and address
register file 1020q are in communication with functional units
such as an adder/MAC 1023a, logical unit 10274, and barrel
shifter 1030a and with units such as a request arbitration logic

unit 1033a and DMA channel bank 1035a4.

[0081] Retferring back to FIG. 10, the MLC 1007 arbitrates
data and program code transfer requests to and from the
program memories 1035 and data memories 1040 1n a round
robin fashion. On the basis of this arbitration the MLC 1007
f1lls the data pathways that define how units directly access
memory, namely the DMA channels [not shown]. The MLC
1007 1s capable of performing instruction decoding to route
an 1struction according to 1ts datatlow and keep track of the
request states for all PUs 1030, such as the state of a read-in
request, a write-back request and an nstruction forwarding.
The MLC 1007 1s further capable of conducting interface
related functions, such as programming DMA channels, start-
ing signal generation, maintaining page states for PUs 1030 1n
cach Media Layer 1005, decoding of scheduler 1nstructions,
and managing the movement of data from and into the task
queues of each PU 1030. By performing the aforementioned
functions, the Media Layer Controller 1007 substantially

climinates the need for associating complex state machines
with the PUs 1030 present in each Media Layer 1005.

[0082] The DMA controller 1010 1s a multi-channel DMA
unit for handling the data transfers between the local memory
buffer PUs and external memories, such as the SDRAM.
Preferably, DMA channels are programmed dynamically.
More specifically, PUs 1030 generate independent requests,
cach having an associated priority level, and send them to the
MLC 1007 for reading or writing. Based upon the priority
request delivered by a particular PU 1030, the MLC 1007
programs the DMA channel accordingly. Preferably, there 1s
also an arbitration process, such as a single level of round
robin arbitration, between the channels within the DMA to

Dec. 31, 2009

access the external memory. The DMA Controller 1010 pro-
vides hardware support for round robin request arbitration
across the PUs 1030 and Media Layers 1005.

[0083] Inan exemplary operation, it 1s preferred to conduct
transiers between local PU memories and external memories
by utilizing the address of the local memory, address of the
external memory, size of the transier, direction of the transier,
namely whether the DMA channel 1s transferring data to the
local memory from the external memory or vice-versa, and
how many transfers are required for each PU. In this preferred
embodiment, a DMA channel 1s generated and recerves this
information from two 32-bit registers residing in the DMA. A
third register exchanges control information between the
DMA and each PU that contains the current status of the
DMA transfer. In a preferred embodiment, arbitration 1s per-
formed among the following requests: 1 structure read, 4 data
read and 4 data write requests from each Media Layer,
approximately 90 data requests 1n total, and 4 program code
fetch requests from each Media Layer, approximately 40
program code fetch requests 1n total. The DMA Controller

1010 1s preferably further capable of arbitrating priornty for
program code fetch requests, conducting link list traversal
and DMA channel information generation, and performing
DMA channel prefetch and done signal generation.

[0084] The MLC 1007 and DMA Controller 1010 are 1n
communication with a CPU IF 1006 through communication
buses. The PCI IF 1060 1s 1n communication with an external
memory interface (such as a SDRAM IF) 1070 and with the
CPUIF 1006 viacommunication buses. The external memory
interface 1070 1s further in communication with the MLC
1007 and DMA Controller 1010 and a TDM IF 1080 through
communication buses. The SDRAM IF 1070 1s 1n communi-
cation with a packet processor interface, such as a UTOPIA
II/POS compatible interface (U2/POS IF), 1090 via commu-
nication data buses. The U2/POS IF 1090 1s also preferably in
communication with the CPU IF 1006. Although the pre-
terred embodiments of the PCI IF and SDRAM IF are similar
to Media Engine I, 1t 1s preferred that the TDM IF 1080 have
all 32 serial data signals implemented, thereby supporting at
least 2048 full duplex channels. External connections com-
prise connections between the TDM IF 1080 and a TDM bus
1081, between the external memory 1070 and a memory bus
1071, preterably operating at 64 bit at 133 MHz, between the
PCIIF 1060 and a PCI 2.1 Bus 1061 also preferably operating
at 32 bit at 133 MHz, and between the U2/POS IF 1090 and a
UTOPIA IA II/POS connection 1091 preferably operative at
622 megabits per second. In a preferred embodiment, the
TDM IF 1080 for the trunk side 1s preferably H.100/H.110
compatible and the TDM bus 1081 operates at 8.192 MHz, as

previously discussed 1n relation to the Media Engine 1.

[0085] For both Media Engine 1 and Media Engine II,
within each media layer, the present invention utilizes a plu-
rality of pipelined PUs specially designed for conducting a
defined set of processing tasks. In that regard, the PUs are not
general-purpose processors and cannot be used to conduct
any processing task. A survey and analysis of specific pro-
cessing tasks yielded certain functional unit commeonalities
that, when combined, yield a specialized PU capable of opti-
mally processing the universe of those specialized processing,
tasks. The mstruction set archutecture of each PU yields com-
pact code. Increased code density results in a decrease in
required memory and, consequently, a decrease 1n required
area, power, and memory traific.

US 2009/0328048 Al

[0086] The pipeline architecture also improves perfor-
mance. Pipelining 1s an implementation technique whereby
multiple mstructions are overlapped in execution. In a com-
puter pipeline, each step 1n the pipeline completes a part ol an
instruction Like an assembly line, different steps are complet-
ing different parts of different instructions 1n parallel. Each of
these steps 1s called a pipe stage or a data segment. The stages
are connected on to the next to form a pipe. Within a proces-
sor, instructions enter the pipe at one end, progress through
the stages, and exit at the other end. The throughput of an
instruction pipeline 1s determined by how oiten an instruction
exits the pipeline.

[0087] More specifically, one type of PU (referred to herein
as EC PU) has been specially designed to perform, 1n a
pipeline architecture, a plurality of media processing func-
tions, such as echo cancellation (EC), voice activity detection
(VAD), and tone signaling (TS) functions. Echo cancellation
removes from a signal echoes that may arise as a result of the
reflection and/or retransmission ol modified input signals
back to the originator of the mnput signals. Commonly, echoes
occur when signals that were emitted from a loudspeaker are
then received and retransmitted through a microphone
(acoustic echo) or when retlections of a far end signal are
generated 1n the course of transmission along hybrids wires
(line echo). Although undesirable, echo 1s tolerable 1n a tele-
phone system, provided that the time delay 1n the echo path 1s
relatively short; however, longer echo delays can be distract-
ing or confusing to a far end speaker. Voice activity detection
determines whether a meaningful signal or noise 1s present at
the input. Tone signaling comprises the processing of super-
visory, address, and alerting signals over a circuit or network
by means of tones. Supervising signals monitor the status of
a line or circuit to determine 11 1t 1s busy, 1dle, or requesting
service. Alerting signals indicate the arrival of an incoming
call. Addressing signals comprise routing and destination
information.

