a9y United States
a2y Patent Application Publication (o) Pub. No.: US 2009/0064176 Al

Ohly et al.

US 20090064176A1

43) Pub. Date: Mar. 5, 2009

(54) HANDLING POTENTIAL DEADLOCKS AND
CORRECTNESS PROBLEMS OF REDUCEL

(76) Inventors:

Publication Classification

(51) Int. CL
OPERATIONS IN PARALLEL SYSTEMS GOGF 13/14 (2006.01)
_ _ﬁ _ GO6lF 11/08 (2006.01)
Patrlc-k. Ohly, Bonn (DE); Victor GOGF 7/04 (2006.01)
Shumilin, Sarov (RU) (52) US.Cl oo, 719/313; 714/819; 714/E11.03
Correspondence Address: (37) ABSTRACT

TROP, PRUNER & HU, P.C.
1616 S. VOSS ROAD, SUITE 750
HOUSTON, TX 77057-2631 (US)

(21) Appl. No.:

(22) Filed:

11/897,480

Aug. 30, 2007

In one embodiment, the present invention includes a method
for executing a first reduction operation on data 1n an mnput
buifer, executing a second reduction operation on the data,
where the second reduction operation has a higher reliability
than the first reduction operation, and comparing the first and
second results. Other embodiments are described and

claimed.

Intercept The Function Call Made By The

Application In Each Process ™)
N
Execute The Original Implementation Of The
Reduce Operation ™\ "
Y Operation N
Succeeded? 50
60 Y
\ v 40 Warn About
Failed
Copy Preliminary Results From | Operation
Output Buffer Into Intermediate Buffer
Execute A Reliable Replacement Of | N Fatal
The Reduce Operation Problem?
\ 55
65 Y
70
Preliminary
Results Available N
In Intermediate
Buffer? 20
AR
Warn
Y | » About
Y Not Mismatch
Compare Reliable Results In Qutput Equal -
Buffer Against Preliminary Results In
Intermediate Buffer Y Y

73

/

Equal *{

Return Current L 85
Result In Qutput
Buffer

Patent Application Publication Mar. 5, 2009 Sheet 1 of 4 US 2009/0064176 Al

Intercept The Function Call Made By The

Application In Each Process 20

Execute The Original Implementation Of The

Reduce Operation N
4 30

Operation
Succeeded?

40) Warn About
Failed

Operation

Fatal
Problem?

Execute A Reliable Replacement Of
The Reduce Operation
\ 55

65 Y
70
Preliminary
Results Available N L
In Intermediate
Buffer? R0

warn

About
Mismatch

Y

Not

Compare Reliable Results In Output Equal
Buffer Against Preliminary Results In
Intermediate Buffer

/ -

75

85

Return Current
Result In Output
Buffer

— Equal

FIG. 1

US 2009/0064176 Al

Mar. 5, 2009 Sheet 2 of 4

Patent Application Publication

“oEL

gord’

Gl

S[|eD IdNd

Aeiqi
Bunjoay)
SS3U}0a1I0D

|20 IdN

uoljeoljddy

U)0$$320.1d

0L}

¢ Ol

Gt

JO8UU02I8)U| }sed

IPUIBYl] JI9AQ dI/dOL) «—

14

oL L

S0 IdIAd

Areiqi
bunjoayd
SSaU)0al1I0D

SiieD IdN

uoljesliddy

105880014

'‘0EL

'0Z1

'SLL

Patent Application Publication Mar. 5, 2009 Sheet 3 of 4 US 2009/0064176 Al

200
\ Intercept A Non-Deterministic | _ 210
Message Send Call
Y _

Replace Non-Deterministic |

Message Send Call With | P 220
Deterministic Primitive
230 Recelve N

Non-Deterministic
Collective
Call?

— A 4 —

240 Add A Synchronizing |

\ Collective Call . ‘|

Detect Actual
Deadlock?

