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ApplyCodegenTransformation: applies a transformation on P!v
Input:

node:AST root node
Output: Py, aiter application of the transformation

root «— node
visitor «<— new visitor(outer visitor type, node)
while node has successors In traversal
boolean changed <— false
currentNode «— node.successor
if currentNode I1s marked
1 core node list «— apply core function{(currentNode, changed)
If changed
sort core node list under parent context
foreach newNode in core node list

% newNode.children «— currentNode.children
3 newNode «— propagate(newNode)

If newNode.children size is
4 delete newNode

return root

FiIG. 11

for (t4="1;t4 < N-T;t44
Sq(i=tq, ]
Soli=tq,
for(tg—t1—
2 < N-1 T2 -+ )

for(to=tq1+1,
| to < N-1 ’[2! -)
S(i=t1,j=t2)
if (t1< N- 1)
S (1=t
| So(i=t

FIG. 128
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ORIGINAL CODE
for (I=0;l < N-T1;i++)
for (j=0;l < N-1;]++)

| S(i.j)

for (t4=Tt1<N-2;t4++)

S(ity, |-ty FIG. 134
So(i=tq, j=tq)
far(ty=1tq+1; SKEWING ON FIRST DIMENSION
tziN—ttzl )
So(i=1q,] = 19)
So(i=t1,j = N)
S3(i=t1,j = N)

for (’[1:0;T152N —2;T1 -
tor (fo=max(0,t4-N + 1);
to < min(t4.N-1);tr-

| S(t4- t.tp)

=N -1,j = N -1)
| | =N-1) FFIG. 138

AFTER OPTIMIZATION/TRANSFORMATION
for (t2:O;t2 < tytp+ )
| Sty -to.ty)
for (ty=N-1t,< 2°N - 2514
for (to=ty - N + 15ty < tystot +)
| S(ty-tp.0p)

FIG. 13C

NULL A NULL A CODE
tg =0
#pragma omp parallel
for (dq=1;d4 < N:d;
Sy | | S4i=1dy)
#pragma omp parallel

82 | Sz(i — d1)
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e NULL 5 CODE
l for (t,="1t; < Nty++)
#pragma omp parallel region
S4(l = 14)

S, (i = 1)

NON-AFFINE SCHEDULE

e TARGET CODE
AS1=[unhef] 681_[urdef] #pragma omp parallel
unaet for (1_1 ty < Njty++)

S | So__lundef .
e 2 — —
A lundef] p [undef]

for (i-1; i<-N; I
for (j-i; j<-N; jA

- S,i)
83(N N) ;

FIG. 164
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RESCANNED VERSION OF CODE
JARDED VERSION OF CODE 1<-N-2:1+ +
for (i-1:1<<-N;i14+ +
if (I<=N-1
ST
Y

|
|
=i+1;j<=N-1;]+ +

L))

-1)

v

FIG. 16C

ORIGINAL COMPLEX SCHEDULE
or (ty=Tty< 3M - 7;t; + =1
tor (ty=(ty +4) /3ty < (t1 + 6) /3;ito+ =1

(14 %
1, % 3=2

| So((ty +1)/3,
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AFTER REGENERATION WITHOUT STRETCHING
for (ty=5;t; < 3M - 9ity+=1)

f(-t; + 3M =9 && M > 5)
f(t;% 3 = 0)
| s1 (M-2, t,/3);

f (1% 3 =0)
ty=(ty + 3)/3,
if (th >3 && tH, <M -3)
it (ty % 3=0)
| S, (o, 1,/3);
if (ty < 3M-10)
for (ty=(ty + 4)/3;t, < (ty + 6) /3;t,+=1)
f (t1 % 3 = 0)
| S 9 t1/3);
if( % = 7)
| 82 1 +1) /3, 1),

it (t; + 3M=9 && M > 5)
for(2=IVI—1t2 M it +=1)
t(ty% 3 = 0)
|s1 - 4/3);
f (t- %352)

FIC. 178 S2, |||S L +1)73, 1),

AFTER REGENERATION WITH STRETCHING
for (ty="1ty <3M-7;t;+=1)
for (Iy=(ty + 4) /31y < (14 + D) /31y +=1)

Tty % 3 = 0)

S1 ||| S.1 (ty, 11/3):
Tty % 3 = 2)
S - | So((ty +1)/3, ty);

FIG. 17C
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I ° I q 0 Y ; INI 11
ot 5[] vy (1] o5 [T
ORIGINAL J i e
PROGRAM P | \ N T
So a1 2S5 _[0] £s., 10 S, | 11
A°2=[3] (2 [1] le_[ |5]’©2[—'||‘II'] FIG ]8A
AT;T AFTER FIRST GENERATION
for (J[1=3;’[-I£7;J[17L +)
SCATTER AT FIRST #(t, %3=0)
GENERATION 81 -
4N for (t;=8;ty < 3Nity++)
.S _[ 1 : : :3] f(t, %3=0)
L4 N f(t, %3 =2)
28 _[1 - ;-al Sp, | | a0l = (ty-5)3)
-1131 3 for ({4=3N + 1ty <3N + 5t; ++)
FIG. 18B 1ty %3=2
S, | So(i = (tq-5)/3)
FIG. 18C
| N 1 - N
S 3 | S B O Q | Q ‘| | . I_‘l
AT =181 6 11[0] M1 =[-] o 11_[4}- lZ]
. N 1 - N
| | .|
AS1,=[3] Bo15= m 19 1p=[-1-] ,9512_[ 11|1|?]
REGENERATED L
PROGRAM P | N i N
s. i <. [o g q 11 .14
Av21=[3] 2= 1] L 21:[':5] > 21_[_1 : 1 :-2]
| \ 1 i N T
Sy a1 255 _[0] .S, T S, [111!]-
A“2,=13] 7% [2] 1°2=|-15] © 22_[4}1!-] FIG. 18D
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UNSTABLE Ay AT SECOND

GENERATION WITHOUT STRETCHING

for (t1:3;t156;t1+ +)
f(t4 %3=0)
S1, || S1(=ty/3

t4=8:
SCATTER AT SECOND GENERATION 1if(t1 %3=2)
WITHOUT STRETCHING |
ity Sy, | S, (i = (ty-5)/3)
TN 1 for (t; =9ty < 3N - T;ty+ +)
, | . |_ ' 0/ 7
551, [ _11 N 9] f(ty %3=0)
4 N 1 f(t; %3=2)
| . | .
'S, [1 - |—8] Sy || Sypti=(ty-5)/3)
N EIRIE 2 t4=3N;
FIG. 18E (1, %3=0)
S, || S10=14/3)
tor (ty=3oN + 2ty < 3N + 95;t4++)
f(ty %3=2)
Sp, | | Sy0i=(ty-5)/3
FIG. I8F
I!P.F
STABLE Agr AT SECOND
GENERATION WITH STRETCHING
SCATTER AT SECOND for “1 =T =94+ +)
GENERATION WITH STRETCHING 1(t4%3=0)
—_—N— S S, (i =t,/3)
o for (t;=6;t; <3N + 2;t,++)
&1, _[ _11 | 3 |26] 1(t1%3=0)
- s, || S1(=t/3)
(1 N 1 2 |
D f(t,%3 = 2)
é321_[_1|3|'2] S2,, | S, (i = (14 -5)/3)
2 for (t;=3N + 3ty < 3N + 7it; + +)
FiG. 194 (1, %3=2)

S2., | S (i = (ty - 5)/3)

FIG. 195
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AS1—13] 851 = :
ORIGINAL, S H .
ILL BEHAVED
FROGRAM P i
A2 — 3] @52 _[‘ﬂ S7
P

A'qp AFTER FIRST GENERATION

for (t4=N:i,< 2N+ 7;ty++)

if((t4- N)%3 = 1)
511 |S (i = (ty- N + 2)/3)
for (t; —2N + 8ty < 4N - 2;1,++)

1-
1
1
t4- N)%3 = 1)
1
|

(

S, (1= (t1 N + 2)/3)

(14- ZN)%3 = 1)

82(i = (ty- 2N - 5)/3)

for (t1:4N —1;t1i5N + 5;t1++)
if((t1— 2NY%3=1)

‘ S, (i = (ty - 2N - 5)/3)

812

It
|
i
|

S
2 -

FIG. 20B
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S 1.1
215) o - 11 1] FrG. 204

A ISDT AFTER SECOND GENERATION
=Nty < 2N + 7ty ++)
-N)%3=1)

(I = (t1 N + 2)/3)

=2N + 8t1 < 4N - 2;t1++)

)%::.3_ 1)
— (t1 N + 2)/3)

ZN)% =1,

= (t1- 2N - 5)/3)
AN - 1 t1 < ON + 5;t1++)
f((t4- 2N)%3 = 1)
‘ So(i = (Ly - 2N - 5)/3)

FilG. 20C

US 2009/0307673 Al
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SYSTEM AND METHOD FOR DOMAIN
STRETCHING FOR AN ADVANCED
DUAL-REPRESENTATION POLYHEDRAL
LOOP TRANSFORMATION FRAMEWORK

GOVERNMENT RIGHTS

[0001] This invention was made with Government support

under the Defense Advanced Research Projects Agency
(DARPA), HR0011-07-9-0002. THE GOVERNMENT HAS

CERTAIN RIGHTS IN THIS INVENTION.

BACKGROUND
[0002] 1. Technical Field
[0003] The present application relates generally to an

improved data processing system and method. More specifi-
cally, the present application 1s directed to a system and
method for domain stretching for an advanced dual represen-
tation polyhedral loop transformation framework.

[0004] 2. Description of Related Art

[0005] Generating computer code that 1s efliciently pro-
cessed (1.e., “optimized”) 1s one of the most important goals
in software design and execution. Computer code which per-
forms the desired function accurately and reliably but too
slowly (1.e., code which 1s not optimized) 1s often discarded or
unused by computer users.

[0006] As those of ordinary skill 1n the art are aware, most
source code (1.e., that code which 1s a human readable form)
1s typically converted into object code, and thereaiter an
executable application, by use of a compiler and a linker. The
executable application 1s 1n a form and language that is
machine readable (1.e., capable of being interpreted and
executed by a computer). Other languages, such as Java avail-
able from Sun Microsystems, Inc. of California, USA, may be
in source code form that 1s, on execution, transformed 1nto a
form understood by a computer system which then executes
the transformed 1nstructions. In any case, the source code,
when transformed into a form capable of being understood
and executed by a computer system, 1s frequently optimized.
That 1s, a transformation 1s performed such that the mstruc-
tions are performed more efficiently (1.e., optimized) and,
hopetully, without any undue delay.

[0007] One common structure found 1n source code that 1s
optimized, during the compilation process to transiorm
source code 1nto executable code, 1s the loop. Loops are used
to repeat one or more operations or instructions. Loops may
be provided as single, non-nested loops, or nested loops, 1.¢.
loops within loops. For example, an array may be used to store
the purchase price of individual articles (e.g., where the i”
clement 1n the array A 1s denoted, in Fortran, as A(1)—other
similar notations are used in other languages) generate a
single mstruction to add each of the purchase prices together
(e.g., sum=A(1)+A(2)+ ... +A(n)). This however would take
the programmer some time to code and 1s not easily adapted
to the situation where the computer programmer does not
know, at development time, the number of articles 1n the array.
That 1s, when the number of elements 1n the array can only be
determined at run time (1.e., during execution). Accordingly,
the loop was developed to repeat an operation (e.g.,
sum=sum+A(1))) where the induction variable, 1, 1s changed
for each 1teration. Other forms of loops are known and are
equally applicable.

[0008] However, when the instructions of a loop are trans-
formed into machine readable code (e.g., executable code),
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the executed instructions may not be processed elfficiently.
For the example above, some computer systems may require
that the processor fetch from memory, rather than from a
register or cache memory, the various elements of the array
“A”. Fetching data from memory requires the processor to
wait while the data 1s retrieved thereby 1ncreasing the latency
of the program execution. Also, while loops may be an effi-
cient way to write certain repetitive source code operations, a
loop does insert additional operations that would not be
present 1 the repetitive operations were replicated. These
additional operations (e.g., branching operations) are consid-
ered to be the loop “overhead”.

[0009] To address some of the melficiencies 1n processing
loops, various optimization techniques have been created and
applied. Examples of these various optimization techniques
include loop inversion, loop skewing, loop tiling, unrolling
and jamming, and the like. For example, with unrolling and
jamming (hereinafter “unrolling”) a portion of the loop 1s
replicated, or “unrolled,” and the replicated portions are
iserted, or “qammed,” nto the code. Typically, when the
unroll and jam loop transformation technique 1s applied to the
outer loop of a nested loop pair, the outer loop’s mnduction
variable (e.g., “1”) 1s advanced only a few times (the number
of times being governed by a parameter referred to as the
unroll factor—UF) rather than completely during the unroll-
ing portion of this optimization technique. During the jam-
ming portion of this technique, the inner loop would be rep-
licated “UF” times. Persons of ordinary skill in the art will
appreciate that the replicated loop bodies are not identical but
only similar. In the replicated loop bodies, portions of the loop
bodies which use the imduction of the outer loop will be
advanced as required (e.g., 1f the loop body included refer-
ence to array element A(1), where “1” 1s the outer loop 1nduc-
tion variable, a replicated loop body would include reference
to the next required array element—A(i1+1)). The unroll and
jam technique effectively reorders the calculations being per-
formed in the nested loop.

[0010] Typically, such optimizations are performed with
regard to a compiler’s intermediate representation of the
source code, e.g., an abstract syntax tree. The abstract syntax
tree 1s a finite, labeled, directed tree, where the internal nodes
are labeled by operators, and the leal nodes represent the
operands of the operators. The abstract syntax tree (AST) 1s
used 1n a parser as an intermediate between a parse tree and a
data structure, the latter of which 1s often used as a compiler
or interpreter’s internal representation of a computer program
while 1t 1s being optimized and from which code generation 1s
performed. ASTs are usually not appropriate for complex
program restructuring since, while simple optimizations such
as constant folding or scalar replacement may be achieved
without hard modifications of the data structures, more com-
plex transformations such as loop inversion, skewing, tiling,
etc., modily the execution order, which is far away from the
syntax. See Cedric Bastoul, “Code Generation 1n the Polyhe-
dral Model 1s Easier Than You Think,” PACT’13 IEEFE Inter-
national Conference on Parallel Architecture and Compila-
tion Techniques, pages 7-18, Juan-les-Pins, September 2004,
which i1s hereby incorporated by reference.

[0011] The polyhedral model, which 1s based on a linear
algebraic representation of programs and transformations,
was developed to address this 1ssue. See Bastoul et al. “Put-
ting Polyhedral Loop Transformations to Work,” LCPC’16
International Workshop on Languages and Compilers for Par-

allel Computers, LNCS 2938, pages 209-225, College Sta-
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tion, October 2003, which 1s hereby incorporated by refer-
ence. The polyhedral model i1s basically a plugin to the
conventional compilation process. It starts from the AST by
translating the program parts that fit the model into a linear-
algebraic representation. A new execution order is then
selected by using a reordering function, e.g., using a schedule,
placement or chunking function. Then, 1n a code generation
step, an AST or new source code 1s returned that implements
the execution order implied by the reordering function.

[0012] As an example of the polyhedral transformation
consider the syntactic form of a polynomial multiplication
kernel as represented in FIG. 1A. See Vasilache et al., “Poly-
hedral Code Generation 1n the Real World,” INRIA, 2006,
available at http://hal.inna.ir/inr1a-00001106/en/. This
example 1s concerned only with the control aspects of the
program source code with the two computational statements
(array assignments) being referred to herein by their names
S1 and S2. The polyhedral transformation model considers
statement instances. For each statement, the iteration domain
where every statement instance belongs 1s considered. The
iteration domains are described using ailine constraints that
can be extracted from the program control. For example, the
iteration domain of statement S1, reterred to as D, , 1s the set
of values (1) such that 2=1=n. As shown 1n FIG. 1B, a matrix
representation 1s used to represent such constraints: A*x+
Ap*p=0, where A 1s the 1teration matrix, X 1s the iteration
vector (composed of the loop counters), Ap 1s the parameter
matrix and p 1s the parameter vector (composed of the

unknown constants and the scalar 1). Thus, in the example of
FIGS. 1A and 1B, D, 1s characterized by:

[0013] In this framework, a transformation 1s a set of affine
scheduling functions written 0(x)=1*x+Tp*p. Each state-
ment has 1ts own scheduling function which maps each runt-
ime statement istance to a logical execution time. In the
polynomial multiplication example of FIGS. 1A and 1B, an
optimizer may notice a locality problem and discover a good
data reuse potential over array z, then suggest 0, (1)=(1) and

952( I.]=(f+f+1)
J

to achieve better locality. See Bastoul et al., “Improving Data
Locality by Chunking,” CC’12 Intl. Cont. on Compiler Con-
struction, LNCS 2622, pages 320-335, Warsaw, April 2003,
which 1s hereby incorporated by reference, for a method to
compute such functions. The mtuition behind such transior-
mation 1s to execute consecutively the mstances ol S2 having,
the same 1+7 value (thus accessing the same array element of
7) and to ensure that the inmitialization of each element is
executed by S1 just before the first instance of S2 referring to
this element. A transformation 1s applied in the polyhedral
model by using the transformation formula shown in FIG. 1C,
where t 1s the time-vector, 1.e. the vector of the scheduling
dimensions. The resulting polyhedra, for the example, 1s
shown 1n FIG. 1D with the additional dimension t.