[0088] The LEC, VAD, and TS functions can be efficiently
executed using a PU having several single-cycle multiply and
accumulate (MAC) units operating with an Address Genera-
tion Umt and an Instruction Decoder. Each MAC umt
includes a compressor, sum and carry registers, an adder, and
a saturation and rounding logic unit. In a preferred embodi-
ment, shown in FIG. 11, this PU 1100 comprises a load store
architecture with a single Address Generation Unit (AGU)
11035, supporting zero over-head looping and branching with
delay slots, and an Instruction Decoder 1106. The plurality of
MAC units 1110 operate 1n parallel on two 16 bit operands
and perform the following function:

Acce+=a*b

[0089] Guard bits are appended with sum and carry regis-
ters to facilitate repeated MAC operations. A scale unit pre-
vents accumulator overflow. Each MAC unit 1110 may be
programmed to perform round operations automatically.
Additionally, it 1s preferred to have an addition/subtraction
unit [not shown| as a conditional sum adder with both the
input operands being 20 bit values and the output operand
being a 16-bit value.

[0090] Operationally, the EC PU performs tasks 1n a pipe-
line fashion. A first pipeline stage comprises an instruction
tetch wherein instructions are fetched into an 1nstruction reg-
ister from program memory. A second pipeline stage com-
prises an instruction decode and operand fetch wherein an
instruction 1s decoded and stored in a decode register. The

Dec. 31, 2009

hardware loop machine 1s mitialized 1n this cycle. Operands
from the data register files are stored 1n operand registers. The
AGU operates during this cycle. The address 1s placed on data
memory address bus. In the case of a store operation, data 1s
also placed on the data memory data bus. For post increment
or decrement instructions, the address 1s incremented or dec-
remented after being placed on the address bus. The result 1s
written back to address register file. The third pipeline stage,
the Execute stage, comprises the operation on the fetched
operands by the Addition/Subtraction Unit and MAC units.
The status register 1s updated and the computed result or data
loaded from memory is stored in the data/address register
files. The states and history information required for the EC
PU operations are fetched through a multi-channel DMA
interface, as previously shown in each Media Layer. The EC
PU configures the DMA controller registers directly. The EC

PU loads the DM A chain pointer with the memory location of
the head of the chain link.

[0091] By enabling different data streams to move through
the pipelined stages concurrently, the EC PU reduces wait
time for processing incoming media, such as voice. Referring
to FIG. 12, 1n time slot 1 12035, an instruction fetch task (IF)
1s performed for processing data from channel 1 1250. In time
slot 2 1206, the IF task 1s performed for processing data from
channel 2 12355 while, concurrently, an instruction decode
and operand fetch (IDOF) 1s performed for processing data
from channel 1 1250. In time slot 3 1207, an IF task 1s
performed for processing data from channel 3 1260 while,
concurrently, an instruction decode and operand fetch (IDOF)
1s performed for processing data from channel 2 1255 and an
Execute (EX) task 1s performed for processing data from
channel 1 1250. One of ordinary skill 1n the art would appre-
ciate that, because channels are dynamically generated, the
channel numbering may not retlect the actual location and
assignment of a task. Channel numbering here i1s used to
simply indicate the concept of pipelimng across multiple
channels and not to represent actual task locations.

[0092] A second type of PU (referred to herein as CODEC
PU) has been specially designed to perform, in a pipeline
architecture, a plurality of media processing functions, such
as encoding and decoding signals in accordance with certain
standards and protocols, including standards promoted by the
International Telecommunication Union (ITU) such as voice
standards, including G.711, G.723.1,G.726,G.728, G.729A/
B/E, and data modem standards, including V.17, V.34, and
V.90, among others (referred to herein as Codecs), and per-
forming comiort noise generation (CNG) and discontinuous
transmission (DTX) functions. The various Codecs are used
to encode and decode voice signals with differing degrees of
complexity and resulting quality. CNG 1s the generation of
background noise that gives users a sense that the connection
1s live and not broken. A DTX function 1s implemented when
the frame being recerved comprises silence, rather than a
voICce transmission.

[0093] The Codecs, CNG, and DTX functions can be effi-
ciently executed using a PU having an Arithmetic and Logic
Unit (ALU), MAC unit, Barrel Shifter, and Normalization

Unit In a preferred embodiment, shown i FIG. 13, the
CODEC PU 1300 comprises a load store architecture with a
single Address Generation Unit (AGU) 1305, supporting zero
over-head looping and zero overhead branching with delay
slots, and an Instruction Decoder 1306.

[0094] Inan exemplary embodiment, each MAC umt 1310
includes a compressor, sum and carry registers, an adder, and

US 2009/0328048 Al

a saturation and rounding logic unit. The MAC unit 1310 1s
implemented as a compressor with feedback 1nto the com-
pression tree for accumulation. One preferred embodiment of
a MAC 1310 has a latency of approximately 2 cycles with a
throughput of 1 cycle. The MAC 1310 operates on two 17-bit
operands, signed or unsigned. The intermediate results are
keptin sum and carry registers. Guard bits are appended to the
sum and carry registers for repeated MAC operations. The
saturation logic converts the Sum and Carry results to 32 bat
values. The rounding logic rounds a 32 bit to a 16-bit number.
Division logic 1s also implemented 1n the MAC unit 1310.

[0095] In an exemplary embodiment, the ALU 1320
includes a 32 bit adder and a 32 bit logic circuit capable of
performing a plurality of operations, including add, add with
carry, subtract, subtract with borrow, negate, AND, OR,
XOR, and NOT. One of the mputs to the ALU 1320 has an
XOR array, which operates on 32-bit operands. Comprising,
an absolute unit, a logic unit, and an addition/subtraction unit,
the ALU’s 1320 absolute unit drives this array. Depending on
the output of the absolute unit, the input operand 1s either
XORed with one or zero to perform negation on the input
operands.

