a9y United States

US 20090150511A1

12y Patent Application Publication o) Pub. No.: US 2009/0150511 A1

Gross et al.

43) Pub. Date: Jun. 11, 2009

(54) NETWORK WITH DISTRIBUTED SHARED

MEMORY
(75) Inventors: Jason P. Gross, Portland, OR (US);
Ranjit B. Pandit, Hillsboro, OR
(US); Clive G. Cook, Portland, OR
(US); Thomas H. Matson,
Portland, OR (US)
Correspondence Address:
ALLEMAN HALL MCCOY RUSSELL &
TUTTLE LLP
806 SW BROADWAY, SUITE 600
PORTLAND, OR 97205-3335 (US)
(73) Assignee: RNA NETWORKS, INC.,
Portland, OR (US)
(21) Appl. No.: 12/266,490
(22) Filed: Nov. 6, 2008
Related U.S. Application Data
(60) Provisional application No. 60/986,377, filed on Nov.

3, 2007.

Publication Classification

(51) Int.Cl.
GOGF 15/167 (2006.01)
GO6F 12/08 (2006.01)
(52) US.CL oo, 709/213; 711/141; 711/E12.025:
711/E12.026
(57) ABSTRACT

A computer network with distributed shared memory, includ-
ing a clustered memory cache aggregated from and com-
prised of physical memory locations on a plurality of physi-
cally distinct computing systems. The network also includes
a plurality of local cache managers, each of which are asso-
ciated with a different portion of the clustered memory cache,
and a metadata service operatively coupled with the local
cache managers. Also, a plurality of clients are operatively
coupled with the metadata service and the local cache man-
agers. In response to a request 1ssuing from any of the clients
for a data 1tem present in the clustered memory cache, the
metadata service 1s configured to respond with 1dentification
of the local cache manager associated with the portion of the
clustered memory cache containing such data item.

r TN 20
Metadata Service ’//_—
Policy Engine . “ap Clustered
90 Memory
\ J Cache 22 j
— 26,34 T
Data Store 80 g }'
M emao Cmmputmg
L _4 System 1
— 5 \
26 -, 34
: 4 k
Associated Information : Memnry Dmputmg
(e.g., Metadata) . LMMEH System 5
0 A N | N
Unit Tag MM Status ;
: 26 - 34
1 [: a3 },
i ;
2 Memory Computlng
3 " LMMS ' ‘ System 3
IR | -
‘ 26, 34
T
Memory Comput:ng
LS - LMM4 I ‘ System 4
... I,
32
w 26 - o4
b, (Network 40 p _ : ~
4 . N :{ Memory ECDmputing
Client i 24] System N
Policy Engine | 5
_ (Filter) 24 N —————— g
| Auxiliary Store 50
C|IEI‘tt
| Local Metadata 92 |
T) |

t il]
| Configuration
) | Manager 42

Policy Admin
Manager 44 Interface 46

Patent Application Publication Jun. 11, 2009 Sheet 1 of 6 US 2009/0150511 Al

20
Metadata Service ’/’

Policy Engine Clustered
90 Memory

Data Store 80

: ™
: :Computing
\ ’ ; i System 1
E S
e
Associated Information iComputing
(e.g., Metadata) ; E System 9
o A o E. J
Unit Tag MM Status ' :
_)\
iComputing
: System 3
: Y
T
| EComputing
; i l : E System 4
et et e e e i m__. _/
32\ _ | :
... Network 40 I é ~
_ EComputing
Client :
Policy Engine System N
(Filter) 94 —
=
Auxiliary Store 50
Client
| Local Metadata 92 — —

Configuration Policy Admin
Manager 42 Manager 44 Interface 46

FIG. 1

Patent Application Publication Jun. 11, 2009 Sheet 2 0of 6 US 2009/0150511 Al

Memory Manager 34

Cache Store 60

\-—/

Associated Information
(e.g. Metadata)

Monitor Process
02
Policy Engine
o4

. }
[Memory| | “22a
MMa ' L 24 J

34

Patent Application Publication Jun. 11, 2009 Sheet 3 of 6 US 2009/0150511 Al

’/—20

Clustered
Network 40 Memory
e ‘\\ Cache 22 w
G @) - -
\ — o ff \\ ; ;
Clients 32a ' | :(Memory |iComputing
| L » '
|] \ 24 i System 1
\ : :
;’ :
< -
, :
= 1)
: ;Computing
Auxiliary Store 50a ! t System 2
: N
| :
| :
Metadata | |
Service 30a ; :Computing
| i System 3
. Segment A : —
.
: | : :
| | ; :
| | E :
k Clionte — i g tB :
Clients 32b egment & :
: é N
: ! :Computing
‘ : i System 4
1 ! : :
— 7 =)
f . ' E
| : :
Auxiliary Store 50b l‘ : . : ;
‘1 | ¢ i §
| : :
\ ’ : :
Metadata \ :’ o
Service 30b \\ | iComputing
\ ! s System N
\ :
\ / :
\ / T
\ ! ;
\ !
\ /’

Patent Application Publication Jun. 11, 2009 Sheet 4 of 6 US 2009/0150511 Al

122 '/—120

~ Client
Request

B r126
— ~ 128
124 (Request/ /———%
Local obtain read Read (e.g.,
Metadata? YES » lock if not ——{ an RDMA |
already read)
present J \)

NO i

Cacheable?

YES
I I’134

(Access MS | '

NO
|

|
I
I
I
I
I
I
I
|
|
i
Provide :
YES Metadata 1o YVES
’
atMs: Client :
I
NO 144 i
140 Acknowledgement at |
MS; Update MS Data :
Store :
| a
1421 YES - -YES- -~ NO i
(146 |
Determine :
|

Failed
insertion?

Locality; Confer |
with MM(s) to
Populate Cache

FIG. 5

Patent Application Publication Jun. 11, 2009 Sheet 5 of 6 US 2009/0150511 Al

'-.- [T X N 3 B R N K N EF N B B X E X B ¥ R S §F B EFE N K X N X R 32 3 R _ 3§ 32 K R _J R B B B X R 3 E _E B B _E &R E 3 N 3 N 3] L x 2 3 8 F N E 3 § L N E 3 2 § 2 § L N L X L X B X N L N B _J§

Application 600
Cluster Interface 602 22 \

| x Memory
s l 24
: File System 604 l
| 606 l 608 610 E
612

| TcP/IP SCS! OFED

S - Target
HCA

L B N R ok N R]

Ethernet Fibre Channel Infiniband / iWarp

Auxiliary Store Access

FIG. ©

Patent Application Publication Jun. 11, 2009 Sheet 6 of 6 US 2009/0150511 Al

Application 600 :
: File System 604
l é 22\
Cluster Interface 602 Memory
1 | | E L_L-Lﬁ
SCSI '
5 612

| Fibre Channel L OFED

E E E E i é E Target
X ! : —
608 i Infiniband/ | :

Warp | |

Auxiliary Store Access

FIG. 7

US 2009/0150511 Al

NETWORK WITH DISTRIBUTED SHARED
MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application claims priority to U.S. Pro-
visional Patent Application Ser. No. 60/986,377, entitled
RESOURCE CLUSTERING IN ENTERPRISE NET-

WORKS filed Nov. 8, 2007, the disclosure of which is hereby
incorporated by reference.

BACKGROUND

[0002] The present disclosure relates to sharing memory
resources 1n computer networks. A broad class of computing,
innovation imvolves the combinming of computing resources to
provide various benefits. For example, a wide variety of tech-
nologies are used to allow distributed storage devices (e.g.,
hard drives) to be combined and logically accessed as a uni-
fied, shared storage resource. Processing resources have also
been combined and/or divided, for example, in multiproces-
sor and parallel processing systems, and in virtual machine
environments.