[0014] Once the transformation has been applied in the
polyhedral model, one needs to generate the target code. A
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syntax tree construction scheme, which may consist of a
recursive application of domain projections and separations,
such as described 1n Bastoul “Code Generation 1n the Poly-
hedral Model 1s Easier Than You Think™ and Quillere et al.,
“Generation of FEilicient Nested Loops from Polyhedra,”
International Journal of Parallel Programming, 28(5):469-
496, October 2000, 1s applied to the transformation. The final
code 1s deduced from the set of constraints describing the
polyhedra attached to each node in the AST.

[0015] In the above example, the first step 1s a projection
onto the first dimension t, followed by a separation into dis-
jomt polyhedra as shown on the top of FIG. 2A. This builds
the first loop level of the target code (the loops with 1terator t
shown 1n FI1G. 2B). The same process 1s applied onto the first
two dimensions (on the bottom of FIG. 2A) to build the
second loop level, and so on. The final code 1s shown 1n FIG.
2B. Note that the separation step for two polyhedra needs
three operations: D¢, -D<,, Do,-D¢,, and D,MDg,, thus for
n statements, the worst case complexity 1s 3”.

[0016] The polyhedral loop transformation-based
approach to compiler optimization addresses several weak-
nesses of the traditional loop-based approaches to source
code optimization. The polyhedral loop transformation
approach addresses non-perfectly nested loops, has a precise
instant-wise representation of data dependencies, and natu-
rally supports compositions of complex transformations. As a
result, it can detect more parallelism and exploit more data
locality for more complex loop nests than the traditional
loop-based approaches.

[0017] However, while the polyhedral loop transtormation-
based approach provides improved optimization of source
code during the compilation process, it 1s not more widely
used because of two main drawbacks. First, the code that 1s
generated from the polyhedral representation 1s not always
optimal with regard to some optimization criteria. This means
that code that has excellent properties, such as data-parallel-
1sm (meaning that the work within a given loop or set of loops
1s data parallel and thus can be computed 1n parallel by pos-
sibly multiple threads on possibly multiple processors) and
data locality (meaning the data needed to compute a specific
amount ol work generated by a given loop or set of loops often
reuses the same set of data or a set of data that 1s collocated in
memory) may be slowed down because of sub-par scalar
performance (meaning that the generated code has high over-
head due to unnecessary checks, branch, loop bound compu-
tations, and/or any other overheads) and/or unnecessary code
bloat, 1.¢. an increase in the size of the code due to compiler
optimizations being run on the source code. Second, trans-
formations applied to a statement by current polyhedral loop
transformation approaches necessarily touch all instances of
a given statement. This means that, for example, it 1s hard to
express parallelism for a statement that 1s partially parallel,
1.e. a statement that 1s parallel 1n all but a few boundary
instances. Similarly, for data locality enhancement, requiring
that tiling must be performed on all instances of a statement,
including the rarely executed boundary conditions, results 1n
unnecessary code bloat as well as increased loop overhead.
Tiling 1s a loop optimization that aims at increasing the data
locality of a computation by cutting a large set ol computa-
tion, €.g. a 2 dimensional computation 1terating over 0-1023
times 0-1023 by a smaller set of computation on a smaller tile,
e.g. 0-63x0-63, where once the first tile 1s completed, one
may then iterate over the second tile, e.g. 0-63x64-127/7, with
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this operation repeating with subsequent tiles until all of the
original computation 1s completed.

SUMMARY

[0018] The illustrative embodiments provide a system and
method for advanced polyhedral loop transformations of
source code 1n a compiler. The mechanisms of the illustrative
embodiments address the weaknesses of the known polyhe-
dral loop transformation based approaches by providing
mechanisms for performing code generation transformations
on the intermediate representation (IR), e.g., an abstract syn-
tax tree (AST), generated by the polyhedral loop transforma-
tion optimization of the source code. These code generation
transformations have the important property that they do not
change program order of the statements in the intermediate
representation. This property allows the result of the code
generation transformations, 1.€. a new AST, to be provided
back to the polyhedral loop transformation mechanisms 1n a
program statement view, via a new re-entrance path of the
illustrative embodiments, for additional optimization.
[0019] Such code generation transformations may induce
statement splitting or aggregation, may modily domain and
schedule components, and the like. However, they do so in a
transparent manner ensuring strict equivalence of the relative
orders induced by the new schedules for all instances of all
statements. This strict equivalence involves program equiva-
lence and schedule equivalence, 1.e. only relative execution
order of all mstances of statements 1s required and thus, 1s
ensured via strict equivalence. Thus, the AST generated by
the polyhedral loop transformation optimizations on the pro-
gram statement view will be equivalent to the new AST gen-
crated by the code generation optimizations applied to this
AST from a program and schedule equivalence standpoint.
[0020] Code generation transformations may include, for
example, conditional hoisting, kernel extraction, parallelism
detection, modulo copy propagation. Each of these code gen-
eration transformations mvolves taking two arguments, 1.€. a
list of AST nodes referred to by prefix vectors in a loop-
centric view of the program (the prefix vector list) and a
propagation mode that can be “any” (all the nodes in the AST
are visited), “prefix” (all the children of a given node are
visited), or “exact” (only the specified node 1s visited). Based
on the prefix vector list and the kind of propagation, a first
pass of the AST 1s performed to flag the nodes that need to be
processed. Therealter, visitors are instantiated and used to
apply core functions of the code generation transformations.
The result of the code generation transformations 1s a modi-
fied or new AST that has lower control flow overhead. The
code generation transformations do not modify the program
semantics 1n any way although they may result 1n different
equivalent schedules after regeneration.

[0021] The generated modified or new AST may then
undergo program regeneration, which along with the code
generation transformations makes the polyhedral framework
of the illustrative embodiments fully iterative. Program
regeneration involves transforming the modified or new AST
into a stable program with respect to code generation. In order
to generate a stable program, each statement 1n the new stable
program needs to have 1ts own domain that does not overlap
with other instances of the same original statement. Each
schedule must enforce the same relative order with respect to
all other instances of any other statement. Furthermore, sub-
sequent call to a separation algorithm 1n the program state-
ment view optimizations of the compiler should result in the
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same AST as originally presented to the code generation
transiformations. In order to achieve all of these goals, sched-
ule reconstruction, domain reconstruction, and domain
stretching transformations are performed to generate a new
stable program. This new stable program may be fed back to
the program statement view stage of the compiler for further
optimizations by the program statement view optimizations.

[0022] In one illustrative embodiment, a method 1s pro-
vided for optimizing program code. The method may com-
prise receiving source code for a program in a compiler,
transforming the source code 1nto a program statement view
of the source code, and transforming the program statement
view ol the source code into a program loop view of the
source code. The method may further comprise applying one
or more code generation optimizations to the program loop
view ol the source code to generate optimized code and
outputting the optimized code to a compiler for use 1n gener-
ating executable code for execution on a computing device.
Transtorming the program statement view of the source code
into a program loop view of the source code may comprise
applying a domain stretching operation to domains of state-
ments 1n the program statement view of the source code to
normalize the domains by stretching each domain to 1ts larg-
est possible value without adding execution points.

[0023] Applying a domain stretching operation to domains
of statements 1n the program statement view may comprise,
for each statement and each time dimension, statically deter-
mining a factor 1 that 1s greater than one and will divide the
time dimension t from a remapping matrix, checking the
factor 1 to ensure that the factor 1 divides every factor on all
time, domain, and parametric dimensions, and stretching a
constraint associated with the domain of the statement based
on the factor. Stretching the constraint may comprise stretch-
ing the constraint to a closest multiple of the factor { minus 1
if the constraint 1s a lower bound on the time dimension t.
Moreover, stretching the constraint may comprise stretching
the constraint to a closest multiple of the factor 1 plus 1 1f the
constraint 1s not a lower bound on the time dimension t.

[0024] Applying a domain stretching operation to domains
of statements in the program statement view may comprise,
for each statement and each time dimension, recerving an
Alpha matrix, Beta matrix, and Gamma matrix associated
with the statement, receiving a domain for the statement,
applying a scatter domain with stretching transformation to
the statement based on the Alpha, Beta, and Gamma matrices
and the domain, and receiving as output of the scatter domain
with stretching transformation, a first scattering matrix. The
Alpha matrix represents a speed at which an associated state-
ment 1s performed along a given time dimension. The Beta
matrix represents a sequential interleaving of the associated
statement along different loop depths. The Gamma matrix
represents a constant parametric shifting of the associated
statement along each time dimension.

[0025] Applying the scatter domain with stretching trans-
formation may comprise determining a depth of the statement
within the program statement view, computing a second scat-
tering matrix based on the Alpha, Beta, and Gamma matrices
and the domain of the statement, determining a modified
domain for the statement based on the Alpha matrix, and
generating the first scattering matrix based on the Alpha,
Beta, and Gamma matrices and the modified domain. Deter-
mining a modified domain for the statement may comprise
computing a Hermite Normal Form matrix based on the
Alpha matrix, determining a stride factor based on the Her-
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mite Normal Form matrix, and modifying constraints associ-
ated with the domain of the statement based on the stride
factor.

[0026] In other illustrative embodiments, a computer pro-
gram product comprising a computer useable medium having
a computer readable program 1s provided. The computer
readable program, when executed on a computing device,
causes the computing device to perform various ones, and
combinations of, the operations outlined above with regard to
the method illustrative embodiment.

[0027] In yet another illustrative embodiment, a system 1s
provided. The system may comprise a processor and a
memory coupled to the processor. The memory may comprise
instructions which, when executed by the processor, cause the
processor to perform various ones, and combinations of, the
operations outlined above with regard to the method 1llustra-
tive embodiment.

[0028] These and other features and advantages of the
present invention will be described 1n, or will become appar-
ent to those of ordinary skill in the art in view of, the following
detailed description of the exemplary embodiments of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The mvention, as well as a preferred mode of use
and further objectives and advantages thereof, will best be
understood by reference to the following detailed description
of 1llustrative embodiments when read 1n conjunction with
the accompanying drawings, wherein:

[0030] FIG. 1A 1s a syntactic form of a polynomial multi-
plication kernel;

[0031] FIG. 1B 1s amatrnx representation of the polynomaial
multiplication kernel of FIG. 1A;

[0032] FIG. 1C 1s a transformation formula that 1s applied
in the polyhedral model where t 1s the time-vector;

[0033] FIG. 1D 1s a polyhedra resulting from the applica-
tion of the transformation formula of FIG. 1C to the matrix
representation in FIG. 1B with the additional dimension t;
[0034] FIG. 2A 1llustrates a separation into disjoint poly-
hedra for code generation 1n accordance with a known opera-
tion;

[0035] FIG. 2B illustrates example final code obtained by
using the separation operation of FIG. 2A;

[0036] FIG. 3 1s an exemplary representation of an exem-
plary distributed data processing system 1n which aspects of
the 1llustrative embodiments may be implemented;

[0037] FIG. 4 1s a block diagram of an exemplary data
processing system in which aspects of the 1llustrative embodi-
ments may be implemented;

[0038] FIG. 5 1s an exemplary diagram 1llustrating a tradi-
tional or conventional polyhedral approach to source code
optimization during compilation;

[0039] FIGS. 6A-6F are diagrams 1llustrating the program
statement view and examples of the loop optimizer 530 trans-
formations that may be performed on the program statement
View:;

[0040] FIGS. 7TA-7C 1illustrate a mapping using Quillere’s
projection and decomposition technique;

[0041] FIG. 8 1s an exemplary block diagram of an
advanced polyhedral loop transformation mechanism 1n
accordance with one 1llustrative embodiment;

[0042] FIG. 9 illustrates an example of a polyhedral loop
transformation fusion operation;
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[0043] FIG. 10 1llustrates the separation of fused loops 1nto
separate representations for each portion of the fused loops
such that the representations are not shared;

[0044] FIG. 11 1s an example of pseudocode of an algo-

rithm for applying code generation optimizations/transior-
mations;

[0045] FIG. 12A represents an example of original code for
illustrating a conditional hoisting operation 1n accordance
with one 1llustrative embodiment;

[0046] FIG. 12B represents the same code as 1n FIG. 12A
with a gentle, or least aggressive, mode of conditional hoist-
ing having been performed in accordance with one i1llustrative
embodiment;

[0047] FIG. 12C represents the same code as 1n FIG. 12A
with an aggressive mode of conditional hoisting having been
applied 1n accordance with one illustrative embodiment;

[0048] FIG. 13 A represents an example of original code for
illustrating a kernel extraction operation 1n accordance with
one 1llustrative embodiment;

[0049] FIG. 13B 1llustrates skewing of the original code of
FIG. 13A along a first dimension 1n accordance with one
illustrative embodiment;

[0050] FIG. 13C 1llustrates a result of the kernel extraction
code generation optimization/transformation in accordance
with one 1llustrative embodiment;

[0051] FIGS.14A-14C are exemplary diagrams illustrating
a manner for expressing parallelism in source code 1n accor-
dance with one 1llustrative embodiment;

[0052] FIG. 151s an exemplary diagram illustrating a tran-
sition graph for iterative polyhedral loop transtormation opti-
mizations 1n accordance with one 1llustrative embodiment;

[0053] FIGS. 16A-16C are exemplary diagrams 1llustrate a
large code growth that may occur as a byproduct of successive
polyhedral rescan operations by a polyhedral rescan module
and a successive operation of the code generation optimiza-
tion/parallelism detection module;

[0054] FIGS.17A-17C are exemplary diagrams illustrating
an example of code optimization where two statements have
had their speed accelerated by a factor o1 3 1n accordance with
one 1llustrative embodiment;

[0055] FIGS. 18A-18F are exemplary diagrams illustrating
code mstability that may be introduced by a re-entrance path
in a polyhedral loop transformation mechanism;

[0056] FIGS.19A-19B areexemplary diagrams illustrating
scattering domains for statements S1 and S2 and a resulting
stable ASTP?” obtained using the scatter domain with stretch-
ing transformation of one illustrative embodiment;

[0057] FIGS.20A-20C are exemplary diagrams illustrating
an example of domain stretching under re-entrance 1n accor-
dance with one illustrative embodiment;

[0058] FIG. 21 1s aflowchart outlining an exemplary opera-
tion for utilizing a re-entrance path to obtain further optimi-
zation ol code 1n accordance with one illustrative embodi-
ment,

[0059] FIG. 221s atlowchart outlining an exemplary opera-
tion for applying a code generation transformation algorithm
in accordance with one 1llustrative embodiment;

[0060] FIG. 23 1s atlowchart outlining an exemplary opera-
tion for preserving stability of code 1n the presence of condi-
tionals for re-entrance in accordance with one illustrative
embodiment; and
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[0061] FIG. 24 1s atlowchart outlining an exemplary opera-
tion for performing scatter domain stretching 1n accordance
with one 1llustrative embodiment.

1]

DETAILED DESCRIPTION OF THE
ILLUSTRATIVE EMBODIMENTS

[0062] The illustrative embodiments provide a system and
method for advanced polyhedral loop transformations of
source code 1n a compiler. The mechanisms of the illustrative
embodiments address the weaknesses of the known polyhe-
dral loop transformation based approaches by providing
mechanisms for performing code generation transformations
on the intermediate representation (IR ), e.g., an abstract syn-
tax tree (AST), generated by the polyhedral loop transforma-
tion optimization of the source code. These code generation
transformations have the important property that they do not
change program order of the statements in the intermediate
representation. This property allows the result of the code
generation transformations, 1.€. a new AST, to be provided
back to the polyhedral loop transformation mechanisms 1n a
program statement view, via a new re-entrance path of the
illustrative embodiments, for additional optimization. As
such, the mechanisms of the illustrative embodiments may be
implemented 1n a stand-alone or distributed data processing
system 1n which a compiler 1s utilized to compile source code
into executable code for execution on one or more data pro-
cessing devices.

[0063] For example, i a distributed data processing sys-
tem, the source code may be provided, such as by a client data
processing device, to a server or other data processing device
that runs a compiler for compiling the source code into
executable code. The server or other data processing device
may 1mplement the mechanisms of the illustrative embodi-
ments to perform polyhedral loop transformation optimiza-
tions on an intermediate representation of the source code
during such compilation. Alternative, the mechanisms of the
illustrative embodiments may be implemented in the same
data processing device 1n which the source code 1s generated
and/or originally provided. The following FIGS. 3-4 are pro-
vided as examples of a distributed and/or stand-alone data
processing system which may be used to implement the
mechanisms of the illustrative embodiments.