250
Report Actual
Deadlock
i 1™ 260
End

FIG. 3

US 2009/0064176 Al

Mar. 5, 2009 Sheet 4 of 4

00

Patent Application Publication

4v8S

Qv .S

3002 _/ |
826G 05 T4 ¢ZS
JOVHOLS V1VQ 17 S3DIAIA WNOD ASNOW / QYYOIAIN
[745 _ 16 8LG
O/l olany S3A2IA3A O/ 39QI4g SNg
91§ 0BG
4/
8€G
365 365 SOIHAVYYD
d-d 13SdIHO 48ROI
GG oo
98¢ 898G 8/8
d-d d-d / d-d
065
(23S Z28% ¢lS [43
HOW HOW AHOW3IN
AYOW3W | HO o L
— | 3400 JHOD
| '00Yd BOYd
0865 0.6
HOSSIDONd ¥0OSS3ID0¥d

US 2009/0064176 Al

HANDLING POTENTIAL DEADLOCKS AND
CORRECTNESS PROBLEMS OF REDUCE
OPERATIONS IN PARALLEL SYSTEMS

BACKGROUND

[0001] Message passing serves as an ellective program-
ming technique for exploiting coarse-grained concurrency on
distributed computers, as seen 1n the popularity of the Mes-
sage Passing Interface (IMPI). Unfortunately, debugging mes-
sage-passing applications can be difficult. Analysis tools for
MPI applications produce tracefiles that can be analyzed with
a trace analyzer performance analysis tool. In MPI processes,
such tools record calls to the MPI library and transmitted
messages, and allow arbitrary user-defined events to be
recorded. Instrumentation can be switched on or off at runt-
ime. While such tools can aid 1n detecting errors, current
correction checking tools cannot adequately detect transmis-
sion and 1mplementation problems for various operations,
such as reduce operations.

[0002] Hardware, driver and system soitware problems can
introduce bit errors ito data transmitted between processes
in a parallel application or lead to truncated transmissions.
Traditionally, checksums are used to detect errors. Error cor-
rection codes help to reconstruct the original data. This can be
done at all levels 1n a communication stack as well as added to
it at the application level. Parallel reduce operations differ
from verbatim transmission of data in that they modify the
data 1n some configurable and perhaps programmable way
while the data 1s 1n transmission.

[0003] In addition, deadlocks caused by communication
between processes 1n parallel applications can occur. Such
deadlocks may include actual or real deadlocks, as well as
potential deadlocks, which are deadlocks that only occur on
specific platforms or configurations and thus cannot be
detected using traditional monitoring of application progress
and/or timeouts, as with actual deadlocks. Accordingly, cur-
rent correction checking tools cannot adequately detect
potential contlicts.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 1s a flow diagram of a method 1n accordance
with one embodiment of the present invention.

[0005] FIG. 2 1s a block diagram of the interrelation
between multiple processes in accordance with an embodi-
ment of the present invention.

[0006] FIG. 3 1s a flow diagram of a method 1n accordance
with an embodiment of the present invention.

[0007] FIG.41sablock diagram of a multiprocessor system
in which embodiments of the present invention may be used.

DETAILED DESCRIPTION

[0008] Embodiments may detect incorrect execution of a
reduce operation without requiring changes inside a commu-
nication stack or in an application using the communication
stack. Embodiments may be based on the fact that a reduce
operation can be executed twice without violating the seman-
tic of the call: once using a first implementation which 1s to be
checked and which might produce incorrect results or fail,
then once more with a second implementation (e.g., a more
reliable implementation) that protects itsell better against
network problems and/or uses different algorithms to avoid
implementation mistakes. In some embodiments both execu-
tions of the operation may use original butfers provided by the

Mar. 5, 2009

application, as the original memory layout might be hard to
reproduce and an application callback might expect that
memory layout. Note that while the order of reliable and
original implementation may enable the output butler to con-
tain the correct results afterwards, the other order also works,
either without correcting incorrect results or by copying the
correct result from the intermediate bufier over the output
butfer at the end.

[0009] The Message Passing Interface (MPI) 1s one
example of a standard which defines several reduce opera-
tions. They are implemented by one function per operation
that each process 1n a communication context must call once
to complete the operation. Each function 1s passed a builer
with the mput data, a buifer for the resulting data and addi-
tional information. One of these parameters determines
which operation 1s to be applied to the data. Possible opera-
tions include: MIN, MAX, SUM of integer and floating point
values; bit operations on integer values; and transformations
implemented by an application callback.

[0010] The different reduce operations have different
semantics regarding how the data i1s processed and who
receives the results. Some examples, each of which may
correspond to a different application programming interface
(API), are: MPI_Reduce() which applies the indicated opera-
tion to all mnput data and stores result in one root process;
MPI_Allreduce(), which performs in the same memory and
stores results on all processes; MPI_Scan(), which 1s prefix
reduction, 1.e., for each process the operation 1s applied to the
input data of all preceding processes and 1ts own input and the
result stored 1n the processes. Of course, embodiments can be
used 1 connection with other reduce operations.