[0096] In an exemplary embodiment, the Barrel Shifter
1330 1s placed 1n series with the ALU 1320 and acts as a
pre-shifter to operands requiring a shift operation followed by
any ALU operations. One type of preferred Barrel Shifter can
perform a maximum of 9-bit left or 26-bit right arithmetic
shifts on 16 bit or 32-bit operands. The output of the Barrel

Shifter 1s a 32-bit value, which 1s accessible to both the inputs
of the ALU 1320.

[0097] In an exemplary embodiment, the Normalization
unit 1340 counts the redundant sign bits in the number. It
operates on 2’s complement 16 bit numbers. Negative num-
bers are mverted to compute the redundant sign bits. The
number to be normalized 1s fed 1nto the XOR array. The other
input comes from the sign bit of the number. Where the media
being processed 1s voice, 1t 1s preferred to have an interface to
the EC PU. The EC PU uses VAD to determine whether a
frame being received comprises silence or speech. The VAD
decision 1s preferably communicated to the CODEC PU so
that 1t may determine whether to implement a Codec or DTX
function.

[0098] Operationally, the CODEC PU performs tasks 1n a

pipeline fashion. A first pipeline stage comprises an mstruc-
tion fetch wherein 1nstructions are fetched into an 1instruction
register from program memory. At the same time, the next
program counter value 1s computed and stored 1n the program
counter. In addition, loop and branch decisions are taken 1n
the same cycle. A second pipeline stage comprises an mnstruc-
tion decode and operand fetch wherein an instruction 1s
decoded and stored 1n a decode register. The instruction
decode, register read and branch decisions happen in the
instruction decode stage. In the third pipeline stage, the
Execute 1 stage, the Barrel Shifter and the MAC compressor
tree complete their computation. Addresses to data memory
are also applied 1n this stage. In the fourth pipeline stage, the
Execute 2 stage, the ALU, normalization umt, and the MAC
adder complete their computation. Register write-back and
address registers are updated at the end of the Execute-2
stage. The states and history information required for the
CODEC PU operations are fetched through a multi-channel
DMA mterface, as previously shown in each Media Layer.

[0099] By enabling different data streams to move through
the pipelined stages concurrently, the CODEC PU reduces

Dec. 31, 2009

wait time for processing mcoming media, such as voice.
Referring to FIG. 134, in time slot 1 130354, an instruction
tetch task (IF) 1s performed for processing data from channel

1 1350q In time slot 2 13064, the IF task i1s performed for

processing data from channel 2 1355q while, concurrently, an
instruction decode and operand fetch (IDOF) 1s performed for
processing data from channel 1 1350q. In time slot 3 1307a,
an IF task 1s performed for processing data from channel 3
13604 while, concurrently, an instruction decode and operand
tetch (IDOF) 1s performed for processing data from channel 2
13554 and an Execute 1 (EX1) task 1s performed for process-
ing data from channel 1 13504. Intime slot 4 1308a, an IF task
1s performed for processing data from channel 4 1370q while,
concurrently, an instruction decode and operand fetch (IDOF)
1s performed for processing data from channel 3 1360qa, an
Execute 1 (EX1) task 1s performed for processing data from
channel 2 13554, and an Execute 2 (EX2) task 1s performed
for processing data from channel 1 1350a. One of ordinary
skill 1n the art would appreciate that, because channels are
dynamically generated, the channel numbering may not
reflect the actual location and assignment of a task. Channel
numbering here 1s used to simply i1ndicate the concept of
pipelining across multiple channels and not to represent
actual task locations.

[0100] The pipeline architecture of the present imnvention 1s
not limited to istruction processing within PUs, but also
exists on a PU-to-PU architecture level. As shown in FIG.
135, multiple PUs may operate on a data set N in a pipeline
fashion to complete the processing of a plurality of tasks
where each task comprises a plurality of steps. A first PU
13055 may be capable of performing echo cancellation func-
tions, labeled task A. A second PU 13105 may be capable of
performing tone signaling functions, labeled task B. A third
PU 131556 may be capable of performing a first set of encod-
ing functions, labeled task C. A fourth PU 13205 may be
capable of performing a second set of encoding functions,
labeled task D. In time slot 113505, the first PU 130556 per-
forms task A1 13805 on data set N. In time slot 2 135554, the
first PU 13035 performs task A2 13815 on data set N and the
second PU 13105 performs task B1 13875 on data set N. 1
time slot 3 13605, the first PU 13055 performs task A3 13825
on data set N, the second PU 13105 performs task B2 13885
on data set N, and the third PU 131556 performs task C1 13945
on data set N. In time slot 4 136554, the first PU 130554
performs task A4 13835 on data set N, the second PU 13105
performs task B3 138956 on data set N, the third PU 13155
performs task C2 13956 on data set N, and the fourth PU
132056 performs task D1 1330 on data set N. In time slot 5
13705, the first PU 13055 performs task A5 13845 on data set
N, the second PU 131054 performs task B4 13905 on data set
N, the third PU 13155 performs task C3 13966 on data set N,
and the fourth PU 132056 performs task D2 1331 on data set N.
In time slot 6 1375, the first PU 13055 performs task A5
138556 on data set N, the second PU 13105 performs task B4
13915 on data set N, the third PU 13155 performs task C3
13976 on data set N, and the fourth PU 132056 performs task
D2 1332 on data set N. One of ordinary skill in the art would
appreciate how the pipeline processing would further
Progress.

[0101] In this exemplary embodiment, the combination of
specialized PUs with a pipeline architecture enables the pro-
cessing of greater channels on a single media layer. Where
cach channel implements a G.711 codec and 128 ms of echo
tail cancellation with DTMF detection/generation, voice

US 2009/0328048 Al

activity detection (VAD), comiort noise generation (CNG),
and call discrimination, the media engine layer operates at
1.95 MHz per channel. The resulting channel power con-
sumption 1s at or about 6 mW per channel using 0.13u stan-
dard cell technology.

[0102] Packet Engine

[0103] The Packet Engine of the present invention 1s a
communications processor that, in a preferred embodiment,
supports the plurality of interfaces and protocols used 1n
media gateway processing systems between circuit-switched
networks, packet-based IP networks, and cell-based ATM
networks. The Packet Engine comprises a unique architecture
capable of providing a plurality of functions for enabling
media processing, mncluding, but not limited to, cell and
packet encapsulation, quality of service functions for traffic
management and tagging for the delivery of other services
and multi-protocol label switching, and the ability to bridge
cell and packet networks.

