US 20090119677A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2009/0119677 Al
Stefansson et al. 43) Pub. Date: May 7, 2009

(54) BI-DIRECTIONAL COMMUNICATION IN A Related U.S. Application Data
PARALLEL PROCESSING EXVIRONMENT (63) Continuation of application No. 11/706,803, filed on

Feb. 14, 2007.

(75) Inventors: Halldor Narfi Stefansson, Natick,

MA (US); Loren Dean, Natick, Publication Classification

MA (US); Roy Lurie, Wayland, (51) Int.CL

MA (US) GOG6F 9/46 (2006.01)

(52) US.Cl oo, 719/313

Correspondence Address:
LAHIVE & COCKFIELD, LLP/THE MATH- (57) ABSTRACT
WORKS A system recetrves an instruction from a technical computing,
FLOOR 30, SUITE 3000

environment, and commences parallel processing on behalf
of the technical computing environment based on the recerved
instruction. The system also sends a query, related to the
parallel processing, to the technical computing environment,

One Post Office Square
Boston, MA 02109-2127 (US)

(73) Assignee: The MathWorks, Inc., Natick, MA receives an answer associated with the query from the tech-
(US) nical computing environment, and generates a result based on
the parallel processing. The system further sends the result to
(21) Appl. No.: 11/841,861 the technical computing environment, where the result 1s used
by the technical computing environment to perform an opera-

(22) Filed: Aug. 20, 2007 tion.

00

Fuo
-\\‘.-;:{.\\EJ‘F
\m‘\..V:I\\-.-:‘El
i "ql
"au"'I:\-.:,.ll:l.'t".'b1
‘;;;-'-'-'-'-'-'-'-'-'-'-'-.-.-.'-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.'-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.-.'-.'-.'-.'-.'-'-'-'-'----1 l------.-.-.-;;;;;---------'-'-'-.-.-.'-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.'-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-.-.'-.'-.'-.'-.'-'-'-'-'-'-'-'-'-'-'-'-.-.-;;;;;-----------.-.-;;=
¢
X O VERNT INIT O EXE CLUTHN =y
's h o 0, o) - _ i !"f { \1;.
3 L 4 {\}
::: R
b
.
%
y
ey
hl e e e e e e A i S S S S e e g e e e e e A e e e e e e S S S S S g g ey e e e e e oy g S S S S e e e e e e e g e e e e e Sy S Sy Sy S Sy Sy S S S Sy s
N
s T e e T T T e e e e T e T T T e T T e e e e T T W T T)
M
'q
'y . .
) . e .) e R, T ey B
] _ FJE f“'-,f‘*- ["‘._._-"“'- r_‘jj {"-! R ‘ “--E,’:‘- l:“"*f - E {::l 3
5 RN ;""‘ : e “i L AR BN LY e e L E T e bt e N l)
N q s:.\ { N b K T ;
5 it 1R _"J‘f
h Ls} h‘fE H i E\E ; i;:_'g-~ mr 1 .-;b -
\ U TR N RE
h
3 115
I':'. -. "l_n. LLL T, T, T, T T T T T T T T T e T T T T T T T T T Y L L L L R L L L L L A L L L R L LA R LR R L
h
b
oy
ey
ey
b
by
ey
y
hy
hy
ey e e e e e e e e e e e e e e
-
-
y
h
%
b
2:
0 e M M H M B M P F e P B B M P M J - - ey R -
o § FE "'| 'l. i-'"l, ﬁ E‘;} = G . S, g"}
by LY [A
N § IR A NS RSO M e
\ LIBRARY -
by . :
by ; ' .
;: . Ar u;f’ ":“'._ LT, 1.\.}1 '
3 115
by - X
%
%
b
S |
y
y
b
b
b
y
iy
y
hy
::
h T T T e e e e e e e T e e T e e T T T e e e R T T e e e e e T T e e T e T e e e e e T T T e e e e e e e e e e T
'{
', p— >
\ INT S fre
¥ f’x i S LS -
N
a 7 13;
by u o
iy h
N
IE L LR L L L L L L LRl L L L L L LRt Ll L L L L LN
.
.
%
%
\.,
by
by
[y
&
b!u...

Patent Application Publication May 7, 2009 Sheet 1 of 18 US 2009/0119677 Al

e T T e e e T T T e e T T T T T e T T T T T e T T T T e e e T T T e e e T e e e

RO RSB0

1352

TROHMIGAL COMPUTING HRQE EEE’C} R
RAWVIRUNMDNT 1351

s
Ea v,

. e o T T 0 0 0 0 0 0 o W e e
i Ak A e A A A A At A A A A A L L AL L L L A L L L L AL L L L L A AL A L A A L L L L A AR L L

[]
A

LHIRA&HY

317

FROCESSOR FROCESEOR
1355 1354

£

FIG. 1A

N T T T R R e T T T T T e T T T e T e N T T T e T T T T R T T T R e e T e e e

E R g g g g g R g e e R e g e e g R e e e e g e e e g

A A A T L e L L L L A A R A A L R L L AL AL A AR A L A AR LA L AR L A A R AR L W

US 2009/0119677 Al

May 7, 2009 Sheet 2 0of 18

Patent Application Publication

L P P i P g e P R b

A,

u\.\...l.\\.\.\.h.\.\.\..l.\\.\.\-\.\.\

1\

/ ;

‘l

/ /

1\

/ n 7

/ oo 7

/ ; 7

7 “

’ b 5

’ Lo 7

Y SR vk s

Y/ ’ r

e, / Y ﬁv._.... 7
o _.________ Al _ s
L4 G Tt
%] &
= 2R
S E m _‘R 1“1
ke /

/ ;

Y /

g 7

/ /
AT

BREOUTD

Y3
evrs

T\h‘kﬁhﬁ.ﬁh‘h‘hﬁh&hﬁhﬁtﬂ
/i ’
% -
\
¥ ____“ .
F...‘.I.._ “__ “
B \l
ni.u, 4 . 4
" 7 ;
. -
.
e ‘ A 5
- . : z
- ARE
5 Al fo
BT

y
: :
Y Y, “ E 7
n..m e A __m ._.F_ m
- -

e
N

TRV TEYY YIS YRV YV Yy

RLELEALEALLLELLLLLELAEL LA LA L EL LA LA L LR LR LT T B L L LT

b3

[P)

57
e

i

T

I

2, 53

T e P v
___E._w M,

PN
i

I
L%
BN

RN

L T O O F O g g g g g F g g g g oF g F aF aF R

v\.\.\.\hl.\.-_...\.\-\.\.\.\.\.\.\.\\.\

T T T T T T o T T T T W

"

""n.""n."'n."'n."'ﬁ."'l."'i.""n._"'u."'i.""i."'i.""i.""n."'i."'u."'h."'ﬁ."C\"C\'\\'\"n"\:‘ﬂ\‘ﬂ‘h\x‘n"‘ﬂ‘ﬂ%

-

P Y

Vo

I

BFANY
{

A

LT o O a oF g g o

AT T TR I TINT T T TN TET T T TR I E I FTIETFErrrrrr.
1

¥

50

= 5}:';.
il ﬁ‘;..t.‘c

MRL

i g i o i o T i o g g g g g i o

FrE N N NN ST

PEESLLL LSS

1
Far g o g g g i g g o g0 g g8 oF i g g oF g g F g g R aF g g g g oF i g g g oF g g g g g aF g gk aF g gk gF g g g g b g i g g o i

IH'!
X
i Vi Vi Vi iy Vi i i i B Wi Wi i i S i T i S Vi T i i B i i S B T Wi i S i i i Wi B Vi i

-~ '
A
-~ '
A
-~ '
'
-~ '
o
-~ :
-~ '
A
-~ :
A
-~ :
i L
; ‘ |
L | \ !
L a0
5 m _
r ‘ .
= -~ '
fo
-~ '
~ '
~A
-~ '
A
-~ '
F
-~ :
F
“ :
‘1

"

Dol

oy
L
T.._J._
My
A
r
0y
Ao oo

Pl ¥ g g b

g ol o i i g o g g i i o

1
WA I T T ET T IT T I TTT T T FT T I T NTTTTTETETT T TN TIT TSI T TN TN T TT TNy

Patent Application Publication

wr i

b

DHSEL &Y
IR0

o U R R

ffffffffff[

JE R E P G P P

e e e e e e e e e T e e e e e e ey

CLEENT
ER

T T T T T T T T T T T

“““& SPEIAL
LLRUTING

15

I .
4 3 a4 a2 a2 & a3 a

hxxxxxxxxxxxxxxxxxxﬁ;

)

PP g PR e R R G I R R E R R G

”

F
T A R 1

‘h"h"'h‘h"'h‘h."h"'l."h."h"h."h"'i."h."h‘h‘h\‘h\‘h‘h\‘h‘h\‘h\‘h‘h‘h‘h‘h‘h‘h‘h‘h‘h‘l.

BRARY ||
120

L L L R R L L L L L LR L LR L LR R LR LR L i

P P g E e e

!

b-.1-..11.1-..11-..1-..1..1-..1..1-..1-..\.1-..1-..1-..1-..1.."-..1-..1..*1-..1-..1..xxxxxxxxxxxxxxxxxxxxxxﬂ

Wi g g

SRR ﬂ-‘iH AR
MARDAREE

ool T i R R R R
P P P g I P F

EH VIRONBENT | | o~

May 7, 2009 Sheet 3 0of 18

R T

CALNY g

G, 10

US 2009/0119677 Al

ﬁ?*f?ii:ﬁii F
MAMDWARE
Y60

F T L

A, HFF. KL FES

T T T e e e e e e e e T e e e

R

e e e e e e e e e e e e e e ™ e e e

URET OF E*a;,i:é"*&:ﬂm LR
.E: -.+

M&JWSQ{TR

TS

e e e e e e e T T e e e e

Ll ‘."'u. ..t‘q. .."i"h ::-.., - l_w --._.il
b

\"‘\15-}% s E-q i:‘:{q 4 -:“ux"':'}
RR R 1354

L L L R L L L L AL L L LR LR L R

e T e T T e T e T i M e e e e e e e T e e e T e T e T e T T e T e e e e T e T e e T e T e e e T T e T e e T e T e e e e i e e e e e e T e T T e T e e e T T

US 2009/0119677 Al

May 7, 2009 Sheet 4 of 18

Patent Application Publication

Bt aF OF o g aF gt kg g gF g i g g]

B ey
A -
b

SRR RINE
Q

22

BEMOTE

4

'1'_:3

“n
.

-]
' ﬂuu l___..__....__..___..__.L_._..___.____..__....__...___..___L___..___H\Hﬂ\%ﬂ\;ﬂq\ﬂﬂ%\ﬂ;ﬂqﬂﬂhﬂfﬂﬂy

AT T TSN

™

Ll
\
}

o
il

M M P i S i i i M i M M i T e e M P iy i i T i My M My iy i M T P My i i S M M i M i M M P M M i My S iy i i i Py iy i i iy Ty Ty Wy Py Ty iy i i Wi iy i i i %
T OF EXECUTION (LS
- . ' L M‘- ! - ' '!: .
T |
bl

\
N

'q"'l."'l."'l."i."'|."'l."'l.‘h‘h‘h‘h‘h‘h‘h‘h‘h‘h‘h‘h\‘h‘h‘h‘h‘h‘h"h‘h‘h‘h‘h
.
et e

L

I F S,

N
N

1)
1354

T A,

.Ei_
E,

e

e e e e R e e e o

T Tt Tt T T T T e T B T B B T T Bt TR TR T T

g o N N o i N o N o o i i i o o N o N i N

{34

{
:

S

ST
3

_-h-

0

e

-
T
=
o
VR s
d

w

Y,

N

3
*r

oated

AV

b S
L o =y 2
4y - m i R
3 B iy Wl T

5 3

—r\& L7 o

L3 L

b

L P P

hhhhhhhhhhhhhhhhhhh

(7
,......” s
>
TH

Lt e

B A F I rray

£ g
7
|2t s

g R R R R K

g T ™y T o T g g T e

¥

"I K- R Sy e
=3
A

Ll b b e i P b i i bt e b i i P b i

FA i P i b b e P R b i i i

Patent Application Publication May 7, 2009 Sheet 501 18 US 2009/0119677 Al

1034 CLUSTER 170

RERNITE
CONTROLLER

140

UE 130

CLIENT
114

" CLUSTER 170

NETWORK
120

CLIENT

110

FIG. 1E

Patent Application Publication May 7, 2009 Sheet 6 0f 138 US 2009/0119677 Al

CLUSTER 1 713

SERVICE
PROVIDER

~ NETWORK
190

CLENT CLUSTER 170

110

nnnnnnnnnnnnnnnnnnnnnn

TARGET
DEVICE

185

 NETWORK
120

TARGET
DEVICE

195

FIG. 1F

P U IR T P U T U R U T B U R U I T U R U U T T U R U U I i P T R IR T I T O E R T T T

HofF DT T

£ o o o o o oV T o o o o o o o o T T T T o o

US 2009/0119677 Al

May 7, 2009 Sheet 7 of 18

£ ™
Prrn

EX

k-
I
230

T i g g T T g e g

[it o g _

PP FEEEE PR F R RS EE RSP RSN E S E

T T i A C i ol = o™ i ol g g

.

