US 20090044049A1

a9y United States
12y Patent Application Publication o) Pub. No.: US 2009/0044049 A1

Luick 43) Pub. Date: Feb. 12, 2009

(54) MULTIPLE PARALLEL PIPELINE continuation of application No. 10/667,097, filed on

PROCESSOR HAVING SELF-REPAIRING Sep. 18, 2003, now Pat. No. 7,124,318.

CAPABILITY

_ _ Publication Classification
(75) Inventor: David Arnold Luick, Rochester,
MN (US) (51) Int. CL.
GO6L 11720 (2006.01)

Correspondence Address: |

IBM CORPORATION (52) US.CL ..., 714/11; 714/E11.072

ROCHESTER IP LAW DEPT. 917

3605 HIGHWAY 52 NORTH (57) ABSTRACT

ROCHESTER, MN 55301-7829 (US) A multiple parallel pipeline digital processing apparatus has

(73) Assignee: INTERNATIONAIL BUSINESS the capability to substitute a second pipeline for a first 1n the
MACHINES CORPORATION event that a tailure 1s detected 1n the first pipeline. Preferably,

Armonk, NY (US) | a redundant pipeline 1s shared by multiple primary pipelines.

Preferably, the pipelines are located physically adjacent one

(21) Appl. No.: 12/254,904 another 1n an array. Preferably, a pipeline failure causes data
to be shifted one position within the array of pipelines, to

(22) Filed: Oct. 21, 2008 by-pass the failing pipeline, so that each pipeline has only two

sources of data, a primary and an alternate. Preferably, selec-
tion logic controlling the selection between a primary and

(63) Continuation of application No. 11/531,387, filed on alternate source of pipeline data 1s integrated with other pipe-
Sep. 13, 2006, now Pat. No. 7,454,654, which is a line operand selection logic.

Related U.S. Application Data

I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
4

o)
-

Processor (Processor 2

- e e e e e e e . = = — —]

Global 604

Fail
Repair Control

Trap to Software Error/Repair Code
4

Low - level
Software
Task

Swap + Dispatch

Patent Application Publication Feb. 12, 2009 Sheet 1 of 8 US 2009/0044049 A1l

100
R

CPU 102
CPU
MEMORY
101C
CPU
101D
CPU
BUS I/F 105
104
111 112 113 114
TERMINAL STORAGE /O DEVICE NETWORK

I/F I/F l/F I/F

FIG.1

Patent Application Publication Feb. 12, 2009 Sheet 2 of 8 US 2009/0044049 A1l

EXECUTION

212 .
Unit
GP

215

VRF

Dispatch

204

Instruction
Regs/Buffers

L1 I-CACHE

L2 CACHE
20

MEMORY
I/F

I

FIG. 2

Patent Application Publication

Feb. 12, 2009 Sheet 3 of 8

US 2009/0044049 Al

Load Bus Store Bus 214
<
310B 1 *310C
Vector Register File > 215
WD1 WD2
309A 309B 309C 309D
VA VB VC I VA VB VC| VA VB VCI VAVBVC]| 309 |
NEIANF AN AN AN AL
11 314 17 220
Permute | Permute | Permute | Permute
312 315 218 321 324
FX FX FX FX FX Y916
913 216 319 322 529
FP FP FP FP FP
Pipe Pipe Pipe Pipe Pipe
S \/ ' S N/ J\ﬁ ot " \/ it o \/ s
301 302 303 304 ‘305
g aoe

FIG. 3

Patent Application Publication Feb. 12, 2009 Sheet 4 of 8

US 2009/0044049 A1l
r From Other
VR VR Pipt;:-_S/e_ct\ions
309 < Word (N-1) Word (N)
|

402 403 404
307« Sel A Sel B Sel C

Pipeline N
Section X

From
Pipe N
Sec X

SelT

FIG. 4A

Patent Application Publication Feb. 12, 2009 Sheet 5 of 8 US 2009/0044049 A1l

To Sel A,B,C

Pipeline

407 408
CTRL> Sel T — Sel T 308

bs1o

Pipeline N
Section X

FIG. 4B

Patent Application Publication Feb. 12, 2009 Sheet 6 of 8 US 2009/0044049 A1l

VR VR VR VR
Word 0 Word 1 Word 2 Word 3
|—>
X

301 302 303
Pipe 0 Pipe 1 Pipe 2 '
PipeOEn Pipe1En ' Pipe2En ' Pipe3En

Clock
201 202
HErr O HErr 1

206
Decoder

V Fail

= <
> 4
< +—
N <+—

: v v
PipeOEn Pipe2En Pipe3En

Pipe1En

FIG. 5

Patent Application Publication Feb. 12, 2009 Sheet 7 of 8 US 2009/0044049 A1l

602

Processor (Processor 1 Processor 2

Global 604
Fail
Repair Control

Trap to Software Error/Repair Code

Low - level
Software

Task
Swap + Dispatch

FIG. 6

Patent Application Publication Feb. 12, 2009 Sheet 8 of 8 US 2009/0044049 A1l

Processor 0 Core Processor 1 Core

Pipe 0 | Pipe 1| Pipe 2 |Pipe 3 | Pipe 4 | Pipe 3 | Pipe 2| Pipe 1| Pipe 0

Shared Components

US 2009/0044049 Al

MULTIPLE PARALLEL PIPELINE
PROCESSOR HAVING SELF-REPAIRING
CAPABILITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This 1s a continuation application of U.S. patent
application Ser. No. 11/531,387, filed Sep. 13, 2006, entitled
“Multiple Parallel Pipeline Processor Having Seli-Repairing
Capability”, which 1s a continuation of U.S. patent applica-
tion Ser. No. 10/667,097, filed Sep. 18, 2003, entitled “Mul-
tiple Parallel Pipeline Processor Having Seli-Repairing
Capability”, now 1ssued as U.S. Pat. No. 7,124,318, both of
which are herein incorporated by reference. This application
claims priority under 35 U.S.C. §120 of U.S. patent applica-
tion Ser. No. 10/331,387, filed Sep. 13, 2006, and U.S. patent
application Ser. No. 10/667,097, filed Sep. 18, 2203.