[0104] Referringnow to FIG. 14, an exemplary architecture
of the Packet Engine 1400 1s provided. In the embodiment
depicted, the Packet Engine 1400 1s configured to handle data
rate up to and around OC-12. It 1s appreciated by one of
ordinary skill in the art that certain modifications can be made
to the fundamental architecture to increase the data handling
rates beyond OC-12. The Packet Engine 1400 comprises a
plurality of processors 1403, a host processor 1430, an ATM
engine 1440, in-bound DMA channel 1450, out-bound DMA
channel 1455, a plurality of network interfaces 1460, a plu-
rality of registers 1470, memory 1480, an interface to external
memory 1490, and a means to receive control and signaling,
information 1495.

[0105] The processors 1405 comprise an internal cache
1407, central processing umt interface 1409, and data
memory 1411. In a preferred embodiment, the processors
1405 comprise 32-bit reduced instruction set computing
(RISC) processors with a 16Kb instruction cache and a 12Kb
local memory. The central processing unit interface 1409
permits the processor 1405 to communicate with other
memories internal to, and external to, the Packet Engine 1400.
The processors 1405 are pretferably capable of handling both
in-bound and out-bound communication traific. In a preferred
implementation, generally half of the processors handle 1n-
bound traific while the other half handle out-bound traffic.
The memory 1411 1n the processor 1405 1s preferably divided
into a plurality of banks such that distinct elements of the
Packet Engine 1400 can access the memory 1411 indepen-
dently and without contention, thereby increasing overall
throughput. In a preferred embodiment, the memory 1s
divided into three banks, such that the in-bound DMA chan-
nel can write to memory bank one, while the processor 1s
processing data from memory bank two, while the out-bound
DMA channel 1s transferring processed packets from
memory bank three.

[0106] The ATM engine 1440 comprises two primary sub-
components, referred to herein as the ATMRX Engine and the
ATMTX Engine. The ATMRX Engine processes an incoming,
ATM cell header and transiers the cell for corresponding
AAL protocol, namely AAL1, AAL2, AALS, processing in
the mternal memory or to another cell manager, if external to
the system. The ATMTx Engine processes outgoing ATM
cells and requests the outbound DMA channel to transier data
to a particular interface, such as the UTOPIAII/POSII inter-
face. Preterably, 1t has separate blocks of local memory for
data exchange. The ATM engine 1440 operates 1n combina-

Dec. 31, 2009

tion with data memory 1483 to map an AAL channel, namely
AAL2, to a corresponding channel on the TDM bus (where
the Packet Engine 1400 1s connected to a Media Engine) or to
a corresponding IP channel 1dentifier where internetworking
between IP and ATM systems 1s required. The internal
memory 1480 utilizes an independent block to maintain a
plurality of tables for comparing and/or relating channel iden-
tifiers with virtual path identifiers (VPI), virtual channel iden-
tifiers (VCI), and compatibility identifiers (CID). AVPI 1s an
eight-bit field 1n the ATM cell header that indicates the virtual
path over which the cell should be routed. A VCI 1s the
address or label of a virtual channel comprised of a unique
numerical tag, defined by a 16-bit field mn the ATM cell
header, which identifies a virtual channel over which a stream
of cells 1s to travel during the course of a session between
devices. The plurality of tables are preferably updated by the
host processor 1430 and are shared by the ATMRx and
ATMTX engines.

[0107] The host processor 1430 1s preferably a RISC pro-
cessor with an instruction cache 1431. The host processor
1430 communicates with other hardware blocks through a
CPU interface 1432 that 1s capable of managing communica-
tions with Media Engines over a bus, such as a PCI bus, and
with a host, such as a signaling host through a PCI-PCI
bridge. The host processor 1430 1s capable of being inter-
rupted by other processors 1405 through their transmission of
interrupts which are handled by an interrupt handler 1433 1n
the CPU interface. It 1s further preferred that the host proces-
sor 1430 be capable of performing the following functions: 1)
boot-up processing, including loading code from a flash
memory to an external memory and starting execution, 1ni-
tializing interfaces and internal registers, acting as a PCI host,
and appropnately configuring them, and setting up 1inter-
processor communications between a signaling host, the
packet engine 1tself, and media engines, 2) DMA configura-
tion, 3) certain network management functions, 4) handling
exceptions, such as the resolution of unknown addresses,
fragmented packets, or packets with invalid headers, 4) pro-
viding intermediate storage of tables during system shut-
down, 5) IP stack implementation, and 6) providing a mes-
sage-based 1nterface for users external to the packet engine
and for communicating with the packet engine through the
control and signaling means, among others.

[0108] In a preferred embodiment, two DMA channels are
provided for data exchange between different memory blocks
via data buses. Referring to FIG. 14, the in-bound DMA
channel 1450 1s utilized to handle incoming traific to the
Packet Engine 1400 data processing elements and the out-
bound DMA channel 1455 1s utilized to handle outgoing
traffic to the plurality of network interfaces 1460. The in-
bound DMA channel 1450 handles all of the data coming into
the Packet Engine 1400.

[0109] 'To receive and transmit data to ATM and IP net-
works, the Packet Engine 1400 has a plurality of network
interfaces 1460 that permit the Packet Engine to compatibly
communicate over networks. Referring to FIG. 15, 1n a pre-

terred embodiment, the network 1nterfaces comprise a GMII
PHY interface 1562, a GMII MAC mterface 1564, and two

UTOPIAII/POSII interfaces 1566 1in communication with
622 Mbps ATM/SONET connections 1568 to recerve and
transmit data. For IP-based traffic, the Packet Engine [not
shown]| supports MAC and emulates PHY layers of the Eth-
ernet interface as specified in IEEE 802.3. The gigabit Ether-
net MAC 1570 comprises FIFOs 1503 and a control state

US 2009/0328048 Al

machine 1525. The transmit and recerve FIFOs 1503 are
provided for data exchange between the gigabit Ethernet