[0003] The sharing of computer memory (RAM) has
proved more difficult 1n many respects. Typically, discrete
memory chips are combined by tightly coupling the chips
together with specialized bus circuits, such as on RAM mod-
ules, desktop computer motherboards, and the like. Accord-
ingly, hardware requirements often impose limitations on the
ability to share and/or increase memory capacity. Although
various solutions have been proposed, the solutions com-
monly involve significant architectural changes and often
require specialized software to take advantage of the changed
memory architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 schematically depicts a network with distrib-
uted shared memory according to the present description.
[0005] FIG. 2 schematically depicts a memory manager
that may be employed in the network of FIG. 1 to manage a
portion of a clustered memory cache.

[0006] FIG. 3 schematically depicts an alternate configu-
ration of local memory managers.

[0007] FIG. 4 schematically depicts a distributed shared
memory environment with a clustered memory resource dis-
tributed across multiple network segments.

[0008] FIG. 5 depicts an exemplary method for using a
distributed shared memory resource.

[0009] FIGS. 6 and 7 schematically depict communication
stack configurations that may be employed to enable devices
to access a distributed shared memory resource.

DETAILED DESCRIPTION

[0010] FIG. 1 depicts a computer network 20 with distrib-
uted memory. The memory resource and supporting systems
may be configured 1n a variety of different ways and for
different applications. Page caching 1s one example of a set-
ting where numerous advantages can be obtained. Accord-
ingly, the distributed memory resource 1n the example of FIG.
1, and in other examples discussed herein, includes a clus-
tered memory cache 22. Referring specifically to FIG. 1,
clustered memory cache 22 i1s aggregated from and comprised
of physical memory locations 24 on a plurality of physically
distinct computing systems 26 (individually designated as

Jun. 11, 2009

Computing System 1, Computing System 2, etc.) Computer
network 20 also includes a metadata service 30, a plurality of
clients 32 (only one client 1s shown 1n the figure), and a
plurality of local memory managers 34 (individually desig-
nated as MM1, MM2, etc.). Each of the local memory man-
agers 1s local to and associated with a different portion of
clustered memory cache 22. The metadata service, clients and
local memory managers are all operatively coupled with each
other vianetwork 40. In addition, a configuration manager 42,
policy manager 44 and admin 1ntertace 46 may also be pro-
vided, to provide various functions that will be described
below.

[0011] Clustered memory cache 22 provides a shared
memory resource that can be accessed and used by the clients.
Specifically, depending on the mode of operation, clients 32
can read from the clustered memory cache and cause inser-
tion and/or eviction of data items to/from the cache.

[0012] Asusedherein, “client” will at times broadly to refer
to any hardware or software entity that makes use of the
shared memory resource. For example, clients may include
personal computers, workstations, servers and/or applica-
tions or other software running on such devices. The mnven-
tion has proved particular useful 1n accelerating the perfor-
mance of server applications that perform operations on large
volumes of data, such as complicated modeling and simula-
tion applications 1n fields such as finance, engineering, etc. In
such a setting, the performance of the client application can
be enhanced significantly through appropnately managed use
of the shared memory resource.

[0013] ““‘Client” may also more specifically refer to a driver
or other software entity that facilitates access to the shared
memory resource. For example, as will be described 1n more
detail, a driver can be loaded into memory of a networked
computer, allowing applications and the operating system of
that computer to “see” and make use of the clustered cache.

[0014] The distributed shared memory described herein
may be operated 1n a variety of modes. Many of the examples
discussed herein will refer to amode where clustered memory
cache 22 provides page caching functionality for data used by
clients 32. In particular, data items from an auxiliary store 50
may be cached 1n clustered memory cache 22. Thus, even
though a particular client may have ready access to the aux-
iliary store (e.g., access to a file system stored on a hard disk),
it will often be desirable to place requested data 1n the clus-
tered memory cache, so as to provide faster access to the data.
Auxiliary store 50 can include one or more storage devices or
systems at various locations, including hard disks, file serv-
ers, disk arrays, storage area networks, and the like.

[0015] Regardless of the particular mode of operation, the
clustered memory cache spans multiple physically distinct
computing systems. For example, in FIG. 1, clustered
memory cache 22 includes memory from N different com-
puting systems 26 (Computing System 1, Computing System
2, etc., through Computing System N). The individual com-
puting systems can be of varying configurations, for example
ranging from relatively low-powered personal devices to
workstations to high-performance servers. SMP or other mul-
tiprocessor architectures may be employed as well, 1n which
one or more of the computing systems employ multiple pro-
cessors or cores mterconnected via a multiprocessor bus or
other interconnect. As described in detail herein, physical
memory from these physically distinct systems may be aggre-
gated via network 40 and made available to clients 32 as a
unified logical resource.

US 2009/0150511 Al

[0016] Referring particularly to local memory managers
34, cach memory manager 1s local to and associated with a
different portion of clustered memory cache 22. The memory
managers typically are independent of one another, and each
1s configured to allocate and manage individual units of
physical memory i1n its associated portion of clustered
memory cache 22.

[0017] The local memory managers typically are config-
ured to manage client references and access to cached data
items. As an 1llustration, assume a particular client 32 needs
access to a data 1tem cached in the portion of clustered cache
22 that 1s managed by memory manager MM1. Assuming the
client knows the memory location for the cached item 1is
managed by MM1, the client contacts MM1 to gain access to
the cached 1tem. If access 1s permitted, the memory manager
MM1 grants access and maintains a record of the fact that the
requesting client has a reference to the memory location. The
record may indicate, for example, that the client has a read
lock on a particular block of memory that 1s managed by
memory manager MM1.

[0018] In some embodiments, clustered memory cache 22
may be implemented using Remote Direct Memory Access
(RDMA). RDMA mmplementations that may be employed
include the Virtual Interface Architecture, InfiniBand, and
1WARP. In such a setting, the local memory manager may be
configured to provide RDMA keys to requesting clients or
otherwise manage the respective access controls of the
RDMA implementation.

[0019] For any given memory manager, the associated por-
tion of the clustered cache will often 1include many different
blocks or other units of memory. In particular, referring to
FIG. 2, an exemplary memory manager 34 1s depicted,
including a cache store 60. In the depicted example, cache
store 60 1s schematically represented as a table, with a record
(row entry) for each block or other unit of physical memory
managed by the memory manager. The first column 1n the
example 1s simply an index, tag or other identifier used to
designate a particular block of memory.

[0020] Theremaining column or columns contain metadata
or other information associated with the corresponding unit
of memory and/or the data stored 1n that unit of memory. As
depicted 1n FIG. 2, memory manager 34 may also include a
monitor thread 62 to facilitate the acquisition and updating of
the cache store information. The associated information may
include, by way of example, information about read locks,
write locks and/or other client references to the unit of
memory; a filename/path hash or other mechanism for iden-
tifying the cached data item(s); status indicators; rates of
eviction and insertion; temporal mnformation such as time
resident 1n the cache, time since last access, etc.; block size or
other capacity information relating to the unit of memory;
and/or other information concerning the memory unit, such as
statistical information regarding usage of the memory unit or
the 1items cached 1n the memory unit. These are but 1llustrative
examples. Also, 1t should be understood that while cache store
60 1s depicted schematically to include the imnformation 1n a
table, a variety of other data structures or mechanisms may be
employed to maintain the information store.