[0002] The present application 1s also related to the follow-
ing commonly assigned application, which is herein incorpo-
rated by reference: Ser. No. 10/667,084, filed Sep. 18, 2003,
entitled “Multiple Processor Core Device Having Shareable

Functional Units for Seli-Repairing Capability”, now 1ssued
as U.S. Pat. No. 7,117,389.

FIELD OF THE INVENTION

[0003] The present invention relates to digital data process-
ing hardware, and 1n particular to the design of high-perfor-
mance processing units which have multiple parallel pipe-
lines for concurrently processing data.

BACKGROUND OF THE INVENTION

[0004] In the latter half of the twentieth century, there
began a phenomenon known as the information revolution.
While the information revolution 1s a historical development
broader 1n scope than any one event or machine, no single
device has come to represent the information revolution more
than the digital electronic computer. The development of
computer systems has surely been a revolution. Each year,
computer systems grow faster, store more data, and provide
more applications to their users.

[0005] A modern computer system typically comprises a
central processing unit (CPU) and supporting hardware nec-
essary to store, retrieve and transier information, such as
communications buses and memory. It also includes hard-
ware necessary to communicate with the outside world, such
as input/output controllers or storage controllers, and devices
attached thereto such as keyboards, monitors, tape drives,
disk drives, communication lines coupled to a network, etc.
The CPU 1s the heart of the system. It executes the mstruc-
tions which comprise a computer program and directs the
operation of the other system components.

[0006] From the standpoint of the computer’s hardware,
most systems operate in fundamentally the same manner.
Processors are capable of performing a limited set of very
simple operations, such as arithmetic, logical comparisons,
and movement of data from one location to another. But each
operation 1s performed very quickly. Programs which direct a
computer to perform massive numbers of these simple opera-
tions give the 1llusion that the computer 1s doing something,
sophisticated. What 1s perceived by the user as a new or
improved capability of a computer system 1s made possible
by performing essentially the same set of very simple opera-

Feb. 12, 2009

tions, but doing 1t much faster. Therefore continuing improve-
ments to computer systems require that these systems be
made ever faster.

[0007] The overall speed of a computer system (also called
the “throughput™) may be crudely measured as the number of
operations performed per unit of time. Conceptually, the sim-
plest of all possible improvements to system speed 1s to
increase the clock speeds of the various components, and
particularly the clock speed of the processor. E.g., if every-
thing runs twice as fast but otherwise works 1n exactly the
same manner, the system will perform a given task 1n half the
time. Early computer processors, which were constructed
from many discrete components, were susceptible to signifi-
cant speed improvements by shrinking and combining com-
ponents, eventually packaging the entire processor as an inte-
grated circuit on a single chip. The reduced size made 1t
possible to increase the clock speed of the processor, and
accordingly increase system speed.

[0008] In addition to increasing clock speeds, 1t 1s possible
to 1mprove system throughput by using multiple copies of
certain components, and 1n particular, by using multiple
CPUs. The modest cost of individual processors packaged on
integrated circuit chips has made this practical. While there
are certainly potential benefits to using multiple processors,
additional architectural issues are introduced. Without delv-
ing deeply into these, it can still be observed that there are
many reasons to improve the speed of the individual CPU,
whether or not a system uses multiple CPUs or a single CPU.
If the CPU clock speed 1s given, it 1s possible to further
increase the speed of the individual CPU, 1.e., the number of
operations executed per second, by increasing the average
number of operations executed per clock cycle.

[0009] Most modern processor employ concepts of pipe-
lining and parallelism to increase the clock speed and/or the
average number of operations executed per clock cycle. Pipe-
lined 1nstruction execution allows subsequent mstructions to
begin execution before previously issued instructions have
finished, so that execution of an instruction overlaps that of
other mstructions. Ideally, a new 1nstruction begins with each
clock cycle, and subsequently moves through a pipeline stage
with each cycle. Because the work of executing a single
instruction 1s broken up into smaller fragments, each execut-
ing 1n a single clock cycle, it may be possible to increase the
clock speed. Even though an instruction may take multiple
cycles or pipeline stages to complete, 11 the pipeline 1s always
tull, the processor executes one nstruction every cycle.

[0010] Some modern high-performance processor designs,
sometimes known as “superscalars™, have extended the pipe-
line concept, to employ multiple parallel pipelines, each oper-
ating concurrently on separate data. Under ideal conditions,
cach instruction simultaneously causes data to be operated
upon in e¢ach of the parallel pipelines, and thus there 1s a
potential throughput multiplier equal to the number of pipe-
lines, although in reality this 1s only a theoretical limait, 1t
being impossible to keep all pipelines full at all times.

[0011] Inonevariation of a parallel pipeline design, known
as “Single Instruction, Multiple Data™ (SIMD), each instruc-
tion contains a single operation code applicable to each of a
set of parallel pipelines. While each pipeline performs opera-
tions on separate data, the operations performed are not inde-
pendent. Generally, each pipeline performs the same opera-
tion, although 1t may be possible that some instruction op
codes dictate that specific pipelines perform different specific
operations.

US 2009/0044049 Al

[0012] In another variation of a parallel pipeline design,
known as “Multiple Instruction, Multiple Data” (MIMD),
cach mstruction contains separate and independent operation
codes for each respective pipeline, each set applicable to a
different respective pipeline. When compared with a SIMD
design, the MIMD design permits greater tlexibility during
execution and generally higher utilization of the pipelines,
because each pipeline can perform independent operations.
However, the need to specily different operations for each
pipeline 1n the instruction substantially increases the length of
the mstruction, and increases the complexity of the hardware
necessary to support an MIMD design. As a result of these
countervailing considerations, 1n can not be said that either of
these two approaches 1s clearly superior to the other, although
SIMD designs appear to be more widely used at the present
time.

[0013] A multiple parallel pipeline processor, whether
employing a SIMD or MIMD design, 1s an enormously com-
plex device. The multiple pipelines require relatively large
integrated circuit chip area of primarily custom logic. These
circuits within these pipelines have a high degree of switching
activity, and consume considerable power at the operating
frequencies typical of such devices. The power density, 1.e.,
the amount of power consumed per unit area of chip surface,
tends to be significantly greater within the pipelines than in
many other areas of the processor chip, such as cache arrays
and registers. This high level of activity and high power
consumption makes the multiple pipeline area of the proces-
sor chup particularly susceptible to failure.