MAC 1570 and bus channel interface 1505. The bus channel

interface 1505 1s 1n communication with the outbound DMA
channel 1515 and 1n-bound DMA channel 1520 through bus
channel. When IP data 1s being recerved from the GMII MAC
interface 1564, the MAC 1570 preferably sends a request to
the DMA 1520 for data movement. Upon receiving the
request, the DMA 1520 preferably checks the task queue [not
shown]| 1n the MAC interface 1564 and transiers the queued
packets. In a preferred embodiment, the task queue 1n the
MAC mterface 1s a set of 64 bit registers containing a data
structure comprising: length of data, source address, and des-
tination address. Where the DMA 1520 1s maintaiming the
write pointers for the plurality of destinations [not shown],
the destination address will not be used. The DMA 1520 will
move the data over the bus channel to memories located
within the processors and will write the number of task at a
predefined memory location After completing writing of all
tasks, the DMA 1520 will write the total number of tasks
transierred to the memory page. The processor will process
the received data and will write a task queue for an outbound
channel of the DMA. The outbound DMA channel 1515 will
check the number of frames present 1n the memory locations
and, after reading the task queue, will move the data either to
a POSII iterface of the Media Engine Type I or 11 or to an
external memory location where IP to ATM bridging 1s being
performed.

[0110] For ATM only or ATM and IP traffic in combination,
the Packet Engine supports two configurable UTOPIAIIL/
POSII interfaces 1566 which provides an interface between
the PHY and upper layer for IP/ATM tratfic. The UTOPIAII/
POSII 1580 comprises FIFOs 1504 and a control state
machine 1526. The transmit and recerve FIFOs 1504 are
provided for data exchange between the UTOPIAII/POSII
1580 and bus channel interface 1506. The bus channel inter-
face 1506 1s i communication with the outbound DMA
channel 1515 and 1n-bound DMA channel 1520 through bus
channel. The UTOPIA II/POS II interfaces 1566 may be
configured 1n either UTOPIA level 11 or POS level 11 modes.

When data 1s received on the UTOPIAII/POSII interface
1566, data will push existing tasks 1n the task queue forward
and request the DMA 1520 to move the data. The DMA 1520
will read the task queue from the UTOPIAII/POSII interface
1566 which contains a data structure comprising: length of
data, source address, and type of interface. Depending upon
the type of interface, e.g. either POS or UTOPIA, the in-
bound DMA channel 1520 will send the data either to the
plurality of processors [not shown] or to the ATMRX engine
[not shown]. After data 1s written into the ATMRxX memory, it
1s processed by the ATM engine and passed to the correspond-
ing AAL layer. On the transmit side, data 1s moved to the
internal memory of the ATMTx engine [not shown] by the
respective AAL layer. The ATMTX engine inserts the desired
ATM header at the beginning of the cell and will request the
outbound DMA channel 1515 to move the data to the UTO-
PIAII/POSII mterface 1566 having a task queue with the

tollowing data structure: length of data and source address.

[0111] Referring to FIG. 16, to facilitate control and sig-
naling functions, the Packet Engine 1600 has a plurality of
PCI interfaces 1605, 1606, referred to in FIG. 14 as 1495. In
a preferred embodiment, a signaling host 1610, through an
iitiator 1612, sends messages to be received by the Packet
Engine 1600 to a PCI target 16035 via a communication bus

Dec. 31, 2009

1617. The PCI target further communicates these messages
through a PCI to PCI bridge 1620 to a PCI mitiator 1606. The
PCI imitiator 1606 sends messages through a communication
bus 1618 to a plurality of Media Engines 1650, each having a
memory 1660 with a memory queue 1663.

[0112] Software Architecture

[0113] As previously discussed, operating on the above-
described hardware architecture embodiments 1s a plurality
of novel, mtegrated soitware systems designed to enable
media processing, signaling, and packet processing. The
novel software architecture enables the logical system, pre-
sented 1n FIG. 5, to be physically deployed in a number of
ways, depending on processing needs.

[0114] Communication between any two modules, or com-
ponents, 1 the software system 1s facilitated by application
program interfaces (APIs) that remain substantially constant
and consistent 1rrespective of whether the software compo-
nents reside on a hardware element or across multiple hard-
ware elements. This permits the mapping of components onto
different processing elements, thereby modifying physical
interfaces, without the concurrent modification of the indi-
vidual components.

[0115] In an exemplary embodiment, shown 1n FIG. 17, a
first component 1705 operates in conjunction with a second
component 1710 and a third component 1715 through a first
interface 1720 and second intertace 1725, respectively.
Because all three components 1705,1710, 1715 are executing
on the same physical processor 1700, the first interface 1720
and second 1nterface 1725 perform interfacing tasks through
function mapping conducted via the APIs of each of the three
components 1705, 1710, 1715, Referring to FIG. 17a, where
the first 1705a, second 1710qa, and third 1715a components
reside on separate hardware elements 1700a, 1701a, 1702a,
respectively, e.g., separate processors or processing elements,
the first interface 1720a and second interface 1725a 1imple-
ment interfacing tasks through queues 1721a, 1726a 1n
shared memory. While the interfaces 1720a, 1725a are no
longer limited to function mapping and messaging, the com-
ponents 1705a, 1710a, 1715a continue to use the same APIs
to conduct inter-component communication. The consistent
use of a standard API enables the porting of various compo-
nents to different hardware architectures 1n a distributed pro-
cessing environment by relying on modified interfaces or
drivers where necessary and without modifications in the
components themselves.

[0116] Referring now to FIG. 18, a logical division of the
software system 1800 1s shown. The software system 1800 1s
divided into three subsystems, a Media Processing Sub-
system 1805, a Packetization Subsystem 1840, and a Signal-
ing/Management Subsystem (hereinaiter referred to as the
Signaling Subsystem) 1870. The Media Processing Sub-
system 1805 sends encoded data to the Packetization Sub-
system 1840 for encapsulation and transmission over the
network and receives network data from the Packetization
Subsystem 1840 to be decoded and played out. The Signaling
Subsystem 1870 communicates with the Packetization Sub-
system 1840 to get status information such as the number of
packets transierred, to momitor the quality of service, control
the mode of particular channels, among other functions. The
Signaling Subsystem 1870 also communicates with the Pack-
ctization Subsystem 1840 to control establishment and
destruction of packetization sessions for the origination and
termination of calls. Each subsystem 18035, 1840, and 1870
turther comprises a series of components 1820 designed to

US 2009/0328048 Al

perform different tasks 1n order to effectuate the processing
and transmission of media. Each of the components 1820
conducts communications with any other module, subsystem,
or system through APIs that remain substantially constant and
consistent irrespective of whether the components reside on a
hardware element or across multiple hardware elements, as
previously discussed. In an exemplary embodiment, shown in
FIG. 19, the Media Processing Subsystem 1905 comprises a
system API component 1907, media API component 1909,
real-time media kernel 1910, and voice processing compo-
nents, including line echo cancellation component 1911,
components dedicated to performing voice activity detection
1913, comiort noise generation 1915, and discontinuous
transmission management 1917, a component 1919 dedi-
cated to handling tone signaling functions, such as dual tone
(DTME/MF), call progress, call waiting, and caller identifi-

cation, and components for media encoding and decoding
functions for voice 1927, fax 1929, and other data 1931.