[0064] With reference now to the figures and 1n particular
with reference to FIGS. 3-4, exemplary diagrams of data
processing environments are provided in which illustrative
embodiments of the present invention may be implemented. It
should be appreciated that FIGS. 3-4 are only exemplary and
are not intended to assert or imply any limitation with regard
to the environments 1n which aspects or embodiments of the
present invention may be implemented. Many modifications
to the depicted environments may be made without departing
from the spirit and scope of the present mnvention.

[0065] With reference now to the figures, FIG. 3 depicts a
pictorial representation of an exemplary distributed data pro-
cessing system 1n which aspects of the 1llustrative embodi-
ments may be implemented. Distributed data processing sys-
tem 300 may include a network of computers 1n which aspects
of the illustrative embodiments may be implemented. The
distributed data processing system 300 contains at least one
network 302, which 1s the medium used to provide commu-
nication links between various devices and computers con-
nected together within distributed data processing system
300. The network 302 may include connections, such as wire,
wireless communication links, or fiber optic cables.
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[0066] In the depicted example, server 304 and server 306
are connected to network 302 along with storage umit 108. In
addition, clients 310, 312, and 314 are also connected to
network 302. These clients 310, 312, and 314 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 304 provides data, such as
boot files, operating system 1mages, and applications to the
clients 310, 312, and 314. Clients 310, 312, and 314 are
clients to server 304 1n the depicted example. Distributed data
processing system 300 may include additional servers, cli-
ents, and other devices not shown.

[0067] Inthedepicted example, distributed data processing
system 300 1s the Internet with network 302 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet 1s a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 300
may also be implemented to include a number of different
types ol networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.

As stated above, FIG. 3 1s intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown 1n FIG. 3 should not be considered limiting with regard
to the environments 1n which the illustrative embodiments of
the present invention may be implemented.

[0068] Withreference now to FIG. 4, ablock diagram of an
exemplary data processing system 1s shown 1n which aspects
of the 1llustrative embodiments may be implemented. Data
processing system 400 1s an example of a computer, such as
hosts 310 1n FIG. 3, 1n which computer usable code or instruc-
tions 1mplementing the processes for illustrative embodi-
ments of the present mnvention may be located.

[0069] Inthedepicted example, data processing system 400

employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 402 and south bridge and

input/output (I/0) controller hub (SB/ICH) 404. Processing
unit 406, main memory 408, and graphics processor 410 are
connected to NB/MCH 402. Graphics processor 410 may be
connected to NB/MCH 402 through an accelerated graphics
port (AGP).

[0070] In the depicted example, local area network (LAN)
adapter 412 connects to SB/ICH 404. Audio adapter 416,
keyboard and mouse adapter 420, modem 422, read only
memory (ROM) 424, hard disk drive (HDD) 426, CD-ROM
drive 430, universal serial bus (USB) ports and other commu-
nication ports 432, and PCI/PCle devices 434 connect to
SB/ICH 404 through bus 438 and bus 440. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCle does not. ROM 424 may be, for

example, a flash binary input/output system (BIOS).

[0071] HDD 426 and CD-ROM drive 430 connect to
SB/ICH 404 through bus 440. HDD 426 and CD-ROM drive
430 may use, for example, an integrated drive electronics
(IDE) or serial advanced technology attachment (SATA)

interface. Super 1/0O (SIO) device 436 may be connected to
SB/ICH 404.

[0072] An operating system runs on processing unit 406.
The operating system coordinates and provides control of
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various components within the data processing system 400 in
FIG. 4. As a client, the operating system may be a commer-
cially available operating system such as Microsoft® Win-
dows® XP (Microsoft and Windows are trademarks of
Microsoit Corporation in the United States, other countries,
or both). An object-oriented programming system, such as the
Java™ programming system, may run in conjunction with the
operating system and provides calls to the operating system
from Java™ programs or applications executing on data pro-
cessing system 400 (Java 1s a trademark of Sun Microsys-
tems, Inc. 1n the Unmited States, other countries, or both).

[0073] As a server, data processing system 400 may be, for
example, an IBM® eServer™ pSeries® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system (eServer,
pSeries and AIX are trademarks of International Business
Machines Corporation 1n the United States, other countries,
or both while LINUX 1s a trademark of Linus Torvalds 1n the
United States, other countries, or both). Data processing sys-
tem 400 may be a symmetric multiprocessor (SMP) system
including a plurality of processors in processing unit 406.
Alternatively, a single processor system may be employed.

[0074] Instructions for the operating system, the object-
oriented programming system, and applications or programs
are located on storage devices, such as HDD 426, and may be
loaded 1nto main memory 408 for execution by processing
unit 406. The processes for 1llustrative embodiments of the
present mnvention may be performed by processing unit 406
using computer usable program code, which may be located
in a memory such as, for example, main memory 408, ROM
424, or in one or more peripheral devices 426 and 430, for
example.

[0075] A bus system, such as bus 438 or bus 440 as shown

in FIG. 4, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of com-
munication fabric or architecture that provides for a transier
of data between different components or devices attached to
the fabric or architecture. A communication unit, such as
modem 422 or network adapter 412 of FIG. 4, may include
one or more devices used to transmit and receive data. A
memory may be, for example, main memory 408, ROM 424,
or a cache such as found 1n NB/MCH 402 in FIG. 4.

[0076] Those of ordinary skill in the art will appreciate that
the hardware 1n FIGS. 3-4 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used 1n addition to or
in place of the hardware depicted in FIGS. 3-4. Also, the
processes of the 1llustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

[0077] Moreover, the data processing system 400 may take
the form of any of a number of different data processing
systems 1ncluding client computing devices, server comput-
ing devices, a tablet computer, laptop computer, telephone or
other commumication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 400 may be a portable computing device
which 1s configured with flash memory to provide non-vola-
tile memory for storing operating system {files and/or user-
generated data, for example. Essentially, data processing sys-
tem 400 may be any known or later developed data processing,
system without architectural limitation.
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[0078] With the data processing systems of FIGS. 3-4,
assuming a distributed data processing system implementa-
tion, source code may be provided to a data processing system
400, such as server 304 in FIG. 3, from a client data process-
ing device, such as client 310 in FIG. 3, or the like, for
compilation mto an executable program. The mechanisms of
the illustrative embodiments improve upon known compiler
techniques that utilize polyhedral loop transiormations to
optimize the source code during compilation. The mecha-
nisms of the illustrative embodiments convert a traditional
program statement view of the source code into a program
loop view of the source code such that each individual state-
ment 1n the source code may be operated on rather than the
program as a whole. Thereatter, the loops 1n the program loop
view are optimized using code generation transformations
that improve the control flow overhead of the program with-
out modilying the program order of the statements in the
program statement view of the program. As a result, after the
optimizations, the resulting modified program loop view of
the program may be converted back to a program statement
view ol the program for further optimization.

[0079] FIG. 5 1s an exemplary diagram 1llustrating a tradi-
tional or conventional polyhedral approach to source code
optimization during compilation. The polyhedral loop opti-
mization mechanisms are part of one of many compiler
phases. The mput and output of the polyhedral loop optimi-
zation mechanism 500 are given 1n a compiler internal repre-
sentation (IR) of statements, conditionals, and loops received
from a compiler 505. As shown 1n FIG. §, the polyhedral loop
optimization proceeds from left to right in FI1G. 5 starting with
a polyhedral scan by a polyhedral scan module 510 of the
original program from the compiler’s IR 1nto a polyhedral
representation, referred to as the program statement view 520.
In this representation, each statement 1n the source code 1s
associated with a polyhedron describing its domain (how
many times 1t 1terates 1n each of 1ts loop dimensions) as well
as 1ts schedule (when 1t 1s executed with respect to all other
statements). The schedule may be represented as a structured
matrix having three sub-matrices: (1) the Alpha matrix, which
represents the speed at which statements are fired along a
given time dimension; (2) the Beta matrix, which represents
the sequential interleaving of statements along the different
loop depths; and (3) the Gamma matrix, which represents the
constant parametric shifting along each time dimension. See
Girbal et al. “Semi-Automatic Composition of Loop Trans-
formations for Deep Parallelism and Memory Hierarchies,
IIPP 2006, which 1s hereby incorporated by reference. The
generation of a program statement view using a polyhedral
representation 1s generally known in the art and thus, a
detailed explanation of the mechanisms for representing a
program 1n a program statement view using a polyhedral
transformation will not be provided herein.

[0080] In the program statement view of the program, a
loop optimizer module 530 1s used to perform transforma-
tions on the program statement view to optimize the code.
Examples of transformations performed by the loop opti-
mizer module 530 1nclude loop interchange, parallel wave-
front, and statement shifting loop transformations, discussed
in more detail hereafter. The transformations performed by
the loop optimizer module 530 serve to modily the schedule
of each individual statement in the program statement view to
achieve better data parallelism and/or data locality of the
execution of the program. The transformations performed by
the loop optimizer module 530 affect all runtime instances of
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a given statement. Thus, 1t 1s possible to skew the execution of
one statement 1n a loop with respect to another, or to pull a
statement out of one loop and put 1t before/atter a statement 1n
another loop, for better data locality/parallelism.

[0081] The resulting transformed program schedule and 1ts
corresponding domain are provided to a polyhedral code
generator 540 which operates on the entire program as rep-
resented by the modified IR generated by the loop optimizer
module 530, based on the program statement view 520 of the
program output by the polyhedral scan module 510. The
polyhedral code generator 540 generates an abstract syntax
tree (AST) representation of the program based on the modi-
fied IR. Some limited optimizations 550-560 may be applied
to the entire program as represented by the AST. These opti-
mizations are limited 1n two ways. First they apply to all
nodes in the AST regardless ol needs or benefits. Some known
implementations apply a transformation to all nodes skipping
the top X levels of the AST tree (e.g. X=2 skipping the root
and the next level down but then applying the transformation
to all the next levels below). Second, the list of optimization
used 1s fairly limited to aggressive if-hoisting (meaning
removal of if-conditions at the expense ol sometime out-oi-
control code replication) and some modulo guard removal
(meaning simplification of complex modulo calculus present
in bound computation or if-conditional computations).

[0082] Note also that code optimizations are very different
from loop optimizations 1n that loop optimizations typically
change the structure of the computations by changing the
order 1n which statements are executed with respect to each
others and/or by adding/removing loops altogether. Code
optimization, like the ones described here, however, typically
do not transform the order 1n which statements are executed
with respect to each other but simply attempt to reduce over-
head generated by a overly simplistic code generation
scheme.

[0083] In essence, the module 540 1s designed to generate
valid code, possibly with overhead due to extra bound com-
putation, if conditional, modulo calculus in bounds and/or
conditional computations. It is then the responsibility of opti-
mizations like 550, 560, and 570 to clean up some of the
introduced 1netficiencies as best as possible. The resulting
optimized AST 1s provided to a code emitter 570 which gen-
erates code from the AST 1n the compiler’s internal represen-
tation (IR) by simply converting the mternal AST and strip-
ping 1t of its polyhedral information and generating an
equivalent structure that 1s familiar and recognized by the
traditional compiler.

[0084] The polyhedral code generator 540, code optimiza-
tions 550-570, and code emitter 580 operate as a monolithic
block. Moreover, any, all, or any subset of the optimizations
550-570 may be bypassed 11 desired, as represented by the
dashed curved lines, such that the particular optimizations
bypassed are not applied to the AST.

[0085] Again, 1t 1s important to note that in the known
mechanism shown in FIG. 5, at the program statement view
520, optimizations are performed with regard to all runtime
instances of a given statement in the code. Moreover, the code
optimizations 550-560 are performed with respect to the
entire program. At no time are optimizations made possible
with regard to individual instances of statements in a program
or even sub-parts of a statement. The mechanisms of the
illustrative embodiments, as discussed hereafter, provide
such optimization abilities.
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[0086] FIGS. 6A-6F are diagrams 1llustrating the program
statement view and examples of the loop optimizer 530 trans-
formations that may be performed on the program statement
view. FI1G. 6 A provides some general notations for explaining
the program statement view and these transformations. As
shown 1n FIG. 6 A, a statement S1 1n source code 610 may be
represented as an array-based inequality 620 defining the
iteration domain of the statement S1. That 1s, each statement

control can be captured through parameterized afline
inequalities: Ax=c where A 1s a n times m element matrix of
integer numbers, X 1s a m element vector representing each of
the 1teration variables, and where ¢ 1s a n element vector of
integer numbers or symbolic parameters. A maximal set of
such consecutive statements 1s referred to as a static control
part (SCoP) 1n the polyhedral loop transformation literature.
For each statement, an affine function 0(x)=Tx+d (where T 1s
a n' times m element matrix of iteger numbers, X 1s a m
clement vector representing each of the iteration variables,
and where d 1s a n' element vector of integer numbers or
symbolic parameters) assigns logical dates, e.g., time steps

starting to zero and monotonically increasing, to iterations of
AXZc.

[0087] As shown in FIG. 6B, the polyhedral scan module
510 extracts an iteration domain 640, access functions 650,
and schedule 660 of each statement 1n the source code 630.
The 1iteration domain 640 of a statement 1s a set of integer
values taken by the multidimensional 1teration 1. The 1teration
domain 640 may be defined as a set of linear inequalities, e.g.,
1=0, M-1-1=0,1=0,N-1-1=01n FIG. 6B, forming a convex
polyhedron. The access Tunctions 650 correspond to the poly-
hedral representation of which specific memory location 1s
accessed for a given statement. For example, 1n FIG. 6B, the
second statement 632 1s controlled by the mndex variables 1
and 1 for, respectively, the outermost and the innermost loop.
An access function for memory reference “Z[1]” 1n statement
632 will indicate, to the internal representation, which spe-
cific memory location will be written into when computing
the data associated with that statement for a grven instance of
1 and j. The access function 1s a matrix with one row per
dimension of the array (Z[1] 1s a one dimensional array) and
one column for each of the index variables (1 and j here),
parameters (M and N here) plus a constant integer. Thus the
access function for Z[1]1s [1 0 0 0 0] as shown 1n 652, as 1t 1s
only a function of the index vanable 1.

[0088] Forthe*ali][1]” reference, the access function 654 1s
a two dimensional array and, as a result, the access function
654 1s a 2x35 element matrix. The first row corresponds to the
access function for the first dimension of the array A, solely a
function of index variable 1 here. The second row corresponds
to the access function for the second dimension of the array A,
solely a function of index variable 1 here. For Y[1], the access
function 656 1s again a one dimensional array that 1s solely a
function of the index varnable ;.

[0089] The schedule 1s a linear function assigned to a state-
ment that precisely determines a logical timestamp for the
execution of each instance of a statement. These logical
timestamps express a partial order between instances of state-
ments. As with the domain 640 and the access functions 650,
the schedule 660 is a linear function of the domain iterators,
¢.g.,1and 1, and global parameters, M and N. The extraction
of 1teration domain 640, access functions 650, and schedule
660 1s generally known in the art and thus, a more detailed
explanation 1s not provided herein.




US 2009/0307673 Al

[0090] Having extracted the iteration domain 640, access
functions 650, and schedule 660, to generate a program state-
ment view 520 of the source code, the loop optimizer 530 may
perform transformations on the schedule to achieve better
parallelism/locality. FIGS. 6C-6F illustrate various types of
transformations that may be performed on the program state-
ment view 320.

[0091] InFIG. 6C, the original code 671 1s scanned through
the polyhedral representation and a null-transformation 1s
applied, depicted as element 673 1n FIG. 6C. Namely, the
outer loop 1n the orniginal code 671, 1.¢. the loop 1terating over
index 1, 1s mapped to the first time dimension t1 and the inner
loop 1n the original code 671, 1.¢. the loop iterating over index
1, 1s mapped to the second time dimension t2. The resulting
code 1s shown 1 FIG. 6C as element 672. Note that 1n the
statement S 1n the resulting code 672, the original index 11s set
to the same value as t1, and the original index 7 1s set to the
same value as t2. Those of ordinary skill in the art will notice
that the original code 671 and the resulting code 672 will
execute the same statements exactly 1n the same order.

[0092] InFIG. 6D, the original code 681 1s scanned through

a polyhedral representation and a loop interchange transior-
mation 683 1s applied. Namely, the outer loop in the original
code 681, 1.e. the loop iterating over index 1, 1s mapped to the
second time dimension t2 and the inner loop in the original
code 681, 1.e. the loop 1terating over index 7, 1s mapped to the
first time dimension tl. The resulting code 1s shown as ele-
ment 682 1n FIG. 6D. Note that in the statement S of the
resulting code 682, the original index 11s set to same value as
t2, and the original index j 1s set to the same value as t1. One
of ordinary skill 1n the art will notice that the original code
681 executes the statements 1n which, for a given value of 1, all
the values of 1 will be visited before visiting the next value of
1. However, in the resulting code 682, the code executes the
statements 1n a different order. Namely, for a given value of j,
all the values of1 will be visited before visiting the next value
ol 1. This transformation is referred to as an interchange of the
loop 1 and j, precisely because of this change 1n ordering.