N
3 AR
RN
R0

5
ol ®
Jq._._n
S
E

SRE!
Ry

F '
qu...! o, .wﬂl.\ !
——, Y A AT A A AT A TS A TS AP
..11.hn " e p
:nﬂ._.. .____..__.__“__.___

o]
ik .

ra

i oy i g o g g S e

Lot et e g ey

At

HTERFALE
¥
&

T T o T T T T T o o T E o g T G o g T o o T T T o T

-I-I-I- Sty -I-I-I- - -I-I-I-I- - -I-I-I- Sty -I-I-I- . -I-I-I-I- - -I-I-I- Sty -x iy -I-I-I-I- - -I-I-I- Sty -I-I-I- . -I-I-I-I- - -I-I-I- Sty -I-I-I- RSt

ELTTEEETTTERPLTRIRLTTRASS

Pt
M

STORS
LK

Patent Application Publication

Lo ol T el

g a0 T T g g

AR RS FFFRr RN NN R AR RN F NI RN FRER IR F RS FRRR NN FRSSFFRNS SRS RN FF RSN ER

Patent Application Publication May 7, 2009 Sheet 8 0of 18 US 2009/0119677 Al

Ay
e
L
-
S
A
ot
Y
Y
A

FRE 3T
VR
Hﬁ}‘- --------------------------------

HIERRY SRS

I - e . I R R I - O O . - O O |
. 4

TAHFTRLY
DHERVHLE

N
t
i
by
b
b
b

+
e e e T T T e T e T T e T T T T e T T T T e T T T T e T T T T e T T T e T T T

L . RO e N =R R L%
COMMUNICATION CEYICE

NTEMRACE NS
ke

e e e e e ™ e e e e ™ e ™ e e e e e e e e

FIG. 3

Patent Application Publication May 7, 2009 Sheet 9 of 18 US 2009/0119677 Al

CLIENT EM:E

410 RESULT

e, 205 REQUEST

o ANSWER 420

T
' EE I
o :

iy ..
*""'!'uc-n;--

--'- - "t
‘l-liﬂ o ...- :

FIG. 4A

Patent Application Publication May 7, 2009 Sheet 10 0of 18 US 2009/0119677 Al

_ REMOTE
CLIENT CONTROLLER. UE
L 1443 13{:

.. 405 REQUEST

440 QUERY. .

345 ANSWER
450 ANSWER
CAeRESAT e a0 RESULT _ o e ==

A
e --Ill'll' ':!
_ el
gt

w-‘hﬂ
.;..,-.-.l!"'""'"'III.!.LI.FI
Al
‘#ﬂl‘!ﬁ.

FIG. 4B

Patent Application Publication May 7, 2009 Sheet 11 0of 18 US 2009/0119677 Al

510 —2 CENTIFIER: LAB 001
5152 '

Patent Application Publication May 7, 2009 Sheet 12 0f 18 US 2009/0119677 Al

~Z—TVARIABLE ID:
-2+ EUNCTION ID:

550 7 SECURITY ID:

560 2 FOLDED REQUEST 1D
RESULT DATA

Patent Application Publication May 7, 2009 Sheet 13 0f 18 US 2009/0119677 Al

810 ~—f COMMAND
B o

SYNCHRONOUS OR ASYNCHRONOUS

E14 waf DESTINATION ID

15 ~s ERROR HANDLING

£18) DATA

620 —H- INSTRUCTION
622 ~4. DATA

B24 ERROR HANDLING

FIG. 6A

Patent Application Publication

May 7, 2009 Sheet 14 of 18 US 2009/0119677 Al

r
lll
LR R B b b b B BB B BB MBRERRAERERLRLERBEREREREERERRRRREDREREDREREDRDEDRREREDERMERERDEREREDRLERERRELRRERDERDERRRRMRRERREDREREDRREDRAERDEREREEDRRREDREDRDEDRERDRRERRGRSRDRD.SDRERRDERRLRRRERDEREDRDEREREDRDRRLEDRDBRERREDRDEDRRDRLRRRLERLEDRRLERRRDRRERLRRERERDERDRDRLRREDRLRDR B

AT
B FROR MANEN NG

CRATHEET PORTIN e 507

FIG. 6B

Patent Application Publication May 7, 2009 Sheet 15 0f 18 US 2009/0119677 Al

[

LOCATION: [hilp/hvwew MATLAB

] B ot e e e e e e k] Bl

ttttttttttt

SOMYAdISD sedup

e B b e e N Ve Y e o e e e e e o e e Y

L ke 1
.

| [1
N.

' h

720 L DB TRIBUTED PROCS] V]

T25

7ag-

- DOCUMENT DONE

Patent Application Publication May 7, 2009 Sheet 16 of 18 US 2009/0119677 Al

820 RESPOMNSE?

TRIANUAL |

&30 T LIE 1D UB-001
' P 1 OF PROCESSORS: 24

MESSAGE TYPE: FOLDED MESSAGE
] MESSAGE CONTENTS:
| IREQUIRE VARIABLE: SCALE_FACTOR
| IREQUIRE FILE: NPUT.DAT

 DOCUMENT

LHONE

FIG. 8

Patent Application Publication

May 7, 2009 Sheet 17 of 18

US 2009/0119677 Al

CHE EDIY WIEW EAVORITES TIKR8 HEWP

T S S e T e e T e T i e i e T e i e e T e T i e e e T e e e e e e T e T T e i e T e e e e T e T e e e e T e T e e i e T i e i e T e e e e i e i e e i e T e T e e T e T e T i e i e e i e i e T e T e e i e T e e i e S e i e e e T e e e e T e T e i i e e e i e e e e i e e e T e T e e i e i e T e e e T T e T i e T e T e T e e e i i i e T e T e T e i T e T i e e i T e T i e i i T e S T e T e T i i e e T S S e e T

5

ot

' B I E I N ERESN
EE EEEET . -

#“"@

}‘n‘h:n‘h‘h‘n‘h‘n T‘h‘h‘h‘h‘h‘h‘i‘h g iy Vi iy e e W‘h‘h‘h‘h‘h‘i‘h‘h‘h‘.‘:‘h‘h‘{:‘h ‘n‘n‘n*‘n oo, e i M i M e Sy Vi Ty T S i i Vi S T Sy T My S S By S B B By Vi By i S B S Ty 1{1{; a -
o s AT IS ;
VR DR TR S nanveet Al '}

L b

[1 . . - q
A ™, T,

o O e I
Rl Ee 4 AR R

TFIIF T F I YT,

RO LNONE

NIGNUIGRT

A
LN
¥
___ . — - —— o — o ——— e ——— e — —— —— e — = = = — = = — = —_ .
'
1
Ty, LS "’-
k I‘ - - R ' :"“
. - E o+ - - 1" |
.r“-.' I_...-... 1 - }.
. T m T - -
Tl S Ty e " g e LW L
.f -t = - -k 1 - . 'I-
- - - = m - 1’ r
at- Fh oA - e WAook L 1 o+
e - - P a - P STy
X T m o+ N N T I e I L Y] -
- N N e R e L T 1 . - - \
- AL LI T Y R A - L T T R LT L UL .. - N o=
L BN e e = LI = A e e 1 0 1 a ' -+ __ .)
'l:-f?“"l' + - . . e I T T | P . v - | - -
|] ' . L * " 4+ o A EE 111 LN - . . rmt
-_-l_l.'\ll - = - LI - . + + P I L B T T T | - - -----.‘.'II
e - -.n.‘.-r ~ g - o o - ., = .-k_..i--.....-n....rn-. ' ' il 0
LI N raow A bl L] -+ - - = ettt 1T 01 0 Fm_oo1oa 1% oo R ' - m
R LR N 1 'y r 1 - T E A ETE R Fo1o0om koo - L] ' L | ™
- - + - L8 - - L L = - - A -+ s = Lo o1 1 F % oo W orm - TR - E N T
T oo . L L P L T T L L T R T R R T T R B T F o -H-“rl-.-.l.. . -
0 4 F - DR = r B h - - K -+ = W+ = o+ = F_ o+ s+ ko3 o= + W@ o1 11 "W 1o1oa 17 Lk H kT 111 -1 . + h o
- C O L I T T I e T A T T T T T R R B L R N R T - + —CH LA
e L - T T T T L N T + a il:\‘ vvvvv l\".-.-.-.--.-u-. .-+
LRL I 'I--'ﬁ_. --------- P -\---------l.---_-_._-"'—!--r-r qqqqqqqqqq T L. R L B m
i - . + - - + . . + 4« 4% E B EEEEY %E YA T TrT T TR YT T + R ", + m W
=R 4 a1 =L - s s = anaom ¥ L Laoa - LI rr T Tt mTTTT -_--nu.l-‘\\.- . + = 2 m
0 -'r---'----‘-qll-11|1|||||h||-'r- T1 % T AT TTY -r-r-q_-"h.. L] = LI K
1 . I RN = F 1 o0 1 1 A7 o R o B mornwod EEEIE AL - LI] m,
11.1'.- n 1 - - - a I L I I I A T T N 1'. L] LY L 1 -
1 LR | F "« BATHFT l.‘l.ll'l'llllfilllfilll 111 TR 1 q'.l_:'l | kb bR L I | |
. " T T o 1 = = 1 T 1101 T e o 1 T m 1 ----li'.-q_.q_-q:‘l kR UL - ' LK
4 = o1 o0 0 1 B+ B A w1 e e e e e e e - mw | kR R kR L EEEERE I T . m
i | L Y T EE L B 'q,,..l.'l'lllll !1-1-1-\\:1.1. llll‘l“:llll = T Y T
...... LIE TR - LI SE N AE R ko HEh N EEE RN - T u,
-k = 1 N T R 1] EO B R R B LI kR R o
- % r LN I N I kR] u,
LI B | LB S I N I O O L I B -
- et T + + + ¥ . m,
. P B N R N R R ".,. .'l_. ! [
O .) N ‘m
[I T . -l:l.ll...%.'l\..] "
1 ' '
b [] - .
. " 'l.lll.- Y _— LT m
O e \ i, .'I:I..i' " :
1 ! L " -
‘m'a ™ " ' [. m, . .-.III-I-I-.I .
.?. LECRE R ', "‘-‘ '-_.'l_.'l_ 'l_. .'I ‘m N & N mmm W -
- . .'\l.,_ , o y , . . n
L L} LA !]
' 0 llll‘l‘!h.' l.] L] . L | H E Y EEEEEEEETN -.'
LR I MUNE Ny BCR N e N e) L LI
- . AL JL T .'l..'l..'l..'l..-.'l..'l..'l..'l..'l..l u =
" L omT L L L L L L L "
. N i e e T e Tl W T AR] LI
- w1 - W W W WM E W EF Y WYE u,
LI BN | T A F T R AR EREEE RN
V- + .. I R R EAEA R m
0 L LA R EREERLELE RN
-1 et % % % % 4 % R WY R A m,
| | + 11 BT TR YRR R
- e+ moa . R Bl ® % % % % R R AN n
L T | -+ " " ENREEERLREER
nh BRoE A LI T LI m
- = =R LI R
LR - = . LI + u,
. - - . . . C v+ T+ + +
1 + k- | I - | ++ ++ + a1
- o=, (I . . N, « + + ¢+ vk + F F + * =
TR g om - + + + + + .
-+ L] - + + + + -
LI N -+ + o+ o r
L | + + - + + + '
- T - - + .
tll-_. |' | N T T T T T A TR A N B O O BN |
LI - 1
[| - LI L
e T Ta v . +
+-.-.. .
" '-i'_-'I_-i ! |‘

7

CAIRPLIR VAL

A

kb

T1T1TLT 1T A LT L L L L LA L LELRT

.r.r.r.r..r.r.r.r.r.r.r.r.r.rf.r.rf.r.r.r.r.r.rr.r.r.r.r.r.r.F.r.r.r.r.r.r.F.r.r.ﬂ:r.r.r..r.r.rr.r.r.rfffffffffffffffffff/f’f}?} F A

b7
ﬁ"fiﬂ

R

W

Patent Application Publication May 7, 2009 Sheet 18 0of 18 US 2009/0119677 Al

.-.._L.IL_""'"‘IL"'I...;-._-___-

'%"“:%H“ -'\‘:

ENT iﬁh‘nﬂ"i? = TERE

EHE RECENRNES INQTRICTICN
' FROMCUENT

UE BB N“*S %H‘?«Tﬁ L0 ﬂﬂ-ﬁ‘e‘a
PROCESSTRS

RS

. ‘#‘#‘A‘%""v

~a, D
o -

O
e EM f?i‘“" E “"*m&jﬁg | LI SEMDS MESSASGE

e . . - 2 g 2
s CUBNTY e | TOCLENT

"""'-F-_,,’ﬂ: #‘ﬁ- _.W .
N .
F‘f\—-.::-& ra
R{-H‘-“Hk% SR
DUIENTY

LG GRNRES hh AT TOHAIRMY

US 2009/0119677 Al

BI-DIRECTIONAL COMMUNICATION IN A
PARALLEL PROCESSING ENVIRONMENT

RELATED APPLICATION

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 11/706,803, filed Feb. 14, 2007, the
entire content ol which 1s incorporated by reference herein.

BACKGROUND INFORMATION

[0002] Certain computations may benefit from parallel pro-
cessing. For example, a complex simulation may run faster
when the simulation 1s divided into portions and the portions
are simultaneously run on a number of processing devices 1n
a parallel fashion. Parallel computing arrangements may
include a controller that determines how an application
should be divided and what application portions go to which
parallel processors. For example, a host computer that 1s
running the simulation may act as the controller for a number
of parallel processors.

[0003] Parallel processors may recerve instructions and/or
data from the controller and may return a result to the con-
troller. Conventional parallel processing environments may
allow parallel processors to send only certain types of mes-
sages back to a controller. For example, a parallel processor
may be allowed to send only results and errors to a controller.
More complex types of communications, such as a request for
additional resources, requests for additional information,
requests for code, etc., may not be able to originate from a
parallel processor in conventional parallel processing envi-
ronments.

[0004] Conventional parallel processing environments may
not be able to perform certain types of processing etliciently
due to the limited types of messages that can be exchanged
between the parallel processor and the controller. For
example, a parallel processor may not be able to mnform a
controller that its configuration 1s different from a configura-
tion that the controller assumes 1s present on the parallel
processor (e.g., when the controller assumes that a parallel
processor 1s running a first type of operating system when the
parallel processor 1s actually running a second type of oper-
ating system that differs from the first type of operating sys-
tem).