[0117] The system API component 1907 should be capable
of providing a system wide management and enabling the
cohesive 1nteraction of individual components, including
establishing communications between external applications
and individual components, managing run-time component
addition and removal, downloading code from central serv-
ers, and accessing the MIBs of components upon request
from other components. The media API component 1909
interacts with the real time media kernel 1910 and individual
voice processing components. The real time media kernel
1910 allocates media processing resources, monitors
resource utilization on each media-processing element, and
performs load balancing to substantially maximize density
and efficiency.

[0118] The voiceprocessing components can be distributed
across multiple processing elements. The line echo cancella-
tion component 1911 deploys adaptive filter algorithms to
remove from a signal echoes that may arise as a result of the
reflection and/or retransmission ol modified input signals
back to the oniginator of the 1nput signals. In one preferred
embodiment, the line echo cancellation component 1911 has
been programmed to implement the following filtration
approach: An adaptive finite impulse response (FIR) filter of
length N 1s converged using a convergence process, such as a
least means square approach. The adaptive filter generates a
filtered output by obtaining individual samples of the far-end
signal on a receive path, convolving the samples with the
calculated filter coellicients, and then subtracting, at the
appropriate time, the resulting echo estimate from the
received signal on the transmit channel. With convergence
complete, the filter 1s then converted to an infinite 1mpulse
response (IIR) filter using a generalization of the ARMA-
Levinson approach. In the course of operation, data 1is
received from an mput source and used to adapt the zeroes of
the IIR filter using the LMS approach, keeping the poles
fixed. The adaptation process generates a set of converged
filter coetlicients that are then continually applied to the input
signal to create a modified signal used to filter the data. The
error between the modified signal and actual signal recerved
1s monitored and used to further adapt the zeroes of the IIR
filter. If the measured error 1s greater than a pre-determined
threshold, convergence 1s re-initiated by reverting back to the
FIR convergence step.

[0119] The voice activity detection component 1913
receives mcoming data and determines whether voice or
another type of signal, 1.e., noise, 1s present in the recerved

Dec. 31, 2009

data, based upon an analysis of certain data parameters. The
comiort noise generation component 1915 operates to send a
Silence Insertion Descriptor (SID) containing information
that enables a decoder to generate noise corresponding to the
background noise recerved from the transmission. An overlay
of audible but non-obtrusive noise has been found to be valu-
able 1n helping users discern whether a connection 1s live or
dead. The SD frame 1s typically small, 1.e. approximately 15
bits under the G.729 B codec specification. Preferably,
updated SID frames are sent to the decoder whenever there
has been suificient change 1n the background noise.

[0120] The tone signaling component 1919, including rec-
ognition of DTME/MF, call progress, call waiting, and caller
identification, operates to intercept tones meant to signal a
particular activity or event, such as the conducting of two-
stage dialing (in the case of DTMF tones), the retrieval of
voice-mail, and the reception of an incoming call (1in the case
of call waiting), and communicate the nature of that activity
or event 1n an intelligent manner to arecerving device, thereby
avoiding the encoding of that tone signal as another element
in a voice stream. In one embodiment, the tone-signaling
component 1919 1s capable of recognizing a plurality of tones
and, therefore, when one tone 1s recerved, send a plurality of
RTP packets that identily the tone, together with other 1ndi-
cators, such as length of the tone. By carrying the occurrence
of an 1dentified tone, the RTP packets convey the event asso-
ciated with the tone to a recerving unit. In a second embodi-
ment, the tone-signaling component 1919 1s capable of gen-
erating a dynamic R1TP profile wherein the RTP profile carries
information detailing the nature of the tone, such as the fre-
quency, volume, and duration. By carrying the nature of the
tone, the RTP packets convey the tone to the receving unit
and permit the recerving unit to interpret the tone and, con-
sequently, the event or activity associated with 1t.

[0121] Components for the media encoding and decoding
functions for voice 1927, fax 1929, and other data 1931,
referred to as codecs, are devised 1n accordance with Interna-
tional Telecommunications Union (ITU) standard specifica-
tions, such as (G.711 for the encoding and decoding of voice,
fax, and other data. An exemplary codec for voice, data, and
fax communications 1s I'TU standard (G.711, often retferred to
as pulse code modulation. G.711 1s a wavetform codec with a
sampling rate of 8,000 Hz. Under uniform quantization, sig-
nal levels would typically require at least 12 bits per sample,
resulting in a bit rate of 96 kbps. Under non-uniform quanti-
zation, as 1s commonly used, signal levels require approxi-

mately 8 bits per sample, leading to a 64 kbps rate. Other
voice codecs include ITU standards (.723.1, G.726, and

(G.729 A/B/E, all of which would be known and appreciated
by one of ordinary skill 1n the art. Other I'TU standards sup-
ported by the fax media processing component 1929 prefer-
ably include T.38 and standards falling within V.xx, such as
V.17, V.90, and V.34. Exemplary codecs for fax include I'TU
standard T.4 and T.30. T.4 addresses the formatting of fax
images and their transmission from sender to receiver by
speciiying how the fax machine scans documents, the coding
of scanned lines, the modulation scheme used, and the trans-
mission scheme used. Other codecs include ITU standards

1.38.