[0011] Referringnow to FIG. 1, shown 1s a flow diagram of
a method 1n accordance with one embodiment of the present
invention. As shown i FIG. 1, method 10 may begin by
intercepting a function call made by an application in each
process (block 20). A correctness checking library may inter-
cept the call, 1n one embodiment. Then a first (e.g., an origi-
nal) implementation of a reduce operation may be executed
(block 30). Next, it may be determined whether the operation
was successiul (diamond 40). I not, control passes to block
50 where a warning may be generated regarding the failed
operation. In various embodiments, such warning message
may be sent to an error log, although 1n other implementa-
tions, the warning may be sent to further locations, such as a
trace collector or analyzer, for example. Next, 1t may be
determined 11 the problem 1s fatal (diamond 55). If so, execu-

tion of the method may conclude. Otherwise, control passes
to block 65, discussed further below.

[0012] Referring still to FIG. 1, 11 at diamond 40 1t 1s deter-
mined that the first reduce operation 1s successiul, the pre-
liminary results may be copied from an output butier in which
the results are written into an intermediate butfer (block 60).
Then, a second reduce operation, €.g., a more reliable reduce
operation, may be executed. For example, each process sends
data from 1ts input butier along with a checksum to the root
process, the root process checks the received data and accu-
mulates them using a specified operation. Then it may be
determined whether the preliminary results are available 1n
the mtermediate buifer (diamond 70). If not, results of the
second reduce operation may be returned (block 83).

[0013] Referring still to FIG. 1, 1f instead at diamond 70 1t

1s determined that preliminary results are available in the
intermediate bufler, control passes to diamond 75. At dia-
mond 75, the results of the second reduce operation present in

US 2009/0064176 Al

the output buifer may be compared against the preliminary
results in the itermediate buffer. The result of the original
implementation 1n this intermediate buffer 1s checked after
executing the reliable implementation by comparing the final
output buifer against the intermediate buifer element-by-el-
ement. Based on the comparison 1t may be determined
whether the results are equal or not. Two floating point values
may be considered equal 11 they do not differ by more than a
certain error delta, whereas integer values should match
exactly. It the results are equal, the result may be returned
immediately (block 85). Otherwise, a warning regarding a
mismatch may be generated and sent (block 80), e.g., to the
error log. Still further, control may pass to block 85 for
returning results of the first or the second reduce operations.

[0014] While shown with this particular implementation 1n
the embodiment of FIG. 1, the scope of the present invention
1s not limited in this regard. For example, 1n some embodi-
ments in addition to the preliminary result, the original value
in the input butler on which the reduce operation 1s performed
may be copied to another bufifer for later comparison if a
certain function call 1s made, for example, 1f the MPI-2 MPI_
IN_PLACE functionality 1s used. This may be done because
with MPI_IN_PLACE, the original MPI implementation will
overwrite the input data 1n the input buffer with the result.
Because they are only used internally, these intermediate
butilers can have an arbitrary organization as long as the order
of all elements of the original butler 1s preserved. Note that
the steps necessary to handle MPI_IN_PLACE are not shown
in FIG. 1 for simplicity.

[0015] Inthis embodiment, by executing the reliable imple-
mentation last, the application’s output buffer always con-
tains the correct result at the end, and a fatal error which
prevents execution of the original implementation 1s detected
sooner. Alternatively the order of the reduce operations could
be reversed, with one additional, optional step at the end to
overwrite incorrect results with correct ones 11 error correc-

tion 1s desired 1n addition to error detection.

[0016] Interception of MPI calls can be done by a separate
library using the MPI

[0017] Profiling Interface (PMPI), via an additional layer of
indirection 1n an MPI implementation, using binary instru-
mentation, or in another such manner. FIG. 2 shows an
embodiment 1 which the reliable reduce operation 1is
executed by exchanging data over an Ethernet interconnect.
Shown 1 FIG. 2 1s a block diagram of the interrelation
between multiple processes in accordance with an embodi-
ment of the present invention. As shown 1n FIG. 2, a plurality
of processors 110,-110, (generically processor 110) are
present. Each processor may include a process or application
115,-115, (generically application 115). In some embodi-
ments, the example system of FIG. 2 1s an exemplary distrib-
uted application which 1s cooperatively implemented via gen-
erally contemporaneous execution of machine accessible
instructions of multiple processors 110. In particular, a first
process (1.e., soltware application 115,) may be executed on
first processor 110, and a second software application 115,
may be executed by second processor 110, which coopera-
tively realize the example distributed application using any
variety of distributed computing algorithms, techniques and/
or methods. In the example system of FIG. 2, the example
software applications 115 implement different machine
accessible mnstructions. Alternatively, the example software
applications may implement similar and/or identical machine
accessible mstructions.