[0021] Local memory managers 34 may also be configured
to recerve and respond to requests to insert particular data
items 1nto clustered memory cache 22. As will be explained in
more detail below, these cache insertion requests can arise
from and be 1mitiated by actions of metadata service 30 and
clients 32. In some cases, the local memory manager may

Jun. 11, 2009

deny the cache insertion request. One situation where an
isertion request can be denied 1s 1f the request 1s directed to
a block containing an item that cannot be immediately
evicted, Tor example because there are active client references
to the cached 1tem.

[0022] Assuming, however, that the insertion request is
grantable by the local memory manager, the local memory
manager acknowledges and grants the request. The memory
manager also coordinates the population of the respective
memory block with the data item to be cached, and appropri-
ately updates any associated information for the block 1n the
cache store (e.g., cache store 60).

[0023] Similarly, each local memory manager 34 is config-
ured to recerve and respond to requests to evict items from 1ts
associated portion of clustered memory cache 22. As with
insertion requests, the eviction requests can arise from actions
of the metadata service 30 and one or more of clients 32, as
will be explained 1n more detail below. Assuming the request
1s grantable, the memory manager acknowledges and grants
the request, and flushes the memory block or takes other
appropriate action to make the memory block available for
caching of another item.

[0024] In some example embodiments, 1t will be desirable
to notily clients 32 when i1tems are to be evicted from the
clustered memory cache. Accordingly, the local memory
managers may also be configured to maintain back references
to clients accessing 1tems 1n the cache. For example, assume
a client requests access to an 1tem 1n a portion of the cache
managed by a memory manager, and that the memory man-
ager has responded by granting a read lock to the client.
Having maintained a back reference to the client (e.g., 1n
cache store 60), the local memory manager can then notity the
client in the event of a pending eviction and request that the
client release the lock.

[0025] As discussed above, each local memory manager 1s
local to and associated with a different portion of the clustered
memory cache. In the example of FIG. 1, each of the distinct
computing systems 26 has an individual memory manager
responsible for the physical memory 24 contributed by the
system to the clustered cache. Alternatively, multiple local
memory managers may be employed within a computing
system.

[0026] FIG. 3 depicts an example of an alternate memory
manager configuration. As in the previous example, comput-
ing system 70 1s one of several physically distinct computing
systems contributing physical memory 24 to a distributed
memory resource. The example of FIG. 3 illustrates two
confliguration variations that may be applied to any of the
examples discussed herein. First, the figure demonstrates a
configuration in which the memory contributed from a single
computing system 1s allocated 1n to multiple different seg-
ments. The individual segments, which may or may not be
contiguous, are each managed by a different memory man-
ager 34 (individually and respectively designated as MMa,
MMb and MMC). As described below, the use of multiple
memory managers and memory segments on a single com-
puting system may be used to allow exportation of physical
memory to multiple different aggregate memory resources.
On the other hand, it may be desirable to employ multiple
memory managers even where the memory 1s contributed to a
single cache cluster or other shared memory resource.

[0027] Secondly, the figure demonstrates the use of mul-
tiple different clusters. Specifically, each local memory man-
ager and memory segment pairing in the FIG. 3 example

US 2009/0150511 Al

belongs to a different cache cluster (i.e., clusters 22a, 2256 and
22¢). Multiple cluster configurations may be employed for a
variety of reasons, such as for security reasons, access con-
trol, and to designate specific clusters as being usable only by
specific applications.

[0028] Local memory managers 34 may also be configured
to report out information associated with the respective por-
tions of clustered memory cache 22. As discussed above with
reference to FIG. 2, each memory manager may include a
cache store 60 with information about the memory manager’s
memory locations. This information may be provided from
time to time to metadata service 30, configuration manager
42, and/or other components of the systems described herein.

[0029] For example, as will be described in more detail
below, metadata service 30 can provide a centralized, or rela-
tively centralized, location for maintaining status information
about the clustered cache. In particular, in FIG. 1, memory
managers MM1, MM2, etc. through MMN may be consid-
ered to all be within a domain that 1s assigned to metadata
service 30. Metadata service 30 can monitor the domain, for
example by maintaining information similar to that described
with reference to cache store 60, but for all of the memory
managers in the domain.

[0030] More particularly, metadata service 30 may include
a metadata service data store 80 for maintaining information
associated with the memory locations 1n its domain that form
the clustered cache. In one class of examples, and as shown in
FIG. 1, metadata service data store 80 may include multiple
records 82. Specifically, a record 82 1s provided for each of
the physical memory units of clustered memory cache 22. For
example, assume clustered memory cache 22 includes 64
million 8-kilobyte memory blocks (512 gigabytes of addres-
sable cache memory) spread across computing systems 1
through N and local memory managers MM1 through MMN.
In this example, metadata service data store 80 could be
configured with 64 million records (rows), with each pertain-
ing to one of the cache memory blocks in the cluster. In an
alternate example, each record could apply to a grouping of
memory locations. Numerous other arrangements are pos-

sible.

[0031] Various additional information may be associated
with the records of metadata service data store 80. In particu-
lar, the metadata service may store a tag for each of the
memory locations of the cache, as shown 1n the figure. In one
example, the tag allows a requesting entity, such as one of
clients 32, to readily determine whether a particular data 1tem
1s stored in the cache. Specifically, the tag column entries may
cach be a hash of the path/filename for the data item resident
in the associated memory block. To determine whether a
requested data item (e.g., a file) 1s present i the cache, the
path/filename of the requested 1tem 1s hashed using the same
hash routine and the resulting hash 1s compared to the tag
column entries of the metadata service data store 80. The path
and filename hash described above 1s but an example; hash
methodologies may be employed on other data, and/or other
identification schemes may be employed.

[0032] Metadata service data store 80 may also indicate an
associated local memory manager for each of its records, as
shown at the exemplary column designated “MM.” For
example, data store could indicate that a first memory block
or range ol memory blocks was managed by memory man-
ager MM1, while a second bock or range of blocks was
managed by local memory manager MM2. With such a des-
ignation, 1in the event that a query for a particular item reveals

Jun. 11, 2009

the 1tem 1s present 1n the cache (e.g., via a match of the
path/filename hash described above), then the response to that
query can also indicate which local memory manager 34 must
be dealt with to read or otherwise access the cached 1tem.

[0033] Intheexample of FIG. 1, data store 80 also includes
a status indication for each of the cache blocks. In one
example, each of the cache blocks 1s indicated as having one
of the following statuses: (1) empty, and therefore available to
be populated; (2) insertion pending, indicating that the
memory block 1s 1n the process of being populated with a
newly-nserted cached item; (3) active, indicating that the
memory block presently contains an active cached data item:;
or (4) deletion pending, indicating that the data item 1n the
cache block 1s being deleted. It will be appreciated that these
are 1llustrative examples, and other status information and
flags may be employed. The specific exemplary status 1ndi-
cations referred to above will be described 1n further detail
below.

[0034] The tag, memory manager and status entries
described above with reference to the cache blocks 1n data
store 80 are non-limiting examples. As described in more
detail below, metadata service 30 and 1ts policy engine 90
typically play a role in implementing various policies relating
to the configuration and usage of clustered memory cache 22.
Application of various policies can be dependent upon rates
of eviction and insertion for a cache block or data item;
temporal information such as the time a data item has been
cached 1n a particular block, time since last access, etc.;
and/or other information concerning the cache block, such as
statistical information regarding usage of the cache block or
the data 1tems cached therein.

[0035] It will thus be appreciated that the information
maintained in metadata service data store 80 may overlap to
some extent with the information from the various cache
stores 60 (FIG. 2) of the local memory managers. Indeed, as
previously indicated, the described system can be configured
so that the memory managers provide periodic updates to
maintain the information in the metadata service data store

30.