SUMMARY

[0005] According to one aspect, a method may include
receiving an struction from a technical computing environ-
ment, and commencing parallel processing on behalf of the
technical computing environment based on the received
instruction. The method may also include sending a query,
related to the parallel processing, to the technical computing
environment, recerving an answer associated with the query
from the technical computing environment, and generating a
result based on the parallel processing. The method may
turther include sending the result to the technical computing
environment, the result being used by the technical comput-
ing environment to perform an operation.

[0006] According to another aspect, a system may 1nclude
one or more devices to recetve an mstruction from a technical
computing environment, and commence parallel processing
on behalf of the technical computing environment based on
the received instruction. The one or more devices may also
send a query, related to the parallel processing, to the techni-
cal computing environment, recetve an answer associated

May 7, 2009

with the query from the technical computing environment,
and send the mstruction and the answer to two or more pro-
cessors. The one or more devices may further perform the
parallel processing with the two or more processors, generate
a result based on the parallel processing, the received instruc-
tion, and the recetved answer, and send the result to the
technical computing environment, the result being used by
the technical computing environment to perform an opera-
tion.

[0007] According to still another aspect, a computer-read-
able medium may store computer-executable instructions for
receiving a request from a technmical computing environment
associated with a client, commencing parallel processing on
behalf of the technical computing environment and the client
based on the recetved request, sending a query, related to the
parallel processing, to the technical computing environment,
receiving an answer associated with the query from the tech-
nical computing environment, generating a result based on
the parallel processing; and sending the result to the technical
computing environment and the client, the result being used
by the technical computing environment and the client to
perform an operation.

[0008] According to yet another aspect, a system may
include means for performing bi-directional communication
with a technical computing environment, means for com-
mencing parallel processing on behalf of the technical com-
puting environment based on the bi-directional communica-
tion, and means for generating a result based on the parallel
processing, the result being used by the technical computing
environment to perform an operation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorpo-
rated 1n and constitute a part of this specification, illustrate
one or more embodiments of the invention and, together with
the description, explain the mvention. In the drawings,
[0010] FIG. 1A illustrates an exemplary system that can be
configured to practice an exemplary embodiment;

[0011] FIG. 1B illustrates an exemplary system that
includes a unit of execution operating on a client;

[0012] FIG. 1C illustrates an exemplary system that
includes a client coupled to a unit of execution via a network;
[0013] FIG. 1D illustrates an exemplary system that
includes a remote controller operating with a client and a unit
of execution;

[0014] FIG. 1E 1illustrates an exemplary system that
includes clusters and multiple clients;

[0015] FIG. 1F illustrates an exemplary system that
includes a service provider, a client, and a number of units of
execution;

[0016] FIG. 2 1llustrates an exemplary functional diagram
showing logic that can be used to implement parallel process-
ing in an exemplary embodiment;

[0017] FIG. 3 illustrates an exemplary architecture for
implementing the client or the unit of execution of FIGS.
1A-F;

[0018] FIG. 4A 1illustrates an exemplary timing diagram

showing an exchange of messages between a client and a unit
of execution according to an exemplary embodiment;

[0019] FIG. 4B illustrates an exemplary timing diagram
showing an exchange of messages between a client, a remote
controller and a unit of execution according to an exemplary
embodiment;

US 2009/0119677 Al

[0020] FIG. SA illustrates an exemplary data structure for
storing information associated with a client;

[0021] FIG. 5B illustrates an exemplary data structure for
storing information associated with a unit of execution;

[0022] FIG. 6A 1illustrates an exemplary application pro-
gram 1nterface that can be used 1n an exemplary embodiment
of a client;

[0023] FIG. 6B illustrates an exemplary application pro-
gram 1nterface that can be used 1n an exemplary embodiment
of a unit of execution;

[0024] FIG. 7 1llustrates an exemplary user interface that
can be used to display information to a user 1n an exemplary
embodiment;

[0025] FIG. 8 i1llustrates an exemplary user interface that

can be used to display bi-directional communication infor-
mation receirved from a unit of execution;

[0026] FIG. 9 illustrates an exemplary user interface that
can be used to display a result that 1s recerved at a client device
from a unit of execution; and

[0027] FIG. 10 1llustrates a flow chart showing exemplary
processing that can be used with an exemplary embodiment.

DETAILED DESCRIPTION

[0028] The following detailed description of implementa-
tions consistent with principles of the ivention refers to the
accompanying drawings. The same reference numbers 1n di-
terent drawings may 1dentify the same or similar elements.
Also, the following detailed description does not limit the
invention. Instead, the scope of the invention 1s defined by the
appended claims and their equivalents.

[0029] Conventional distributed processing systems, such
as parallel processing systems, may include uni-directional
communication between a controller and a parallel processor
(e.g., a computing grid). The uni-directional communication
may allow the controller to send instructions and data to the
parallel processor, but may not allow the parallel processor to
send instructions, requests, etc., back to the controller. As a
result, benefits associated with parallel processing may be
limated.

[0030] For example, a controller may send a task to a par-
allel processing device based on an assumption that the par-
allel processing device 1s properly configured to execute the
task. Assume, for sake of example, that the parallel process-
ing device does not have enough memory to efficiently
execute the task. In conventional implementations, the paral-
lel processing device may not be able to request additional
memory resources, such as requesting the use of excess
memory on the controller, since the parallel processing device
cannot participate in bi-directional communication with the
controller.

[0031] Exemplary embodiments disclosed herein enable a
controller and a unit of execution to participate 1n bi-direc-
tional communications. As used herein, unit of execution
refers to a device that performs parallel processing activities.
For example, a unit of execution may perform parallel pro-
cessing activities 1n response to a request recerved from a
client. A unit of execution may perform substantially any type
of parallel processing, such as task, data, or stream process-
ing, using one or more devices. For example 1n one imple-
mentation, a unit of execution may include a single process-
ing device that includes multiple cores and in another
implementation, the unit of execution may include a number

May 7, 2009

of processors. Devices used 1n a unit of execution may be
arranged 1n substantially any configuration (or topology),
such as a grid, ring, star, etc.

[0032] Using the above example, an exemplary embodi-
ment of a unit of execution can inform the controller (e.g., a
client that sent a request to the unit of execution) that 1t does
not have enough memory to efliciently perform a parallel
processing activity on behalf ofthe client. In addition, the unit
ol execution can query the controller as to whether additional
memory 1s available on the controller or elsewhere in a system
(e.g., on another device networked to the controller). The unit
of execution may further request use of excess memory on the
controller or the other device. For example, the unit of execu-
tion may task the controller to perform an operation (e.g.,
information storage and/or retrieval operations) on behalf of
the unit of execution. The controller may receive information
from the unit of execution and may store the information for
later use by the unit of execution. When the unit of execution
1s finished with parallel processing activities on behalf of the
controller, the unit of execution may return a result to the
controller.

[0033] Exemplary embodiments may use bi-directional
communication between a controller and a unit of execution
to 1dentity and/or to take advantage of available resources
(e.g., unused memory, unused processor cycles, etc.), special-
1zed hardware (e.g., display devices, unique interfaces, etc.),
specialized software (e.g., functions that may be needed by
one device but that may not be present on that device, unique
soltware applications, etc.), etc. Exemplary embodiments
may further perform bi-directional communications within a
single device (e.g., components operating within a single
enclosure), among two devices connected via a link (e.g., a
dedicated link, a bus, etc.), among two or more devices con-
nected to a network (e.g., a wired network, a wireless net-
work, etc.), etc.

[0034] Parallel processing, as used herein, refers to sub-
stantially any type of processing that can be distributed across
two or more processing resources (€.g., miCroprocessors,
clusters, labs, etc.). For example, 1n one embodiment, parallel
processing may refer to task parallel processing where a
number of tasks are processed at substantially the same time
on a number of processing devices. In task parallel processing
cach task may be processed independently of other tasks
executing at the same time (e.g., a first processor executing a
first task may not communicate with a second processor
executing a second task). In another embodiment, parallel
processing may refer to data parallel processing, where data
(e.g., a data set) 1s parsed 1nto a number of portions that are
executed 1n parallel using two or more processing devices. In
data parallel processing, processing devices and/or data por-
tions may communicate with each other as processing
progresses. In still another embodiment, parallel processing
may refer to stream parallel processing (also referred to as
pipeline parallel processing). Stream parallel processing may
use a number of processing devices arranged in series (e.g., a
line) where a first processor produces a first result that 1s fed
to a second processor that produces a second result. Stream
parallel processing may be prevalent 1n certain fields, such as
signal processing, image processing, etc. Other embodiments
may combine two or more of task, data, or stream parallel
processing techniques alone or with other types of processing

US 2009/0119677 Al

techniques to form hybrid-parallel processing techniques
without departing from the spirit of the mvention.

Exemplary System

[0035] FIG. 1A illustrates an exemplary system 100 that
can be configured to practice an exemplary embodiment.
System 100 may include client 110 and unit of execution 130
(heremaiter UE 130). The embodiment of FIG. 1A 1s exem-
plary and other embodiments may include more devices,
tewer devices, and/or devices 1n arrangements other than the
arrangement of FIG. 1A.

[0036] Client 110 may include a device capable of sending
data to or receiving data from another device, such as UE 130.
“Data,” as used herein, may refer to any type of machine-
readable information having substantially any format that
may be adapted for use 1n one or more networks and/or with
one or more devices. Data may include digital information or
analog imnformation. Data may further be packetized and/or
non-packetized.

[0037] Client 110 may be a computer, such as a desktop
computer, a laptop computer, a client, a server, a mainframe,
a personal digital assistant (PDA), a web-enabled cellular
telephone, a smart phone, smart sensor/actuator, or another
computation or communication device that executes mstruc-
tions to perform one or more activities and/or generate one or
more results.

[0038] In one embodiment, client 110 may include a tech-
nical computing environment 1135, a library 117 and a con-
troller 119. Other embodiments of client 110 may include
more components, fewer components, or the 1llustrated com-
ponents 1n alternate configurations.

[0039] Technical computing environment (T'CE) 1135 may
include hardware and/or software based logic that provides a
computing environment that allows users to perform tasks
related to disciplines, such as, but not limited to, mathematics,
science, engineering, medicine, business, etc., more elli-
ciently than if the tasks were performed 1n another type of
computing environment, such as an environment that
required the user to develop code 1n a conventional program-
ming language, such as C++, C, Fortran, Pascal, efc.

[0040] In one implementation, TCE 115 may include a
dynamically typed language that can be used to express prob-
lems and/or solutions 1n mathematical notations famihar to
those of skill 1n the relevant arts. For example, TCE 115 may
use an array as a basic element, where the array may not
require dimensioning. In addition, TCE 1135 may be adapted
to perform matrix and/or vector formulations that can be used
for data analysis, data visualization, application develop-
ment, simulation, modeling, algorithm development, eftc.
These matrix and/or vector formulations may be used in many
areas, such as statistics, image processing, signal processing,
control design, life sciences modeling, discrete event analysis
and/or design, state based analysis and/or design, etc.

[0041] TCE 115 may further provide mathematical func-
tions and/or graphical tools (e.g., for creating plots, surfaces,
images, volumetric representations, etc.). In one implemen-
tation, TCE 115 may provide these functions and/or tools
using toolboxes (e.g., toolboxes for signal processing, image
processing, data plotting, parallel processing, etc.). In another
implementation, TCE 115 may provide these functions as
block sets. In still another implementation, TCE 1135 may
provide these functions 1n another way, such as via a library,
ctc. TCE 115 may be implemented as a text based environ-

May 7, 2009

ment, a graphically based environment, or another type of
environment, such as a hybrid environment that 1s both text
and graphically based.

[0042] Library 117 may include hardware and/or software
based logic that operates with TCE 113 to perform certain
operations. For example, an embodiment of library 117 may
include functions to perform certain operations (e.g., signal
processing, 1mage processing, parallel processing, data dis-
play, etc.) in a text based environment. In another embodi-
ment, library 117 may include graphical representations (e.g.,
blocks, 1cons, 1mages, etc.) to perform certain operations in a
graphically based environment (e.g., a gain block, a source
block, a filter block, a discrete event generator block, etc.). In
still other embodiments, library 117 may be configured to
perform other operations using text, graphics, etc.

[0043] Controller 119 may include hardware and/or soft-
ware based logic to perform control operations on behalf of a
device or component in system 100. For example, controller
119 may perform operations to select and/or control parallel
processing activities performed by UE 130 on behalf of client
110. In one implementation, controller 119 may operate
alone, or with other logic on client 110, to parse an applica-
tion, problem, etc., into portions that can be processed 1n a
parallel fashion. Controller 119 may send the portions to UE
130 for parallel processing. Controller 119 may operate on
results recerved from UE 130 (e.g., results from processors
135-1, 135-2, 135-3, or 135-4), may assemble the results into
a single result foruseon client 110 (e.g., to adisplay device on
client 110), and/or may make the results available to other
applications, objects, devices, efc.

[0044] UE 130 may include a device that performs parallel
processing. In one implementation, UE 130 may perform
parallel processing activities on behall of another device,
such as client 110. In another implementation, UE 130 may
perform parallel processing activities on behalf of itself or on
behalf of a host of which UE 130 1s a part. Implementations of
UE 130 may perform parallel processing in anumber of ways,
such as by performing parallel processing activities related to
task parallel processing, data parallel processing, stream par-
allel processing, eftc.