Mar. 5, 2009

[0018] For simplicity and ease of understanding, the fol-
lowing disclosure references the example two processor sys-
tem of FIG. 2. However, distributed applications and/or the
methods and apparatus disclosed herein to perform distrib-
uted reduction operations may be implemented by systems
incorporating any number and/or variety of processors. For
example, one or more processes ol a distributed application
may be implemented by a single processor, a single process
may be implemented by each processor, etc. Applications 1135
may be developed using any variety of programming tools
and/or languages and may be used to implement any variety
of distributed applications. In the example system of FIG. 2,
processors 110 may be implemented within a single comput-
ing device, system and/or platform or may be implemented by

separate devices, systems and/or platforms. Further, proces-
sors 110 may execute any variety of operating system(s).

[0019] As further shown 1n FIG. 2, each application 115
may make application programming interface (API) callsto a
library. More specifically, API calls (and more particularly
MPI calls) may be made to a correctness checking library
120,-120, (generically library 120). In various embodiments,

these llbrarles 120 may perform reduction operations in
accordance with an embodiment of the present invention. For
example, libraries 120 may perform more rigorous reduce
operations, which may be generated by transmission over an
interconnect 1235, which 1n one embodiment may be an Eth-
ernet connection that communicates according to a transmis-
s1on control protocol/internet protocol (TCP/IP) over Ether-
net, although the scope of the present invention 1s not limited
in this regard.

[0020] Libraries 120 thus intercept each API call made by
an associated software application, potentially modily the
intercepted calls, and then, among other things, call the API
function specified by the mtercepted API call. Further, the
example libraries of FIG. 2 implement a second reduce opera-
tion for each API call utilized by applications 115.

[0021] When a software application (e.g., process 115,)
sends application data to another software application (e.g.,
process 115#) via an MPI message that 1s associated with a
reduce operation, library 120 associated with the software
application intercepts the MPI call made by the sending pro-
cess 115 to a corresponding messaging interface (also
referred to as MPI modules) 130,-130_ (generically inter-
faces 130) of FIG. 2, which facilitate the exchange of, for
example, distributed application messages, between applica-
tions 115. Library 120 then calls the original MPI function
specified by the mtercepted MPI call and provided by the
messaging interface 130 to send the application data via a first
MPI message to the recerving processor 110.

[0022] In addition, libraries 120 may also generate PMPI
calls to MPI modules 130,-130_. In turn, these MPI modules
130 may perform reduce operations which may be transmit-
ted via a second interconnect 135 which, 1n one embodiment
may be a fast interconnect such as a point-to-point intercon-
nect, although the scope of the present invention 1s not limited
in this regard.

[0023] Messaging interfaces 130 may implement a library
and/or a run-time system implementing messaging functions
in accordance with a messaging passing interface (MPI) stan-
dard for distributed applications. However, the messaging
interface 130 may implement any variety of additional and/or
alternative messaging interface(s) for distributed computing
processes. In the example system of FIG. 2, the example

US 2009/0064176 Al

messaging interfaces 130 provide APIs to allow applications
115 to mteract with each other.