[0036] Also, the metadata service may be distributed to
some extent across the network infrastructure. For example,
multiple mirrored copies of the metadata service may be
employed, with each being assigned to a subset of local
memory managers. Memory manager assignments would be
dynamically reconfigured to achieve load balancing and 1n
the event of failure or other changes 1n operating conditions of
the environment.

[0037] Various examples will now be described illustrating
how clients 32 interact with metadata service 30 and local
memory managers 34 to access clustered memory cache 22.
The basic context of these examples 1s as follows: a particular
client 32 (FIG. 1) 1s running on an applications server execut-
ing a data-intensive financial analysis and modeling program.
To run a particular analysis, the program must access various
large data files residing on auxiliary store 50.

[0038] In a first example, the financial analysis program
makes an attempt to access a data {ile that has already been
written 1nto clustered memory cache 22. This may have
occurred, for example, as a result of another user causing the
file to be loaded 1nto the cache. In this example, client 32 acts
as a driver that provides the analysis program with access to
the clustered memory cache 22. Other example embodiments
include client 32 operating in user mode, for example as an
API for interacting with the clustered resource.

US 2009/0150511 Al

[0039] In response to the client request for the data file,
metadata service 30 determines that the requested file 1s in
fact present 1n the cache. This determination can be per-
formed, for example, using the previously-described file-
name/path hash method. Metadata service 30 then responds
to the request by providing client with certain metadata that
will enable the client to look to the appropriate portion of the
clustered memory cache (1.e., the portion containing the
requested file).

[0040] In particular, metadata service 30 responds to the
request by 1dentifying the particular local memory manager
34 which 1s associated with the portion of the cache contain-
ing the requested file. This identification may include the
network address of the local memory manager, or another
identifier allowing derivation of the address. Once the client
has this information, the client proceeds to negotiate with the
local memory manager to access and read the requested file
from the relevant block or blocks managed by the memory
manager. This negotiation may include granting of a read lock
or other reference from the local memory manager to the
client, and/or provision of RDMA keys as described above.

[0041] As shown in FIG. 1, client 32 may include a local

store 92 of metadata. In the above example, this local store
may be used by the client to record the association between
the requested data file and the corresponding local memory
manager and respective portion of the clustered cache. Thus,
by consulting local store 92, subsequent page cache accesses
to the cached file can bypass the step of querying metadata
service 30. Indeed, clients 32 typically are implemented to
first consult local store 92 before querying metadata service
30, thereby allowing clients to more directly and efficiently
access cached i1tems. Metadata service 30 thus functions 1n

one respect as a directory for the clustered memory cache 22.
Clients having up-to-date knowledge of specific entries in the
directory can bypass the directory and go directly to the
relevant local memory manager.

[0042] Another example will now be considered, 1n which
the file requested by the analysis program is not present in
clustered memory cache 22. As before, the analysis program
and/or client 32 cause the file request to 1ssue, and the request
1s eventually received at metadata service 30. Prior to mes-
saging ol the request to metadata service 30, however, the
local client store 92 of metadata 1s consulted. In this case,
because the requested file 1s not present 1n the cache, no valid
metadata will be present in the local store. The request 1s thus
forward to metadata service 30.

[0043] Inresponse to the request, metadata service 30 can-
not respond with a memory manager 1dentification, as 1n the
previous example, because the requested file 1s not present in
the clustered memory cache. Accordingly, the hash matching
operation, if applied to metadata service data store 80, will not
yield a match.

[0044] The metadata service can be configured to imple-
ment system policies 1n response to this type of cache miss
situation. Specifically, policies may be implemented govern-
ing whether the requested item will be 1nserted into the clus-
tered memory cache, and/or at what location 1n the cache the
item will be written. Assuming clustered cache 22 1s popu-
lated with the requested 1tem, the metadata service data store
80 will be updated with metadata including the designation of
the responsible memory manager 34. This metadata can then
be supplied 1n response to the original request and any sub-

Jun. 11, 2009

sequent requests for the item, so that the cached version can
be accessed through client interactions with the appropnate
memory manager.

[0045] The systems and methods described herein may be
configured with various policies pertaining to the shared
memory resource. Policies may control configuration and
usage of the clustered memory cache; client access to the
cache; 1insertion and eviction of items to and from the cache;
caching of items 1n particular locations; movement of cached
items from one location to another within the cache; etc.
Policies may also govern start/stop events, such as how to
handle failure or termination of one of the computing systems
contributing memory locations to the cluster. These are non-
limiting examples—a wide variety of possibilities exist.
[0046] Inthe example of FIG. 1, configuration manager 42,
admin interface 46 and policy manager 44 perform various
functions 1n connection with the policies. In particular, admin
interface 46 can provide a command-line, graphical or other
interface that can be used by a system administrator to define
policies and control how they are applied. Configuration
manager 42 typically 1s adapted to coordinate startup events,
such as the login or registration of entities as they come
on-line. In many settings, startup procedures will also include
distribution of policies.

[0047] Forexample, in FIG. 1, initialization of clients 32 1s
handled by configuration manager 42. Specifically, when
coming on-line, each client 32 1nitializes and registers with
configuration manager 42. Configuration manager 42 pro-
vides the mitializing client with addresses of the appropnate
metadata service 30. Configuration manager 42 may also
retrieve relevant policies from policy manager 44 and distrib-
ute them to the client, which stores them locally for imple-
mentation via client policy engine 94 (FI1G. 1).

[0048] Configuration manager 42 typically also coordi-
nates registration and policy distributions for metadata ser-
vice 30 and local memory managers 34. The distributed poli-
cies are stored locally and implemented via metadata service
policy engine 90 (FIG. 1) and memory manager policy
engines 64 (FIG. 2), respectively. From time to time during
operation, the size and underlying makeup of the clustered
memory resource may change as local memory managers
launch and terminate, either intentionally or as a result of a
failure or other unintentional system change. These startups
and terminations may be handled by the configuration man-
ager, to provide for dynamic changes in the shared memory
resource. For example, during periods where heavier usage
volume 1s detected (e.g., an escalation 1n the number of cache
isertion requests), the configuration manager may coordi-
nate with various distributed devices and their associated
memory managers to dynamically scale up the resource. On
the other hand, performance lags or other circumstances may
dictate a dynamic adjustment where one or more memory
managers are taken ofi-line. As described in more detail
below, the present system may be configured to permit migra-
tion of cache data from one location to another 1n the shared
resource. The startups and terminations described above are
one example of a situation where such data migration may be
desirable.

[0049] As indicated above, policy manager 44 typically 1s
configured to provide a master/central store for the system
policy definitions, some or all of which may be derived from
inputs recerved via admin interface 46. Policy manager 44
may also validate or verily aggregate policies to ensure that
they are valid and to check for and resolve policy contlicts.

US 2009/0150511 Al

The policy manager 44 typically also plays arole 1n gathering
statistics relating to policy implementations. For example, the
policy manager may track the number of policy hits (the
number of times particular policies are triggered), and/or the
frequency of hits, 1n order to monitor the policy regime,
provide feedback to the admin interface, and make appropri-
ate adjustments. For example, removal of unused policies
may reduce the processing overhead used to run the policy
regime.

[0050] As should be appreciated from the foregoing,
although the policies may be defined and managed centrally,
they typically are distributed and implemented at various
locations 1n the system. Furthermore, the policy ruleset 1n
force at any given location 1n the system will typically vary
based on the nature of that location. For example, relative to
any one of memory managers 34 or clients 32, metadata
service 30 has a more system-wide global view of clustered
memory cache 22. Accordingly, policy rulesets affecting mul-
tiple clients or memory managers typically are distributed to
and implemented at metadata service 30.