[0045] UE 130 may perform parallel processing using pro-
cessing devices resident on UE 130 and/or using processing
devices that are remote with respect to UE 130. For example,
UE 130 may determine that five processors are needed to
operate on a problem. UE 130 may use processors 135-1,
135-2, 135-3, and 135-4 resident on UE 130 (shown 1n FIG.
1A) and may use a fifth processor located on another device
(not shown 1n FIG. 1A) that may be connected to UE 130 via
a link (e.g., hardware based link, such as a wired or wireless
link, or a software based link, such as a pointer).

[0046] In one implementation, UE 130 may include pro-
cessors 135-1, 135-2, 135-3, and 135-4 (collectively proces-
sors 135). Processors 135 may include hardware and/or soft-
ware based logic that performs processing operations.
Processors 135 may include substantially any type of pro-
cessing device, such as a central processing unit (CPU), a
microprocessor, a field programmable gate array (FPGA), an
application specific itegrated circuit (ASIC), a micro elec-
trical mechanical switch (MEMS), a general purpose graphi-
cal processing unit (GPGPU), an optical processor, a biologic
processor, etc.

[0047] Implementations of UE 130 and client 110 may
operate 1n homogenous configurations where both client 110
and UE 130 are configured 1n substantially similar ways (e.g.,

US 2009/0119677 Al

both devices are running the same operating system, technical
computing environment, etc.), or UE 130 and client 110 may
operate 1in heterogeneous configurations where client 110
may be configured differently with respectto UE 130. Homo-
geneous and/or heterogeneous configurations of system 100
may operate in static configurations and/or dynamic configu-
rations.

[0048] A static configuration 1s a configuration where a
relationship between a requested operation from client 110
and an activity performed by UE 130 1s predetermined prior
to UE 130 performing processing activities on behalf of client
110. For example, a static configuration may dictate that fast
Fourier transtorms (FFT's) are always sent to processor 135-1
while interpolation operations are always performed by pro-
cessor 135-2. A dynamic configuration may include a con-
figuration where determinations about processing resources
on UE 130 are made when UE 130 operates on a task and/or
when client 110 sends a request to UE 130. For example, a
dynamic configuration may make determinations with
respect to processors 135 on the fly based on availability of
resources for a given processor when a particular activity
needs to be performed on behalf of client 110.

[0049] Processors 135 may be made up of a single device/
component or may mclude more than one device/component.
For example, processor 135-1 may include a pre-processor
that operates with another processor, a GPGPU, etc. Alterna-
tively, processor 135-1 may include a group of processors that
operate together and are considered a single processor by UE
130, control logic operating with UE 130, or control logic
operating with processor 135-1. Processors 135 may be
clocked at the same rate (e.g., using a single master clock) or
may be clocked at different rates (e.g., where processor 135-1
uses a first clock rate and another processor uses another
clock rate).

[0050] Implementations of client 110 and UE 130 can take
many forms and/or configurations. For example, FIG. 1B

shows one form of client 110 and UE 130.

[0051] FIG. 1B illustrates an exemplary system that
includes UE 130 operating on client 110. Client 110 may
include TCE 115, library 117, controller 119, UE 130 that
includes processors 135, and storage 137. TCE 115, library
117 controller 119, UE 130 and processors 135 may operate
as described in connection with FIG. 1A. In FIG. 1B, UE 130
may be mmplemented on a board that can be removeably
coupled to client 110 to provide client 110 with parallel
processing capabilities. Implementations of client 110 may
be configured to accommodate substantially any number of
boards that can include one or more UE’s 130 per board to
provide scalable processing capabilities to client 110.

[0052] Storage 137 may include hardware and/or software
based logic to store information used by client 110 and/or UE
130. For example, storage 137 may store mstructions that are
used to parse a problem into portions that can be processed in
parallel, data associated with the problem, equations associ-
ated with the problem, aggregation instructions that allow
processors 135 and/or UE 130 to assemble results into an
aggregate result for use by client 110, etc. Storage 137 may
reside locally on client 110 or may be remote with respect to
client 110 and connected thereto via a link. In one embodi-
ment, storage 137 may be implemented via one or more
virtual hard drives. For example, client 110 may not include
hard disk storage and may use a link (e.g., a pointer) to a hard
disk located on a machine that is remote with respect to client
110 (e.g., a remote device operating on a network).

May 7, 2009

[0053] FIG. 1C illustrates an exemplary system 102 that
includes client 110 coupled to UE 130 via network 120. In
FIG. 1C client 110 and UE 130 are in a networked configu-
ration where information sent from client 110 may pass
through network 120 en route to UE 130. System 102 may
include client 110, network 120, UE 130, display 150, and
specialized hardware 160. Client 110 and UE 130 may oper-
ate as previously described.

[0054] Network 120 may include any network capable of
transierring data (e.g., packet data or non-packet data). Imple-
mentations ol network 120 may include local area networks
(LANSs), metropolitan area networks (MANs) and/or wide
area networks (WANSs), such as the Internet, that may operate
using substantially any network protocol, such as Internet
protocol (IP), asynchronous transier mode (ATM), synchro-
nous optical network (SONET), user datagram protocol

(UDP), IEEE 802.11, etc.

[0055] Network 120 may include network devices, such as
routers, switches, firewalls, and/or servers (not shown). Net-
work 120 may be a hardwired network using wired conduc-
tors and/or optical fibers and/or may be a wireless network
using free-space optical, radio frequency (RF), and/or acous-
tic transmission paths. In one implementation, network 120
may be a substantially open public network, such as the
Internet. In another implementation, network 120 may be a
more restricted network, such as a corporate virtual network.
Implementations of networks and/or devices operating on
networks described herein are not limited to any particular
data type, protocol, architecture/configuration, etc.

[0056] Display 150 may include a device that can render
information to a user, such as auser of client 110. Display 150
may include a cathode ray tube (CRT) device, a liquid crystal
display (LCD) device, a plasma display device, a projection
based display device (digital light projection (DLP)), etc.
Display 150 may display text and/or graphics to a user based
on 1nstructions associated with client 110, UE 130, or another

device, such as another device on network 120 (not shown 1n
FIG. 1C).

[0057] Specialized hardware 160 may include a device that
performs operations on behalf of another device, such as
client 110 and/or UE 130. For example, specialized hardware
160 may include a device that generates code for a target
device, that interfaces to another device or network (e.g., a
transcerver), that performs operations that are not performed
by another device in system 102 (e.g., a graphics processor for
use with display 150), that stores information (e.g., a redun-
dant array of independent disks (RAID)), etc. Specialized
hardware 160 may be associated with client 110 or, option-
ally, with UE 130 (shown via a broken line). Specialized
hardware 160 may include hardware that i1s scarce with
respect to other types of hardware 1n system 102. Hardware
may be scarce because of cost, unique features associated
with the hardware, scarcity of components used on the hard-
ware, €lc.

[0058] Implementations, such as the one shown in FIG. 1C,
may use resources that are associated with one device n
system 102 but that are not associated with another device 1n
system 102. For example, client 110 may send a problem to
UE 130 for parallel processing. The problem may include
instructions for displaying a result via a display device. UE
130 may begin to operate on the problem and may determine
that 1t does not have display device with which to display the
result. UE 130 may send a display request to client 110, where
the request causes mformation to be displayed on a display

US 2009/0119677 Al

device attached to client 110. In another embodiment, UE 130
may inform client 110 that UE 130 does not have a display
(e.g., by sending a bi-directional message to client 110), and
UE 130 may request the use of display 150 on client 110.

[0059] Implementations, such at the one 1n FIG. 1C, may
allow UE 130 to interact directly with devices on client 110,
such as display 150 and/or specialized hardware 160, or
implementations may allow UE 130 to make requests to client
110, where client 110 interacts with display 150 and/or spe-

cialized hardware 160 on behalf of UE 130.

[0060] FIG. 1D illustrates an exemplary system 103 that
includes a remote controller 140 operating with client 110
and UE 130. Client 110, network 120, and UE 130 may
operate as previously described herein. Remote controller
140 may include a device running hardware or software based
logic to control operations of a device on network 120. For
example, remote controller 140 may be a device that manages
parallel processing activities on behalf of another device,
such as client 110.

[0061] In one implementation, client 110 may send a
request to remote controller 140, where the request 1s for
parallel processing. Remote controller 140 may maintain a
database that 1dentifies parallel processing resources, such as
one or more UE’s 130 on network 120, and/or that identifies
which parallel processing resources are available at a particu-
lar time. Remote controller 140 may forward the request from
client 110 to UE 130, and UE 130 may perform parallel
processing for client 110. UE 130 may send a result to remote
controller 140 and remote controller 140 may forward the

result to client 110, or UE 130 may send the result directly to
client 110.

[0062] FIG. 1E illustrates an exemplary system 104 that
includes multiple clients 110 and UE’s 130 that are arranged
in clusters 170. UE’s 130 may be arranged 1n a number of
configurations, one of which 1s a cluster 170. A cluster 170 1s
a group of devices that may cooperatively operate to perform
an operation. For example, a cluster 170 may include a num-
ber of UE’s 130 that can operate 1in parallel to solve a problem.
Theretore, a cluster 170 may provide significant parallel pro-
cessing power, as compared to processing power available 1n
a single UE 130 or on a single processor 135. System 104 may
turther include a number of clients 110. Clients 110 can be
arranged 1n a cluster or other arrangement depending require-
ments associated with a particular application. One or more
clients 110 can access one or more clusters 170 using remote
controller 140 or directly without using remote controller

140.

[0063] Clusters 170 may be used for dedicated types of
processing (e.g., task specific processing) and/or may be used
for general processing activities. For example, an implemen-
tation that uses task specific clusters 170 may include a first
cluster that 1s used to perform signal processing computations
and a second cluster that 1s used to perform 1mage processing
computations. In contrast an implementation that uses gen-
eral purpose clusters 170 may send a first portion of a problem
to a first cluster and may send the remaining portion of the
problem to a second cluster regardless of the types of pro-
cessing required for the first portion or the second portion of
the problem. Other implementations may use a combination
of task specific clusters 170 and general purpose clusters that
can be pre-configured (e.g., a static configuration) or dynami-
cally configured.

[0064] FIG. 1F 1illustrates an exemplary system 105 that
includes a service provider 180, a client 110, a UE 130, and a

May 7, 2009

number of clusters 170. In one embodiment, system 105 may
include client 110, network 120, UE 130, clusters 170, service
provider 180, network 190, and target device 195. Client 110,
network 120, UE 130 and cluster 170 may operate as
described hereimnabove.

[0065] Serviceprovider 180 may include logic that makes a
service available to another device. For example, service pro-
vider 180 may include a server operated by an enfity (e.g., an
individual, a corporation, an educational institution, a gov-
ernment agency, etc.) that provides one or more services to a
destination. Services may include instructions that are
executed by a destination or on behalf of a destination to allow
the destination to perform an operation or to perform an
operation on behalf of the destination.

[0066] Assume, for sake of example, that a telecommuni-
cations provider operates a web server that provides one or
more web-based services to a destination. The web-based
services may allow a destination (e.g., a computer operated
by a customer) to perform parallel processing using UE’s 130
that are operated by the telecommunications provider. For
example, the customer may be allowed to use clusters 170 to
perform parallel processing when the customer subscribes to
the offered web service. Service provider 180 may maintain a
database that includes parameters, such as parameters that
indicate the status of UE’s 130, clusters 170, etc. Service
provider 180 may perform a look-up operation in the database
when a request for parallel processing 1s recerved from the
customer. Service provider 180 may connect the customer to
parallel processing resources that are available based on
parameters in the database.

[0067] In one implementation, the customer may recerve
services on a subscription basis. A subscription may include
substantially any type of arrangement, such as monthly sub-
scription, a per-use fee, a fee based on an amount of informa-
tion exchanged between the provider and the customer, a fee
based on a number of processor cycles used by the customer,
a fee based on a number of processors 135, UE’s 130, clusters
170, etc., used by the customer, etc.

[0068] Network 190 may include a network that transiers
data. In one embodiment, network 190 may be similar to
network 120. Network 190 may be operated by service pro-
vider 180 and may allow service provider 180 to interact with
one or more clusters 170. For example, service provider 180
may operate a farm of clusters 170 to perform subscription
based parallel processing for customers, such as customers
associated with client 110. Customers may maintain accounts
with service provider 180 and may access clusters 170 via
network 190 according to terms, conditions, permissions,
etc., associated with the accounts. Network 190 may be a
secure or unsecure private network operated by service pro-
vider 180. Customers may access clusters 170 via network
190 using passwords, secure channels (e.g., tunnels), and/or
via other techniques.

[0069] Targetdevice 195 may include a device connected to
a network or to another device. In one embodiment, target
device 195 may include a device that receives code (e.g.,
soltware, instructions, results, etc.) from a device, such as
client 110, UE’s 130, clusters 170, service provider 180, etc.
Target device 195 may be an end user device that receives a
result produced by parallel processing activities. Target
device 195 may operate on the result and may perform an
operation on behalf of 1tself or on behalf of another device

US 2009/0119677 Al

using the result. Target devices 195 may include controllers,
processing devices, systems, applications, efc.

Exemplary Functional Diagram

[0070] FIG. 2 illustrates an exemplary functional diagram
showing logic that can be used to support parallel processing
in an exemplary embodiment. Components 1 FIG. 2 can
reside on a single device, such as client 110, UE 130, remote
controller 140, or service provider 180, or the components of
FIG. 2 can be parallel across multiple devices. Moreover, the
components of FIG. 2 can be implemented 1n hardware based
logic, software based logic, a combination of hardware and
software based logic (e.g., hybrid logic, wetware, etc.). The
implementation of FIG. 2 1s exemplary, and client 110, UE
130, remote controller 140, service provider 180, and/or other
devices may include more or fewer functional components
without departing from the spirit of the invention.

[0071] Evaluation logic 210 may include logic to process
instructions or data related to activities. For example, evalu-
ation logic 210 may parse a problem into a number of portions
that can be used to facilitate parallel processing of the prob-
lem, combine results into a single result, perform arithmetic
operations, etc. Evaluation logic 210 may further process
instructions, reports, data, etc., on behalf of a device hosting
evaluation logic 210 or on behalf of another device (e.g., a
remote device).