[0014] In a conventional multiple parallel pipeline proces-
sor, the failure of any part of a pipeline (even though the
tailure aflects only a single pipeline) generally means that the
processor 1s no longer able to process the mnstructions, since
the mstructions assume that all operands will simultaneously
be processed by their respective pipelines. Therefore, the
entire processor 1s effectively disabled. This may 1n turn
cause system failure, although 1n some multiple-processor
computer systems, the system can continue to operate, albeit
at a reduced throughput, using the remaining functioning
Processors.

[0015] In order to increase the success and acceptability of
multiple-pipeline processor designs, it 1s desirable to reduce
the frequency of processor failure, and 1n particular, the fre-
quency of processor failure as a result of failure 1n some
circuitry within the pipelines. A need exist for improved
designs to counter the vulnerability of multiple pipeline pro-
CEeSSOrs.

SUMMARY OF THE INVENTION

[0016] A multiple parallel pipeline digital processing appa-
ratus has the capability to substitute a second pipeline for a
first 1n the event that a failure 1s detected 1n the first pipeline.
Preferably, aredundant pipeline 1s shared by multiple primary
pipelines, and 1n the event that any primary pipeline fails, the
redundant pipeline assumes the failing pipeline’s function.

[0017] Inoneaspect of the preferred embodiment, multiple
primary pipelines and a single redundant pipeline are located
physically adjacent one another in an array, each pipeline
(except the two at the edges) having two neighboring pipe-
lines, one on either side. A pipeline failure causes data to be
shifted one position within the array of pipelines, to by-pass
the failing pipeline. The shiit 1s always one position, to main-
tain close physical proximity with the normal source registers
tor the data. Thus, if the first pipeline 1n the array fails and the

Feb. 12, 2009

fifth pipeline redundant, data intended for the first pipeline 1s
shifted to the second pipeline, data intended for the second 1s
shifted to the third, and so forth.

[0018] In another aspect of the preferred embodiment,
selection logic controlling the selection between a primary
source and a secondary source of pipeline data 1s integrated
with other selection logic, specifically operand source selec-
tion logic for various phases of the pipeline. This operand
source selection logic 1s used for by-passing of certain pipe-
line logic or registers. Because the selection between a pri-
mary and secondary source 1s integrated with other selection
logic, no or minimal additional logic gates are itroduced 1n
the data path of pipelined data, which 1s often a critical timing,
path.

[0019] In another aspect of the preferred embodiment, a
single redundant pipeline 1s shared by multiple (preferably
two) primary pipeline sets for respective processor cores
located on a single itegrated circuit chip. In this case, the
redundant pipeline 1s physically located between the two
primary pipeline sets and adjacent both sets.

[0020] A redundant pipeline constructed in accordance
with the preferred embodiment of the present invention has
the capability to keep a processor up and runming 1n the event
of failure of a component part of a single pipeline 1n amultiple
pipelined processor. Moreover, due to the configuration of
pipelines and selection circuitry according to the preferred
embodiment, virtually no additional delay 1s imntroduced into
any critical timing path. The additional pipeline consumes
some chip area, but 1t 1s not necessary to duplicate the entire
Processor.

[0021] The details of the present mvention, both as to 1ts
structure and operation, can best be understood in reference to
the accompanying drawings, in which like reference numer-
als refer to like parts, and 1n which:

BRIEF DESCRIPTION OF THE DRAWING

[0022] FIG. 1 1s a high-level block diagram of the major
hardware components of a computer system utilizing a mul-
tiple parallel pipeline processor, according to the preferred
embodiment of the present invention.

[0023] FIG. 2 1s a high-level diagram of the major compo-
nents of a CPU having parallel pipelines, according to the
preferred embodiment.

[0024] FIG. 3 1s a high-level conceptual view of a parallel
pipelined subunit within the CPU, according to the preferred
embodiment.

[0025] FIGS. 4A and 4B (herein collectively referred to as
FIG. 4) are a diagram showing 1n greater detail selection logic
at the input and output of a pipeline for supporting shifting of
pipeline data, according to the preferred embodiment.
[0026] FIG. 5 1s a diagram showing the hardware control
logic which controls shifting of data to an adjacent pipeline,
according to the preferred embodiment.

[0027] FIG. 6 illustrates a system environment supporting
selective thread execution in the event that more than one
pipeline 1n a processor becomes disabled, according to a
preferred system environment.

[0028] FIG. 7 1s a high-level diagram of an integrated cir-
cuit chip having multiple processor cores and a shared redun-
dant pipeline, according to an alternative embodiment of the
present 1nvention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0029] Referring to the Drawing, wherein like numbers
denote like parts throughout the several views, FIG. 1 15 a

US 2009/0044049 Al

high-level representation of the major hardware components
ol a computer system 100 utilizing a multiple parallel pipe-
line processor, according to the preferred embodiment of the
present invention. The major components of computer system
100 include one or more central processing units (CPU) 101,
main memory 102, terminal interface 111, storage interface
112, I/O device intertace 113, and communications/network
interfaces 114, all of which are coupled for inter-component
communication via buses 103, 104 and bus interface 105.

[0030] System 100 contains one or more general-purpose
programmable central processing units (CPUs) 101A-101D,
herein generically referred to as feature 101. In the pretferred
embodiment, system 100 contains multiple processors typi-
cal of a relatively large system; however, system 100 could
alternatively be a single CPU system. Fach processor 101
executes mnstruction stored in memory 102, and may include
one or more levels of on-board cache. Memory 102 1s a
random-access semiconductor memory for storing data and
programs. Memory 102 1s conceptually a single monolithic
entity, 1t being understood that memory 1s often a more com-
plex arrangement, such as a hierarchy of caches and other
memory devices.