[0024] Other implementations are possible, for example,
by using the original MPI communicator and additional col-
lective calls to transmit data, or an additional communicator
and point-to-point messages. Any number of communication
contexts may be used to facilitate communications between
the processes implementing a distributed application. In the
example ol FI1G. 2, MPI communicators may be used to define
one or more communication contexts. MPI communicators
specily a group of processes inside and/or between which
communications may occur, such as to logically group the
processes 115 to form the example distributed application of
FIG. 2 (1.e., application MPI communicators). A distributed
application may include more than one MPI communicator,
for example, an MPI communicator by which all of the pro-
cesses of the distributed application may communicate (1.€., a
global MPI communicator), an MPI communicator between
two specific processes of the distributed application (1.e., a
point-to-point MPI communicator), etc. Note that sending
point-to-point messages on the original communicator might
interfere with message operations started by the application
and thus would change the semantic in an incorrect way.
[0025] As described above, potential deadlocks exist 1n
MPI applications because the standard does not specily
whether some data transmission primitives block until the
recipient 1s ready to receive the data or butler the data and let
the caller proceed. A typical example 1s a head-to-head send
in which a first process 1ssues a MPI_Send() to a second
process and a second process 1ssues a MPI_Send() to the first
process. Accordingly, a potential deadlock may exist between
1ssuance of these send calls and a corresponding receive call
on each process, 1.e., a MPI_Recv() call in the first process
and a MPI_Recv() call 1in the second process. If the imple-
mentation of MPI_Send() or the network builers the mes-
sages sent by that call, then both processes continue to the
MPI_Recv() call and the application proceeds. However, 1
the MPI_Send() call waits for the recipient to enter 1ts MPI_
Recv() call, then the application deadlocks. Other sources of
non-deterministic data transmission are collective operations
such as a broadcast commumication, ¢.g., MPI_Bcast(),
where the sending process(es) may or may not proceed before
their recipients are ready to receive.

[0026] Embodiments may enable interception of non-de-
terministic message send calls and implement them using
deterministic primitives which are guaranteed to wait for the
recipient of the message. In addition, a synchronizing collec-

MPI Primitive(s)

MPI_ Send()

MPI_ Isend() + MPI_ Wait/

Waitall/Waitany()

MPI_ Send_ mut() + MPI__Start/
Startall() + MPI_ Wait/

Waitall/Waitany()

Mar. 5, 2009

tive call may be added to non-determimstic collectives, thus
ensuring that they always block until all involved processes
enter them. Then another component detects real deadlocks,
using one or more conventional methods such as timeouts,
progress monitoring, etc.

[0027] Referring now to FIG. 3, shown 1s a flow diagram of
a method 1n accordance with an embodiment of the present
invention. As shown in FIG. 3, method 200 may be used to
detect the presence of potential deadlocks. As shown 1n FIG.
3, method 200 may begin by intercepting a non-deterministic
message send call (block 210). For example, an error correct-
ness checking library may receive such a call from a first
process to a second process. The library may then replace the
non-deterministic message send call with a deterministic
primitive (220). Such primitive may guarantee that a waiting
period occurs such that the recipient recerves the message.
[0028] Referring still to FIG. 3, 1t may be determined also
whether a non-deterministic collective call has been received
(diamond 230). Such a collective call may correspond to a
broadcast message, although the scope of the present inven-
tion 1s not limited 1n this regard. If such a message call 1s
received, the correctness checking library may add a synchro-
nizing collective call to the non-deterministic collective call
(block 240). For example, the determimistic collective may
ensure that other calls are blocked until all processes enter the
collective call.

[0029] Referring still to FIG. 3, normal execution may con-
tinue after insertion of these primitives and calls as indicated.
Then, 1t may be determined whether an actual deadlock has
been detected (diamond 250). While the scope of the present
invention 1s not limited 1n this regard, such detection may be
via traditional deadlock detection mechanisms such as tim-
ers, progress monitoring or so forth. If such an actual dead-
lock occurs, the deadlock may be reported (block 260). For
example, an error log may report the deadlock, or a message
may be sent to another location. Accordingly, method 200
concludes. While shown with this particular implementation
in the embodiment of FIG. 3, the scope of the present mnven-
tion 1s not limited 1n this regard.

[0030] Table 1 below shows how embodiments may be
applied to MPI communications. Note that a MPI_Barrier()
call could be added to all collective operations; using one-to-
many or many-to-one operations instead 1s an optimization
that can be done 11 the synchronization in the other direction
1s already guaranteed by the original call. Alternatively a
combination of one-to-many and many-to-one calls could be
used to achieve the same effect.

TABL

T
[

Deterministic Substitute for

Original Behavior MPI Primitive(s)

May or may not wait for MPI__Ssend()

recipient, depending on
interconnect, message size, etc.
The non-blocking MPI__Isend() MPI_Issend() instead of
will always return, but the MPI_ Isend()
corresponding wait call which 1s
required to check for
completion of the send may or
may not block, just like
MPI__Send().

The wait call may or may not
block, just like MPI__Send().