[0072] Interface logic 220 may send information to or may
receive information from another device, component, object
(e.g., a software object), etc. In one implementation, interface
logic 220 may include a code-based interface (e.g., an appli-
cation program interface (API)), and in another implementa-
tion, may include a hardware interface, such as a network
interface card (NIC).

[0073] Scheduling logic 230 may coordinate activities of
devices, components, objects, etc., on client 110, UE 130,
remote controller 140, or service provider 180, etc. For
example, scheduling logic 230 may maintain a list of avail-
able resources that can be used for parallel processing (e.g.,
processors 135). Scheduling logic 230 may send information
to a determined number of available resources so that the
resources can perform parallel processing activities using the
information. For example, scheduling logic 230 may deter-
mine that four processors are required to perform a simulation
on behalf of client 110. Scheduling logic 230 may then deter-
mine that processors 135-1,135-2, 135-3 and 135-4 are avail-
able (e.g., these processors may be 1dle). Scheduling logic
230 may send the simulation to processors 135-1, 135-2,
135-3 and 135-4, or scheduling logic 230 may schedule
another device, such as interface logic 220, to send the simu-
lation to processors 135-1, 135-2, 135-3 and 135-4.

[0074] Scheduling logic 230 may receive results from pro-
cessors 135 and may forward the results to a destination, such
as a requesting device. Alternatively, scheduling logic 230
may instruct processors 135 to send the results directly to the
requesting device. Scheduling logic 230 may determine when
processors 135-1, 135-2, 135-3 and 135-4 are fimished pro-
cessing and may send other information, such as another
simulation, a mathematical problem, etc., to processors 135-
1, 135-2, 135-3 and 135-4 when they become available.
[0075] Storage logic 240 may store information related to
client 110, UE 130 or remote controller 140. In one exem-
plary embodiment, storage logic 240 may store instructions,
equations, functions, data, communication protocols, avail-
ability information for devices (e.g., processors 135), etc.

May 7, 2009

[0076] Mapping/lookup-logic 250 may perform mapping/
look-up activities on behalf of a device, component, object,
etc. For example, processors 135 may be operating on a
problem that will cause each processor to generate a message
during the processing. For example, each processor may be
configured to generate a status message when 1t 1s half-way
through 1ts portion of the problem. Since each processor may
generate substantially the same message, 1t may be advanta-
geous to avoid sending four similar (or identical) messages to
a destination, such as client 110. Mapping/look-up logic 250
may fold the four messages into a single message which 1s
sent to a destination, thereby decreasing the number of mes-
sages sent to the destination. Mapping/look-up logic 250 may
also recerve a single request, instruction, value, etc., and may
map the request, instruction, value, etc., to a number of mes-
sages for use by a number of devices, such as processors 135.
[0077] Mapping/look-up logic 250 may also perform other
activities. For example, in one implementation, UE 130 may
send a value to client 110 1nstead of an 1nstruction. Client 110
may recerve the value via interface logic 220 and may pass the
value to mapping/look-up logic 250 where the value 1s
matched to an mstruction using a database, such as a database
stored 1n storage logic 240. When mapping/look-up logic 250
has looked up the instruction that 1s associated with the value,
client 110 may process the instruction.

[0078] Implementations of client 110, UE 130, remote
scheduler 140, service provider 180, and/or other devices
may include other types of logic. For example, implementa-
tions may use display logic to display mnformation to a user,
security logic to implement and/or administer security fea-
tures, accounting logic to track charges associated with par-
allel processing activities, etc.

Exemplary Device Architecture

[0079] FIG. 3 illustrates an exemplary architecture for
implementing client 110. It will be appreciated that UE 130,
remote scheduler 140, service provider 180, and/or other
devices that can be used with system 100, 102, or 103, 104,
105 may be similarly configured. As illustrated in FIG. 3,
client 110 may include a bus 310, a processor 320, a memory
330, aread only memory (ROM) 340, a storage device 350, an
input device 360, an output device 370, and a communication
interface 380.

[0080] Bus 310 may include one or more interconnects that
permit communication among the components of client 110.
Processor 320 may include any type of processor, micropro-
cessor, or processing logic that may interpret and execute
istructions (e.g., an FPGA). Processor 320 may include a
single device (e.g., a single core) and/or a group of devices
(e.g., multi-core). Memory 330 may include a random access
memory (RAM) or another type of dynamic storage device
that may store information and instructions for execution by
processor 320. Memory 330 may also be used to store tem-
porary variables or other intermediate information during
execution of instructions by processor 320.

[0081] ROM 340 may include a ROM device and/or
another type of static storage device that may store static
information and instructions for processor 320. Storage
device 350 may include a magnetic disk and/or optical disk
and 1ts corresponding drive for storing information and/or
instructions.

[0082] Input device 360 may include any mechanism or
combination of mechamsms that permit an operator to mput
information to client 110, such as a keyboard, a mouse, a

US 2009/0119677 Al

touch sensitive display device, a microphone, a pen-based
pointing device, and/or a biometric mput device, such as a
voice recognition device and/or a finger print scanmng,
device. Output device 370 may include any mechanism or
combination of mechanisms that outputs information to the
operator, including a display, a printer, a speaker, efc.

[0083] Communication interface 380 may include any
transceiver-like mechanism that enables client 110 to com-
municate with other devices and/or systems, such as client
110, UE 130, remote controller 140, service provider 180, efc.
For example, communication interface 380 may include one
or more interfaces, such as a first intertace coupled to network
120 and/or a second interface coupled to another device, such
as remote controller 140. Alternatively, communication inter-
face 380 may include other mechamsms (e.g., a wireless
interface) for communicating via a network, such as a wire-
less network. In one implementation, communication inter-
face 380 may include logic to send code to a destination
device, such as a target device that can include general pur-
pose hardware (e.g., a personal computer form factor), dedi-
cated hardware (e.g., a digital signal processing (DSP) device
adapted to execute a compiled version of a model or a part of
a model), etc.

[0084] Client 110 may perform certain functions 1n
response to processor 320 executing soltware instructions
contained in a computer-readable medium, such as memory
330. A computer-readable medium may be defined as one or
more memory devices and/or carrier waves. In alternative
embodiments, hardwired circuitry may be used in place of or
in combination with soitware instructions to implement fea-
tures consistent with principles of the invention. Thus, imple-
mentations consistent with principles of the invention are not
limited to any specific combination of hardware circuitry and
software.

Exemplary Messaging

[0085] FIG. 4A illustrates an exemplary timing diagram
showing an exchange of messages between client 110 and UE
130 according to an exemplary embodiment. FIG. 4A 1llus-
trates two exemplary communication exchanges, 401 and
402, between client 110 and UE 130. These communication
exchanges are exemplary and other types of communication
exchanges can be used. For example, alternative communi-
cation exchanges can include more messages, different mes-
sages, and/or messages 1n orders that ditfer from those of FIG.
4A.

[0086] In exemplary communication exchange 401, client
110 may send a request 405 to UE 130. For example, request
405 may include data (e.g., a variable), code for an algorithm,
simulation code, etc., and request 405 may operate to request
parallel processing resources from UE 130. UE 130 may
operate on request 405 and may return a message, such as
result 410. Result 410 may include a solution to a problem,
data to be displayed on display 150, code to be run on spe-
cialized hardware 160 or target device 195, etc.

[0087] In exemplary communication exchange 402, client
110 may send request 405 to UE 130. UE 130 may operate on
request 405 and may send a query 415 to client 110 based on
the processing. Query 415 may be a message that operates as
a request. For example, UE 130 may generate query 415 to
request a missing resource or to request access to a resource
on client 110 (e.g., such as access to available memory on
client 110, a request for one or more variables stored 1n a
workspace on client 110, etc). Resources that may be needed

May 7, 2009

by UE 130 but that may not be present on UE 130 may
include, but are not limited to, variables, functions, algo-
rithms, data, memory, operating system components (e.g.,
files, extensions, etc.), etc. Other implementations of query
415 may include other types of information, (e.g., a request
for a password or other type of permission that may be
required before UE 130 can perform a task on behalf of client
110, etc.). Query 415 may allow UE 130 to make requests on
demand during processing activities performed on behalf of

client110. For example, UE 130 may send query 415 anytime
a variable 1s needed during processing.

[0088] Client 110 may process query 4135 and may generate
answer 420. Answer 420 may include information that
addresses query 415. For example, answer 420 may be a
message that includes a password, an authorization to allow
UE 130 to perform a task, a file, a variable, a function, a script,
data, an address, etc. UE 130 may process answer 420 and
may perform parallel processing on behalf of client 110 based
on mformation in answer 420 and/or request 405. UE 130
may generate result 410 based on the processing and may
send result 410 to client 110.

[0089] Implementations, such as the one illustrated in FIG.
4A, may allow UE 130 to send additional queries 417 to client
110 and may allow client 110 to send additional answers 422
(shown by dashed lines). Exemplary implementations may
use substantially any number of queries 415/417 and or

answers 420/422.

[0090] FIG. 4B 1illustrates an exemplary timing diagram
showing an exchange of messages between a client 110, UE
130, and remote controller 140 according to an exemplary
embodiment. Client 110 may send request 405 to remote
controller 140 instead of directly to UE 130 (as shown in FIG.
4A). Remote controller 140 may process request 405 and may
send an acknowledgement 427 to client 110 to inform client
110 that request 405 was recerved and understood.

[0091] Remote controller 140 may forward request 4035 to
UE 130 as request 430. In one implementation, remote con-
troller 140 may convert request 405 from an incoming format
into an outgoing format compatible with UE 130. Request
430 may be 1n the outgoing format. In another implementa-
tion, remote controller 140 may forward request 4035 to UE
130 as request 430 without performing any conversion
actions on request 405.

[0092] UE 130 may process request 430 and may generate
query 435 to request information from a device, such as
remote controller 140, client 110, etc. In one implementation,
remote controller 140 may respond to query 435 without
sending a message to another device (e.g., client 110). In
another implementation, remote controller 140 may forward
query 435 to another device (e.g., client 110) as query 440.
Remote controller 140 may or may not convert query 435
from an incoming format to an outgoing format before send-
ing query 440 to client 110.

[0093] Client 110 may process query 440 and may generate
an answer 445. For example, query 435 may request a pass-
word that allows UE 130 to access sensitive data required for
a simulation performed on behalf of client 110. Client 110
may send the password to UE 130 via answer 4435, In one
implementation, client 110 may send answer 445 to remote
controller 140, and remote controller 140 may forward
answer 430 to UE 130 for processing thereon. In another
implementation, client 110 may send answer 445 directly to
UE 130 without assistance from remote controller 140.

US 2009/0119677 Al

[0094] UE 130 may process answer 450 and/or information
in request 430 and may produce result 410. In one implemen-
tation, UE 130 may send result 410 directly to client 110
without assistance from remote controller 140. In another
implementation, UE 130 may send result 410 to remote con-
troller 140 and remote controller 140 may forward result 410
to client 110 as result 455. In alternative implementations,
client 110, remote controller 140, and UE 130 can send and/or
receive additional messages.

Exemplary Data Structure

[0095] FIG. 5A 1illustrates an exemplary data structure 500
for storing information associated with client 110. Data struc-
ture 500 may be immplemented via a computer-readable
medium that can be used to store mnformation 1n a machine-
readable format. Exemplary implementations may use sub-
stantially any number of data structures 500 to store informa-
tion associated with client 110. Implementations of data

structure 500 may be populated via an operator or a device,
such as a device 1 system 100, 102 or 103, 104, etc.

[0096] In one mmplementation, data structure 500 may
include information arranged 1n a row and column format to
facilitate 1nterpretation by users of client 110 and/or by
devices, logic (e.g., evaluation logic 210), etc. Other imple-
mentations of data structure 500 may be configured 1n other
ways.

[0097] Data structure 500 may include identifier 510,
instruction 513, payload ID 520, miscellaneous field 525, and
payload 530. Identifier 510 may include information that
identifies a user or device associated with other information 1n
data structure 500, such as instruction 315 or payload 530. For
example, client 110 may store a file that 1s associated with UE

130. Identifier 510 may include imformation that uniquely
identifies UE 130.

[0098] Instruction 5135 may include information that 1den-
tifies an struction that 1s associated with a device identified
via 1identifier 510. For example, instruction 515 may include
information that identifies a type of processing that a UE 130
will perform on behalf of client 110. In one implementation,
instruction 515 may include information that identifies how
payload 530 will be divided for parallel processing (e.g., what
portion of payload 530 should be processed on a particular
processor 135). In another implementation, mnstruction 515
may include a general instruction and UE 130 may determine
how to process the mstruction 1n a parallel manner.

[0099] Payload ID 520 may include information that 1den-
tifies a payload that will be operated on by a device that
performs parallel processing on behalf of client 110. For
example, a payload may include data that 1s operated on using
a parallel fast Fourier transform (FFT) processing technique.
Payload ID 520 may identity where the pavload 1s stored
(c.g., an address, a device name, a file name, etc.). In one
implementation, the payload may be part of data structure 500
(¢.g., the implementation of FIG. 5A) and 1n another imple-
mentation, the payload may be stored remotely with respect
to data structure 500 (e.g., data structure 500 1s stored in first
memory location and payload 530 1s stored in a second
memory location or on a different storage device).

[0100] Miscellaneous field 325 may include information
that can be useful for client 110 or other devices, such as UE
130. For example, miscellaneous field 525 may include a
password, a time value, a date value, payload size informa-

tion, error handling information, etc.