[0031] Memory bus 103 provides a data communication
path for transferring data among CPUs 101, main memory
102 and I/O bus interface unit 105. I/O bus interface 105 1s
turther coupled to system 1/O bus 104 for transierring data to
and from various I/O units. I/O bus interface 105 communi-
cates with multiple I/O interface umts 111-114, which are
also known as I/O processors (I0Ps) or I/O adapters (10As),
through system I/0 bus 104. System I/O bus may be, ¢.g., an
industry standard PCI bus, or any other appropriate bus tech-
nology. The I/O interface units support communication with
a variety of storage and 1/0O devices. For example, terminal
interface unit 111 supports the attachment of one or more user
terminals 121-124. Storage interface unit 112 supports the
attachment of one or more direct access storage devices
(DASD) 125-127 (which are typically rotating magnetic disk
drive storage devices, although they could alternatively be
other devices, including arrays of disk drives configured to
appear as a single large storage device to ahost). I/O and other
device mterface 113 provides an interface to any of various
other input/output devices or devices of other types. Two such
devices, printer 128 and fax machine 129, are shown 1n the
exemplary embodiment of FIG. 1, 1t being understood that
many other such devices may exist, which may be of differing,
types. Network interface 114 provides one or more commu-
nications paths from system 100 to other digital devices and
computer systems; such paths may include, e.g., one or more
networks 130 such as the Internet, local area networks, or
other networks, or may include remote device communica-
tion lines, wireless connections, and so forth.

[0032] It should be understood that FIG. 1 1s mtended to
depict the representative major components of system 100 at
a high level, that individual components may have greater
complexity that represented 1n FIG. 1, that components other
than or 1in addition to those shown 1n FIG. 1 may be present,
and that the number, type and configuration of such compo-
nents may vary. Several particular examples of such addi-
tional complexity or additional varnations are disclosed
herein, 1t being understood that these are by way of example
only and are not necessarily the only such variations.

[0033] Although main memory 102 1s shown in FIG. 1 as a
single monolithic entity, memory 102 may in fact be distrib-
uted and/or hierarchical, as 1s known 1n the art. E.g., memory

Feb. 12, 2009

may exist in multiple levels of caches, and these caches may
be further divided by function, so that one cache holds
instructions while another holds non-1nstruction data which 1s
used by the processor or processors. Memory may further be
distributed and associated with different CPUs or sets of
CPUs, as 1s known 1n any of various so-called non-uniform
memory access (NUMA) computer architectures. Although
memory bus 103 1s shown 1n FIG. 1 as a relatively simple,
single bus structure providing a direct communication path
among CPUs 101, main memory 102 and I/O bus interface
105, 1n fact memory bus 103 may comprise multiple different
buses or communication paths, which may be arranged 1n any
of various forms, such as point-to-point links in hierarchical,
star or web configurations, multiple hierarchical buses, par-
allel and redundant paths, etc. Furthermore, while 1/O bus
interface 105 and I/O bus 104 are shown as single respective
units, system 100 may 1n fact contain multiple I/O bus inter-
face units 105 and/or multiple I/O buses 104. While multiple
I/O interface units are shown which separate a system 1/0 bus
104 from various communications paths running to the vari-
ous I/O devices, 1t would alternatively be possible to connect

some or all of the I/O devices directly to one or more system
I/O buses.

[0034] Computer system 100 depicted in FIG. 1 has mul-
tiple attached terminals 121-124, such as might be typical of
a multi-user “mainirame” computer system. Typically, 1n
such a case the actual number of attached devices 1s greater
than those shown 1n FIG. 1, although the present invention 1s
not limited to systems ol any particular size. Computer sys-
tem 100 may alternatively be a single-user system, typically
containing only a single user display and keyboard input, or
might be a server or stmilar device which has little or no direct
user interface, but recerves requests from other computer
systems (clients).

[0035] While various system components have been
described and shown at a high level, 1t should be understood
that a typical computer system contains many other compo-
nents not shown, which are not essential to an understanding
ol the present invention.

[0036] FIG. 21s a high-level diagram of the major compo-
nents of CPU 101 according to the preferred embodiment,
showing CPU 101 1n greater detail than 1s depicted 1in FIG. 1.
In this embodiment, the components shown 1n FIG. 2 are
packaged 1n a single semiconductor chip. CPU 101 includes

instruction umtportion 201, execution unit portion 211, Level
1 Instruction Cache (L1 I-Cache) 203, Level 1 Data Cache

(L1 D-Cache) 206, Level 2 Cache (L2 Cache) 208, and
memory interface 209. In general, instruction umt 201
obtains instructions from L[.1 I-cache 205, decodes instruc-
tions to determine operations to perform, resolves branch
conditions to control program flow. Execution unit 211 per-
forms arithmetic and logical operations on data 1n registers,
and loads or stores data from L1 D-Cache. L2 Cache 208 1s a

level 2 cache, generally larger that L1 I-Cache or L1 D-Cache
providing data to L1 I-Cache 205 and L1 D-Cache 206. 1.2
Cache 208 i1s coupled to external memory interface 209,
which loads data from or stores 1t to an external memory
location, which 1s generally main memory 102, although 1t
could be another level of cache.

[0037] Instruction unit 201 comprises branch unit 202,
instruction decode/dispatch unit 203, and instruction regis-
ters and builers 204. Instructions from L1 I-cache 205 are
loaded into butters 204 prior to execution. Depending on the
CPU design, there may be multiple buifers (e.g., one for a

US 2009/0044049 Al

sequential series of instructions, and others for branch-to
locations), each of which may contain multiple instructions.
Decode/dispatch unit 203 recerves the current instruction to
be executed from one of the butfers, and decodes the 1nstruc-
tion to determine the operation(s) to be performed or branch
conditions. Branch umt 202 controls the program flow by

evaluating branch conditions, and refills buffers from L1
I-cache 205.

[0038] L1 I-cache 205 and L1 D-cache 206 are separate
instruction and data caches providing data to instruction and
execution units. L.2 cache 1s a non-discriminated cache con-
taining both instructions and non-struction data. Typically,
data 1s taken from or stored to an L1 cache by the 1nstruction
or execution unit, and 1f the data 1sunavailableinan .1 cache,
1t 1s loaded into the L1 cache from 1.2 cache 208, which in turn
obtains 1t from main memory 102, and then transferred from
[.1 cache to the corresponding unit. Depending on the pro-
cessor design, 1t may be possible to by-pass L1 cache and load
data from L2 cache 208 to an execution or instruction register.
Memory bus mterface 209 handles the transfer of data across
memory bus 103, which may be to main memory or to I/O
units via bus interface 105.