[0093] InFIG. 6E, the original code 691 1s scanned through
the polyhedral representation and a loop skewing and paral-
lelization transformation 693 1s applied. In this transforma-
tion 693, the two 1 and j indices are projected to a single time
dimension t1=1+j. Thus, at the logical time date t1=3, the
original 1teration (1=1,=2) and (-2, j=1) are logically
executed. This 1s 1llustrated by the DOALL loop 1n the result-
ing code 692. A DOALL loop 1s a parallel execution of a loop,
where logically all the 1terations can be executed 1n parallel.

[0094] InFIG. 6F, the original code 694 1s scanned through
the polyhedral representation and a loop shift transformation
697 1s applied where the two matrices T1 and T2 are
unchanged but where the vector D2 1s (1, 0) instead of the
original default value of (0, 0). This means that the second
statement S2 will start executing one full outer-loop 1teration
step after the first statement S1. The resulting code 1s shown
as clement 695. Note that in the first portion 698, the state-
ment S1 executes alone for the full t2=1 to 3 range of 1tera-
tions, before statements S1 and S2 start to jointly operate in
the portion 696. At the end of the execution of the doubly
nested loop 1n portion 696, one full outer-loop iteration step
will remain to be computed for the second statement S2. This

remaining outer-loop iteration step 1s computed 1n portion
699.

[0095] With reference again to FIG. 5, the optimized pro-
gram statement view 520 generated through operation of the
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loop optimizer mechanism 530 1s mapped, by the polyhedral
code generator 540 to a hierarchical set of loop structures
referred to as an abstract syntax tree (AST). The mapping 1s
performed by using a Quillere’s projection and decomposi-
tion technique, which 1s generally known 1n the art. See
Quillere et al., “Generation of Efficient Nested Loops From
Polyhedra,” International Journal of Parallel Programming,
28(5):469-498, October 2000. The AST represents the
imperative execution of the program statements 1n the source
code. More precisely, each intermediate node of the program
in the AST bears a polyhedron whose size 1s related to the
depth d of the node. Each such polyhedron defines the non-
redundant set of constraints needed to scan all the points in the
corresponding transiformed loop of depth d. The nesting of
these polyhedra 1s directly translated into the nesting of the
resulting loop nest. The leaves of the tree represent the poly-
hedral statements.

[0096] FIGS. 7A-7C illustrate a mapping using Quillere’s
projection and decomposition technique. Given the code
fragment shown 1n FIG. 7A, three statements S1, S2, and S3
are present and the subject of the polyhedral loop transior-
mation. A set of points 710 1terated by the three statements 1s
generated and the set of points 710 1s separated 1nto convex
areas ol uniform statement sets 712-718. The abstract syntax
tree (AST) 1s formulated by projecting along each of the
dimensions using the above mentioned Quillere’s projection
and decomposition technique. Usually, the most straightior-
ward way to generate the resulting AST 1s to apply the fol-
lowing simplified steps: 1) create the scattering polyhedron
for each statement by extending the iteration domain with the
equalities linking time iterations to domain iterations; 2)
recursively project the previous polyhedron on the outermost
time dimensions to determine the span of each statement
along every transformed time dimension; 3) recursively per-
form the intersection, difference, and ordering of the previ-
ously projected scattering polyhedra for all statements to
distribute their 1terations along the new time loops; and 4)
recursively sort the disjoint union of polyhedra along each
time dimension. For more detailed explanations of these
steps, reference 1s made to the work of Quiller’e et al. previ-
ously mentioned above.

[0097] The resulting AST 1s hierarchical, with the top node
representing an outermost loop. This node corresponds to a
single interval parallel to the 1-axis after projecting away the
1-dimension. Since, 1n the depicted example, all 3 statements
have the same 1nterval 1=1 . . . n 1n this projected one-dimen-
sional space, all 3 statements belong to this single node. Thus,
there are 4 nodes 720-750, one for each distinct area 1n FIG.
7B. A domain 1s associated with each node. Domains are

shown next to each node 720-750 in F1G. 7C.

[0098] It 1s important to note that nodes sharing a single
parent are ordered. This order must represent a correct
sequence with respect to the oniginal order in the original
program, or at least, if the original order was modified by loop
transformation, must not violate any dependence present in
the original program.

[0099] As discussed above, minor optimizations may be
made to the AST generated through the operations above

which are applied to the program as a whole. The resulting
AST 1s then used to generate a compiler internal representa-
tion (IR) and 1s provided back to the compiler.

[0100] Moreover, as discussed above, the polyhedron-
based approach described above has some significant draw-

backs in that (1) 1t may not always generate optimal code; and
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(2) the transformations performed necessarily touch all
instances of a given statement, rather than individual
instances. This means that the code may sufier from sub-par
scalar performance, unnecessary code bloat, and parallelism
may be difficult to express for statements that are partially
parallel, 1.e. a statement that 1s parallel 1n all but a few bound-
ary 1nstances. Moreover, for data locality enhancement,
requiring that tiling must be performed on all instances of a
statement, including the rarely executed boundary condi-
tions, results 1n unnecessary code bloat as well as increased
loop overhead. Thus, 1t would be beneficial to have a mecha-
nism for allowing optimizations to be performed on indi-
vidual mstances of statements.

[0101] FIG. 8 1s an exemplary block diagram of an
advanced polyhedral loop transformation mechanism 1n
accordance with one illustrative embodiment. As shown 1n
FIG. 8, with the advanced polyhedral loop transformation
mechanism 800, a compiler internal representation (IR) of
statements, conditionals, and loops 1s provided from the com-
piler 805 to the polyhedral scan module 810 which operates in
much the same manner as the known polyhedral scan module
510 1n FIG. 3 to generate a program statement view 820 of the
source code. Loop optimizer module 830 may apply various
loop optimizations on the statements 1n the program state-
ment view 820 1n much the same manner as the loop opti-
mizer module 53010 FIG. 5. The resulting optimized program
statement view of the source code 1s provided to the polyhe-
dral code generator 840. This 1s where the mechanisms of the
illustrative embodiments depart from the known polyhedral
loop transtormation mechanisms and provide advanced opti-
mization mechanisms not previously known.

[0102] There are two main directions 1n which the mecha-
nisms of the illustrative embodiments improve upon known
compiler mechanisms. First, the mechanisms of the 1llustra-
tive embodiments provide a re-entrance path (shown as the
arc passing through the polyhedral rescan module 870). In
order to make this re-entrance path workable in the illustrative
embodiments, data about the way 1n which the polyhedral
code generation 1s performed, 1s maintained for use by the
polyhedral rescan module 870 to convert the AST, or program
loop view, 850 back into a program statement view 820. This
data may include, for example, the Alpha, Beta, and Gamma
matrices for each of the statements in the AST 850 along with
a remapping matrix that identifies how a transformation back
to a program statement view from the AST, or program loop
view, 850 may be performed.

[0103] In the second major direction of improvement, the
mechanisms of the illustrative embodiment provide an
improved manner by which code generation optimizations
may be applied by the code generation optimization/parallel
detection module 860. These code generation optimizations
may be applied with greater tlexibility than known mecha-
nisms since there 1s no fixed sequence of code generation
optimizations, there are a greater number of code generation
optimizations, and the code generation optimizations may be
applied to specific sub-trees of a given AST 850.

[0104] In addition to the improvements above, the mecha-
nisms of the illustrative embodiments provide functionality
for determiming when to reunite statements, upon re-entrance,
that were split by the polyhedral code generator module 840.
That 1s, when the polyhedral code generator module 840
operates on the program statement view 820, sometimes the
Quillere projection discussed above may result 1n statements
being split into multiple nodes of the resulting AST or pro-
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gram loop view 850. For example, 1n FIGS. 7A-7C, statement
S1 appears 1in two of the leal nodes of the resulting AST and
S2 appears 1n four of the leal nodes due to such splitting of
statements.

[0105] Sometimes itis desirable to keep the statement sepa-
rated when doing re-entrance and 1n other situations 1t 1s more
desirable to reunite the separated statement into a single state-
ment 1n the resulting program statement view of the re-en-
trance. Thus, 1n the polyhedral rescan module 870, a deter-
mination may be made whether to keep the separated
statement separate or to reunite the separated statement. This
will be described 1n greater detail hereafter with regard to
FIG. 10, for example. As will be described later, 1t 1s desirable,
for example, to keep a statement separated 1n order to perform
optimizations on the kernel only, while other times, reuniting
the statement 1s proper. This decision may be made automati-
cally by the polyhedral rescan module 870, or 1n response to
user commands, such as through directives/scripts, or the
like. The details of the various improvements provided by the
illustrative embodiments will be described 1n greater detail
hereafter.

[0106] As shown in FIG. 8, the polyhedral code generator
840 of the illustrative embodiments converts the program
statement view 820 of the source code into a program loop
view or AST 850. In this view of the source code, each loop 1s
associated with a set of statements that 1terates over the same
number of iteration points as experienced at a given depth
level 1n the loop nest hierarchy. An example of the program
statement view 820 1s the data gathered in FIG. 6B. An
example of the program loop view or AST 830 1s shown 1n
FIG. 7C. The major difference between the program state-
ment view 820 and the program loop view or AST 850 1s that
in a program loop based representation, two or more state-
ments can be assigned to the same logical loop even though
the statements do not have exactly the same domain. For
example, in FIG. 9, discussed hereatter, loopl and loop 2 can
be fused even though the domains do not strictly overlap.
When generating the AST 850, each of the nodes (which
correspond to a loop, but for the leat nodes that correspond to
a statement) correspond to strictly one loop 1n which all the
statements 1nside have exactly the same sub-domain. This 1s
why one statement 1n the program statement view 820 may
become many nodes 1n the program loop view or AST 850,
¢.g. statements 1 loopl in FIG. 10, hereafter, become 3
statements and statements 1n loop2 also become 3 statements.

[0107] Thus, in the program loop representation, an origi-
nal statement in the program statement view 820 may be split
among several loops in the program loop view 850. For
example, 11 two statements S1 and S2 were fused into a single
loop but S1 1terates from 0 to 100 whereas S2 iterates only
from O to 80, then the statement S1 may be split into two loops
in the program loop view 8350, one from O to 80 when 1t
co-executes with S2 and one from 81 to 100 where 1t executes
by itself.

[0108] That 1s, one type of loop optimization that 1s often
performed, such as by loop optimizer module 830, 1 poly-
hedral loop transformations 1s “fusion.” Fusion attempts to
improve data locality by fusing two loops that iterate over
similar ranges into a single loop. FIG. 9 1llustrates an example
ol a polyhedral loop transformation fusion operation. As dis-
cussed above, with polyhedral loop transformations, state-
ments are represented as polyhedrons representing the 1tera-
tion space of the loops associated with the statement. Thus,
for example, as shown 1 FIG. 9, a first statement S1 1s
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associated with two loops with bounds 1=N, 1<M, 1=U, 1<V.
These bounds define arectangle as illustrated in the first graph
910. Similarly, the second statement S2 1s associated with two
loops whose bounds 1=N", 1<M", 1=U", 1<V', overlap the area of
the first statement S1. This second statement S2 1s represented
by the rectangle shown 1n the second graph 920.

[0109] Through fusion, the two statements are integrated
with the result being as shown 1n the graph 930. As shown in
FIG. 9, the corresponding code includes loops 932-938 for
representing the non-overlapping portions of the rectangles
910 and 920 and a loop 940 that represents the fused “kernel”
of the statements S1 and S2 which represents the majority of
instances of execution of the statements S1 and S2. Fusion
thus, increases the speed of execution of the original code by
causing the majority of area where the two statements S1 and
S2 execute to be executed together. However, 1t can be seen
from FIG. 9 that fusion requires a large amount of replication
of code.

[0110] With reference again to FIG. 5, in generating the
program loop view 330 from the loop optimized program
statement view 520, the polyhedral code generator 540, sepa-
rates the kernels, 1.e. the common area or range of iterations,
of fused statements such that separate representations of the
statements are provided. This 1s because, 1n the program loop
view or AST 550, output by the polvhedral code generator
540, each loop can only contain a single set of instructions.
However, since there 1s no reentrance in the mechanism
shown 1n FIG. 5, the framework of FIG. 5 cannot apply
specific loop optimizations implemented in the loop optimi-
zation module 530 only to the statements that are part of the
kernel (e.g., the section of code fragment 940 1n FIG. 9 where
both statements S1 and S2 are being jointly executed). To the
contrary, as mentioned above, in the mechanism of FIG. 5,
loop optimizations can only be applied to the program as a
whole.

[0111] In other words, the original representation 520

includes statements S1 and S2 for their entire domain on
which optimizations are being applied. The polyhedral code
generator 540 discovers the actual loops that the fused state-
ments S1 and S2 will execute 1n, but by then, 1.e. after the
polyhedral code generator 540 has operated, 1t 1s too late to
apply new loop optimizations defined 1n the loop optimiza-
tion module 530 because the optimizations 1n 350, 560, and
570 operate on a AST representation that 1s not amendable to
optimizations such as 1n loop optimization module 530. As a
result, for example, 1t 1s not possible in the framework
described 1n FIG. 5 to perform such loop optimizations as a
unrolling optimization of the kernel using the powertul loop
optimization module 530 operating over the program state-
ment view 520.

[0112] The mechanisms of the illustrative embodiments
provide functionality for separating out the kernels of fused
loops such that separate representations of statements are
obtained upon which optimizations may be performed. FIG.
10 illustrates the separation of fused loops 1nto separate rep-
resentations for each portion of the fused loops such that the
representations are not shared. With reference again to FIG. 8,
in generating the program loop view or AST 850 from the
loop optimized program statement view 820, the polyhedral
code generator 840, separates the kernels of fused statements
such that separate representations of the statements are pro-
vided. This 1s again because in the program statement view or
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AST 850 representation output by the polyhedral code gen-
crator 840, each loop can only contain a single set of 1struc-
tions.

[0113] However, with the mechanisms of the illustrative
embodiments, the reentrance path (depicted as the arc from
clement 850 through element 870 to element 820) may be
activated. With this reentrance path, each of the instances of
statement S1 and S2 may be considered as separate. In other
words, the domain of statement S1 may be split into the sub
domains corresponding to the area/code fragment 1010,
1018, and 1014 1n FIG. 10 and the domain of statement S2
may be split into the sub domains corresponding to the area/

code fragment 1012, 1018, and 1016. As aresult of S1 and S2

now not sharing a common representation, loop transforma-
tions may now be applied, e.g., by the loop optimization
module 830 i FIG. 8, on the separate representations. For
example, the loop contaiming both instances of statements S1
and S2, e.g., the area/code fragment corresponding to 1018 1n
FIG. 10, may be unrolled without impact on the other
instances of statements S1 and S2, e.g., 1n the areas/code
fragments corresponding to areca 1010,1012, 1016, and 1014.

[0114] As shown in FIG. 10, for a fusion of two statements
S1 and S2, when the statements are separated out, 5 different
domains 1010-1018 and corresponding schedules 1020-1028
are generated by extracting the kernel 1n the representation of
the fused statements. This 1s done by providing a separate
domain and schedule for each of the boundary portions 1030-
1036 of the fused statements where only one statement
applies, and a separate domain and schedule for the kernel
1040 where both statements apply.

[0115] As a result, the program loop view of the source
code 1ncludes separate representations for each statement, as
well as the kernel, upon which code generation optimizations
may be applied by the code generation optimizer/parallel
detection module 860. For example, code generation optimi-
zations such as simplification and unstretching, 1f hoisting,
substitute modulo, loop unrolling, etc. may be applied to the
program loop view to obtain lower control overhead of the
code. The program loop view may then be rescanned and
converted back to a program statement view via the reen-
trance path after having undergone code generation optimi-
zations by the. The result of the reentrance path 1s a program
statement view of the code generation optimized program
loop view that may be operated upon to provide even further
optimization through an iterative process.

[0116] The optimizations that may be performed on the
program loop view of the program, 1.e. the “code generation
optimizations,” may be applied by code generation optimiza-
tion/parallel detection module 860 1n FIG. 8 to the program
loop view 830 of the program. These code generation opti-
mizations are performed on the polyhedral abstract syntax
tree (AST), or the program loop view, and generate a new
polyhedral AST, 1.e. a new program loop view 850 for re-
entrance to the program statement view 820 and/or emission
back to the compiler 805. The code generation optimizations
represent a set of transformations that are performed 1n an
iterative, modular, and flexible manner to help generate the
code with the least impeding control overhead as possible. An
important property of the code generation optimizations 1s
that they do not change the program order in the original
polyhedral AST of the program loop view. They may induce
statement splitting or aggregation and may even modily
domain and schedule components. However, they do so 1n a
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transparent manner ensuring the strict equivalence of the
relative orders induced by the new schedules for all instances
of all statements.