May 7, 2009

[0101] Payload 3530 may include information that 1s oper-
ated on by client 110, UE 130, or another device. For
example, payload 530 may include data or other information
that 1s operated on by processors 135 to produce a result.
[0102] FIG. 5B illustrates an exemplary data structure 501
for storing information associated with UE 130. Data struc-
ture 501 may be similar to data structure 500 in orgamzation
and/or 1n other ways, or data structure 301 may be different
than data structure 300. The data structure of FIG. 5B 1s
illustrative and other implementations of data structure 501
may take other forms, may include other types of information,
and/or may include information 1n an arrangement that differs
from the arrangement of FIG. 5B.

[0103] Data structure 501 may include 1dentifier 510, vari-
able 1D 335, function ID 3540, file 1D 545, security 1D 550,
result ID 3355, folded request ID 560 and result data 565.
Identifier 510 may 1dentily a unit of execution, processor, etc.,
that 1s associated with data structure 501. Variable 1D 5335
may include information that 1identifies a variable used with
UE 130 or with another device. For example, 1n one embodi-
ment, variable ID 5335 may include information that identifies
a variable that UE 130 needs to complete parallel processing
on payload 530 (FIG. SA). In this embodiment, UE 130 may
send data structure 501 to client 110 and client 110 may read
information in variable 1D 533 to identify one or more vari-
ables that are needed by UE 130. Client 110 may send the
identified one or more variables to UE 130 so that UE 130 can
perform parallel processing on behalf of client 110. In another
embodiment, variable 1D 535 may i1dentily variables that UE
130 makes available to processors 135 during parallel pro-
cessing activities.

[0104] Function ID 540 may include information that iden-
tifies a function associated with UE 130. For example, func-
tion ID 540 may 1dentily a function that UE 130 will request
from client 110, a function that is stored on UE 130 for use
with one or more processors 133, etc.

[0105] File ID 545 may include information that identifies
a file associated with UE 130. For example, file ID 545 may
identify a file that UE 130 will request from client 110, a file
stored on UE 130 for use 1n performing parallel processing
activities, etc.

[0106] Security ID 350 may include security information
associated with UE 130. For example, 1n one embodiment,
security ID 550 may identity a password or other type of
authorization mechanism that UE 130 uses to perform paral-
lel processing on behalf of client 110. In another embodi-
ment, security ID 550 may include a request for an authori-
zation mechanism (e.g., a password, digital certificate,
watermark, key, token, etc.). For example, UE 130 may send
a portion of data structure 501 that includes security ID 550 to
another device, such as client 110 or remote controller 140.

[0107] Result ID 5535 may include information that identi-
fies a result associated with UE 130. For example, UE 130
may perform parallel processing on behalf of client 110 using
payload 530. UE 130 may generate a result file that includes
one or more results of the parallel processing activities.
Result ID 355 may include a file name that 1dentifies a file
storing the one or more results. In one embodiment, result 1D
535 can refer to a folded result that 1s made up of two or more
other results. A recerving device may process the folded result
and may perform an operation based on the processing.

[0108] Folded request ID 560 may include information
about folded requests associated with UE 130. For example,
UE 130 may perform parallel processing using two or more

US 2009/0119677 Al

processors. During the processing, the two or more proces-
sors may generate similar or identical messages (e.g.,
requests, status indicators (e.g., flags), error messages, inter-
mediate results, etc.). UE 130 may include logic (e.g., map-
ping/look-up logic 250) that allows UE 130 to fold the similar
and/or 1dentical messages into a single message that can be
sent to another device, such as client 110 or remote controller
140. Folded request ID 560 may store the folded message or
may store an identifier for the folded message, such as a link,
etc. A receiving device, such as client 110, may process the
folded message and may use the folded message to access,
¢.g., look-up other information, etc.

[0109] Result data 565 may include one or more results
generated by UE 130. Alternatively, result data 565 may
include one or more results generated on behalf of UE 130 by
another device (e.g., another parallel processing device con-
nected to UE 130 via a network). In one embodiment, result
ID 535 may 1dentily result data 565, and result data 565 may
be associated with data structure 501, as shown 1n FIG. 5B, or
result data 565 may be located remotely with respect to data
structure 501 and referenced via result ID 555 (e.g., via an
address, pointer, link, etc.).

[0110] Implementations of data structures 500, 501, and/or
other data structures compatible with client 110, UE 130,
remote controller 140, service provider 180, etc., can be used
locally onadevice (e.g., stored, read, copied, transierred from
one component to another component, etc.) or may be sent
from one device to another device over a communication
medium (e.g., a wired link, a wireless link, a network, a bus,
etc.). Therefore, embodiments of data structures discussed
herein are not limited to any particular implementation,
device, configuration, etc. For example, some or all of data
structures 300 and/or 501 can be used as code-based inter-
faces (e.g., APIs) to facilitate the exchange of information 1n
exemplary embodiments.

Exemplary Application Program Interface

[0111] FIG. 6A illustrates an exemplary API 600 that can
be used 1n an exemplary embodiment of client 110. API 600
may be a code-based interface that can be used by systems,
devices, objects, efc., to exchange mnformation with another
system, device, object, etc. In one embodiment, API 600 may
operate on client 110 and may allow client 110 to receive
information from and/or send information to UE 130, remote
controller 140, service provider 180, etc. Embodiments of
API 600 may be adapted for transmission from one device to
another, e.g., by appending a header to API 600 to allow API
600 to be sent over network 120 or 190.

[0112] API 600 may represent a structured format for dis-
tributing information across system 100, 102, 103, 104, 105,
etc.

[0113] API 600 may include mput portion 601 and output
portion 602. Input portion 601 may include information that
can be used to allow client 110 to recerve information (e.g.,
data, instructions, identifiers, etc.) from another device,
object, application, etc. In one embodiment, input portion 601

may include command 610, synchronous or asynchronous
612, destination identifier (ID) 614, error handling 616, and

data 618.

[0114] Command 610 may include information that 1den-
tifies a command, nstruction, request, return value, etc. For

example, command 610 may include the contents of query
415 (FIG. 4A) from UE 130. Synchronous or asynchronous
612 may include information that identifies whether client

May 7, 2009

110 should process mformation associated with command
610 1n a synchronous or an asynchronous manner.

[0115] Destination ID 614 may include information that
identifies a device, application, object, etc., that can send
information to client 110. For example, destination 1D 614
may include information that identifies a device that sends
information to client 110 via API 600. In another embodi-
ment, destination ID may include information that identifies a
device, application, object, etc., that can receive information
from client 110 via an output portion of API 600. For
example, destination ID 614 may include imnformation that
identifies UE 130, processors 135, clusters 170, etc. Destina-
tion ID 614 may include an address, name, port number,
socket ID, link, pointer, etc.

[0116] FError handling 616 may include information that
can be used by client 110 to identily or correct an error, such
as an error reported by UE 130 to client 110. Data 618 may
include information that identifies data that can be used by
client 110 or that constitutes data used by client 110. For
example, UE 130 may generate a result that includes data,
such as a matrix, when performing parallel processing on
behalf of client 110. Data 618 may include the matrix or may
include information about the matrix, such as a link, file
name, address, etc.

[0117] Output portion 602 may include instruction 620,
data 622, and error handling 624. Instruction 620 may include
information that that 1s used by a destination (e.g., a device,
application, object, etc.) to perform an operation on behalf of
client 110. For example, instruction 620 may include infor-
mation that mnstructs UE 130 to perform an operation (e.g.,
performing parallel matrix computations) on behalf of client

110.

[0118] Data 622 may include data or may include informa-
tion that identifies data that can be used by a destination (e.g.,
UE 130, clusters 170, etc.) to perform an operation on behalf
of Chent 110. For example data 622 may include the matrix
on which parallel processing will be performed by UE 130.
Error handling 624 may include information that identifies or
reports an error to a destination.

[0119] FIG. 6B illustrates an exemplary application pro-
gram 1nterface 605 that can be used 1n an exemplary embodi-
ment of a unit of execution. API 605 may be a code-based
interface that can be used by systems, devices, objects, etc., to
exchange information with another system, device, object,
ctc. In one embodiment, API 605 may operate on UE 130 and
may allow UE 130 to receive information from and/or send
information to client 110, remote controller 140, service pro-
vider 180, etc. Embodiments of API 605 may be adapted for
transmission from one device to another, e.g., by appending a
header to API 605 to allow API 605 to be sent over a network.

[0120] API 605 may include an 1mput portion 606 and an
output portion 607. Input portion 606 may include informa-
tion that 1s received by UE 130 and output portion 607 may
include information sent from UE 130 to another device,
application, object, efc.

[0121] Inputportion 606 may include instruction 630, data
632, and error handling 634. Instruction 630 may include one
or more executable mstructions that are used by UE 130 to
perform parallel processing on behalf of another device, such
as client 110. Instruction 630 may include an actual mstruc-
tion, or an identifier for an 1nstruction, e.g., a link, address,
etc. In one embodiment the contents of mnstruction 620 (from

API 600 1n FIG. 6A) may be 1n mstruction 630.

US 2009/0119677 Al

[0122] Data 632 may include information that 1s operated
on by UE 130. Alternatively, data 632 may include an 1den-
tifier for information that i1s operated on by UE 130 (e.g., a
link, address, etc.). For example, client 110 may send an
instruction 620 and data 622 to UE 130 for processing using
API 600. UE 130 may recerve the mstruction via instruction
620 and may recerve the data via data 632. UE 130 may
operate on the data using the instruction while performing
parallel processing on behalf of client 110. Error handling
634 may include information that identifies an error. For
example, client 110 may send an error ‘message to UE 130.
UE 130 may receirve the error message via error handling 634.
[0123] Output portion 607 may include command 640, des-
tination 1D 642, data 644 and error handling 646. Command
640 may include information that identifies a command sent
from UE 130 to another device. For example, UE 130 may
perform processing for client 110 and may generate a result
that includes a command, such as a plot command. UE 130
may send the command to client 110 via command 640.
[0124] Destination ID 642 may include information that
identifies a device that will receive information from UE 130.
Data 644 may include information produced by UE 130 based
on performing parallel processing activities. For example,
data 644 may include information making up a result, a link to
a file that includes a result, etc. Error handling 646 may
include information that 1dent1ﬁes an error. For example, UE
130 may have generated an error while performing parallel
processing (e.g., UE 130 may not have had enough memory to
complete a computation). UE 130 may insert an error mes-
sage 1to error handling 646 and may send the error to a
device 1dentified by mnformation 1n destination 1D 642.
[0125] APIs 600 and 605 are exemplary and exemplary
embodiments may include more APIs, fewer APIs, or APIs 1n
configurations that differ from those of FIGS. 6 A and 6B. In
addition, APIs used with exemplary embodiments may
include more fields, fewer fields, or fields arranged 1n orders

that differ from the ordering of fields in FIGS. 6 A and 6B.

Exemplary User Interfaces

[0126] FIG. 7 illustrates an exemplary user interface 700
that can be used to display information to a user 1n an exem-
plary embodiment. Interface 700 and/or other interfaces
described herein may be a graphical user interface (GUI) or a
non-graphical user interface, such as a text based interface.
User interface 700 and/or other user interfaces described
herein may further provide information to users via custom-
1zed interfaces (e.g., proprietary interfaces) and/or interfaces
that are generally known to those of skill in the art (e.g.,
browser-based interfaces). User interfaces described herein,
may receive user mputs via input devices, such as but not
limited to, keyboards, pointing devices (e.g., a mouse, stylus,
trackball, touchpad, joystick, other types of motion tracking
devices, etc.), biometric mput devices, touch sensitive dis-
plays, microphones, etc. User interfaces described herein
may be user configurable (e.g., a user may change the size of
the user interface, information displayed 1n a user interface,
color schemes used by the user interface, positions of text,
images, icons, windows, etc., in the user interface, etc.) and/or
may not be user configurable.

[0127] Intertace 700 may be displayed to a user via display
150, output device 370, etc., and may include menu 705,
display area 710, information window 715, selection field
720, UE’s field 725, other information field 730, and cursor
735. Menu 705 may include information associated with
menus that are accessed by the user. For example, in one
embodiment, menu 705 my identify 1tems, such as File, Edit,
View, etc., that can be selected by a user (e.g., via cursor 735)

May 7, 2009

to open one or more drop down menus. Drop down menus
may provide the user with substantially any number of items
that can be selected by the user to mvoke various types of
functionality on the user’s behalf. For example, selecting File
may open a drop down menu that includes Open, Close, Save,
Save As, Print, Print Preview, etc. Interface 700 may further
include 1cons that let the user perform actions, such as moving
to a previous display, returning to a home display (or page),
printing the contents of a portion of interface 700, etc.
[0128] Display area 710 may include a portion of interface
700. For example, display area 710 may include a portion of
interface 700 that 1s located below menu 705. Display area
710 may, or may not, be defined by a border (e.g., a bound-
ary).

[0129] Information window 715 may include a portion of
display area 710 that 1s used to display information to a user,
such as information about UE 130. Information window 715
may display text or graphics to the user. For example, infor-
mation window 713 may display information about UE 130,
a status of a parallel processing task, a text editor that allows
the user to modily source code, debugging information that
allows the user to diagnose code, a dashboard to show a user
the operating status of processors 135, etc. In one embodi-
ment, information window 715 may include selection field

720, UE’s field 725, and other information field 730.

[0130] Selection field 720 may include information related
to a user’s selection regarding parallel processing. For
example, selection field 720 may allow a user to select
whether his/her application should be processed 1n a parallel
manner. In one embodiment, the user may select “yes™ to have
an application, problem, etc., processed 1n a parallel manner
or “no’” to have the application, problem, etc., processed on a
single device. In another embodiment, selection field 720
may be omitted and a system, such as client 110, may deter-
mine whether parallel processing should be used without
obtaining input from the user.