[0039] Execution unit 211 comprises a set of general pur-
pose registers 212 for storing data and an integer arithmetic
logic unit 213 for performing arithmetic and logical opera-
tions on data 1n GP registers 212 responsive to mstructions
decoded by instruction unit 201. Execution unit further
includes vector/graphics subunit 214 for performing math-
ematically intensive operations. Vector/graphics unit 214
includes a set of vector registers 215, and a set of parallel
arithmetic/logic pipelines 216 for operating on data 1n vector
registers 215. Vector/graphics unit 214 and its components
are described i greater detail herein. Although referred to
herein as a vector/graphics unit, this 1s merely descriptive of
typical usage. In fact, unit 214 simply performs mathematical
operations on data, and can be used for any or various appli-
cations requiring mathematically intensive operations. In
addition to components shown 1n FIG. 2, execution unit may
include additional special purpose registers and counters,
load and store hardware for fetching data from or storing 1t to
cache or memory, control hardware, and so forth. In particu-
lar, execution unit 211 may include additional pipelines (not
shown) separate from the set of parallel pipelines 216 1n
vector/graphics unit 214. For example, integer ALU 213 may
be implemented as one or more pipelines; execution unit 211
may contain one or more load/store pipelines for transterring,
data between GP registers 212 or vector registers 215 on the
one hand and some form of memory (generally L1 D-Cache
or L2 Cache) on the other. Additional pipelines, such as an
instruction fetch and decode pipeline, may exist within pro-
cessor 101.

[0040] While wvarious CPU components have been
described and shown at a high level, 1t should be understood
that the CPU of the preferred embodiment contains many
other components not shown, which are not essential to an
understanding of the present invention. For example, various
additional special purpose registers will be required 1n a typi-
cal design. Furthermore, 1t will be understood that the CPU of
FIG. 2 1s simply one example of a CPU architecture, and that
many variations could exist in the number, type and arrange-
ment of components within CPU 101, that components not
shown may exist 1n addition to those depicted, and that not all
components depicted might be present 1n a CPU design. For
example, the number and configuration of butfers and caches

Feb. 12, 2009

may vary; the number and function of execution unit pipe-
lines may vary; registers may be configured 1n different arrays
and sets; dedicated floating point hardware may or may not be
present; etc.

[0041] In the preferred embodiment, processor 101 1s a
Single Instruction, Multiple Data (SIMD) processor. Each
instruction decoded by mstruction unit 201 contains a single
operation code specitying an operation, and potentially mul-
tiple operand specifiers. In the preferred embodiment, the
processor contains a vector/graphics subumt 214 having four
primary arithmetic/logic pipelines (and one additional arith-
metic/logic pipeline used as a spare), 1t being understood that
the number of such pipelines could vary. Accordingly, a sub-
set of the 1nstruction set for processor 101 includes instruc-
tions which are executed by the pipelines 216 within the
vector/graphics subunit. Each instruction for pipelines 216
contains a single operation code applicable to all pipelines.
Each mstruction further specifies the sources and destinations
of data 1n vector registers 215. In the preferred embodiment,
an instruction may contain as many as three operand source
speciflers and a single destination specifier, which refer to
registers 1n vector register set 215. In the preferred embodi-
ment, every pipeline of set 216 performs the same operations
as each of the other pipelines 1n any given cycle (except for
any 1dled pipeline). It would alternatively be possible to
design operation codes which are used to specily a fixed,
pre-defined set of operations for the pipelines corresponding
to their respective positions, where not all of the operations
are the same.

[0042] Processor 101 could alternatively be a Multiple
Instruction, Multiple Data (MIMD) processor, also known as
a Very Long Instruction Word (VLIW) or Wide Issue Super-
scalar, 1n which the mstruction contains multiple independent
operation codes, each corresponding to a respective pipeline.

[0043] In accordance with the preferred embodiment, a set
of parallel arithmetic/logic pipelines includes one additional
redundant pipeline. In the event that any of the primary pipe-
lines becomes moperable (fails), switching logic engages the
redundant pipeline to provide the function of the failing pri-
mary pipeline.

[0044] FIG. 3 1s a high-level conceptual view of the vector
graphics unit 214 within execution umt 211, and in particular,
the set of parallel arithmetic/logic pipelines and switching,
logic 216, according to the preferred embodiment. Referring
to FIG. 3, parallel pipeline set 216 includes five pipelines
301-305 which are designated Pipe0 through Piped, respec-
tively. Preferably, each of the five pipelines 1s 1dentical to the
others, although redundant function would still be possible 1n
the presence of some differences among the pipelines. Each
pipeline comprises respective three sections: a respective per-

mute section 311, 314, 317, 320, 323; a respective fixed
multiply/add (FX) section 312, 315, 318, 321, 324; and a
respective floating point (FP) section 313,316, 319, 322, 325.
Pipe0 through Pipe3 301-304 are the primary pipelines, while
Piped 305 1s the spare, or redundant, pipeline.

[0045] Permute sections 311, 314, 317, 320, 323 perform

shift, rotate, insert and similar operations on data. A permute
section typically requires 3-4 execution clock cycles (stages).
FX sections 312, 315, 318, 321, 324 perform fixed-point
addition, subtraction, multiplication, division and compari-
son. A FX section typically requires 4-8 execution cycles. FP
sections 313, 316, 319, 322, 325 perform tloating point addi-
tion and multiplication. A FP section typically requires
approximately 12 execution cycles.

US 2009/0044049 Al

[0046] FEach pipeline section 1s essentially a complete pipe-
line, 1.e., 1t 1s capable of recerving multiple mput operands
from vector registers 215 and producing an output to vector
registers 215. However, only one set of mput and output
registers exist for the pipeline, which are shared by all sec-
tions. I.e., one set of input registers for Pipe0 301 1s shared by
permute section 311, FX section 312 and FP section 313.