[0051] Referring to clients 32, and more particularly to the
client policy engines 94 incorporated into each client, various
exemplary client-level policy implementations will be
described. Many example policies implemented at the clients
operate as lilters to selectively control which client behaviors
are permitted to impact the shared memory resource. More
specifically, the client policy engine may be configured to
control whether requests for data items (e.g., an application
attempting to read a particular file from auxiliary store 50) are
passed on to metadata service 30, thereby potentially trigger-
ing an attempted cache msertion or other action affecting the
clustered cache.

[0052] The selective blocking of client interactions with
metadata service 30 operates effectively as a determination of
whether a file or other data item 1s cacheable. This determi-
nation and the corresponding policy may be based on a wide
variety ol factors and criteria. Non-limiting examples
include:

[0053] (1) Size—i.e., items are determined as being
cacheable by comparing the i1tem size to a reference
threshold. For example, files larger than N bytes are
cacheable.

[0054] (2) Location—i.e., items are determined as being
cacheable depending on the location of the item. For
example, all files 1n a specified path or storage device are
cacheable.

[0055] (3) Whatelist/Blacklist—a list of files or other

items may be specifically designated as being cacheable
or non-cacheable.

[0056] (4) Permission level or other flag/attribute—ior
example, only read-only files are cacheable.

[0057] (5) Application ID—i.e., the cacheable determi-
nation 1s made with respect to the identity of the appli-
cation requesting the item. For example, specified appli-
cations may be denied or granted access to the cache.

[0058] (6)User ID—e.g., the client policy engine may be
configured to make the cacheable determination based
on the identity of the user responsible for the request.

[0059] (7) Time of Day.

In addition, these examples may be combined (e.g., via logi-
cal operators). Also, as indicated above, the list 1s 1llustrative
only, and the cacheability determination may be made based
on parameters other than the cited examples.

Jun. 11, 2009

[0060] Cache insertion policies determine whether or not a
file or other data item may be nserted into clustered memory
cache 22. Typically, cache insertion policies are applied by
metadata service 30 and its policy engine 90, though appli-
cation of a given policy will often be based upon requests
received from one or more clients 32, and/or upon metadata
updates and other messaging recerved from the local memory
managers 34 and maintained in metadata service data store 80
(F1G. 1).
[0061] Insome examples, administrators or other users are
able to set priorities for particular 1tems, such as assigning
relatively higher or lower priorities to particular files/paths. In
addition, the insertion logic may also run as a service 1n
conjunction with metadata service 30 to determine priorities
at run time based on access patterns (e.g., file access patterns
compiled from observation of client file requests).

[0062] Further non-limiting examples of cache insertion

policies include:

[0063] (1) Determining at metadata service 30 whether to
insert a file into clustered memory cache 22 based on the
number and/or frequency of requests recetved for the file.
The metadata service can be configured to 1nitiate an inser-
tion when a threshold 1s exceeded.

[0064] (2) Determining at metadata service 30 whether to
insert a file mto clustered memory cache 22 based on
available space 1n the cache. This determination typically
will 1nvolve balancing of the size of the file with the free
space 1n the cache and the additional space obtainable
through cache evictions. Assessment of free and evictable
space may be based on information in metadata service
data store 80.

[0065] (3) Determining at metadata service 30 whether to
insert a file into clustered memory cache 22 based on
relative priority of the file.

[0066] Metadata service 30 also implements eviction poli-

cies for the clustered memory cache 22. Eviction policies

determine which data items to evict from the cache as the
cache reaches capacity. Eviction policies may be user-con-

figured (e.g., by an administrator using admin interface 46)

based on the requirements of a given setting, and are often

applied based on metadata and other information stored at

metadata service 30 and/or memory managers 34.

[0067] Inparticular, metadata service 30 may reference 1ts
data store 80 and predicate evictions based on which memory
location within 1ts domain has been least recently used (LRU)
or least frequently used (LFU). Other possibilities include
evicting the oldest record, or basing evictions on age and
frequency based thresholds. These are but examples, and
evictions may be based upon a wide variety of criteria 1n
addition to or instead of these methods.

[0068] As previously mentioned, although metadata ser-
vice 30 has a global view of the cache and 1s therefore well-
positioned to make insertion/eviction determinations, the
actual evictions and 1nsertions typically are carried out by the
memory managers 34. Indeed, the insertion/eviction determi-
nations made by metadata service 30 are often presented to
the memory managers as requests that the memory managers
can grant or deny. In other cases, the memory manager may
grant the request, but only after performing other operations,
such as forcing a client to release a block reference prior to
eviction of the block.

[0069] In other cases, metadata service 30 may assign
higher priority to insertion/eviction requests, essentially
requiring that the requests be granted. For example, the over-

US 2009/0150511 Al

all policy configuration of the system may assign super-pri-
ority to certain files. Accordingly, when one of clients 32
requests a super-priority file, 1f necessary the metadata ser-
vice 30 will command one or more memory managers 34 to
evict other data 1items and perform the insertion.

[0070] The general case, however, 1s that the local memory
managers have authority over the cache memory locations
that they manage, and are able 1n certain circumstances to
decline requests from metadata service 30. One reason for
this 1s that the memory managers often have more accurate
and/or current information about their associated portion of
the cache. Information at the memory managers may be more
granular, or the memory managers may maintain certain
information that 1s not stored at or reported to metadata ser-
vice 30. On the other hand, there may be delays between
changes occurring in the cache and the reporting of those
changes from the respective memory manager to metadata
service 30. For example, metadata service 30 might show that
a particular block 1s evictable, when 1n fact 1ts memory man-
ager had granted multiple read locks since the last update to
the metadata service. Such information delays could result
from conscious decisions regarding operation of the clustered
cache system. For example, an administrator might want to
limit the reporting schedule so as to control the amount of

network traffic associated with managing the shared memory
resource.

[0071] The above-described distribution of 1nformation,
functionality and complexity can provide a number of advan-
tages. The highly-distributed and non-blocking nature of
many of the examples discussed herein allows them to be
readily scaled 1n large datacenter environments. The distrib-
uted locking and insertion/eviction authority carried out by
the memory managers allows for many concurrent operations
and reduces the chance of any one thread blocking the shared
resource. Also, the complicated tasks of actually accessing,
the cache blocks are distributed across the cluster. This dis-
tribution 1s balanced, however, by the relatively centralized
metadata service 30, and the global information and manage-
ment functionality 1t provides.

[0072] Furthermore, it should be appreciated that various
different persistence modes may be employed in connection
with the clustered memory resource described herein. In
many of the examples discussed herein, a read-only caching,
mode 1s described, where the clustered resource functions to
store redundant copies of data items from an underlying aux-
iliary store. Performance 1s dramatically enhanced, because
the cluster provides a shareable resource that 1s much faster
than the auxiliary store where the data originates. However,
from a persistence standpoint, the data in the cluster may be
flushed at any time without concern for data loss because the
cluster does not serve as the primary data store. Alternatively,
the cluster may be operated as a primary store, with clients
being permitted to write to locations in the cluster 1n addition
to performing read operations. In this persistence mode, the
cluster data may be periodically written to a hard disk or other
back-end storage device.

[0073] A further example of how the clustered memory
resource may be used 1s as a secondary paging mechanism.
Page swapping techniques employing hard disks are well
known. The systems and methods described herein may be
used to provide an alternate paging mechanism, where pages
are swapped out the high performance memory cluster.