[0131] UE’s field 725 may include information about a
number of UE’s that will be used to perform parallel process-
ing on behalf of a user or device. For example, UE’s field 725
may allow a user to specity a number of UE’s, processors,
clusters, grids, etc., that should be used to perform parallel
processing on behall of the user. Alternatively, the user may
decide to let a device, such as client 110, UE 130 and/or
remote controller 140 determine how many UE’s, processors,
clusters, grids, etc., should be used to perform parallel pro-
cessing.

[0132] Other information field 730 may include other types
of information that can be used with system 100, 102, 103,
etc. For example, other information field 730 may include
information about a data file that will be processed by UE
130, information about code that will be used to perform
parallel processing, information about a drive on which
results of parallel processing will be stored, etc.

[0133] Cursor 735 may include a mechanism that can be
positioned by a user or device to i1dentily information in
intertace 700. Cursor 735 may be positioned within interface
700 via a pointing device, a spoken command, a keyboard
input, etc.

[0134] FIG. 8 illustrates an exemplary user interface 800
that can be used to display bi-directional communication
information receirved from a parallel processing device. In
one embodiment, interface 800 may include window 810,
response field 820, and message 830.

[0135] Window 810 may include a portion of interface 800
in which bi-directional messages may be displayed to a user.
For example, window 810 may have a border within which
one or more bi-directional messages are displayed. Informa-

US 2009/0119677 Al

tion displayed in window 810 may be interactive in that a user
may respond to displayed information, may edit displayed
information, etc. In one embodiment, window 810 may be a
pop-up dialog window that opens on display 150 when a
message 1s receitved at client 110 from UE 130. In one
embodiment, window 810 may include response field 820
and message 830.

[0136] Response field 820 may include information that
identifies how bi-directional messages should be responded
to. For example, response fiecld 820 may allow a user to
specily that bi-directional messages received from UE 130
should be manually responded to by the user or should be
automatically responded to by client 110. Selecting manual 1n
response field 820 may require that a user acknowledge mes-
sages recerved from UE 130 before parallel processing can
continue. For example, UE 130 may send a message to client
110 requesting a variable. A user may have to respond to the
message by typing 1n a name or other information about the
variable before UE 130 can continue parallel processing. In
contrast, client 110 may automatically provide the variable
name or other information to UE 130 without requiring user
interaction when “auto” 1s selected 1n response filed 820.
[0137] Message 830 may include information recerved
from UE 130 and/or another device that performs parallel
processing activities. In one embodiment, message 830 may
include information that identifies a device that sent the mes-
sage, .., UE 001, information about a number of processors
operating on a task associated with client 110, or a user
thereol, information i1dentifying a type of message (e.g.,
information indicating that amessage 1s a folded message that
includes information related to two or more other messages
(e.g., two or more un-folded messages)). Message 830 may
turther include information, such as message contents, about
items that are needed by parallel processing devices, such as
variable names, file names, constants, permissions, additional
memory, €1c.

[0138] FIG. 9 illustrates an exemplary user interface 900
that can be used to display a result that 1s recerved client 110
from a parallel processing device, such as UE 130. Interface
900 may display textual and/or graphical results to a user. For
example, interface 900 may include window 910, plot 920,
cursor 930 and cursor value 940.

[0139] Window 910 may include a portion of interface 900
that 1s used to display a result to a user. For example, client
110 may send a problem to UE 130, and UE 130 may perform
parallel processmg on the problem using processors 134. UE
130 may receive results from processors 135 and may assimi-
late the results 1nto a final, or aggregate, result. UE 130 may
send the result to client 110 and client 110 may display the
result to a user via window 910. In one implementation,
window 910 may include a three dimensional plot 920 of a
surface. A user may move cursor 930 over the surface and
cursor window 940 may display information related to the
position of cursor 930. For example, cursor window 940 may
display x, y, and z coordinates that are related to the position
of cursor 930. Embodiments of interface 900 may provide
allow a user to interact with results displayed in window 910.

Exemplary Processing

[0140] FIG. 10 1llustrates a flow chart showing exemplary
processing that can be used with an exemplary embodiment.
The acts discussed in connection with FIG. 10 are 1llustrative.

Other implementations may include more acts, fewer acts, or
acts 1llustrated 1n FIG. 10 1n an order that dift

ers from the
ordering shown 1n FIG. 10. Client 110 may 1dentify an item
that can be processed using more than one processing device
(act 1005). For example, client 110 may 1dentity a model that

May 7, 2009

can benefit from being run 1n a parallel environment, such as
by being run on a number of processors operating in parallel.
In one embodiment, client 110 may determine that UE 130
can run the model 1n parallel. In another embodiment, client
110 may send the problem or a request to remote controller
140 or service provider 180 and remote controller 140 or
service provider 180 may determine whether parallel pro-
cessing should be performed.

[0141] UE 130 may receive an instruction from client 110
(act 1010). For example, UE 130 may receive an instruction
that 1dentifies the model and that may include data for the
model. In one embodiment, client 110 may send the instruc-
tion to UE 130 using data structure 500 (FIG. SA) and/or API
600. UE 130 may evaluate the instruction and may investigate
to determine whether adequate resources are available on UE
130 to perform the parallel processing. In one embodiment,
UE 130 may operate with other devices, such as remote
controller 140 and/or other UE’s/clusters to obtain resources
when UE 130 does not have adequate resources residing
thereon.

[0142] UE 130 may process the instruction alone or may
obtain assistance from other devices to process the mstruc-
tion. For example, client 110 may assist UE 130 with pro-
cessing the instruction, such as by providing a password, a
variable, a file, etc., to UE 130. In one implementation, UE
130 may ask client 110 1f UE 130 can proceed with running,
the model atter UE 130 make an initial determination with
respect to resources required to run the model.

[0143] UE 130 may send information related to the instruc-
tion to processors 133 (act 1015). For example, UE 130 may
have four processors that operate 1n parallel, such as proces-
sors 135-1, 135-2, 135-3, and 135-4. UE 130 may divide the
model mto four portions and may send one portion to each
available processor.

[0144] UE 130 may determine whether i1t needs to send a
message to client 110 (act 1020). For example, processors
135 may begin running the model using the data received
from client 110. While running the model, one or more pro-
cessors 135 may determine that 1t needs additional data,
where the additional data resides on client 110. UE 130 may
send a message to client 110 requesting the additional data
(act 1025). The message may cause a pop-up dialog window
to open on display 150. For example, window 810 may be
displayed on display 150. A user of client 110 may need to
interact with the pop-up window 1n order for client 110 to
respond to the message. Client 110 may process the message
and may retrieve the requested data from storage logic 240
and/or storage device 350. For example, the user may need to
click “OK” via apointing device to allow client 110 to retrieve
the data.

[0145] UE 130 may receive the requested data from client
110 via a response (act 1030). UE 130 may make the data
available to processors 135 so that processors 135 can con-
tinue running the model. When UE 130 determines that 1t
does not have to send a message to client 110 (act 1020),
processors 135 may continue running the model. Processors
135 may each generate a portion of a final result and may
provide the respective portions to UE 130. UE 130 may
assemble the portions into a final result (1035).

[0146] UE 130 may send the final result to client 110 (act

1040). In one embodiment, UE 130 may send the result to
client 110 via data structure 501 and/or API 6035. Client 110
may process data structure 501 and may extract the result
therefrom. Client 110 may, or may not, perform additional
processing on the result. Client 110 may store the result in a
file, make the result available to a user via display 1350, print
the result, make the result available to another software appli-

US 2009/0119677 Al

cation running on client 110, make the result available to
another device, such as specialized hardware 160, etc.

[0147] In one embodiment, UE 130 may return a value to
client 110 1nstead of an instruction and/or result. In another
embodiment, UE 130 may send a command, such as a plot
command, to client 110 along with a data set, where the plot
command and the data set make up the result. Client 110 may
display the data via user interface 900 1n response to the plot
command. For example, client 110 may operate as a dumb
terminal when UE 130 sends a plot command and a data set to

client 110.

Exemplary Alternative Embodiments

[0148] Many alternative embodiments are possible based
on the foregoing description. For example, a first alternative
embodiment may include a client 110 that includes a configu-
ration (e.g., an operating system) that 1s vastly diflerent from
a Conﬁguration on UE 130. Client 110 may send a parallel
processing request to UE 130 along with data to be processed.

UE 130 may determine that 1ts configuration 1s so different
from the configuration of client 110 that UE 130 cannot
perform the requested operation on the data. UE 130 may
send a request to client 110 for resources to allow UE 130 to
perform the requested operation. For example, UE 130 may
request that client 110 allow UE 130 to assume remote control
of client 110 to allow UE 130 to perform parallel processing
using resources on UE 130 and resources on client 110 simul-
taneously. Alternatively, UE 130 may request that client 110
send portions of operating system code to UE 130, where the
requested portions will allow UE 130 to perform the
requested operation.

[0149] A second alternative embodiment may include a
client 110 that operates with a first UE and a second UE.
Client 110 may send an instruction and data to both UE’s and
may have the UE’s perform parallel processing indepen-
dently (e.g., without having the first and second UE share
results). Client 110 may further instruct the first UE to begin
processing at a determined time before the second UE starts
its processing so that processing on the first UE 1s ahead of
processing on the second UE. Client 110 may further istruct
the first UE to notity client 110 and/or the second UE if the
first UE encounters an error, such as a fatal processing error.
The notification may be designed to allow the second UE to
stop 1ts processing before hitting the instruction or operation
that caused the error. Alternatively, the notification may cause
the second UE to turn on monitoring and/or diagnostic logic
to determine what 1nstruction or operation caused the fatal
error. Operating UE’s with an offset may allow errors 1n code
to be quickly and accurately identified and/or may allow
partial results to be saved before the error 1s encountered on
the later running UE (e.g., the second UE 1n the example
above).

[0150] A third alternative embodiment may allow a UE to
advertise 1ts capabilities to one or more clients. Clients may
process the advertised information and may select the UE
based on the advertised information when the UE 1s available.

A selected UE may perform parallel processing on behalf of
one or more clients using bi-directional communication as
described 1n connection with the figures hereinabove.

[0151] A fourth alternative embodiment may include areal-
time testing environment that includes a client and a number
of UE’s. The UE’s may further be configured with various
types of hardware, such as specialized test hardware. The
client may select a particular UE based on the type of real-
time testing that 1s being performed. For example, a first UE
may have a first test device attached thereto. The client may
send an 1nstruction and/or data to the first UE when the client

May 7, 2009

desires to have real-time testing performed on the first test
device. Real-time test environments may include other types
of hardware, such as target devices and/or code generators for
creating code that can be run on the target devices. The client
and the selected UE may exchange bi-directional messages
while the UE performs real-time testing on behalf of the
client.

[0152] A fifth alternative embodiment may implement TCE
115 using one or more text-based products. For example, a
text-based TCE 115, may be implemented using products
such as, but not limited to, MATLAB® by The MathWorks,
Inc.; Octave; Python; Comsol Script; MATRIXx from
Natlonal Instruments Mathematica from Wolifram Research,
Inc.; Mathcad from Mathsoft Engineering & Education Inc.;
Maple from Maplesolit; Extend from Imagine That Inc.;
Scilab from The French Institution for Research in Computer
Science and Control (INRIA); Virtuoso from Cadence; or
Modelica or Dymola from Dynasim. The text-based TCE
may support one or more commands that support parallel
processing using one or more UE’s 130.

[0153] A sixth alternative embodiment may implement
TCE 115 1n a graphically-based TCE 115 using products such
as, but not limited to, Simulink®, Stateflow®, SimFEvents™,
etc., by The MathWorks, Inc.; VisSim by Visual Solutions;
LabView® by National Instruments; Dymola by Dynasim;
SoftWIRE by Measurement Computmgj WiT by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhopsody or Tau from
Telelogic; Ptolemy from the University of California at Ber-
keley; or aspects of a Unified Modeling Language (UML) or
SysML environment. The graphically-based TCE may sup-
port parallel processing using one or more UE’s 130.

[0154] A seventh alternative embodiment may be 1mple-
mented 1n a language that 1s compatible with a product that
includes a TCE, such as one or more of the above 1dentified
text-based or graphically-based TCE’s. For example, MAT-
LAB (a text-based TCE) may use a first command to repre-
sent an array of data and a second command to transpose the
array. Another product, that may or may not include a TCE,
may be MATLAB-compatible and may be able to use the
array command, the array transpose command, or other MAT-

L.AB commands. For example, the product may use the MAT-
LAB commands to perform parallel processing using one or

more UE’s 130.

[0155] An eighth alternative embodiment may be 1mple-
mented 1 a hybrid TCE that combines features of a text-
based and graphically-based TCE. In one implementation,
one TCE may operate on top of the other TCE. For example,
a text-based TCE (e.g., MATLAB) may operate as a founda-
tion and a graphically-based TCE (e.g., Simulink) may oper-
ate on top of MATLAB and may take advantage of text-based
features (e.g., commands) to provide a user with a graphical
user interface and graphical outputs (e.g., graphical displays
for data, dashboards to monitor UE 130, etc.).

[0156] A ninth alternative embodiment may employ a copy
of TCE 115 on both client 110 and UE 130, where the TCE’s
allow workspace sharing. For example, client 110 may main-
tain a first workspace with a copy of TCE 115 running on
client 110 and UE 130 may maintain a second workspace with
a copy of TCE 115 running thereon. Client 110 may create
variables 1n the first workspace and UE 130 may request the
variables from the first workspace and may store the variables
in the second workspace when performing parallel process-
ing. UE 130 may further make variables 1n the second work-
space available to another UE 130, client 110, remote con-

US 2009/0119677 Al

troller 140, etc., to further facilitate parallel processing on
behalf of client 110 and/or another device. Alternatively, only
client 110 may have a workspace, and client 110 may com-
municatively couple the workspace to UE 130 so that UE 130
can access information therein.