[0117] When considering program correctness, 1t 1s
straightforward to realize that different scheduling functions
may produce the exact same execution. Indeed, only the rela-
tive execution order of all instances of statements 1s required.
Therefore, a simple transformation like the shifting of all the
statements by the same amount does not change any relative
order of any statement instance and 1s said to produce equiva-
lent schedules. Equivalence 1s a relation between two pro-
grams P and P' with respective global schedules S _;, and S_,".
When a schedule transformation 1s applied to P, the resulting
program P' bears the exact same statements. Thus, program
schedule equivalence 1s 1mplied by program equivalence.
This notion must be preserved by any code generation opti-
mization or transformation performed by the code generation
optimization/parallelism detection module 860 1n FIG. 8.

[0118] Withthis requirement in mind, each code generation
optimization or transformation executed by the code genera-
tion optimization/parallelism detection module 860 takes two
arguments: (1) a list of nodes 1n the program loop view
referred to by prefix vectors in the program loop view of the
program; and (2) a propagation mode that can be, but 1s not
limited to, “any’ (all the nodes 1n the AST are visited), “pre-
{1x” (all the children of the given node are visited), or “exact”
(only the specified node 1s visited). The list of nodes, 1.e. the
prefix vector list, 1s made up of prefix vectors for the nodes
that are to be optimized by the particular code generation
optimization selected. The nodes of the AST of the program
loop view, e.g., the nodes 720-750 1n FIG. 7C, may be char-
acterized as a vector of numbers which indicate 1ts path from
the root (top-most) node. This vector of numbers 1s referred to
as the prefix vector for the node.

[0119] The listof nodes may be made up of a listing of such
prefix vectors. The prefix vector list defines the scope of the
code generation optimization in that 1t indicates where the
code generation optimization 1s allowed to modify nodes.
Traversals of this list of nodes may be performed, for
example, by a depth-first-search listing a parent before any of
its children, a depth-first-search listing a parent after each of
its children, a depth-first-search listing leaves only, or the like.

[0120] A code generation optimization may be called by
the mechanisms of the illustrative embodiments, such as by
the code generation optimization/parallelism detection mod-
ule 860 1n FIG. 8 either automatically or 1n response to a user
request for a particular code generation optimization, to oper-
ate on 1ndividual statement instances, and/or sub-statement
instances, in the program loop view 830 using a call such as
“CG_codegenopt(optName, P, preftype), where optName 1s
the name of the code generation optimization that i1s to be
applied, P 1s the prefix vector list that will serve as a basis for
flagging nodes 1n the AST to which optimizations are to be
applied, and prettype specifies the prefixes found in P are to
be treated as exact filters or prefix filters, 1.e. “any,” “pret,” or
“exact.” For example, the call “codegenopt(simplify, {{1},
12,0},13,3,3}}, BMT_exact)” will try to simplify exactly the
nodes at the specified list of vectors 1n the AST of the program
loop view.

[0121] Thetypesofcode generation optimizations that may
be applied to the AS'T of the program loop view are varied and
evolving. A current listing of code generation optimizations
includes, but 1s not limited to, simplity, simplify-unstretch,
simplity-trivial-modulo-remapping, extract-kernel, 1f-hoist/
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if-hoist-gentle, 1f-hoist-brutal, substitute-modulo, and loop-
unroll. The simplify code generation optimization 1s a basic
simplification under context, normally called from 1nside the
code generation optimization module. The simplify-un-
stretch code generation optimization 1s a more elaborate sim-
plification that also reverts any “domain stretching” phase
that prevents over-separation in the code generation optimi-
zation phase when non-unimodular schedules are present.
The simplify-trivial-modulo-remapping code generation
optimization 1s a basic simplification plus explicit instantia-
tion of equalities propagated to the leaves which results in
either disproving or simplitying modulo conditionals. This
can be viewed as a constant propagation for modulo guards
that may also disprove some statements when the modulo
guards cannot be met.

[0122] The extract-kernel code generation optimization
computes and extracts a fully unrollable kernel from a loop
with complex bounds (min, max, floor, and ceiling). This
usually results in O+ prologues, 1 kernel and O+ prologues and
may vield code bloat 1f not done carefully. The if-host/ii-
hoist-gentle code generation optimization walks the children
of the given node and finds conditions on the current loop’s
depth and hoists them. The 1f-hoist-brutal code generation
optimization walks the leat nodes, finds any condition on any
depth smaller than the current loop’s depth and brutally hoists
everything. The substitute-modulo code generation optimiza-
tion simplifies modulos aggressively without taking care of
compatibility within different statements. When all state-
ments 1 a loop have the same modulo substitutions, this i1s a
powerlul tool to embed the modulos 1nto the enclosing loops’
bounds. The loop-unroll code generation optimization per-
forms a full unroll of a loop with static constant bounds
difference. This code generation optimization should usually
be preceded by an extract-kernel and a 1f-hoist-gentle code
generation optimization 1f the bounds are complex (min, max,
floor, ceiling) otherwise many inner conditionals may be
generated. These are only examples of currently known code
generation optimizations and not intended to be limiting 1n
any way. Other code generation optimizations may be used 1n
addition to, or replacement of, the listed code generation
optimizations without departing from the spirit and scope of
the present invention.

[0123] When applying the code generation optimizations
using the code generation optimization/parallelism detection
module 860 1n FIG. 8, based on the prefix vector list and the
propagation mode, a first pass 1s performed on the program
loop view, e.g., the AST of the program loop view, to flag the
nodes that need to be processed. The reason why a separate
pass 1s used to mark the nodes 1s that some optimizations/
transformations may duplicate nodes while some others may
delete nodes, making the prefix vectors obsolete very quickly.
Thus, prior to any code generation optimization/transforma-
tion being performed, the nodes that are to be processed are
first flagged.

[0124] Adfter having flagged the nodes to be “visited” by a
code generation optimization/transformation, a code genera-
tion optimization/transformation application algorithm 1s
executed by the code generation optimization/parallelism
detection module 860 1n FIG. 8 to thereby apply the called
code generation optimization/transformation. FIG. 11 1s an
example of pseudocode of an algorithm for applying code
generation optimizations/transformations. All code genera-
tion optimizations/transformations share the same template
implementation based on visitors. Visitors are instantiated at
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3 different points in the algorithm. First, a visitor 1s used to
perform an outermost scan of the nodes in the AST of the
program loop view. Each code generation optimization scans
the nodes that have been marked by the filtering pass. For each
marked node N, the code generation optimization applies its
core function which determines 11 the node’s domain 1s modi-
fied and returns the list of new domains to replace the obsolete
ones. This list 1s sorted with respect to the current time dimen-
sion under the parent polyhedral context with the same algo-
rithm proposed by Quillere, referenced above.

[0125] The core function 1s the second point where an inner
visitor 1s mstantiated. Each new domain 1n the list then gen-
erates a new node N' and 1ts corresponding subtree, which 1s
a copy of the subtree rooted at N and simplified in the context
of N'. Once the new subtree list 1s attached 1n place of the
original node N, the propagation function 1s called along each
path to every new leal. Such propagations are performed by a
third mner visitor that may void nodes 1n the new subtrees
which need to be removed recursively 1n a bottom-up order.
To avoid mterfering with the outer visitor traversal, special
care 1s taken. Therefore, the node removal function 1s 1mple-
mented with a boundary node argument and 1s only allowed to
delete descendents of that node. This guarantees that the outer
application visitor and the inner propagation visitor are
always operating on non-contlicting regions of the AST.

[0126] Some of the above example code generation opti-
mizations that may be implemented using the mechanisms of
the illustrative embodiments will now be described in greater
detail. It should be appreciated that while specific code gen-
eration optimizations are described herein, the illustrative
embodiments are not limited to these code generation opti-
mizations and may operate to implement other code genera-

tion optimizations 1n addition to, or in replacement of, one or
more of the herein described code generation optimizations.

[0127] As mentioned above, one of the code generation
optimizations that may be performed by the code generation
optimization mechanism of the illustrative embodiments 1s
the conditional hoisting, or 1f-hoisting, code generation opti-
mization. Conditional hoisting performs a controlled tradeoif
between code size growth and spurious 1mnner conditionals
removal. The core function determines all spurious condi-
tionals for a marked node and factorizes them.

[0128] Two application modes are possible when process-
ing a node N of depth d. In the least aggressive mode, the
visitor traverses all the children of node N. The visitor looks
for conditionals directly expressed as a function of (t,),.;
and constants only. Such constraints do not concern the time
iterators at depth d'>d and are thus, ailine guards that can be
hoisted. In the aggressive mode, the visitor traverses only the
leat nodes under node N and performs a polyhedron projec-
tion of each separate statements” domain on the vector space
(t,,..., 1, N). A subsequent stmplification in the context of
the parent node yields the new conditionals.

[0129] In both modes, the non-redundant list of condition-
als 1s maintained. Eventually, the difference 1s computed with
the reference node’s domain, yielding the core list of condi-
tionals representing all possible case distinctions. In each of
these cases, a single condition holds. As an application, con-
sider the following variants with the different conditional
hoisting modes as shown 1n FIGS. 12A-12C. FIG. 12A rep-
resents the original code. FIG. 12B represents the same code
with a gentle, or least aggressive, mode of conditional hoist-
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ing having been performed. FIG. 12C represents the same
code with an aggressive mode of conditional hoisting having
been applied.

[0130] As one can see, FIG. 12A 1ncludes several condi-
tional statements, 1.e. the three “if” clauses in FIG. 12A, that
will execute at each 1teration of the outermost t1 loop, even
though the condition associated with the conditional state-
ment will evaluate to true for only one or two 1terations of the
entire t1 loop 1teration. This represents a significant overhead,
which can be removed the conditional hoisting optimization.
While 1n general the aggressive technique can get rid of more
conditional statements at the cost of more replication, one can
see that 1n this case, the gentle approach (result shown in FIG.
12B) was sulficient to remove all conditionals. The aggres-
stve technique (results shown 1n FI1G. 12C) also resulted 1n all
of the conditionals being removed, but resulted 1n more code
than the gentle approach.

[0131] Inmost cases, the gentle mode 1s enough and yields
potentially much smaller code. In special cases, however, the
more aggressive, or “brutal,” mode 1s needed to perform more
advanced conditional hoisting, such as in the case of loop
unrolling after tiling. To see that program equivalence 1s
preserved 1s rather straightforward. Conditional hoisting 1s
actually a domain splitting on the time dimensions. Suppose
I and I' are ordered 1nstances of two statements that execute
respectively at time t and t' such that t=t'. Two cases arise: (1)
both 1instances belong to the same new split domain after
transformation and their order i1s enforced by the schedule;
and (2) each instance belongs to a different sub-domain, 1n
which case the relative order 1s enforced by the disjunction
and the subsequent ordering. Lastly, since the difference 1s
computed with the reference node’s domain, no iteration 1s
lost.

[0132] Another code generation optimization/transforma-
tion that may be applied to the program loop view 850 1n FI1G.
8 by the code generation optimization/parallelism detection
module 860 1s the kernel extraction code generation optimi-
zation/transformation. When loop optimizations/transforma-
tions such as skewing or strip-mining are applied, the gener-
ated loops exhibit complex bounds which can degrade
performance or prevent further desired loop unrolling. Kernel
extraction 1s a transformation that enforces the separation of
such complex bounds in different versions of the loops. This
transformation has three versions: (1) the unrollable kernel
extraction detects pairs of lower/upper bounds that exhibit a
static constant diflerence; (2) the lower bounds kernel extrac-
tion creates a list of conditionals where every lower bound 1s
minimal exactly once. It at depth d, the scattered, separated
domain exhibits t ,=(1,),.r; 4. the resulting conditionals are a
list of k elements such that t,=(1,),.; 4y_rn>1,; and (3) the
upper bounds kernel extraction creates the same list of con-
ditionals with the upper bounds, 1.€. t,=Z(U,),) =1 =(,);e
[LA]-{7/}>U,.

[0133] The result of a simple example 1s shown 1n FIGS.
13A-13C. FIG. 13A represents the original code of the
depicted example. FIG. 13B illustrates skewing of the origi-
nal code along a first dimension. FIG. 13C 1illustrates a result
of the kernel extraction code generation optimization/trans-
formation. 1n the kernel extraction code generation optimiza-
tion/transformation, the program equivalence property is
obtained the same way as in the conditional hoisting code
generation optimization/transformation. Kernel extraction
may be followed by a subsequent loop unrolling pass. This
transformation (loop-unroll) performs full unrolling of the
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iterations of a given node. Given 1ts natural code expansion
characteristics, 1s applied at the innermost depths.

[0134] As shown in the example of FIG. 13A, there 15 a
simple statement inside a doubly nested loop. FIG. 13B
shows this same statement after loop skewing optimization
was applied. Loop skewing 1s most often used to parallelize
code by moditying the order 1n which statements are executed
so that the dependencies present 1n the original code do not
hinder parallelization of the inner loop(s). The salient obser-
vation 1s that in FIG. 13B, there are minimum (min) and
maximum (max) functions in the loop bound computation of
the 1nnermost loops. These min/max functions were 1ntro-
duced by the loop skewing optimization, and their cost may
significantly impact on the execution time of the loop. Using
the kernel extraction of the illustrative embodiments, the
domain of execution of the outer loop may be split so that the
min(X,Y) function always takes its X value in one of the copy
of the outermost loop, or Y value 1n the second copy of the
outermost loop, 1 FIG. 13C. Because of this property, the
min function may be safely removed from the code as 1t 1s
statically known that the smallest number will come from the
X value 1n the first instance of the loop and the Y value 1n the
second 1nstance of the loop.

[0135] In addition to code generation optimizations, the
code generation optimization/parallelism detection module
860 1n FIG. 8 further detects parallelism 1n the program loop
view 850. When specifying parallelism at the schedule level
only, there 1s a semantic gap between the syntactic loop model
and the schedules that are expressed with the polyhedral
model. One such example, 1s given 1n FIGS. 14A-14C for 2
statements with the same domain Dom={i in [1,N]}, with
only the A and Beta parts shown. A and Beta are two compo-
nents of the schedule associated with each of the statements.
The schedule essentially associates a time stamp, e.g., date,
time, etc., with each instance of the statements. These time
stamps 1ndicate which of the instances of a statement comes
first 1n the execution of the code. Having a smaller time stamp
number means that that instance of a statement comes prior to
another 1nstance that has a higher time stamp number. The A
matrix indicates how each of the iterations surrounding a
statement are taken 1nto account to compute that statement’s
time stamp. The Beta part indicates the order in which a
statement 1s to be found 1n the code. For example, a Beta ol [0,
0] associated with statement S1 1n FIG. 14A states that S1 1s
the first loop and 1s the first statement inside that first loop.

[0136] Suppose that the target version shown in FIG. 14C 1s
to be generated and the dependencies between statement S1
and S2 allow 1t to be generated. However, 11 parallelism 1s to
be expressed 1n the schedule directly, the code 1n FIG. 14B 1s
obtained where the parallel loops undergo a fission optimiza-
tion. In other words, to express parallelism in the way pro-
posed 1n FIG. 14A, a loop fission operation, 1.e. statements
inside a single loop nest are separated into two or more loops
cach containing a subset of the statements inside the original
loop, 1s applied. This loop fission will have significant impact
on the performance of the code.

[0137] On the other hand, enforcing the fusion of the loops
yields the code i FIG. 14B where only the body of the loops
1s parallel. The parallel fused version requires the schedule to
specily the same arbitrary order on the outermost time iterator
for the two statements while still enforcing sequentiality
between S1 and S2 at the loop independent level. Eventually,
the constraints borne by the syntactical parallel version are
not expressible with a polyhedral schedule only, as shown by
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the “undef” labels nside of the A and beta representation in
FIG. 14C, which represent the desired code for which the
above scheme to express parallelism within the polyhedral A
and Beta scheduling matrices cannot be used.

[0138] This expressivity 1ssue 1s alleviated by the 1llustra-
tive embodiments by means of a code generation optimiza-
tion/transformation to detect parallelism. When it 1s applied
to a node N of depth d, it creates a list of all statement leaves
with their restricted domains after separation. This list 1s used
to filter the dependence graph and to check 11 node N defines
a loop which does not bear any dependence. Each dependence
1s intersected with the current schedule of 1ts source and target
statements but also with their restricted domains. If the result-
ing polyhedron 1s not empty, the algorithm stops when a
parallelism preventing dependence on depth d 1s found. On

the other hand, i1t all resulting dependences are empty, the
loop 1s marked parallel and an OpenMP directive along with

the shared and private variables information are generated.