[0074] Theexemplary policy regimes described herein may
also operate to control the location 1n clustered memory cache

Jun. 11, 2009

22 where various caching operations are performed. In one
class of examples, metadata service 30 selects a particular
memory manager 34 or memory managers to handle insertion
of a file or other item 1nto the respective portion of the cache.
This selection may be based on various criteria, and may also
include spreading or striping an 1tem across multiple portions
of the cluster to provide increased security or protection
against failures.

[0075] In another class of examples, the metadata service
coordinates migration of cached items within clustered
memory cache 22, for example from one location to another
in the cache. This migration may be necessary or desirable to
achieve load balancing or other performance benefits.

[0076] A variety of exemplary locality policies will now be
described, at times with reference to FIG. 1 and FIG. 4. FIG.
4 depicts another example of a shared-memory computer
network 20. The depicted example 1s similar in many respects
to the example of FIG. 1, except that network 40 includes
multiple segments. Two segments are depicted: Segment A
and Segment B. The segments may be separated by a router,
switch, etc. As before, clustered memory cache 22 1s com-
prised of memory 24 from multiple physically distinct com-
puting systems 26, however some portions of the cache are
local to network Segment A, while others are local to network
Segment B. Clients 32a, auxiliary store 50a and metadata
service 30a are on Segment A, while Clients 325, auxiliary
store 506 and metadata service 305 are on Segment A

[0077] In a first example, cache msertion locality 1s deter-
mined based onrelative usage of memory locations 24. Usage
information may be gathered over time and maintained by
memory managers 34 and the metadata services, and main-
tained 1n their respective stores. Usage may be based on or
derived from eviction rates, insertion rates, access frequency,
numbers of locks/references granted for particular blocks,
etc. Accordingly, when determining where to insert an item 1n
clustered memory cache 22, the metadata service may select
a less utilized or underutilized portion of the cache to achieve
load balancing.

[0078] Themetadata service may also coordinate migration
of cache 1items from one location to another based on relative
usage information. For example, 1 information in metadata
service data store 80 (FIG. 1) indicates unacceptable or bur-
densome over-usage at memory managers MM2 and MM3,
metadata service 30 can coordinate relocation of some of the

data 1tems to other memory managers (€.g., memory manag-
ers MM1 or MM4).

[0079] In another example, locality policies are imple-
mented based on location of the requesting client. Assume for
example, with reference to FIG. 4, that a cache insertion
request 1s triggered based on an application associated with
one of clients 32a (Segment A). The policy configuration
could be implemented such that this would result 1n an
attempted 1nsertion at one of the Segment A memory manag-
ers (MM1, MM2 or MM3) instead of the Segment B manag-

CI's.

[0080] In another example, the relative location of the
underlying data item 1s factored into the locality policy.
Referring to FIG. 4, policies may be configured to specity that
files located on auxiliary store 505 (on Segment B) are to be
cached with the Segment B memory managers 34. This may
be the case even where the requesting client 1s located on
Segment A. Where policy implementations compete, as in
this example, other aspects of the policy configuration can

US 2009/0150511 Al

resolve the conflict, for example through prioritization of
various components of the overall policy regime.

[0081] From the above, it should be understood that locality
may be determined by tracking usage patterns across the
cluster and migrating memory blocks to nodes optimized to
reduce the total number of network hops 1volved 1n current
and anticipated uses of the cluster. In many cases, such opti-
mization will significantly reduce latency and potential for
network congestion. The usage data may be aggregated from
the clients by the configuration manager and propagated to
the metadata service(s) as a form of policy that prioritizes
various cache blocks.

[0082] The policy implementation may also be employed
to detect thrashing of data items. For example, upon detecting,
high rates of insertion and eviction for a particular data item,
the system may adjust to relax eviction criteria or otherwise
reduce the thrashing condition.

[0083] A further locality example includes embodiments 1n
which a block or data item 1s replicated at numerous locations
within the clustered memory resource. For example, 1n a
caching system, multiple copies a given cache block could be
sited at multiple different locations within the clustered
cache. A metadata service query would then result in 1denti-
fication of one of the valid locations. In certain settings, such
replication will improve fault tolerance, performance, and
provide other advantages.

[0084] Referring now to FIG. 5, an example shared
memory method 120 will be described, 1n the context of client
entities accessing a clustered memory cache. As before, the
clustered memory cache 1s aggregated from and comprised of
physical memory on multiple physically distinct computing,
systems. The context further includes attempts by the clients
to access data 1tems that are stored 1n an auxiliary store, but
which may also be inserted into the clustered memory cache.

[0085] The method may generally include running a local
memory manager on each of a plurality of physically distinct
computing systems operatively coupled with each other via
network infrastructure. One or more metadata services are
instantiated, and operatively coupled with the network 1nfra-
structure. Communications are conducted between the meta-
data service(s) and the local memory managers to provide the
metadata service with metadata (e.g., file/path hashes, usage
information/statistics, status, etc.) associated with the physi-
cal memory locations. The metadata service 1s then operated
to provide a directory service and otherwise coordinate the
memory managers, such that the physical memory locations
are collectively usable by clients as an undifferentiated
memory resource.

[0086] Referring specifically to the figure, at 122, method
120 may also include 1ssuing of a client request. As in the
examples described above, the request may originate or 1ssue
from an operating system component, application, driver,
library or other client entity, and may be directed toward a file
or other data 1tem residing on a file server, disk array or other
auxiliary store.

[0087] As shown at 124, method 120 may also include
checking a local store to determine whether metadata 1s
already available for the requested i1tem. The existence of
local metadata indicates that the requested 1tem 1s currently
present and active in the clustered memory cache, or at least
that 1t was at some time in the past. If local metadata 1s
available, a read lock 1s obtained 1f necessary (126) and the
item 1s read from its location in clustered memory cache

(128).

Jun. 11, 2009

[0088] In the context of FIG. 1, these steps could corre-
spond to an application request, via client 32, for a particular
file located on auxiliary store 50. In response to the request,
client 32 would retrieve valid metadata for the requested file
from local metadata store 92. The retrieved metadata would
indicate the particular memory manager 34 for the data item,
and/or would otherwise 1indicate the location of the data 1tem
in clustered memory cache 22. The requesting client would
then access the item from its location in the cache, for
example by interacting with the respective memory manager
to obtain a read lock and perform an RDMA read of the
cached 1tem.

[0089] Continuing with FIG. 3, 1 1t cannot be determined
from the local store that the requested item 1s or had been
cached in the shared memory resource, method 120 may
include a determination of whether the 1tem 1s eligible for
caching, as shown at 130. Referring again to FIG. 1, client 32
and 1ts policy engine 94 provide examples of components
configured to make the eligibility determination of step 130.
Specifically, as discussed above, the client and policy engine
may filter the passing of requests to metadata service 30, and
thereby {filter the usage of clustered memory cache.

[0090] If the requested item 1s not eligible for caching, the
request 1s satisfied by means other than through the clustered
memory cache. In particular, as shown at 132, the client
request 1s satisfied through auxiliary access, for example by

directly accessing a back-end file system residing on auxil-
1ary store 50 (FIG. 1).

[0091] Proceeding to 134, a metadata service may be
accessed for eligible requests that cannot be initiated with
locally stored metadata. Similar to the inquiry at step 124, the
metadata service 1s queried at 136 to determine whether meta-
data exists corresponding to the client request. If the metadata
service has current metadata for the request (e.g., the address
ol a local memory manager overseeing a portion of cache 22
where the requested 1tem 1s cached), then the metadata 1s
returned to the requesting entity (138), and the access and
read operations may proceed as described above with refer-
ence to steps 126 and 128.