[0047] Vector register file 213 1s a bank of registers provid-
ing the data upon which pipelines 301-3035 operate. In the
preferred embodiment, register file 215 contains 128 general
registers capable of being designated as operands of a vector/
graphics instruction. Each general register 1s divisible into
four 32-bit words, each word corresponding to a different
respective pipeline of pipeline set 216. Each of the 32-bit
words within a register can be loaded with independent data.
When the register 1s a designated operand i1n a pipeline
instruction, each of the four 32-bit words of the register simul-
taneously provides source data to or receives destination data
from 1ts respective pipeline of pipeline set 216. A vector/
graphics mstruction decoded for execution by vector/graph-
ics unit 214 may specily any of the 128 general registers 1n
register file 215 as a source or destination operand for a
pipeline operation.

[0048] From the point of view of the programmer, com-
piler, or struction set, vector register file 215 simply con-
tains 128 registers, any of which may serve as a source or
destination operand. However, 1n physical construction, reg-
ister file 215 also contains four sets of temporary registers,
one associated with each respective pipeline, which are trans-
parent to the programmer, compiler or mstruction set. Each
set of temporary registers contains four registers, designated

VA, VB, VC and VT. Temporary input registers VA, VB and
VC 309A-309D (generally designated 309) hold input data to
the pipelines, while temporary result registers VI 310A-
310D (generally designated 310) hold results. An 1nstruction
designating a register V1 as a source operand for input to
pipeline 216 actually causes the data 1n Vi to be written to one
of the temporary input registers 1n input register set 309, such
as VA, from which 1t 1s mnput to the pipeline. Similarly, the
output of the pipeline 1s always written into a temporary
register VI 310, from which 1t 1s transierred to a destination
register designated in the mstruction. This physical construc-
tion facilitates transter of data from multiple sources to mul-
tiple possible targets. I.e., there are multiple data entry points
to each pipeline, and multiple data exit points from each
pipeline. The creation of a direct path from each possible
source register to each possible entry point 1n a pipeline, or the
creation of a direct path from each possible exit point to each
possible destination register, may involve excessive hardware
or excessive time to complete a cycle.

[0049] Pipelines 301-305 are preferably constructed in
physical proximity 1n aregular array, approximately as shown
in FIG. 3. Each set of temporary input registers 309 1s physi-
cally positioned near a respective primary pipeline. Each set
of temporary 1nput registers fans out to provide 1nput to two
pipelines, being the primary pipeline with which it 1s associ-
ated, and the pipeline adjacent the primary pipeline and next
highest in the designated pipeline order. 1.e., the set of tem-
porary registers 309A associated with primary pipeline Pipe(
301 also provides imput to Pipel 302; the set of temporary
registers 3098 associated with Pipel 302 also provides input
to Pipe2 303, and so on. Selection logic 307 at the mputs to
cach pipeline determines whether to select the temporary
input registers associated with that pipeline, or an alternate set

Feb. 12, 2009

of temporary registers associated with an adjacent pipeline. In
the case of pipelines 301 and 3035 at the edges of the pipeline
array, only one set of source registers can be selected.

[0050] Similarly, the output of each pipeline 302-305 fans
out to two temporary result registers 310. Pipelines 301 and
305, and the edges of the array, have only a single destination.
Selectionlogic 308 determines whether to select the output of
the pipeline associated with a result register, or the output of
an alternative adjacent pipeline, for input to the resultregister.
For example, temporary result register 310D associated with
primary pipeline 304 can also recerve results from redundant
pipeline 305.

[0051] Innormal operation, pipelines 301-304 receive data
from 1put registers 309A-309D, respectively, and output
their results to result registers 310A-310D, respectively,
while pipeline 305 remains 1dle. In the event that a primary
pipeline becomes moperable, the mnoperable pipeline 1s 1dled,
and redundant pipeline 305 1s engaged. Preferably, idling 1s
performed by disabling the clock signal to the affected pipe-
line, which reduces power consumption in the 1dled pipeline.

[0052] When the redundant pipeline 1s engaged, pipeline
inputs and outputs are shifted over a single pipeline 1n the
array to utilize the redundant pipeline. For example, if pipe-
line 302 becomes moperable, pipeline 302 1s 1dled and redun-
dant pipeline 305 1s activated. The mput registers 309B for
pipeline 302 are selected by selection logic 307 to provide
input to pipeline 303, the mput registers 309C for pipeline
303 are selected by selection logic 307 to provide mput to
pipeline 304, and the input registers 309D for pipeline 304 are
selected to provide input to redundant pipeline 305. In this
case, pipeline 301 continues to recerve 1ts input from registers
309A. A similar shift 1s performed at the output. I.e., 1 this
example, the output of pipeline 303 1s selected by selection
logic 308 to be stored in temporary result register 310B, the
output of pipeline 304 is selected to result register 310C, and
the output of pipeline 305 1s selected to result register 310D.
The output of pipeline 301 continues to be placed 1n result
register 310A. Thus, pipeline 303 etfectively assumes the
function of moperable pipeline 302, while the functions nor-
mally performed by pipeline 303 are shifted over to pipeline
304, and the functions normally performed by pipeline 304
are shifted over to redundant pipeline 305.

[0053] Inthe preferred embodiment, all of the mstructions
in the instruction set perform the same operation 1n all four
pipelines, although different data 1s used. Theretfore, the con-
trol logic does not need to account for the fact that input data
has been shifted over as a result of one of the pipelines
becoming inoperable. However, 1t would alternatively be pos-
sible to design a processor having a limited number of special
instructions, which do not perform the identical functionin all
pipelines. In this case, additional control logic (not shown)
would select the tunction performed by a particular pipeline
based on the data currently assigned to 1t. I.e., 1t pipeline 302
becomes moperable and pipeline 304 assumes the function
normally performed by pipeline 303, then control logic would
also provide shifted control signals so that pipeline 304
behaves exactly as pipeline 303 should. The same principle
would apply 11 processor 101 were a MIMD machine, in
which the instruction set specifies different operations for
cach of the multiple parallel pipelines.