OpenMP used here 1s an exemplary compiler and runtime
support system that enable parallelism to be expressed.

OpenMP uses directives (generated either by the application
user and/or the compiler) that state which loop/region can
sately be executed 1n parallel. OpenMP 1s used herein as only
an example and 1s not limiting to the mechanisms of the
illustrative embodiments 1n any way. To the contrary, in one
illustrative embodiment, OpenMP 1s only used as one way to
convey parallelism information to the remainder of the com-
piler/runtime system of the illustrative embodiment. Any
other parallel compiler/runtime system may be used without
departing from the spirit and scope of the 1llustrative embodi-
ments.

[0139] Allthis processing 1s performed by the core function
of the code generation optimization/parallelism detection
engine 860 1n FIG. 8 which never modifies the constraints on
the domain of node N, but rather sets a parallel bit to 1 in the
internal representation associated with the loop. When 1t
becomes time to emit the code, e.g., from emit module 880 in
FIG. 8, a parallel bit will be read to determine, for each loop,
whether this loop 1s parallel or not. Upon a determination that
the loop 1s parallel, the emit module 880 will generate the
appropriate construct to inform the rest of the compiler/runt-
ime system that this loop 1s a parallel loop. In one 1llustrative
embodiment where OpenMP 1s used, this consists of emitting
a pragma directive just prior to the loop.

[0140] Returning againto FIG. 8, as shown, the result of the
code generation optimizations and parallelism detection 1s a
modified program loop view 850 that 1s then either output to
the compiler 805 or sent along a re-entrance path to the
polyhedral rescan module 870 for conversion back mnto a
program statement view 820 for further optimization. Deter-
mination on whether to go along the re-entrance path or not
depends on various factors. First, 1t may be desirable to trans-
form the code to the program loop view 850 representation
before completing all optimizations in the program statement
view 820 representation i order to gather some knowledge
about the code. For example 1t may be desirable to use the
program loop view 850 to determine which loops are parallel,
to see 1l kernels need to be extracted, to evaluate the complex-
ity of the current code, and/or any other qualitative informa-
tion that may be gathered from the program loop view 830
representation. Once this information 1s gathered, it 1s desir-
able to go back to the program statement view 820 represen-
tation to exploit this additional knowledge for further optimi-
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zation ol the code upon determination, based on this
additional knowledge, that particular optimizations are
advantageous.

[0141] Second, it may be desirable to apply all optimiza-
tions 1n the program statement view 820 representation at
once. In this framework, some loop optimizations from the
loop optimization module 830 may be applied and then the
program statement view 820 representation may be converted
to the program loop view or AST 850 representation. Specific
code optimizations may be applied by the code generation
optimization/parallel detection module 860, such as kernel
extraction and/or other code generation optimizations, and
then the re-entrance path may be traversed to go back to the
program statement view 820. Further optimizations of spe-
cific aspects of the program loop view or AST 850 represen-
tations (after being modified by the code generation optimi-
zations) may then be performed. Both approaches above are
not exclusive and may be jointly applied or applied repeti-
tively 1n some alternating fashion.

[0142] With regard to the re-entrance path, the modified
program loop view 830 1s parsed by the polyhedral rescan
module 870 and data structures expected in the program
statement view 820 are recreated from the modified program
loop view 850. In this way, 1iterative calls to the loop optimizer
module 830 and the code generation optimization/parallelism
detection module 860 may be performed successively until a
desired level of optimization 1s achieved at which time the
optimized code may be output back to the compiler 805. This
1s contrary to known mechanisms in which a single pass of the
loop optimizer module 530 1n FIG. 3 1s performed with some
minor optimizations being performed on the entire program
thereafter just prior to the emitting of the code back to the
compiler. No successive iterations are possible in known
mechanisms.

[0143] Inorderto perform successive (iterative) calls to the
optimizing framework comprising the loop optimizer module
830 and the code generation optimization/parallelism detec-
tion module 860, the output of a given polyhedral optimiza-
tion must be fed to the next phase without disrupting the
properties of the optimization found so far. In particular, 1f no
turther optimization 1s performed in the latter phase, one
expects the result to exhibit the same properties, 1.e. parallel-
1sm, memory locality, code size, control tlow overhead, etc.,
as have been observed in the previous phase. That 1s, for
example, the output of the code generation optimization/
parallelism detection module 860 should have the same prop-
erties as the mput to the code generation optimization/paral-
lelism detection module 860. In other words, the re-entrance
process must be stable by imposing the following constraints:
(1) the code s1ze must not increase; (2) the amount and granu-
larity of parallelism must not be modified; and (3) the relative
execution order of all statements in the program must be
preserved. Memory, or data, locality and reuse are strongly
tied to the scheduling of the program and thus, no particular
concern occurs with respect to these features. On the other
hand, code si1ze and control flow overhead are very dependent
on the code generation optimizations and the aggressiveness
of the transformations, such as conditional hoisting or
modulo guard removal. Furthermore, when parallelism 1s
directly expressed in the schedule, such as via the parallelism
detection mechanisms of the code generation optimization/
parallelism detection module 860, 1t may be hard to exploit
properly at the syntax tree level and even harder to reparse

properly.
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[0144] In practice, the mechanisms of the illustrative
embodiments apply transtormations that will change the rep-
resentations 820 and 850. However, from an implementation
perspective, even 1f no transformations are applied, the qual-
ity of the representation 1s not degraded by the reentrance
path. In other words, if the reentrance path 1s followed to
apply a specific sequence of loop and code generation opti-
mizations, which will result 1n a faster runming code, but in the
process degrade the representation which happens to slow the
resulting code, then such degradation must be weighed
against the benefit (better optimization). However, by practi-
cally ensuring that there 1s no degradation of representation
while exercising the re-entrance path, as in the mechanisms of
the illustrative embodiments, the cost of implementing the
mechanisms of the illustrative embodiments with regard to
code performance 1s approximately zero. Thus, the re-en-
trance path of the illustrative embodiments should always be
exercised 1f the compiler/application writer can determine a
beneficial loop/code generation optimization sequence.

[0145] With the mechanisms of the illustrative embodi-
ments, the polyhedral rescan module 870 performs program
regeneration in order to generate the program statement view
820 from the program loop view 830. Program regeneration
involves transforming the modified or new AST of the pro-
gram loop view 850 1nto a stable program with respect to code
generation. In order to generate a stable program, each state-
ment 1n the new stable program needs to have its own domain
that does not overlap with other instances of the same original
statement. Each schedule must enforce the same relative
order with respect to all other instances of any other state-
ment. Furthermore, subsequent call to a separation algorithm
in the program statement view optimizations of the compiler
should result 1n the same AST as originally presented to the
code generation transformations. In order to achieve all of
these goals, schedule reconstruction, domain reconstruction,
and domain stretching transformations are performed to gen-
crate a new stable program. This new stable program may be
ted back to the program statement view stage of the compiler
for further optimizations by the program statement view opti-
mizations.

[0146] As discussed above, the loop optimizer 830 applies
polyhedral transformations to the program statement view
820 of the program or source code. The code generation
optimizations, on the other hand, have the sole purpose of
reshaping the AST of the program loop view 850 for lower
control flow overhead. These latter transformations do not
modily the program semantics in any way although they may
result in different equivalent schedules after regeneration via
the re-entrance path. Assume that the original program source
code s referred to as P, the AST of the program loop view 850
is AST?, the code generation optimizations used to generate
the AST? are denoted P, and the stable program generated
from the AST* using regeneration is P'. Using this notation,
the transition graph for the iterative polyhedral loop transior-
mation optimizations of the illustrative embodiments 1s
shown 1n FIG. 15 where the goal, which 1s achieved by the
illustrative embodiments, is to ensure AST =AST? in order
to build a stable, reentrant and iterative framework that does
not rely on any other part of the global compilation chain to
iterate.

[0147] Consider a simple code fragment such as shown 1n
FIGS. 16 A-16C, with statements S1, S2, and S3 covering the
iteration points depicted 1n the graphs below the code frag-
ments. Considering the code 1n FIG. 16 A, a typical represen-
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tation of this program generated by the loop optimizer mod-
ule 830 i1s shown in FIG. 16B. Polyhedral code generator
algorithms of the code generation optimization/parallelism
detection module 860 1solate the 1==N data point from the
others. After one or more iterations of the loop optimizer
module 830 and the code generation optimization/parallelism
detection module 860 using the optimizations described
above, and without imposing the stability requirements dis-
cussed herein, the code shown 1n FIG. 16C 1s obtained where
additional data points have been 1solated.

[0148] FIGS. 16 A-16C illustrate the large code growth that

may occur as a byproduct of successive polyhedral rescan
operations by the polyhedral rescan module 870 and the suc-
cessive operation of the code generation optimization/paral-
lelism detection module 860. This code growth will obviously
impact the quality of the final code. In addition, by looking
carefully at FIG. 16C, one notices that all the conditionals
have migrated from inside the loops to the top level (outside
of any loops). This 1s a hard to reverse process that may
prevent other optimizations from being performed.

[0149] This code bloat and conditional migration occurs
because of the following reasons. Each time that the code
goes through a polyhedral regeneration operation, and the
statements are split, the subsequent polyhedral code genera-
tion operation by the polyhedral code generator 840 has less
flexibility to combine the same original statements 1nto con-
vex areas with uniform sets of statements within 1tself. For
example, in FIG. 16B, all the statements are under a unique
“for1” loop because there are mstances of S1/52/53 1n the tull
1=1 . . . n range. Consider what happens to S1 the next time
around. The original S1 has been split into 3 distinct S1.1,
S1.2, and S1.3 sub-statements with, respectively, ranges for
1=1...n-2,1=1...n-1, and i=n. These distinct ranges will
result 1in a top-level conditional with the resulting replication
seen 1n F1G. 16C. Thus, what 1s needed 1s a way to control this
replication 1n order to prevent highly optimized code with
poor single thread performance due to 1nstability conditions

that leads to highly duplicated code with a high degree of
redundant replication and control overheads.

[0150] This goal 1s achieved by the mechanisms of the
illustrative embodiments by recombining instances of state-
ments prior to the polyhedral rescan operation being per-
formed so as to prevent the code growth shown 1n FIG. 16C.
These mechanisms are heuristically driven 1n that none of the
operations discussed hereafter are necessary but, 11 followed,
the code growth for the particular statement operated will be
prevented.

[0151] Inorder to perform this recombining of instances of
a statement, an operation 1s performed, such as by the poly-
hedral rescan module 870, on the new AST generated by the
code generation optimization/parallelism detection module
860. As discussed above, the AST 1s an encoded hierarchical
ordered graph where each inner node corresponds to an 1tera-
tion domain at a given depth 1n the loop nest structure. Each
leal node has also a list of statements that are enclosed by the
loop nest. For a given node N at depth d in the AST, the node
is associated with a domain D", which is a polyhedral repre-
sentation of the domain associated with the enclosed state-

ments, and projected to retlect the depth d of the node 1n the
AST.

[0152] The requirements imposed by stability under the

separation algorithm are less straightforward. Consider a
node N of depth d in AST”. If its scattering domain DY
projected ondepths 1. .. d-1 and simplified under the parent
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domain 1s not the universe domain, 1t means node N holds
constraints that can be hoisted. A hoistable condition 1s a
constraint at depth 1 appearing 1n a polyhedron of depth k 1n
the AST such that 1<k (i.e. a constraint in which the time
dimension k does not appear in the constraint). Recall that the
time t 1s represented by a vector of time elements, with a
lexicographical interpretation of the times. In the above state-
ment, 1t 18 stated that a constraint 1n the time dimension k does
not appear 1 the k’s position 1n the vector (starting from the
left) 1s null. If such constraints were to appear in the regen-
crated program, they would trigger the same separation
behavior from Quillere’s algorithm as shown 1n FIG. 16A-
16C. In turn, this would result 1n the code bloat as shown 1n
FIG. 16C. Therefore, in order to perform a stable polyhedral
rescan operation to generate the program statement view 820
from the newly optimized program loop view 850, the poly-
hedral rescan operation must not specialize a statement’s
representation past any node containing such a hoistable con-
dition.

[0153] Thus, the mechanisms of the illustrative embodi-
ments use the following three phase operation to ensure sta-
bility of the program code being returned to the program
statement view 820. A first pass on the AST? is used to detect
the nodes containing hoistable conditionals by traversing the
tree of the AST” in a depth-first search traversal order (i.e.
visiting/processing each parent node before each of i1ts own
chuldren. A parent, or father, node F 1s then marked as a
boundary node for re-entrance 1f one or more of 1its direct
children are detected as having one or more hoistable condi-
tionals. Then, for each such boundary node of a given depth d,
all the instances of a given statement S' are 1dentified and a
single compound statement S 1n P' 1s generated to represent
them. The set of instances of S under parent node F 1s denoted
IS, ..} where inst implicity denotes an enumeration of the
different instances of the given statement S under F. The new
domain for the compound statement is set as D~ =union over

all instances inst(_Ldom iters (D, _>""*).

IFSE
[0154] In other words, the new domain associated with a
given statement S 1s formed as follows. From node F, each of
the leat nodes (nodes without children) for which F 1s a (direct
or indirect) parent 1s searched. The umon of the domain
associated with statement S at each of these leal nodes is
generated. This union of domain defines the final domain
associated with statement S. The tradeofl with the above
solution 1s that statements 1n P' do not correspond to the leaves
of AST”. This means that when the rescan process of the
polyhedral rescan module 870 1s complete, and the program
loop view 850 has been successtully translated back into the
program statement view 820, each part of the statements
associated with each of the leaves under node F we will not be
able to optimized separately as they will have been grouped
together as a single statement 1n order to avoid the problem
assoclated with the hoistable condition. However, the new
AST” resulting from application of the code generation opti-
mizations 1s guaranteed to be the same syntax tree as the
original AST”. This means that by doing such grouping of
statements under node F, the hoistable condition problem has
been avoided and thus, the overall quality of the generated

code has not been degraded by a cycle through elements 840
and 870.

[0155] Returning again to FIG. 8, as discussed above, after
iterating the optimizations performed by the loop optimizer
830 and the code generation optimization/parallelism detec-
tion module 860 via the re-entrance path comprising the
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polyhedral rescan module 870 to achieve a desired level of
optimization, the resulting optimized code must be emitted,
by the code emitter 880, to the compiler 803.

[0156] Determination on whether to go along the re-en-
trance path or not depends on various factors. First, it may be
desirable to transform the code to the program loop view 850
representation before completing all optimizations 1n the pro-
gram statement view 820 representation in order to gather
some knowledge about the code. For example it may be
desirable to use the program loop view 850 to determine
which loops are parallel, to see if kernels need to be extracted,
to evaluate the complexity of the current code, and/or any
other qualitative information that may be gathered from the
program loop view 850 representation. Once this information
1s gathered, 1t 1s desirable to go back to the program statement
view 820 representation to exploit this additional knowledge
for further optimization of the code upon determination,
based on this additional knowledge, that particular optimiza-
tions are advantageous.

[0157] Second, 1t may be desirable to apply all optimiza-
tions 1n the program statement view 820 representation at
once. In this framework, some loop optimizations from the
loop optimization module 830 may be applied and then the
program statement view 820 representation may be converted
to the program loop view or AST 850 representation. Specific
code optimizations may be applied by the code generation
optimization/parallel detection module 860, such as kernel
extraction and/or other code generation optimizations, and
then the re-entrance path may be traversed to go back to the
program statement view 820. Further optimizations of spe-
cific aspects of the program loop view or AST 850 represen-
tations (aiter being modified by the code generation optimi-
zations) may then be performed. Both approaches above are
not exclusive and may be jointly applied or applied repeti-
tively 1n some alternating fashion.

[0158] It 1s important that the code that 1s emitted back to
the compiler 805 be of good quality even 1n the presence of
highly optimized loop transformations, such as those of the
illustrative embodiments, used for data locality and parallel-
1sm where statements are executed at “different speed” from
the original program.

[0159] FIGS. 17A-17C 1llustrate an example of code opti-
mization where two statements have had their speed acceler-
ated by a factor of 3. FIG. 17A 1s an example of the original
code having a complex schedule. FIG. 17B 1s an example of
the original code after optimization and regeneration for
emitting back to the compiler. As can be seen from FIG. 17B,
obviously something very wrong occurred as the code size
has been significantly increased. Thus, significant code bloat
1s again found with typical optimizations.

[0160] With the illustrative embodiments, to avoid such
code bloat, a domain stretching operation 1s performed to
augment the code generation optimization/parallelism detec-
tion operations that transform the program statement view
820 into the program loop view 850. This operation essen-
tially normalizes the domains associated with each statement
by stretching them to their largest possible values without
adding any execution points, which would otherwise change
the semantics of the program. As a result of this optimization,
which may be typically implemented in the code generation
optimization/parallelism detection module 860 for example,
high quality output code may be generated while enabling a
path 1n which a statement can be still meaningtully split into
distinct sub-statements as previously described above. As
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discussed above, these sub-statements may then be optimized
as 1f they were original statements 1n the original program,
namely the full range of optimizations such as loop fusion,
loop splitting, loop skewing, loop tiling, (non) unimodular
loop transformations, and the like, may be applied to these
sub-statements as well.