MPI_ Ssend_ init() instead of
MPI__Send__init()

US 2009/0064176 Al

TABLE 1-continued

Mar. 5, 2009

Determunistic Substitute for

MPI Primitive(s) Original Behavior

MPI__ Bcast/Scatter() etc. In one-to-many collective

operations some processes send
data and may or may not wait

MPI Primitive(s)

original call plus a many-to-
one or all-to-all collective
call which requires

for the recerving processes; if no communication

data has to be transmuitted, the
communication may or may not
be skipped.

Many-to-one collectives have
similar problems as one-to-

MPI__ Reduce/Gather() etc.

original call plus a one-to-
many or all-to-all collective

many, only the role of processes call which requires

1s reversed.

Many-to-many may or may not
block if some processes have no
data to send or messages are

buttered.

MPI__ Alltoallv() etc.

[0031] Note that 1n some embodiments a method such as
that described with regard to FIG. 3 may be implemented in
the system of FIG. 2. In these embodiments, correctness
checking libraries 120 may intercept MPI calls and insert the
deterministic calls before forwarding to interfaces 130. Then
interconnect 125 may monitor progress, €.g., via transmission
of control messages between applications 113 to detect when
an actual deadlock exists during execution of code including
the deterministic primitives. However, other configurations
are possible. For example, call replacement may be done
inside interfaces 130, e.g., via a configuration option, via
dynamic function replacement of binary instrumentation.
[0032] Accordingly, embodiments may reliably detect
potential deadlocks 1n code. Still further, embodiments may
be implementation-generic and may be used with empty mes-
sages. Embodiments thus provide flexibility that can enable
dynamic changing of the code changes on a case-by-case
basis. Thus embodiments may detect potential deadlocks by
turning them 1into real deadlocks via function interception.
Still further, some embodiments may suppress triggering of a
deadlock for specific send operations that a user has found
already, but cannot fix. Furthermore, embodiments may be
configurable such that only potential deadlocks for messages
larger than a configurable size may be triggered.

[0033] Embodiments may be suited for many different
types of platforms. Retferring now to FIG. 4, shown 1s a block
diagram of a multiprocessor system in which embodiments of
the present invention may be implemented. As shown 1n FIG.
4, multiprocessor system 500 1s a point-to-point interconnect
system, and includes a first processor 570 and a second pro-
cessor 5380 coupled via a point-to-point interconnect 550.
However, 1n other embodiments the multiprocessor system
may be of another bus architecture, such as a multi-drop bus
or another such implementation. As shown in FIG. 4, each of
processors 370 and 580 may be multi-core processors includ-
ing first and second processor cores (1.€., Processor cores
574a and 574b and processor cores 584a and 5845H), although
other cores and potentially many more other cores may be
present 1n particular embodiments.

[0034] Stll referring to FIG. 4, first processor 370 further
includes a memory controller hub (MCH) 572 and point-to-

point (P-P) interfaces 576 and 578. Similarly, second proces-
sor 580 includes a MCH 582 and P-P interfaces 386 and 3588.
As shown 1n FIG. 4, MCH’s 572 and 582 couple the proces-

sors to respective memories, namely a memory 532 and a

communication
original call plus a barrier

memory 534, which may be portions of main memory (e.g., a
dynamic random access memory (DRAM)) locally attached
to the respective processors.

[0035] First processor 570 and second processor 580 may
be coupled to a chipset 390 via P-P iterconnects 552 and
554, respectively. As shown 1n FIG. 4, chipset 590 includes
P-P interfaces 594 and 398. Furthermore, chipset 590
includes an 1nterface 592 to couple chipset 590 with a high
performance graphics engine 538 via a bus 339.

[0036] AsshowninFIG. 4, various I/O devices 514 may be
coupled to first bus 516, along with a bus bridge 518 which
couples first bus 516 to a second bus 520. In one embodiment,
second bus 320 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 520 including, for
example, a keyboard/mouse 522, communication devices 526
and a data storage unit 528 which may include code 530, 1n
one embodiment. Further, an audio I/O 524 may be coupled to
second bus 520.

[0037] Embodiments may be implemented in code and may
be stored on a storage medium having stored thereon mnstruc-
tions which can be used to program a system to perform the
instructions. The storage medium may include, but i1s not
limited to, any type of disk including floppy disks, optical
disks, compact disk read-only memories (CD-ROMSs), com-
pact disk rewnitables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories (ROMs),
random access memories (RAMs) such as dynamic random
access memories (DRAMSs), static random access memories
(SRAMSs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMSs), magnetic or optical
cards, or any other type of media suitable for storing elec-
tronic 1nstructions.