[0092] The absence of current metadata at the queried
metadata service 1s an indication that the requested item 1s not
present 1 the shared memory resource (e.g., clustered
memory cache 22 of FI1G. 1 does not contain a non-stale copy
of a file requested by one of clients 32). Accordingly, as
shown at 140, method 120 may include determining whether
an attempt will be made to insert the requested 1tem 1nto the
shared memory. If the 1tem will not be mnserted, the client
request must be serviced other than through use of the shared
resource, as previously described and shown at 132.

[0093] Continuing with FIG. 5, 1f an insertion 1s to be made,
method 120 may include determining the locality of the inser-
tion, as shown at 142. More particularly, an assessment may
be made as to a specific location or locations within the shared
memory resource where the 1tem 1s to be placed.

[0094] Asinthe various examples discussed with reference
to FIG. 1, the locality determination may be made based on
various parameters and in accordance with system policy
configurations. In some cases, locality will also be deter-
mined in response to data gathered during operation, for
example usage statistics accumulated at a metadata service
based on reports from memory managers.

[0095] As also shown at 142, the cache insertion may also
include messaging or otherwise conferring with one or more
local memory managers (e.g., memory managers MMI,

US 2009/0150511 Al

MM2, etc. of FIG. 1). This communication may include
requests, acknowledgments and the like. As an 1illustration,
metadata service 30 might determine, based on usage statis-
tics and certain metadata, to attempt to cache a requested
block of data in a memory location managed by memory
manager MM4. Metadata service 30 would send the 1insertion
request to memory manager MM4, which could then grant the
request and permitted the requested block to be written 1nto its
managed memory location 24. The interaction of metadata
service 30 and memory manager MM4 can also include
receiving an acknowledgment at the metadata service, as
shown at 144.

[0096] As previously discussed, the memory manager 1n
some cases may deny the insertion request, or may honor the
request only after performing an eviction or other operation
on 1ts managed memory location(s). Indeed, in some cases,
insertion requests will be sent to different memory managers,
successively or 1n parallel, before the appropriate insertion
location 1s determined. In any event, the imnsertion process will
typically also include updating the metadata service data
store, as also shown at 144. For example, in the case of a
cached file, the data store 80 of metadata service 30 (FIG. 1)
may be updated with a hash of the path/filename for the file.

[0097] Asshown at 146, if the msertion 1s successiul, meta-
data may be provided to the client and the access and read
operations can then proceed (138, 126, 128). On the other
hand, failed insertion attempts may result 1in further attempts
(142, 144) and/or 1n auxiliary access of the requested item
(132).

[0098] Referring now to FIGS. 6 and 7, the figures depict
exemplary architectures that may be employed to provide
clients 32 with access to the shared memory resource(s). The
figures depict various components of client 32 1n terms of a
communications stack for accessing data items, and show
access pathways for reading data items from an auxiliary
store (e.g., auxihary store 50 of FIG. 1) or from a clustered
memory resource (e.g., clustered memory cache 22 of FIG.
1), which typically provides faster and more efficient access
than the auxiliary store access.

[0099] In the example of FIG. 6, cluster iterface 602 is
disposed 1n the communications stack between application
600 and file system abstraction layer 604. Auxiliary store
access may be made by the file system layer through known
mechanisms such as TCP/IP—Ethemet layers 606, SCSI—
Fibre Channel layers 608, and the like. As discussed above,
auxiliary store access may occur for a variety of reasons. The
file requested by application 600 might be of a type that 1s not
cligible for loading 1nto clustered memory cache. Cluster
interface 602 may apply a filter that blocks or prevents access
to the shared memory resource, as 1n step 130 of the exem-
plary method of FIG. 5. Alternatively, auxiliary store access

may be performed after a failed cluster insertion attempt, as
shown at steps 146 and 132 of FIG. 5.

[0100] Alternatively, cluster interface 602 1s configured to
bypass file system layer 604 1n some cases and read the
requested data from a location 1n the shared memory resource
(e.g., a memory location 24 1n clustered memory cache 22),
instead of from the auxiliary store 50. As indicated, this
access of the clustered resource may occur via a client RDMA
layer 610 and a target host channel adapter 612.

[0101] Cluster interface 602 may perform various func-
tions 1n connection with the access of the shared memory
resource. For example, interface 602 may search for and
retrieve metadata 1n response to a request for a particular file

Jun. 11, 2009

by application 600 (e.g., as in step 124 or steps 134, 136 and
138 of FIG. 5). Interface 602 may also interact with a meta-
data service to 1nsert a file into the clustered cache, and then,
upon successiul insertion, retrieve metadata for the file to
allow the cluster interface 602 to read the file from the appro-
priate location 1n the clustered cache.

[0102] In one example embodiment, cluster interface 602
interacts with the virtual memory system of the client device,
and employs a page-fault mechamsm. Specifically, when a
requested 1tem 1s not present in the local memory of the client
device, a virtual memory page fault 1s generated. Responsive
to the 1ssuance of the page fault, cluster interface 602 per-
forms the previously described processing to obtain the
requested 1tem from the auxiliary store 50 or the shared
memory cluster. Cluster interface 602 may be configured so
that, when use of the clustered cache 22 1s permitted, item
retrieval 1s attempted by the client simultaneously from aux-
iliary store 50 and clustered memory cache 22. Alternatively,
attempts to access the clustered cache 22 may occur first, with
auxiliary access occurring only after a failure.

[0103] FIG. 7 alternatively depicts a block-based system,
where cluster interface 602 1s positioned between the file

layer 604 and block-based access mechanisms, such as
SCSI—Fibre Channel layer 608 and SRP 620, ISER 622 and

OFED—Infiniband/1Warp layers 610. In this example, the
mechanisms for storing and accessing blocks are consistent
with the file-based example of FIG. 6, though the data blocks
are referenced from the device with an offset and length
instead of via the file path.

[0104] Depending on the particular configuration
employed at the client, block-level or file-level invalidation
may be employed. For example, in the event that an applica-
tion 1s writing to a data item that 1s cached in the clustered
resource, the cached copy 1s invalidated, and an eviction may
be carried out at the local memory/cache manager 1n the
cluster where the item was stored. Along with the eviction,
messaging may be sent to clients holding references to the
cached item notifying them of the eviction. Depending on the
system configuration, the clients may then pertorm block or
file-level invalidation.

[0105] Furthermore, it will be appreciated that variable
block sizes may be employed 1n block-based implementa-
tions. Specifically, block sizes may be determined 1n accor-
dance with policy specifications. It 1s contemplated that block
s1ze may have a significant aiffect on performance in certain
settings.

[0106] Finally, configurations may be employed using
APIs or other mechanisms that are not file or block-based.

[0107] It will be appreciated that the computing devices
described herein may be any suitable computing device con-
figured to execute the programs described herein. For
example, the computing devices may be a mainirame com-
puter, personal computer, laptop computer, portable data
assistant (PDA), computer-enabled wireless telephone, net-
worked computing device, or other suitable computing
device, and may be connected to each other via computer
networks, such as the Internet. These computing devices typi-
cally include a processor and associated volatile and non-
volatile memory, and are configured to execute programs
stored 1n non-volatile memory using portions of volatile
memory and the processor. As used herein, the term “pro-
gram’’ refers to software or firmware components that may be
executed by, or utilized by, one or more computing devices
described herein, and 1s meant to encompass individual or

US 2009/0150511 Al

groups of executable files, data files, libraries, drivers, scripts,
database records, etc. It will be appreciated that computer-
readable media may be provided having program instructions
stored thereon, which upon execution by a computing device,
cause the computing device to execute the methods described
above and cause operation of the systems described above.
[0108] Itshould beunderstoodthat the embodiments herein
are 1llustrative and not restrictive, since the scope of the
invention 1s defined by the appended claims rather than by the
description preceding them, and all changes that fall within
metes and bounds of the claims, or equivalence of such metes
and bounds thereol are therefore intended to be embraced by
the claims.