[0054] While 1t would be theoretically possible to divert the
data for the 1noperable pipeline directly to the redundant
pipeline (in the example above, divert data for pipeline 302 to
pipeline 305), shifting over by one pipeline as described

US 2009/0044049 Al

above 1n the preferred embodiment 1s believed to have certain
advantages. By shifting inputs and outputs over only a single
pipeline, the lengths of the physical paths between registers
309, 310 and their corresponding pipelines can be minimized.
These data paths tend to be critical timing paths, and 1t 1s
therefore important to minimize the length wherever pos-
sible. Additionally, any single pipeline has at most two alter-
native sets of mput and output registers, avoiding relatively
large selection 1input logic to the redundant pipeline. Finally,
shifting by one promotes greater regularity in the circuit
design, making it easier to alter the design to accommodate
differing numbers of pipelines and different configuration
options.

[0055] InFIG. 3, selection logic 307 1s depicted as abank of
2-way (or 1-way) selection logic circuits which select as input
to a pipeline either the 32-bit word of a vector register corre-
sponding to the pipeline, or the 32-bit word of the same
register corresponding to an adjacent pipeline. Selection logic
308 for the output 1s shown similarly. While 1t would be
possible to implement a redundant pipeline for a parallel
pipeline array in this fashion, it would cause an additional
logic delay to be interposed at the mput, and an additional
logic delay to be iterposed at the output, of the pipeline. In
the preferred embodiment, the selection logic for selecting
between different sets of input register words 1s 1ntegrated
with other selection logic, so that the critical path sees no
additional selection logic delays at the imput and output.

[0056] FIGS. 4A and 4B (herein collectively referred to as
FIG. 4) show 1n greater detail the selection logic at the input
and output of a pipeline, which supports shifting of pipeline
data in the event that one of the pipelines becomes inoperable,
according to the preferred embodiment. Pipeline N, X section
401 1s a generalized representation of any of pipeline sections
314-325. I.e., Pipeline N, X section 1s a representation of a
section (which could be a permute section, a FX section, or a
FP section) of a pipeline corresponding to word N of vector
register file 215.

[0057] Each pipeline section 401 includes three input selec-
tors 402-404, corresponding to registers VA, VB and VC,
respectively, the mput selectors being part of selection logic
307 shown 1n FIG. 3. Although simplified FIG. 3 represents a
single set of selection logic for each pipeline 301-305, 1t wall
be recalled that 1n fact each pipeline section 311-325 15 a
complete pipeline, and each pipeline section can receive iput
directly from temporary input registers 309 of vector register
file 215. Theretore, each pipeline section 311-325 has 1ts own
set of mput selectors.

[0058] A pipeline section can receive input from temporary
input registers 309, but it can also receive mput from 1tself or
from a different pipeline section within the same pipeline.
This input may be from an intermediate stage 1 a pipeline
section, or from the final stage ol a pipeline section. For
example, FX pipeline section 318 might receive mput from
permute section 317 or from FP section 319; 1t might also
receive 1nput directly from 1ts own output, or from an inter-
mediate stage within itself. However, FX pipeline section 318
can not receive mput directly from any section of pipeline
301, 302, 304 or 305. This mput could be recerved 1n con-
junction with mputs from temporary mput registers 309. For
example, a given instruction might take the A and C operands
(selected by selectors 402 and 404) from the VA and VC
temporary input registers, and the B operand (selected by
selector 403) from the output of a different pipeline section.
The capability to recerve mput from another pipeline section

Feb. 12, 2009

or from the final or intermediate stage of the same pipeline
section by-passes vector register file 215 when performing
certain serial operations.

[0059] For the generalized Pipeline N section 401 corre-
sponding to word N of vector register file 215, the A operand
selector 402 receives iput from the VA temporary input
register for word N. It also recerves mnput from the VA register
for word (N-1). It further receives input from the final stage
406 of Pipeline N section 401. For some pipeline sections, 1t
turther recerves input from one or more intermediate stages
4035 of Pipeline N section 401. Finally, 1t further receives input
from one or more final or intermediate stages of other pipeline
sections within the same pipeline, 1.e., corresponding to the
same word of register file 2135, or 1f Pipeline N section 401 1s
in the redundant pipeline, then other sections within the
redundant pipeline.

[0060] The same general description 1s true of B operand
selector 403 and C operand selector 404. The B selector 403
receives, among others, inputs from the VB register for word
N and the VB register for word (N-1). The C register receives,
among others, mnputs from the VC register for word N and the
VC register for word (N-1).

[0061] Although the number of inputs for each selector
402-404 1s shown as 1dentical 1n FIG. 4, this 1s not necessarily
the case, and some intermediate or final pipeline stages might
be used by some selectors and not others. However, in general
cach selector 402-404 will receive a half dozen or more
inputs. It will be observed that if pipeline array 216 contained
no redundant pipeline and no data shifting capability, then
selector 402 would not recerve an mput from the VA register
for word (N-1), but would still recerve all the other 1nputs,
and similarly for selectors 403 and 404. Thus, the selection
logic for selection word N or word (N-1) as the input, which
1s used to shift data to an adjacent pipeline, 1s integrated into
selection logic which already exists. The effect of adding a
redundant path selection 1s that the number of mnputs to each
ol selectors 402-404 1s increased by one (e.g., from seven to
cight). In general, this amounts to a negligible effect on
propagation delay time through the selection logic.

[0062] The output selection logic 308 performs the analo-
gous 1n reverse. A separate selector (of which two 407, 408
are shown) 1s associated with each VI word register 310.
Selector 407 selects the mput to destination register V1 for
word (N-1), which selector 408 select the mput to VT for
word N. The output of the final stage of Pipeline N section 401
1s provided to both selector 407 and 408. Selector 407 also
receives the final stage of the corresponding pipeline section
for word (N-1), while selector 408 also receives the final
stage of the corresponding pipeline section for word (N+1).
Since each of the permute, FX and FP pipeline sections 1n the
pipeline for word N has a final stage, each of these final stages
1s 1put to selectors 407 and 408. Additionally, one or more
intermediate stages may be mput to selectors 407 and 408.
Thus, 1n order to support shifting of data from one pipeline to
another, the number of 1nputs to each of selectors 407, 408 1s
doubled. Selector 407 has a complete set of inputs from the
pipeline associated with word (N-1) and from the pipeline
associated with word N, while selector 408 has a complete set
of inputs from the pipelines associated with word N and word
(N+1). Although the number of mputs to each selector 1s
doubled, the selection between one pipeline or the other i1s
still integrated 1nto selection logic which would otherwise be
present for selecting outputs from different stages or sections
of the same pipeline. The doubling of selector inputs 1s con-

US 2009/0044049 Al

sidered preferable to a separate 2-way selector 1n series with
a selector of pipeline stage outputs, because there 1s still only
one selector gate delay 1n the critical path.