[0122] Referring to FIG. 20, 1n an exemplary embodiment,
the Packetization Subsystem 2040 comprises a system API

component 2043, packetization API component 2045,
POSIX API 2047, real-time operating system (RTOS) 2049,
components dedicated to performing such quality of service

US 2009/0328048 Al

functions as buifering and traffic management 2050, a com-
ponent for enabling IP communications 2051, a component
for enabling ATM commumnications 2033, a component for
resource-reservation protocol (RSVP) 2055, and a compo-
nent for multi-protocol label switching (MPLS) 2057. The
Packetization Subsystem 2040 facilitates the encapsulation
of encoded voice/data mto packets for transmission over
ATM and IP networks, manages certain quality of service
clements, including packet delay, packet loss, and jitter man-
agement, and implements tratfic shaping to control network
traffic. The packetization API component 2045 provides
external applications facilitated access to the Packetization
Subsystem 2040 by communicating with the Media Process-
ing Subsystem [not shown] and Signaling Subsystem [not
shown

[0123] The POSIX API 2047 layer 1solated the operating

system (OS) from the components and provides the compo-
nents with a consistent OS API, thereby insuring that com-
ponents above this layer do not have to be modified 1t the
software 1s ported to another OS platform. The RTOS 2049
acts as the OS facilitating the implementation of software
code 1nto hardware instructions.

[0124] The IP communications component 2051 supports
packetization for TCP/IP, UDP/IP, and RTP/RTCP protocols.
The ATM communications component 2053 supports pack-
ctization for AAL1, AAL2, and AALS protocols. It 1s pre-
ferred that the RTP/UDP/IP stack be implemented on the
RISC processors of the Packet Engine. A portion of the ATM
stack 1s also preferably implemented on the RISC processors
with more computationally intensive parts of the ATM stack
implemented on the ATM engine.

[0125] The component for RSVP 2035 specifies resource-
reservation techniques for IP networks. The RSVP protocol
enables resources to be reserved for a certain session (or a
plurality of sessions) prior to any attempt to exchange media
between the participants. Two levels of service are generally
enabled, including a guaranteed level that emulates the qual-
ity achieved 1n conventional circuit switched networks, and
controlled load that 1s substantially equal to the level of ser-
vice achieved 1n a network under best-effort and no-load
conditions. In operation, a sending unit 1ssues a PATH mes-
sage 1o a recerving umt via a plurality of routers. The PATH
message contains a traific specification (T'spec) that provides
details about the data that the sender expects to send, includ-
ing bandwidth requirement and packet size. Each RSVP-
enabled router along the transmission path establishes a path
state that includes the previous source address of the PATH
message (the prior router). The recerving unit responds with a
reservation request (RESV) that includes a tlow specification
having the Tspec and information regarding the type of res-
ervation service requested, such as controlled-load or guar-
anteed service. The RESV message travels back, in reverse
fashion, to the sending unit along the same router pathway. At
cach router, the requested resources are allocated, provided
such resources are available and the recerver has authority to
make the request. The RESV eventually reaches the sending
unit with a confirmation that the requisite resources have been
reserved.

[0126] The component for MPLS 20357 operates to mark
traffic at the entrance to a network for the purpose of deter-
mimng the next router 1n the path from source to destination.
More specifically, the MPLS 2057 component attaches a label
containing all of the information a router needs to forward a
packet to the packet in front of the IP header. The value of the

Dec. 31, 2009

label 1s used to look up the next hop 1n the path and the basis
for the forwarding of the packet to the next router. Conven-
tional IP routing operates similarly, except the MPLS process
searches for an exact match, not the longest match as 1n
conventional IP routing.

[0127] Referring to FIG. 21, 1n an exemplary embodiment,
the Signaling Subsystem 2170 comprises a user application
API component 2173, system APl component 2175; POSIX
API 2177, real-time operating system (RTOS) 2179, a signal-
ing API 2181, components dedicated to performing such
signaling functions as signaling stacks for ATM networks
2183 and signaling stacks for IP networks 2185, and a net-
work management component 2187. The signaling API 2181
provides facilitated access to the signaling stacks for ATM
networks 2183 and signaling stacks for IP networks 218S5.
The signaling API 2181 comprises a master gateway and
subgateways ol N number. A single master gateway can have
N subgateways associated with 1t. The master gateway per-
forms the demultiplexing of incoming calls arriving from an
ATM or IP network and routes the calls to the subgateway that
has resources available. The sub-gateways maintain the state
machines for all active terminations. The subgateways can be
replicated to handle many terminations. Using this design, the
master gateway and sub-gateways can reside on a single
processor or across multiple processors, thereby enabling the
simultaneous processing of signaling for a large number of
terminations and the provision of substantial scalability.

[0128] The user application API component 2173 provides
a way for external applications to interface with the entire
software system, comprising each of the Media Processing
Subsystem, Packetization Subsystem, and Signaling Sub-
system. The network management component 2187 supports
local and remote configuration and network management
through the support of simple network management protocol
(SNMP). The configuration portion of the network manage-
ment component 2187 1s capable of communicating with any
of the other components to conduct configuration and net-
work management tasks and can route remote requests for
tasks, such as the addition or removal of specific components.

[0129] The signaling stacks for ATM networks 2183
include support for User Network Interface (UNI) for the
communication of data using AAL1, AAL2, and AALS pro-
tocols. User Network Interface comprises specifications for
the procedures and protocols between the gateway system,
comprising the software system and hardware system, and an
ATM network. The signaling stacks for IP networks 21835
include support for a plurality of accepted standards, includ-
ing media gateway control protocol (MGCP), H.323, session
initiation protocol (SIP), H.248, and network-based call sig-
naling (NCS). MGCP specifies a protocol converter, the com-
ponents of which may be distributed across multiple distinct
devices. MGCP enables external control and management of
data communications equipment, such as media gateways,
operating at the edge of multi-service packet networks. H.323
standards define a set of call control, channel set up, and
codec specifications for transmitting real time voice and
video over networks that do not necessarily provide a guar-
anteed level of service, such as packet networks. SIP 1s an
application layer protocol for the establishment, modifica-
tion, and termination of conferencing and telephony sessions
over an IP-based network and has the capability of negotiat-
ing features and capabilities of the session at the time the
session 1s established. H.248 provides recommendations
underlying the implementation of MGCP.