[0157] A tenth alternative embodiment may use pointers to
facilitate sharing information, such as variables, between cli-
ent 110 and UE 130. For example, a pointer may link a
variable 1n a workspace on client 110 to one or more proces-
sors 135 operating in UE 130. A processor, such as processor
135-1, may request the varniable using the pointer when the
variable 1s needed to perform an operationon UE 130. UE 130
and client 110 may exchange variables with each other and/or
with other devices using pointers. The use of workspaces
and/or pointers may allow client 110 and/or UE 130 to oper-
ate with nested functions by passing variables between work-
spaces on client 110, UE 130 and/or workspaces on other
devices.

[0158] An ecleventh alternative embodiment may perform
parallel processing for a model on client 110. For example,
client 110 may run a Stmulink model that includes a number
of subsystems. Client 110 may parse the model based on the
subsystems and may send a {irst subsystem to a first UE and

may send the second subsystem to a second UE, where the
first and second UE’s are each configured as MATLAB-UE’s

(e.g.,by runmng aversion of MATLAB on each UE). The first
and second UE’s may process their respective subsystems and
may request variables from client 110 or from other devices
(e.g., from other UE’s). For example, client 110 may have a
sharable workspace that 1s communicatively coupled to the
first and second UE to allow the UE’s access to variables
needed to perform processing. The first and second UE’s may
cach produce a result file that 1s sent back to client 110, where
client 110 combines the files and performs a compilation
operation to compile the model. Alternatively, the first and
second UE’s may send the result files to a third UE, where the
third UE combines the result files and compiles the model on

behalf of client 110.

[0159] A twellth alternative embodiment may perform par-
allel processing using stream processing techniques. For
example, a first UE may perform code generation for a model
received from client 110. The first UE may send a result to a
second UE and the second UE may perform a portion of a
build operation on the generated code. The second UE may
send its result to a third UE that performs a compile operation
on the result recerved from the second UE. The third UE may
generate a result that includes the compiled code and may
send the result to client 110.

[0160] A thirteenth alternative embodiment may perform
parallel processing on behalf of a client using one or more
commercial computing grids. For example, client 110 may
send a request for parallel processing to a server that operates
with a commercial computing grid, where the commercial
computing grid provides parallel processing resources to cli-
ents for a fee (e.g., a fee based on an amount of processing
resources used by client 110). The commercial computing
orid may contain one or more clusters that can be associated
with one or more providers (e.g., computing service provid-
ers). Client 110 may rent time (e.g., during a rental period) on
the grid and may perform parallel processing during the rental
period. For example, client 110 may exchange bi-directional
messages with one or more clusters within the grid, one or
more devices within a cluster, etc., during the rental period.
Rented resources may request state information from client
110 (e.g., information about available memory, information
about variables, information about programming code, infor-
mation about functions, etc.). Rented resources may also task

May 7, 2009

client 110 to perform operations (e.g., processing activities,
sending information, etc.) on behalf of the rented resources.
For example, a device 1n a cluster may request that client 110
perform processing to convert a data value from a first format
to a second format before client 110 sends the data value to the
requesting device. Client 110 and the cluster(s) used to per-
form parallel processing on behalf of client 110 may operate
in a homogeneous or heterogeneous configuration depending
on particular implementations used to perform parallel pro-
cessing.

[0161] A {fourteenth alternative embodiment may run a
technical computing environment that includes MATLAB on
client 110 and on UE 130. Client 110 may send MATLAB
istructions (e.g., code, files, function handles, etc.), MAT-
LAB-compatible mnstructions (e.g., an mstruction that 1s in a
non-MATLAB language but that can be recognize and
executed 1n MATLAB) and/or other types of mstructions to
UE 130 for processing thereon. UE 130 may 1n turn send
MATLAB 1nstructions, MATLAB-compatible instructions,
and/or other types of instructions to client 110 for processing
thereon. For example, UE 130 may ask client 110 to evaluate
a MATLAB function and to pass a result back to UE 130,

where UE 130 uses the result to perform parallel processing,
on behalf of client 110.

[0162] A fifteenth alternative embodiment may use parallel
processing resources (e.g., UE’s 130) to perform optimiza-
tions for client 110. For example client 110 may request that
UE 130 evaluate an expression to determine whether the
expression can be optimized. UE 130 may send a request to
client 110 for additional information (e.g., may request that
client 110 provide state information to UE 130) may request
that client 110 perform a portion of the processing, etc., while
UE 130 operates on the optimization problem. UE 130 may
provide a result to client 110 that includes an optimized
expression. Client 110 may use the optimized expression 1n
an application to produce a useful and/or tangible result for a
user of client 110 and/or a device associated with client 110.

[0163] Ina sixteenth alternative embodiment, a first UE can
act as a client with respect to a second UE, a third UE, etc. For
example, client 110 may request that the first UE perform
parallel processing. Client 110 and the first UE may exchange
bi-directional messages while the first UE performs parallel
processing. The first UE may determine that it can use addi-
tional parallel processing resources from a second UE and a
third UE. The first UE may perform bi-directional communi-
cation with the second UE and the third UE to allow the
second UE and third UE to assist the first UE with performing
parallel processing on behall of client 110. Configurations
can include substantially any number of clients and UE’s
arranged 1n any type of hierarchical relationship without

departing from the spirit of the invention.

[0164] In aseventeenth alternative embodiment, client 110
may use UE 130 to perform parallel processing. Client 110
may send a problem to UE 130 for processing. Client 110 may
attempt to anticipate the types of information that UE 130 will
request while performing processing. For example, client 110
may anticipate that UE 130 will request a function call and a
list of variables. Client 110 may send the function call and list
of vaniables to UE 130 before UE 130 sends a request for the
function call and list of variables to client 110. In this embodi-
ment, client 110 sends a speculative response to UE 130
before UE 130 sends a query to client 110. The use of specu-
lative responses can reduce the number of message exchanges
that occur between client 110 and UE 130.

[0165] In an eighteenth alternative embodiment, client 110
can communicate with UE 130 using communication layers
that may include message passing intertace (MPI) libraries

US 2009/0119677 Al

and/or socket libraries. For example, when UE 130 1is
installed on client 110, messages exchanged between client
110 and UE 130 may occur via shared memory communica-
tion. In contrast, communication may take place over a TCP/
IP connection when client 110 and UE 130 do not reside on a
single device. The communication layers can be adapted to
operate with any of a number of networking protocols and/or
over types of networks, such as, but not limited to, ad hoc
wireless networks, quantum networks, etc.

[0166] Still other alternative implementations are possible
consistent with the spirit of the mnvention.

[0167] Embodiments described herein produce useful and
tangible results. For example, tangible results (e.g., results
that can be perceived by a human) can be produced when a
result 1s displayed to a user, when a device makes a sound,
vibrates, performs an operation (e.g., moves, mteracts with a
person, etc.), etc. Uselul results may include storage opera-
tions, transmission operations (€.g., sending information or
receiving information), display operations, displacement
operations, etc. Tangible and/or useful results may 1nclude
still other activities, operations, etc., without departing from
the spirit of the mvention.

CONCLUSION

[0168] Implementations may provide devices and tech-
niques that allow parallel processing to be performed using
bi-directional communication between a client and one or
more UE’s, where the UE’s perform parallel processing on

behalf of the client.

[0169] The foregoing description of exemplary embodi-
ments of the invention provides illustration and description,
but 1s not intended to be exhaustive or to limit the invention to
the precise form disclosed. Modifications and variations are
possible 1n light of the above teachings or may be acquired
from practice of the imnvention. For example, while a series of
acts has been described with regard to FIG. 10, the order of the
acts may be modified in other implementations consistent
with the principles of the invention. Further, non-dependent
acts may be performed 1n parallel.

[0170] In addition, implementations consistent with prin-
ciples of the invention can be implemented using devices and
configurations other than those 1llustrated in the figures and
described 1n the specification without departing from the
spirit of the invention. Devices and/or components may be
added and/or removed from the implementations of FIGS.
1A-F, 2 and 3 depending on specific deployments and/or
applications. Further, disclosed implementations may not be
limited to any specific combination of hardware.

[0171] Further, certain portions of the mvention may be
implemented as “logic” that performs one or more functions.
This logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, software, wetware, or a combi-
nation of hardware and software.

[0172] No element, act, or istruction used 1n the descrip-
tion of the invention should be construed as critical or essen-
t1al to the mvention unless explicitly described as such. Also,
as used herein, the article “a” 1s intended to include one or
more 1items. Where only one 1tem 1s intended, the term “one”
or similar language 1s used. Further, the phrase “based on,” as
used herein 1s intended to mean “based, at least 1n part, on”™
unless explicitly stated otherwise.

[0173] The scope of the invention 1s defined by the claims
and their equivalents.

May 7, 2009

What 1s claimed 1s:
1. A computing device-implemented method comprising:
recerving an instruction from a technical computing envi-
ronment;
commencing parallel processing on behalf of the technical
computing environment based on the received instruc-
tion;
sending a query, related to the parallel processing, to the
technical computing environment;
recerving an answer associated with the query from the
technical computing environment;
generating a result based on the parallel processing; and
sending the result to the technical computing environment,
the result being used by the techmical computing envi-
ronment to perform an operation.
2. The computing device-implemented method of claim 1,
wherein commencing parallel processing comprises:
sending the instruction and the answer to two or more
processors; and
performing the parallel processing with the two or more
processors to generate the result.
3. The computing device-implemented method of claim 2,
further comprising:
evaluating the instruction; and
determining whether adequate processors are available to
perform the parallel processing.
4. The computing device-implemented method of claim 2,
wherein generating a result comprises:
generating a portion of the result with each of the two of
more processors; and
assembling the generated portions nto the result.
5. The computing device-implemented method of claim 1,
wherein recetving an istruction comprises:
recerving an instruction that identifies a model created by
the technical computing environment and data for the
model.
6. The computing device-implemented method of claim 5,
wherein generating a result comprises:
executing the model based on the data.
7. The computing device-implemented method of claim 5,
further comprising:
requesting additional data for the model;
recerving additional data based on the request; and

executing the model based on the data and the received
additional data.

8. The computing device-implemented method of claim 1,
wherein recetving an istruction comprises:

receving the instruction from the technical computing
environment via one of a data structure or an application
program interface (API).
9. The computing device-implemented method of claim 1,
turther comprising:
evaluating the instruction; and

determining whether adequate resources are available to
perform the parallel processing.

10. The computing device-implemented method of claim
1, wherein sending the result comprises:

sending the result to the technical computing environment

via one of a data structure or an application program
interface (API).

11. A system comprising:
one or more devices to:

receive an instruction from a technical computing envi-
ronment,

US 2009/0119677 Al

commence parallel processing on behalf of the technical
computing environment based on the received
instruction,

send a query, related to the parallel processing, to the
technical computing environment,

receive an answer associated with the query from the
technical computing environment,

send the instruction and the answer to two or more
Processors,

perform the parallel processing with the two or more
Processors,

generate a result based on the parallel processing, the
recetved 1nstruction, and the recerved answer, and

send the result to the technical computing environment,
the result being used by the technical computing envi-
ronment to perform an operation.

12. The system of claim 11, wherein the one or more
devices further:

evaluate the instruction; and

determine whether adequate processors are available to

perform the parallel processing.

13. The system of claim 11, wherein the one or more
devices further:

generate a portion of the result with each of the two of more

processors; and

assemble the generated portions 1nto the result.

14. The system of claim 11, wherein the technical comput-
ing environment comprises at least one of:

a text-based environment;

a graphically-based environment; or

a combination of the text-based environment and the

graphically-based environment.

15. The system of claim 11, wherein the one or more
devices further:

receive the mstruction from the technical computing envi-

ronment via one of a data structure or an application
program interface (API).

16. The system of claim 15, wherein the data structure
comprises one or more of 1dentifier information, instruction
information, payload identification, miscellaneous informa-
tion, or payload information.

17. The system of claim 15, wherein the API comprises one
or more ol command information, synchronous/asynchro-
nous 1nformation, destination identification information,
error handling information, data information, or instruction
information.

18. The system of claim 11, wherein the one or more
devices further:

receive an instruction that identifies a model created by the

technical computing environment and data for the
model.

19. The system of claim 18, wherein the one or more
devices further:

execute the model based on the data.

May 7, 2009

20. The system of claim 18, wherein the one or more
devices further:

request additional data for the model;

recetve additional data based on the request; and

execute the model based on the data and the received addi-
tional data.

21. The system of claim 11, wherein the one or more
devices further:

evaluate the instruction; and

determine whether additional resources are needed to per-
form the parallel processing.

22. The system of claim 11, wherein the one or more
devices further:

send the result to the technical computing environment via

one of a data structure or an application program inter-
face (API).

23. The system of claim 11, wherein the one or more
devices further:

perform parallel processing using resources obtained from
the technical computing environment via bi-directional
communication.

24. A computer-readable medium that stores computer-
executable instructions, comprising:

one or more instructions for recerving a request from a
technical computing environment associated with a cli-
ent,

one or more mstructions for commencing parallel process-
ing on behalf of the technical computing environment
and the client based on the recerved request;

one or more mstructions for sending a query, related to the
parallel processing, to the technical computing environ-
ment,

one or more instructions for recerving an answer associated
with the query from the technical computing environ-
ment;

one or more structions for generating a result based on
the parallel processing; and

one or more 1structions for sending the result to the tech-
nical computing environment and the client, the result
being used by the technical computing environment and
the client to perform an operation.

25. A system comprising:

means for performing bi-directional commumication with a
technical computing environment;

means for commencing parallel processing on behalf of the
technical computing environment based on the bi-direc-
tional communication; and

means for generating a result based on the parallel process-
ing, the result being used by the technical computing
environment to perform an operation.

e i e e i

	Front Page
	Drawings
	Specification
	Claims