What 1s claimed 1s:

1. A computer network with distributed shared memory,
comprising;

a clustered memory cache aggregated from and comprised
of physical memory locations on a plurality of physi-
cally distinct computing systems;

a plurality of local cache managers, each of the local cache
managers being local to and associated with a different
portion of the clustered memory cache;

ametadata service operatively coupled with the local cache
managers; and

a plurality of clients operatively coupled with the metadata
service and the local cache managers,

where 1n response to a request 1ssuing ifrom any of the
clients for a data item present 1n the clustered memory
cache, the metadata service i1s configured to respond
with identification of the local cache manager associated
with the portion of the clustered memory cache contain-
ing such data item.

2. The computer network of claim 1, where at least some of
the local cache managers are separated from the metadata
service via network connections of the computer network.

3. The computer network of claim 2, where 1n response to
a request 1ssuing from any of the clients for a data 1tem not
present 1n the clustered memory cache, the metadata service
1s configured to select a location of the clustered memory
cache for caching of such data item.

4. The computer network of claim 2, where 1n response to
a request 1ssuing from any of the clients for a data 1tem not
present 1n the clustered memory cache, the metadata service
1s configured to control whether or not an attempt will be
made to cache such data 1item 1n the clustered memory cache.

5. The computer network of claim 2, where each of the
local cache managers 1s configured to control granting of
locks to clients requesting access to data 1tems cached 1n the
portion of the clustered memory cache associated with the
local cache manager.

6. The computer network of claim 2, where the metadata
service 1s configured to maintain a metadata store ol metadata
tfor the portions of the clustered memory cache, and where the
metadata 1s updated 1n response to messaging received from
the local cache managers.

7. The computer network of claim 2, where the metadata
includes a status indicator for each of the portions of the
clustered memory cache.

8. The computer network of claim 2, where the metadata
includes information about cache locks granted to clients for
the different portions of the clustered memory cache.

9. The computer network of claim 2, where the clustered
memory cache 1s configured to permit caching of application-
specific data.

Jun. 11, 2009

10. The computer network of claim 2, where the clustered
memory cache 1s configured to dynamically vary 1n size dur-
Ing operation.
11. The computer network of claim 10, further comprising
a configuration manager operatively coupled with the meta-
data service, where the configuration manager 1s configured
to register additional physical memory locations to be added
to the clustered memory cache, and where the configuration
manager 1s configured to engage in messaging with the meta-
data service regarding such additions, thereby permitting
dynamic variation 1n size of the clustered memory cache.
12. The computer network of claim 11, where such addi-
tional physical memory locations are on additional physically
distinct computing systems.
13. The computer network of claim 2, where the metadata
service 1s configured to direct cache insertion requests and
cache eviction requests to the local cache managers, the local
cache managers being configured to selectively grant or deny
such requests and perform the respective insertions and evic-
tions when such requests are granted.
14. The computer network of claim 2, where the metadata
service 1s configured to control a relocation of a cached data
item from a first location 1n the clustered memory cache to a
second location 1n the clustered memory cache
15. The computer network of claim 2, where each of the
local cache managers 1s running on a different one of the
physically distinct computing systems, and where the portion
of the clustered memory cache associated with that local
cache manager 1s comprised of physical memory locations on
the same physically distinct computing system.
16. The computer network of claim 2, where the local
cache managers are configured such that any access request
by one of the clients for a data item 1n the clustered memory
cache 1s negotiated between the client and the cache manager
associated with the portion of the clustered memory cache
containing the data item.
17. A method of operating a networked memory resource,
comprising:
running a local memory manager on each of a plurality of
physically distinct computing systems operatively
coupled with each other via network infrastructure;

instantiating a metadata service operatively coupled with
cach the local memory managers via the network 1nfra-
structure;

conducting communications between the local memory

managers and the metadata service to provide the meta-
data service with information about physical memory
locations disposed on each of the plurality of physically
distinct computing systems;

employing the metadata service as a directory service to

facilitate aggregation of and addressing of the physical
memory locations of each of the plurality of physically
distinct computing systems, such that the physical
memory locations are collectively usable by clients as an
undifferentiated memory resource.

18. The method of claim 17, further comprising, in
response to a client request for a data item, determiming
whether the data item 1s cached in the undifferentiated
memory resource.

19. The method of claim 18, where determining whether
the data item 1s cached in the undifferentiated memory
resource includes querying the metadata service, and where 1
the data item 1s present 1n the undifferentiated memory
resource, the metadata service 1s configured to respond with

US 2009/0150511 Al

[

identification of a particular location within the unditierenti-
ated memory resource from which the data item may be
accessed.

20. The method of claim 17, further comprising, in
response to a client request for a data item, determiming
whether to place a copy of the data item 1n the undifferentiated
memory resource.

21. The method of claim 20, where determining whether to
place a copy of the data item 1n the undifferentiated memory
resource includes determining, at a source of the client
request, whether the data item 1s eligible for caching in the
undifferentiated memory resource.

22. The method of claim 20, where determining whether to
place a copy of the data item 1n the undifferentiated memory
resource includes determining, at the metadata service,
whether the data i1tem 1s eligible for caching 1n the unditier-
entiated memory resource.

23. The method of claim 2, further comprising, 1n response
to a client request for a data item, determining a particular
location 1n the undifferentiated memory resource to place a
copy of the data item.

24. The method of claim 23, where determining the par-
ticular location in the undifferentiated memory resource to
place a copy of the data item includes comparing the data path
from a user of the data item to a first candidate location with
the data path from the user of the data item to a second
candidate location.

25. The method of claim 23, where determining the par-
ticular location in the undifferentiated memory resource to
place a copy of the data item includes comparing the data path
from an auxiliary store of the data item to a first candidate
location with the data path from the auxiliary store of the data
item to a second candidate location.

26. A networked computer system with a networked
memory resource, cComprising:

a plurality of local memory managers, each of which 1s

configured to run on a different one of a plurality of

Jun. 11, 2009

physically distinct computing systems operatively
coupled with each other via network infrastructure; and
a metadata service operatively coupled with each the local
memory managers via the network infrastructure;

where the metadata service and the local memory manag-
ers are configured to communicate with each other to
provide the metadata service with information about
physical memory locations disposed on each of the plu-
rality of physically distinct computing systems,

and where the metadata service 1s configured to provide a

directory service to facilitate aggregation of and
addressing of the physical memory locations of each of
the plurality of physically distinct computing systems,
such that the physical memory locations are collectively
usable by clients as an undifferentiated memory
resource.

277. The system of claim 26, where the metadata service 1s
configured to respond to a client request for a data item by
determining whether the data 1tem 1s cached 1n the undiffer-
entiated memory resource.

28. The system of claim 27, where the metadata service 1s
configured to respond to the client request by indicating
where the data 1tem 1s cached 1n the undifferentiated memory
resource.

29. The system of claim 26, where the metadata service 1s
configured to respond to a client request for a data item by
determining whether to place a copy of the data item 1n the
undifferentiated memory resource.

30. The system of claim 26, where the metadata service 1s
configured to control whether data items accessible from the
networked computer system are to be cached 1n the unditier-
entiated memory resource.

31. The system of claim 26, where the metadata service 1s
configured to respond to a client request for a data item by
determining where to cache the data item 1n the undifferent-
ated memory resource.

S e S e e

	Front Page
	Drawings
	Specification
	Claims