US 2009/0328048 Al

[0130] To further enable ease of scalability and implemen-
tation, the present software method and system does not
require speciiic knowledge of the processing hardware being,
utilized. Referring to FIG. 22, 1in a typical embodiment, a host
application 2205 interacts with a DSP 2210 via an interrupt
capability 2220 and shared memory 2230. As shown 1n FIG.
23, the same functionality can be achieved by a simulation
execution through the operation of a virtual DSP program
2310 as a separate independent thread on the same processor
2315 as the application code 2320. This simulation run 1s
enabled by a task queue mutex 2330 and a condition variable
2340. The task queue mutex 2330 protects the data shared
between the virtual DSP program 2310 and a resource man-
ager [not shown]. The condition variable 2340 allows the
application to synchronize with the virtual DSP 2310 1n a
manner similar to the function of the interrupt 2220 1n FIG.

22.

[0131] The present methods and systems provide for a sys-
tem on chip architecture having scalable, distributed process-
ing and memory capabilities through a plurality ol processing
layers and the application of that chip architecture 1n a media
gateway that 1s designed to enable the communication of
media across circuit switched and packet switched networks.
While various embodiments of the present invention have
been shown and described, 1t would be apparent to those
skilled in the art that many modifications are possible without
departing {from the mventive concept disclosed herein For
example, 1t would be apparent that the system chip architec-
ture can be used to process other forms of data and for pur-
poses other than telecommunications. It would further be
apparent that, depending on the functionality desired, the PUs
could be designed to perform application specific tasks other
than line echo cancellation or encoding or decoding.

What 1s claimed 1s:

1. A media processor for the processing of media based
upon instructions, comprising:
a plurality of processing layers wherein each processing
layer has at least one processing unit, at least one pro-
gram memory, and at least one data memory, each of said

processing unit, program memory, and data memory
being in communication with one another;

at least one processing unit in at least one of said processing,
layers performing line echo cancellation functions on
recetved data;

at least one processing unit in at least one of said processing,
layers performing

encoding or decoding functions on received data; and

a task scheduler adapted to recerve a plurality of tasks from
a source and distributing said tasks to said processing
layers.

2. The media processor of claim 1, further comprising a
direct memory access controller for handling data transfers,
cach of said transfers having a size and a direction, from at
least one data memory having an address and a plurality of
external memory units, each having an address.

3. The media processor of claim 2, wherein said transiers
between at least one data memory and at least one external
memory occur by utilizing the address of the data memory,
the address of the external memory, the size of the transfer,
and the direction of the transfer.

4. The media processor of claim 1, wherein the task sched-
uler 1s 1n communication with an external memory.

Dec. 31, 2009

5. The media processor of claim 1, further comprising an
interface for the receipt and transmission of data and control
signals.

6. The media processor of claim 3, wherein the interface
comprises a UTOPIA-compatible interface.

7. The media processor of claim 5, wherein the interface
comprises a time division multiplex-compatible interface.

8. The media processor of claim 1, wherein at least one
processing layer includes a processing unit performing line
echo cancellation functions on received data and a processing
unit performing encoding or decoding functions on recerved
data and wherein said line echo cancellation and encoding or
decoding functions are performed 1n a pipelined manner.

9. The media processor of claim 1, wherein the processing
unmit designed to perform encoding or decoding functions
comprises an arithmetic and logic unit, multiply and accumu-
late unit, barrel shifter, and normalization unit.

10. The media processor of claim 1, wherein the processing
unmit additionally performs voice activity detection and tone
signaling functions.

11. The media processor of claim 10, wherein the process-
ing unit comprises a plurality of single-cycle multiply and
accumulate units operating with an address generation unit
and an 1nstruction decoder.

12. A media gateway for the processing of data and com-
munication of data across a plurality of networks, compris-
ng:

a plurality of media processors, each of said media proces-
sors having a plurality of processing layers wherein each
processing layer has at least one processing unit, at least
one program memory, and at least one data memory,
cach of said processing unit, program memory, and data
memory being in communication with one another,
wherein at least one processing unit in at least one of said
processing layers performs echo cancellation functions
on recerved data, wherein at least one processing unit 1n
at least one of said processing layers performs encoding
or decoding functions on received data, and wherein a
task scheduler 1s adapted to receive a plurality of tasks
from a source and distribute said tasks to the processing
layers;

a plurality of packet processors in communication with at
least one of said media processors wherein the packet
processor 1s adapted to packetize processed data, and a
host processor 1n communication with at least one said
packet or media processors.

13. A method for processing media based upon 1nstruc-
tions, comprising the steps of:

recerving said media through a data intertace;

scheduling the processing of said media through a task
scheduler adapted to recerve a plurality of tasks from a
source and distributing said tasks to a plurality of pro-
cessing layers; and

processing said media 1n the plurality of processing layers
wherein each processing layer has at least one process-
ing unit, at least one program memory, and at least one
data memory, each of said processing unit, program
memory, and data memory being in communication
with one another.

14. The method of claim 13, wherein said processing step
turther comprises performing echo cancellation functions on
received data.

US 2009/0328048 Al

15. The method of claim 13, wherein said processing step
turther comprises performing encoding or decoding func-
tions on received data.

16. The method of claim 13, wherein the processing step

occurs 1n parallel across multiple processing layers, each of

said processing layers having similar processing units.

17. The method of claim 13, wherein at least one process-
ing layer includes a processing unit performing echo cancel-
lation functions on received data and a processing unit per-
forming encoding or decoding functions on received data and
wherein said echo cancellation and encoding or decoding
functions are performed 1n a pipelined manner.

18. A distributed processing system implemented on a
single chip having a total memory capacity comprising at
least two processing layers wherein each processing layer has
at least one processing unit and a plurality of memories, each
of said processing units and memories being 1n communica-
tion with one another and wherein the total memory capacity
of the chip 1s divided substantially equally between each of
said processing layers.

Dec. 31, 2009

19. A processor for the processing of data based upon

instructions, comprising:

a plurality of processing layers wherein each processing
layer has at least one processing unit, at least one pro-
gram memory, and at least one data memory, each of said
processing unit, program memory, and data memory

being in communication with one another; and

a task scheduler adapted to receive a plurality of tasks from
a source and distributing said tasks to the processing
layers.

20. The processor of claim 19, wherein at least one of said
plurality of processing layers comprises a processing unit
performing echo cancellation functions on received data.

21. The processor of claim 19, wherein at least one of said
plurality of processing layers comprises a processing unit
performing encoding or decoding functions on recerved data.

22. The processor of claim 19, wherein the plurality of
processing layers communicate with the task scheduler
through a controller interface.

e o e e i

	Front Page
	Drawings
	Specification
	Claims