[0038] While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It 1s intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present 1nvention.

What 1s claimed 1s:
1. A method comprising;:
executing a first reduction operation on data 1 an input

buffer and storing a first result of the first reduction
operation 1n a second butfer;

US 2009/0064176 Al

executing a second reduction operation on the data in the
input butler, the second reduction operation correspond-
ing to a reduction operation having a higher reliability
than the first reduction operation, and storing a second
result of the second reduction operation 1 an output
butter; and

comparing the first result and the second result and report-

ing an error if the first and second results do not match.

2. The method of claim 1, wherein the data corresponds to
message passing interface (MPI) data and further comprising,
transmitting one of the first and second results from a first
process to a second process.

3. The method of claim 2, wherein the first result 1s trans-
mitted from the first process to the second process according,
to a MPI communication scheme along a first interconnect
and the second result 1s transmitted from the first process to
the second process along a second interconnect according to
an internet protocol.

4. The method of claim 1, further comprising copying the
data in the input buffer into a third butfer and providing the
data from the third butfer for execution of the second reduc-
tion operation if the first reduction operation 1s executed in
place, and further comprising writing the first result to the
input buifer.

5. The method of claim 2, wherein the first result and the
second result match 1f they differ by less than a predetermined
amount, wherein the first result and the second result are
floating point values.

6. The method of claim 5, further comprising executing the
second reduction operation after executing the first reduction
operation.

7. The method of claim 6, further comprising determining,
whether the first reduction operation 1s successiul and 11 not,
indicating a failure to an error log.

8. The method of claim 5, further comprising providing a
warning message to the error log 1f the comparison results in
a mismatch between the first result and the second result.

9. An article comprising a machine-accessible medium
including instructions that when executed cause a system to:

execute a {irst reduction operation on message passing

interface (MPI) data 1n an input buffer and store a first
result of the first reduction operation 1n an output butler
and copy the first result from the output bullfer to an
intermediate butfer:

execute a second reduction operation on the data in the

input butier, the second reduction operation correspond-
ing to a reduction operation having a different reduction
algorithm than the first reduction operation, and store a
second result of the second reduction operation in the
output buifer; and

compare the first result and the second result and report an

error 1f the first and second results do not match.

Mar. 5, 2009

10. The article of claim 9, further comprising nstructions
that when executed enable the system to transmit at least one
of the first and second results from a first process to a second
process according to a MPI communication scheme along a
first 1interconnect or a second interconnect according to an
internet protocol.

11. The article of claim 10, further comprising instructions
that when executed enable the system to copy the data 1n the
input butfer into a second intermediate butlfer and provide the
data from the second intermediate butfer for execution of the
second reduction operation 1f the first reduction operation 1s
executed 1n place.

12. The article of claim 9, turther comprising instructions
that when executed enable the system to intercept a MPI
communication of the data in the mput buifer from a first
process 1n a first correctness checking library and pass the
data 1n the mput butler to a first message interface to execute
the first reduction operation, wherein the {first correctness
checking library 1s to execute the second reduction operation.

13. A system comprising:

a first processor to execute a first process and a second
processor to execute a second process; and

a memory coupled to the first and second processors to
store mnstructions that when executed enable the system
to mtercept a non-deterministic message send call from
the first process, replace the non-deterministic message
send call with a deterministic primitive and forward the
deterministic primitive from the first process to the sec-
ond process along a first interconnect, and detect
whether an actual deadlock occurs in execution of code
including the deterministic primitive via a second inter-
connect and if so, report the actual deadlock.

14. The system of claim 13, wherein the first and second
processors are coupled by the first interconnect and the sec-
ond interconnect, the first interconnect to handle communi-
cations according to a point-to-point protocol and the second
interconnect to handle communications according to an inter-
net protocol over Ethernet, and wherein the second intercon-
nect 1s to send control messages regarding the non-determin-
1stic message send call.

15. The system of claim 13, wherein the memory further
includes instructions to enable the system to receive a non-
deterministic collective call and add a synchronizing collec-
tive call to the non-deterministic collective call and forward
the non-deterministic collective call and the synchronizing
collective call to a first message interface, wherein a first
correctness checking library 1s to replace the non-determin-
1stic message send call with the deterministic primitive and to
add the synchronizing collective call.

e e e e e

	Front Page
	Drawings
	Specification
	Claims