[0161] As discussed above, the schedule of loops 1n a pro-
gram may be represented as a structured matrix having three
sub-matrices: (1) the Alpha matrix, which represents the
speed at which statements are fired along a given time dimen-
sion; (2) the Beta matnix, which represents the sequential
interleaving of statements along the different loop depths; and
(3) the Gamma matrix, which represents the constant para-
metric shifting along each time dimension. The values of the
Beta matrix will differ for each mstance of an original state-
ment S. The values of this Beta matrix may be read from the
inner data representation of the AST 1n either the program
statement view 820 or the program loop view 830.

[0162] When the loop optimizer 830 accelerates a state-
ment with respect to another, this yields a matrix Alpha with
strides greater than 1 along with constant shiftings, and addi-
tional stability interplays occur with the Quillere separation
algorithm. For example, as shown 1n FIGS. 17A-17B, both S1
and S2 are slowed by a factor 3 on a first time dimension and
statement S2 1s shifted by 1.

[0163] When considering the Alpha matrix, or A for short,
transformations with stride greater than 1 along with shifting,
the domains in the transtormed space become very uniriendly
for re-entrance. For example, consider the simplified sched-
ules 1n FIGS. 18A-18F. Initially, scattering domains are con-
structed 1n the time (1.e. transformed) space by applying the
schedule function to the iteration domain for each statement
in the program. This step actually expands the size of the
domain by a factor 3 producing the time bounds observed 1n
FIG. 18B. The separation phase proceeds and yields the code
obtained from the code generation optimization/parallelism
detection module 860 as shown 1n FIG. 18C. Now, when the
program P' 1s regenerated in FIG. 18D, the new iteration
domains are obtained by shrinking back the separated time
domains into the original space by a factor 3. The new expan-
sion phase performed when reconstructing the new scatter
domains 1n FI1G. 18E returns different scattering domains that
will be split further and make the code size grow as 1n FIG.
18F. It 1s also important to notice how the loop bounds on the
first and last loops change between FIGS. 18C and 18F when
using re-entrance and going back and forth from time space to
original space. Actually, if no special care 1s taken, this pro-
cess 15 recurrent at each regeneration attempt and stability
will never be reached 1n the context of such Alpha matrix
schedules.

[0164] Thus, the mechanisms of the illustrative embodi-
ments define a new transformation, the scatter domain
stretching transformation, to apply on domain constraints at
scattering construction time. For each statement S the follow-
ing operations are performed. First, the loop depth Ds asso-
ciated with statement S 1s determined. Then the Hermite
Normal Form (Hnf) matrix 1s calculated from the Alpha
scheduling matrix. The Hermite Normal Form matrix is con-
structed using a standard matrix transiformation (or linear
algebra) that separates a given matrix X into a product of two
matrices Y *7Z, where Y 1s a matrix in Hermite Normal Form
and 7 1s a ummodular matrix. The Hermite Normal Form Y
matrix 1s a non-negative, non-singular, lower triangle matrix
such that for each row 1, the maximal element 1s Y, , (1.e. the
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diagonal element 1s larger than any others on that row). A
unimodular matrix 1s a rectangle matrix whose determinant 1s
either plus or minus one.

[0165] The scattering matrix Theta 1s computed using
Alpha, Beta, Gamma matrices, and the domain of the state-
ment S. For each time dimension Td (from 1 to Ds) the
tollowing operations are performed. The stride factor 1s com-
puted as SI=Hni[Td, Td]. Namely the stride factor is the
diagonal element at row/column number Td in the Hermite
Normal Form matrix. Upon a determination that the stride
factor S1>1 then a determination 1s made as to whether this
stride factor St divides every component (1.e. time domain,
and parametric dimensions) 1n the scattering matrix for every
row that contains a non-null Td entry.

[0166] If this check succeeds, then proceed as follows for
cach domain constraints Cd that include Td. If Cd 1s deter-
mined to be a lower bound constraint of the form “i(time,
parameters)>=const”’, then const 1s replaced by tloor((const—
1)/S1)*S1+1 1n the original domain matrix. Alternatively, 1f
Cd 1s determined to be an upper bound constraint of the form
“f(time, parameters)<=const”, then const 1s replaced by floor
((const+1) S1)*S1-1 1n the original domain matrix.

[0167] Once the above algorithm runs 1ts course, the fol-
lowing post-processing 1s performed. The scattering matrix
Theta 1s recalculated using Alpha, Beta, and Gamma matri-
ces, and the modified domain. The resulting new scattering
matrix 1s then void of the stretching constraint 1ssue.

[0168] Note that the above example 1s only one exemplary
way to process the time constraints, as they are alternative
ways to dertve some of the coetlicients and/or other values
that the constraints can be normalized to. Those of ordinary
skill in the art will readily understand, 1n view of the present
description, the manner by which the mechanisms of the
illustrative embodiment may be modified for other imple-
mentations 1 which the coefficients and other values are
represented differently. The present invention 1s not limited to
the particular i1llustrative embodiments set forth above.

[0169] This transformation has the effect of stretching each
constraint, encompassing into the domain every integer point
of the time space that 1s strictly non integrate in the original
space. It provides normalization for the scatter domains while
guaranteeing that no new point 1s added to the original space.
It further keeps the exact same number of executed 1nstances
for each statement while maximizing the overlapping of time
domains.

[0170] The scatter domain with stretching transformation
of the 1llustrative embodiments receives, as input, the Alpha,
Beta, and Gamma matrices for a given statement as well as the
domain for the statement. The scatter domain with stretching
transformation outputs a modified scattering matrix Theta'.
An example of pseudocode for implementing a scatter
domain with stretching transformation in accordance with
one illustrative embodiment 1s provided as follows:

Determine the loop depth Ds associated with statement S;
Compute the Hnf (Hermite Normal Form) matrix from the alpha matrix;
Compute the scattering matrix Theta using Alpha, Beta, Gamma, and
Domain for each time dimension Td (from 1 to Ds)

stride factor ST = Hnf[Td, Td] (the diagonal element at row/column
number Td in the Hermite Normal Form matrix);

if stride factor St > 1 then

check if this stride factor St divides every component (i.e. time

domain, and parametric dimensions) 1n the scattering matrix for every
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-continued

row that contain a non-null Td entry;
if this check succeeds, then
for each domain constraint Cd that includes Td:
if 1t 1s determined that Cd 1s a lower bound constraint of the

form “f(time, parameters) >= const”,

replace const by floor( (const—1) / Sf) * S +1 in the origina
domain matrix;

if 1t 1s determined that Cd is an upper bound constraint of the form

“f(time, parameters) <= const”,

replace const by floor((const+1) / Sf) * Sf -1 in the original
domain matrix;
Recompute the scattering matrix Theta using Alpha, Beta, Gamma, and
the modified domain.

[0171] Intheabove pseudocode, the Hermite Normal Form
matrix 1s a matrix obtained from using the known Hermite
Normal Form decomposition method but which 1s restricted
to the case of a single transformation, or at best to harshly
constraimned multiple transformations. The Hermite Normal
Form matrix may be defined as follows: Given an integer
matrix H of size mxn and full rank, H 1s in Hermite Normal
Form if and only 1if H=[B 0] where B 1s a non-negative,
non-singular lower triangular matrix such that for each row I,
the unique maximal element 1s b, ;(1.e. V)<i1, b, <b, ;). More-
over, 1n the above pseudocode, the generation of the scatter-
ing matrix Theta from the Alpha, Beta, and Gamma matrices,
and the domain, 1s generally known in the art.

[0172] FIGS.19A-19B illustrate the scattering domains for
S1 and S2 and resulting stable AST? obtained using the
scatter domain with stretching transformation of the illustra-
tive embodiments. The overlapping portion of the scattering
domains 1s much friendlier to re-entrance stability but will
still generate a cut for statement S2 and 3N+3=t1=3N+4.
However, this cut i1s actually non-integral in the original
dimension and it will indeed be removed from the resulting
program loop view 850, i.e. AST?". While domain stretching
1s described as a transformation for re-entrance, it also pro-
vides very elficient reduction in the number of separations
performed by the separation phase because 1t helps 1n avoid-
ing spurious border cuts.

[0173] FIGS. 20A-20C illustrate an example of domain
stretching under re-entrance 1n accordance with one illustra-
tive embodiment. This example considers the schedule equa-
tions:

ie/1,M] Nt =3i+2M 1,=3i+3M

The respective scatter domains are thus: 2M+3=t, =5M+2
OM+3=t,=0M. This 1n turn yields, after stretching:
2M43=t, =5M+2 ABM+3=t,=6M+2. While the constraints
on 12 have been successiully stretched and will provide less
opportunities for separation with other statements, the ones
on t1 could not be stretched because of the statically unknown
value o1 2M %3. Under such schedules, the interleaving of the
statements changes with the values of 2M %3 and cannot be
expressed without outermost modulo case distinction. How-
ever, no disruption on the re-entrance stability 1s experienced
as can be seen from FIGS. 20A-20C. The reason behind the
stability 1s that the stretched loop bounds are parametric and
cover all the different modulo cases with a single expression.
The lack of knowledge of the exact modulo remainder forces
the domains to overlap and does not generate spurious cuts.

[0174] FIGS. 21-24 are flowcharts that illustrate various
operations according to the illustrative embodiments. It will

be understood that each block of the flowchart illustrations,
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and combinations of blocks 1n the flowchart illustrations, can
be 1mplemented by computer program instructions. These
computer program instructions may be provided to a proces-
sor or other programmable data processing apparatus to pro-
duce a machine, such that the instructions which execute on
the processor or other programmable data processing appa-
ratus create means for implementing the functions specified
in the flowchart block or blocks. These computer program
instructions may also be stored mm a computer-readable
memory or storage medium that can direct a processor or
other programmable data processing apparatus to function 1n
a particular manner, such that the mstructions stored 1n the
computer-readable memory or storage medium produce an
article of manufacture including instruction means which
implement the functions specified 1n the flowchart block or

blocks.

[0175] Accordingly, blocks of the flowchart illustrations
support combinations of means for performing the specified
functions, combinations of steps for performing the specified
functions and program instruction means for performing the
specified Tunctions. It will also be understood that each block
of the flowchart 1llustrations, and combinations of blocks 1n
the tlowchart illustrations, can be implemented by special
purpose hardware-based computer systems which perform
the specified functions or steps, or by combinations of special
purpose hardware and computer 1nstructions.

[0176] Furthermore, the tflowcharts are provided to demon-
strate the operations performed within the illustrative
embodiments. The flowcharts are not meant to state or imply
limitations with regard to the specific operations or, more
particularly, the order of the operations. The operations of the
flowcharts may be modified to suit a particular implementa-
tion without departing from the spirit and scope of the present
invention.

[0177] FIG. 21 1s atlowchart outlining an exemplary opera-
tion for utilizing a re-entrance path to obtain further optimi-
zation of code 1n accordance with one 1illustrative embodi-
ment. The operation outlined in FIG. 21 may be performed,
for example, by a polyhedral loop optimization mechanism,
such as element 800 1n FI1G. 8 described above. The polyhe-
dral loop optimization mechanism may work 1n conjunction
with a compiler, such as compiler 805 1n FIG. 8, to optimize
source code 1n an 1terative manner using a re-entrance path of
the illustrative embodiments. The optimized code may then
be provided back to the compiler 805 for use 1n generating,

executable code for execution on a computing device, such as
server 304 or client 310 1n FIG. 3, or the like.

[0178] As shown in FIG. 21, the operation starts with
source code being recerved from the compiler (step 2110). A
program statement view ol the source code 1s generated using,
a known methodology (step 2112). For example, as discussed
above, a known polyhedral scan operation may be performed
on an intermediate representation of the source code to gen-
erate a program statement view of the source code. One or
more loop optimizations are then optionally performed on the
program statement view of the source code (step 2113).

[0179] For each statement in the program statement view of
the source code, program statement information, such as the
Alpha, Beta, and Gamma matrices, the Domain, Access
Function(s), and the statement expression, are obtained (step
2114). A scattering matrix is built for each statement based on
the program statement information (step 2116) and a portion
of the program statement information, such as the Alpha,
Beta, and Gamma matrices, for example, 1s stored for later use
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(step 2118). It should be noted that the present invention 1s 1n
no way limited to a specific representation of the scheduling
function associated with a given statement. The Alpha, Beta,
and Gamma matrix structure 1s used herein as one example
embodiment for i1llustrative purposes only. Many other types
of representations may be utilized without departing from the
spirit and scope of the present invention. For example, other
possible representations may include a unified matrix repre-
senting the scheduling information that maps a specific 1tera-
tion to a specific (possibly multi-dimensional) date or the like.

[0180] A program loop view, or AST, of the source code 1s
generated based on the program statement view and the scat-
tering matrix (step 2120). For each node in the program loop
view, a list of statements included 1n the node 1s stored and a
reference to each statement’s original program statement

information 1s also stored in association with the node (step
2122).

[0181] One or more code generation optimizations may be
performed on the program loop view (step 2124) and a deter-
mination 1s made as to whether the re-entrance path 1s to be
taken (step 2126). As mentioned above, the decision to take
the re-entrance path 1s dependent upon the particular circum-
stances and whether or not re-entrance will be beneficial to
the overall optimization of the code. This decision may be
made based on user mput or an automated mechanism, as
discussed previously above.

[0182] If the re-entrance path 1s not to be taken, then the
operation terminates. If the re-entrance path 1s to be taken,
then the statements in the nodes of the program loop view are
split, 1 possible, into sub-statements upon which loop opti-
mizations may be performed individually (step 2128). The
nodes, which may include the split sub-statements, are then
rescanned to construct new program statement information
(step 2130). The rescanning of the nodes 1n the program loop
view may involve, for example, selecting a set of boundary
nodes. The set of boundary nodes may be a set of interior

nodes (node with children) provided none of the interior
nodes have parent nodes that are already a boundary node or
a set of leaf nodes (node without children) provided that nod
of the leat nodes have parent nodes that are already boundary
nodes. Then for a given boundary node B at depth d 1n the
program loop view, for each statement S associated with B,
new program statement information 1s constructed as follows.
The Alpha and Gamma matrices are maintained the same as
they were for the original statement S (as stored by step 2118).
The Beta matrix 1s reactualized to reflect the ordering in the
program loop view. For example, 1f a beta value 1n the Beta
matrix 1s 1, the depth d 1s set to the node number at each level
in the program loop view. IT a beta value 1n the Beta matrix has
a value of the depth d+1, the last beta value 1s set to the
corresponding value 1n the orniginal beta values associated
with S and stored in the program loop view. The domain may
then be constructed as the union of all the domains associated
with leal nodes that contain S and have node B as a parent
node.

[0183] The new program statement information 1s then
used to generate a new program statement view of the source
code (step 2132). This new program statement view of the
source code may then be subjected to additional loop optimi-
zations, converted 1nto a new program loop view of the code
to which additional code generation optimizations may be
applied, and the like, 1n an 1terative manner, 1f desired. The




US 2009/0307673 Al

operation then either terminates 1f no further optimization 1s
required or returns to step 2113 1if further optimization 1s
desired.

[0184] Itshould benoted that the above embodimentis only
one possible application of a scheme 1n which a code genera-
tion step (such as the AST generation 1n step 2120) 1s used in
order to split original statements for further optimizations 1n
a Program Statement Representation. Alternative embodi-
ments could simply build an AST and analyze 1t using some
generic mspector 1n order to determine suitable cuts directly
in the original Program Statement Representation. While 1t 1s
believed that the process 1n FIG. 21 1s an efficient way to
proceed, such alternative process generating an AST or simi-
lar code representation followed by an inspection phase to
split statements in the original Program Statement View are
equally applicable and suitable in some implementations of
the present invention.

[0185] FIG. 22 1s atlowchart outlining an exemplary opera-
tion for applying a code generation transformation algorithm
in accordance with one 1llustrative embodiment. The opera-
tion outlined 1n FIG. 22 may be performed, for example, as
part of the step 2124 1n FIG. 21. It should be appreciated that
the operation outlined in FIG. 22 may be performed for each
of a plurality of code generation optimizations.

[0186] As shown in FIG. 22, the operation starts with
receiving the program loop view of the source code (step
2210). This may be obtained, for example, from step 2122 1n
FIG. 21. A definition of the types of nodes in the program loop
view to which a particular code generation optimization is to
be applied may be generated (step 2220). It should be appre-
ciated that such a definition may have been previously defined
prior to the operation outlined 1n FI1G. 22 being executed, for
example. The nodes of the program loop view are then tra-
versed to mark the nodes meeting the definition for the code
generation optimization (step 2230). The code generation
transformation algorithm is then applied such that the code
generation optimization core function 1s applied to the state-
ments in the marked nodes (step 2240). The operation then
terminates.

[0187] The code generation transformation algorithm
applied 1n step 2240 may be of the type shown 1n FIG. 11,
described previously. An alternative code generation trans-
formation algorithm may be as shown in the following
pseudocode where AST refers to the program loop view of the
source code currently undergoing the code generation opti-
mizations:

ApplyCodegenTransformation: applies a transformation on AST
Input :
node: AST, where the nodes that 1nitiate a transformation are marked.
outer_ visitor type: method that order the nodes of the AST
according to i1ts definition (e.g. depth first search, ...)
apply__core_ function: method to be applied on the marked node
propagate  changes: method to be applied on the children below a
marked node
Output : transformed AST
visitor = new visitor{outer__visitor__type, root of AST)
for each currentNode in visitor, according to the order defined by the
outer__ visitor_type
if currentNode i1s marked
boolean changed = false
1 core_node_ list = apply_ core_ function(currentNode, changed)
if changed
sort core__node__list under parent context
foreach newNode 1n core_ node_ list, accorind to the sorted
order
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-continued
2 newNode.children = a replicate copy of currentNode.children
3 newNode = propagate changes(newNode.children)
if newNode.children size 1s O
4 delete newNode
return transformed AST

It should be appreciated that with the application of the code
generation transformation algorithm of the illustrative
embodiments, rather than having to apply code generation
optimizations to the program loop view as a whole, 1.e. at only
the root of the program loop view, or at all of the nodes at the
same depth as a whole, the mechanisms of the illustrative
embodiments allow the code generation optimizations to be
applied to individual arbitrary sets of one or more nodes inthe
program loop view.

[0188] FIG. 23 1s atlowchart outlining an exemplary opera-
tion for preserving stability of code 1n the presence of condi-
tionals for re-entrance in accordance with one illustrative
embodiment. The operation outlined 1n FIG. 23 may be per-
formed, for example, as part of step 2130 1n FIG. 21 to ensure
stability of the code, 1.e. minimizing growth of the code or
code bloat.

[0189] As shown in FIG. 23, the operation starts with
receiving the program lop view of the source code (step
2310). A next node 1n the program loop view 1s identified 1n a
depth first search order with processing of parent nodes
betore child nodes (step 2320). The depth d of the node 1s
retrieved and the immediate parent of the node 1s 1dentified
(step 2330). The scattering domain for the node 1s projected
onadepthof 1 tod-1 (step 2340) and the projected scattering
1s stmplified under the domain of the parent node (step 2350).
A determination 1s made as to whether the domain 1s the
umverse (step 2360). Stating that a domain 1s the universe 1s
equivalent to stating that the domain corresponds to the entire
space with no constraints. For example, 1n the one dimen-
sional space of integer or entire numbers, a domain formed by
the two constrains “x>-35 and x<10” 1s not the universe as 1t
has constrains. However, 11 a domain with no constrains 1s the
umverse, 1t includes any possible integer numbers, from

minus infinity to plus infinity. If the domain 1s not the uni-
verse, then the parent node 1s marked as a boundary node (step

2370).

[0190] Thereatter, or 1f the node 1s the universe, a determi-
nation 1s made as to whether more nodes are present that need
to be processed (step 2380). If so, the operation returns to step
2320 and repeats with the next node. If no more nodes are to
be processed, the operation performs a rescan operation (step

2390) such as 1n step 2130 of FIG. 21. The operation then
terminates.

[0191] FIG. 24 1s aflowchart outlining an exemplary opera-
tion for performing scatter domain stretching in accordance
with one 1llustrative embodiment. As shown 1in FIG. 24, the
operation starts with receiving the program statement view of
the source code with the program statement information for
the various statements (step 2410). A next statement 1n the
program statement view to process 1s 1identified (step 2412)
and a loop depth Ds of the statement 1s determined (step
2414). The Hermite Normal Form (HNF ) matrix for the state-
ment 1s computed from the Alpha matrix of the statement
(step 2416). The scattering matrix Theta for the statement 1s
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computed using the Alpha, Beta, and Gamma matrices and
the Domain of the statement (step 2418).

[0192] A next time dimension to be processed 1s 1dentified
(step 2420). A stride factor for that time dimension 1s deter-
mined based on the HNF matrix (step 2422). A determination
1s made as to whether the stride factor 1s greater than one (step
2424). 11 the stride factor 1s greater than one, then a determi-
nation 1s made as to whether the stride factor divides every
component in the scattering matrix for every row that contains
a non-null time dimension entry Td (step 2426). I so, then for
cach domain constraint Cd that includes the time dimension
entry Td, 11 Cd 1s a lower bound constraint of the form {(time,
parameters)>=const, then const 1s replaced by tloor(const-1/
S1)*S1+1 1n the original domain matrix, where St1s the scatter
tactor. I Cd 1s an upper bound constraint of the form f(time,
parameters)<=const, then const 1s replaced by tloor((const+
1)/S1)*S1-1 1n the original domain matrix (step 2428).

[0193] Thereafter, or if the stride factor does not divide
every component in the scattering matrix (step 2426), or i the
stride factor 1s less than or equal to 1, then a determination 1s
made as to whether there are additional time dimensions to
process (step 2430). ITthere are additional time dimensions to
process, the operation returns to step 2420 and proceeds with
the next time dimension. If there are no additional time
dimensions to process, the operation determines 1f there are
more statements to process (step 2432). If there are more
statements to process, the operation returns to step 2412 and
proceeds with the next statement. If there are no more state-
ments to process, then the scattering matrix Theta 1s recom-
puted using the Alpha, Beta, and Gamma matrices and the
modified domain (step 2434). The operation then terminates.

[0194] Again, this invention 1s not constrained to a particu-
lar representation of the schedule (the Alpha/Beta/Gamma
matrices here). While they are used 1n the above embodi-
ments, other alternative representations can be used in the
illustrative embodiments without departing from the spirit
and scope of the present invention, as discussed above.

[0195] Thus, the illustrative embodiments provide a
mechanism for optimizing source code that permits indi-
vidual statement instances within a program loop view of the
source code to be operated upon by code generation optimi-
zations and loop optimizations. A re-entrance path 1s pro-
vided through which the code may undergo optimizations in
an 1terative manner. The re-entrance path allows a program
loop view of the code to be transtormed back 1nto a program
statement view so that program loop optimizations may be
applied to the program statement view after code generation
optimizations have been applied to the previous program loop
view. Moreover, mechanisms are provided for ensuring the
stability of the code when traversing the re-entrance path by
projecting and simplifying scattering domains, performing
polyhedral rescans of the code based on such scattering
domains, and minimizing code bloat.

[0196] It should be appreciated that the 1llustrative embodi-
ments may take the form of an entirely hardware embodi-
ment, an entirely soltware embodiment or an embodiment
containing both hardware and software elements. In one
exemplary embodiment, the mechanisms of the illustrative
embodiments are implemented 1n software, which includes
but 1s not limited to firmware, resident software, microcode,
etc

[0197] Furthermore, the 1llustrative embodiments may take
the form of a computer program product accessible from a
computer-usable or computer-readable medium providing
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program code for use by or 1n connection with a computer or
any instruction execution system. For the purposes of this
description, a computer-usable or computer-readable
medium can be any apparatus that can contain, store, com-
municate, propagate, or transport the program for use by or in
connection with the mstruction execution system, apparatus,
or device.

[0198] The medium may be an electronic, magnetic, opti-
cal, electromagnetic, infrared, or semiconductor system (or
apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current

examples of optical disks include compact disk—read-only
memory (CD-ROM), compact disk—read/write (CD-R/W)

and DVD.

[0199] A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code 1 order to reduce the
number of times code must be retrieved from bulk storage
during execution.

[0200] Input/output or I/O devices (including but not lim-
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems and Ethernet cards are just a
tew of the currently available types of network adapters.
[0201] The description of the present invention has been
presented for purposes of illustration and description, and 1s
not intended to be exhaustive or limited to the imnvention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method, 1n a data processing system, for optimizing
program code, comprising;:

recerving source code for a program 1n a compiler;

transforming the source code nto a program statement
view of the source code;

transforming the program statement view of the source
code 1nto a program loop view of the source code;

applying one or more code generation optimizations to the
program loop view of the source code to generate opti-
mized code; and

outputting the optimized code to a compiler for use 1n
generating executable code for execution on a comput-
ing device, wherein transforming the program statement
view of the source code 1nto a program loop view of the
source code comprises applying a domain stretching,
operation to domains of statements 1n the program state-
ment view of the source code to normalize the domains
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by stretching each domain to its largest possible value
without adding execution points.

2. The method of claim 1, wherein applying a domain
stretching operation to domains of statements 1n the program
statement view comprises, for each statement and each time
dimension:

statically determining a factor f that 1s greater than one and

will divide the time dimension t from a remapping
matrix;

checking the factor 1to ensure that the factor I divides every

factor on all time, domain, and parametric dimensions;
and

stretching a constraint associated with the domain of the

statement based on the factor.

3. The method of claim 2, wherein stretching the constraint
comprises stretching the constraint to a closest multiple of the
factor f minus 1 11 the constraint 1s a lower bound on the time
dimension t.

4. The method of claim 2, wherein stretching the constraint
comprises stretching the constraint to a closest multiple of the
tactor f plus 1 1f the constraint 1s not a lower bound on the time
dimension t.

5. The method of claim 1, wherein applying a domain
stretching operation to domains of statements 1n the program
statement view comprises, for each statement and each time
dimension:

receiving an Alpha matrix, Beta matrix, and Gamma matrix

associated with the statement, wherein the Alpha matrix
represents a speed at which an associated statement 1s
performed along a given time dimension, the Beta
matrix represents a sequential interleaving of the asso-
ciated statement along different loop depths, and the
(Gamma matrix represents a constant parametric shifting
of the associated statement along each time dimension;
receiving a domain for the statement;
applying a scatter domain with stretching transformation to
the statement based on the Alpha, Beta, and Gamma
matrices and the domain; and

receiving as output of the scatter domain with stretching
transformation, a first scattering matrix.

6. The method of claim 5, wherein applying the scatter
domain with stretching transformation comprises:

determining a depth of the statement within the program
statement view;

computing a second scattering matrix based on the Alpha,
Beta, and Gamma matrices and the domain of the state-
ment;

determining a modified domain for the statement based on
the Alpha matrix; and

generating the first scattering matrix based on the Alpha,
Beta, and Gamma matrices and the modified domain.

7. The method of claim 6, wherein determiming a modified
domain for the statement comprises:

computing a Hermite Normal Form matrix based on the
Alpha matrix;

determining a stride factor based on the Hermite Normal
Form matrix; and

modilying constraints associated with the domain of the
statement based on the stride factor.

8. A computer program product comprising a computer
useable medium having a computer readable program,
wherein the computer readable program, when executed on a
computing device, causes the computing device to:
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recerve source code for a program in a compiler;

transform the source code 1nto a program statement view of

the source code;

transform the program statement view of the source code

into a program loop view of the source code;

apply one or more code generation optimizations to the

program loop view of the source code to generate opti-
mized code; and

output the optimized code to a compiler for use in gener-

ating executable code for execution on a computing
device, wherein transforming the program statement
view ol the source code into a program loop view of the
source code comprises applying a domain stretching
operation to domains of statements 1n the program state-
ment view of the source code to normalize the domains
by stretching each domain to its largest possible value
without adding execution points.

9. The computer program product of claim 8, wherein the
computer readable program causes the computing device to
apply a domain stretching operation to domains of statements
in the program statement view by, for each statement and each
time dimension:

statically determining a factor 1 that 1s greater than one and

will divide the time dimension t from a remapping
matrix;

checking the factor 1 to ensure that the factor f divides every

factor on all time, domain, and parametric dimensions;
and

stretching a constraint associated with the domain of the

statement based on the factor.

10. The computer program product of claim 9, wherein the
computer readable program causes the computing device to
stretch the constraint by stretching the constraint to a closest
multiple of the factor I minus 1 1f the constraint 1s a lower
bound on the time dimension t.

11. The computer program product of claim 9, wherein the
computer readable program causes the computing device to
stretch the constraint by stretching the constraint to a closest
multiple of the factor 1 plus 1 11 the constraint 1s not a lower
bound on the time dimension t.

12. The computer program product of claim 8, wherein the
computer readable program causes the computing device to
apply a domain stretching operation to domains of statements
in the program statement view by, for each statement and each
time dimension:

recerving an Alpha matrix, Beta matrix, and Gamma matrix

associated with the statement, wherein the Alpha matrix
represents a speed at which an associated statement 1s
performed along a given time dimension, the Beta
matrix represents a sequential interleaving of the asso-
ciated statement along different loop depths, and the
Gamma matrix represents a constant parametric shifting
of the associated statement along each time dimension;

recerving a domain for the statement;

applying a scatter domain with stretching transformation to
the statement based on the Alpha, Beta, and Gamma
matrices and the domain; and

recerving as output of the scatter domain with stretching

transformation, a first scattering matrix.

13. The computer program product of claim 12, wherein
the computer readable program causes the computing device
to apply the scatter domain with stretching transformation by:

determining a depth of the statement within the program

statement view;
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computing a second scattering matrix based on the Alpha,
Beta, and Gamma matrices and the domain of the state-
ment;

determining a modified domain for the statement based on

the Alpha matrix; and

generating the first scattering matrix based on the Alpha,

Beta, and Gamma matrices and the modified domain.

14. The computer program product of claim 13, wherein
the computer readable program causes the computing device
to determine a modified domain for the statement by:

computing a Hermite Normal Form matrix based on the

Alpha matrix;
determining a stride factor based on the Hermite Normal
Form matrix; and

modilying constraints associated with the domain of the

statement based on the stride factor.

15. A system, comprising:

a processor; and

a memory coupled to the processor, wherein the memory

comprises instructions which, when executed by the
processor, cause the processor to:

receive source code for a program in a compiler;

transform the source code into a program statement view of

the source code;

transform the program statement view of the source code

into a program loop view of the source code;

apply one or more code generation optimizations to the

program loop view of the source code to generate opti-
mized code; and

output the optimized code to a compiler for use in gener-

ating executable code for execution on a computing
device, wherein transforming the program statement
view of the source code 1nto a program loop view of the
source code comprises applying a domain stretching
operation to domains of statements 1n the program state-
ment view of the source code to normalize the domains
by stretching each domain to its largest possible value
without adding execution points.

16. The system of claim 15, wherein the instructions cause
the processor to apply a domain stretching operation to
domains of statements in the program statement view by, for
cach statement and each time dimension:

statically determining a factor { that 1s greater than one and

will divide the time dimension t from a remapping
matrix;

checking the factor to ensure that the factor 1 divides every

factor on all time, domain, and parametric dimensions;
and

stretching a constraint associated with the domain of the

statement based on the factor.
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17. The system of claim 16, wherein the instructions cause
the processor to stretch the constraint by stretching the con-
straint to a closest multiple of the factor T minus 1 11 the
constraint 1s a lower bound on the time dimension t.

18. The system of claim 16, wherein the instructions cause
the processor to stretch the constraint by stretching the con-
straint to a closest multiple of the factor 1 plus 1 if the con-
straint 1s not a lower bound on the time dimension t.

19. The system of claim 15, wherein the instructions cause
the processor to apply a domain stretching operation to
domains of statements in the program statement view by, for
cach statement and each time dimension:

receving an Alpha matrix, Beta matrix, and Gamma matrix

associated with the statement, wherein the Alpha matrix
represents a speed at which an associated statement 1s
performed along a given time dimension, the Beta
matrix represents a sequential interleaving of the asso-
ciated statement along different loop depths, and the
Gamma matrix represents a constant parametric shifting
of the associated statement along each time dimension;
recerving a domain for the statement;

applying a scatter domain with stretching transformation to
the statement based on the Alpha, Beta, and Gamma
matrices and the domain; and
recerving as output of the scatter domain with stretching
transformation, a first scattering matrix.
20. The system of claim 19, wherein the istructions cause
the processor to apply the scatter domain with stretching
transformation by:

determining a depth of the statement within the program
statement view;

computing a second scattering matrix based on the Alpha,
Beta, and Gamma matrices and the domain of the state-
ment,

determining a modified domain for the statement based on
the Alpha matrix; and

generating the first scattering matrix based on the Alpha,
Beta, and Gamma matrices and the modified domain.

21. The system of claim 20, wherein the instructions cause
the processor to determine a modified domain for the state-
ment by:

computing a Hermite Normal Form matrix based on the
Alpha matrix;

determining a stride factor based on the Hermite Normal
Form matrix; and

modifying constraints associated with the domain of the
statement based on the stride factor.
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