[0063] FIG. 5 illustrates the hardware control logic which
controls shifting of data to an adjacent pipeline, according to
the preferred embodiment. As shown 1n FIG. 3, a respective
hardware error detection register 501-505 1s associated with
cach pipeline 301-305. Hardware error detection registers
501-505 provide input to decoder 506. Additionally, a special
vector/graphics unit control register 507, contaiming status
and control information for vector/graphics unit 214, includes
a repair enable bit (RE) which 1s input to decoder 506. The RE
bit 1s used to enable/disable data shifting in the event of a
pipeline failure; a “1”” indicates that shifting 1s enabled. While
it 1s expected that shifting will normally be enabled, 1n some
applications, particularly for purposes of testing, 1t may be
desirable to disable shifting. Decoder 506 uses these various
inputs to generate control signals for enabling/disabling

clocks to pipelines 301-305, and for controlling selectors 307
and 308.

[0064] Inthe preferred embodiment, each register 501-5035
contains a respective hard error bit (designated HF0 through
HF4, respectively), indicating whether an unacceptable hard
error has been detected in the corresponding pipeline, 1.¢., the
pipeline 1s considered to be mnoperable. Each register 501-505
may additionally include one or more bits used to record soft
errors. In the preferred embodiment, error conditions are
detected by checking parity of data quantities at various
stages of the pipeline. A single 1solated parity error may be
considered a “soft” error, but 11 the parity error 1s repeated
alter retrying the operation, or 1f 1solated parity errors appear
at an unacceptable frequency, the error condition will be
considered a “hard” error, meaning that the pipeline 1s 1nop-

erable, and the corresponding hard error bit1in one of registers
501-505 will be set.

[0065] Other techniques for detecting error conditions may
be used 1n addition to or 1n place of parity checking. Various
such techniques are known 1n the art, and an error condition
may be detected using any of these various techniques, or any
technique hereafter developed. For example, special hard-
ware can detect invalid machine states; selective microcode
instructions might exercise unused pipeline portions with test
data to verily function; low-level system software may run

test data through the pipelines during 1dle machine cycles;
etc.

[0066] Decoder produces control signals W, X, Y and Z for

select logic 307, 308, pipeline enable signals Pipe0OEn,
PipelEn, Pipe2En, Pipe3En and PipedEn for enabling the
clocks to pipelines 301-305, respectively, and a vector/graph-
ics unit fai1l (V_Fail) signal. A V_Fail signal 1s produced 1f
more than one pipeline 1s recording a hard error, or 1f one of
the primary pipelines 1s recording a hard error and the repair

enable bit 1s not set. In this case, operation of the graphics unit
1s considered unreliable. V_Fail 1s logically produced accord-
ing to the following equation:

V_Fail=(HFO AND HF1) OR (HFO AND HF2) OR
(HFO AND HF3) OR (HFO AND HF4) OR (HF1
AND HF2) OR (HF1 AND HF3) OR (HF1 AND
HF4) OR (HF2 AND HF3) OR (HF2 AND HF4) OR
(HF 3 AND HF4) OR (HFO AND <RE>) OR (HF1
AND <RE>) OR (HF2 AND <RE>) OR (HF3 AND
<RE>)

Feb. 12, 2009

[0067] Select control signals W, X, Y and Z are generated
according to the following equations:

W=HFO0 AND <V_Fail> AND RE

X=(HF0O AND <V_Fail> AND RE) OR (HF1 AND
<V_Fail> AND RE)

Y=(HF0 AND <V_Fail> AND RE) OR (HF1 AND
<V_Fail> AND RE) OR (HF2 AND <V_Fail> AND
RE)

Z=(HF0 AND <V _Fail> AND RE) OR (HF1 AND
<V_Fail> AND RE) OR (HF2 AND <V_Fail> AND
RE) OR (HF3 AND <V_Fail> AND RE)

In other words, 1f RE 1s “1” (data shifting 1s enabled) and
V_Fail 1s “0” (no unrecoverable hard failure has been

detected), then each select signal indicates whether any pre-
ceding pipeline has failed (and thus should be shifted). Pipe-
line enable signals are similarly generated:

PipeOEn=<HF0> OR V_Fail OR <RE>
PipelEn=<HF1> OR V_Fail OR <RE>
Pipe2En=<HF2> OR V_Fail OR <RE>
Pipe3En=<HF3> OR V_Fail OR <RE>

PipedEn=~/.

And thus 11 a primary pipeline 1s failing, and the V_Fail 1s off,
and RE 1s set on (enabling data shifting), the primary pipe
line’s clock will be disabled while its data 1s shifted to another
pipeline. Disabling the clock reduces power consumption in
the primary pipeline.

[0068] Although the decoder 1s described 1n terms of logic
functions it implements, it will be understood that an actual
circuit implementation may use optimizations which are not
a direct translation of the equations above.

[0069] As explained above with respect to FIG. 4, select
logic 307, 308 1n fact 1s integrated with select logic for select-
ing among various other inputs and outputs to produce N-way
selects, where N 1s greater than 2. Select control signals W, X,
Y and Z are therefore only some of the control signals for the
N-way selects, the remaining signals being generated accord-
ing to the operations being performed by the pipelines.

[0070] In operation, the vector/graphics unit pipelines are
continually or periodically monitored using any technique as
described, and a hard error 1n one of the pipelines 1s recorded
in the corresponding hard error detection register. If condi-
tions for data shifting are met, the pipelines are flushed, the
pipeline 1n which the error was detected 1s disabled, the
redundant pipeline 1s enabled, and the selection logic 1s set to
shift data to by-pass the failing pipeline. The pipelines are
then restarted. These operations may be accomplished
entirely 1n hardware, without intervention by the operating
system.

[0071] The action taken by the system 1n response to a
V_Fail signal may vary. In a preferred system environment, 1t
1s be possible to assign all execution threads containing any
vector/graphics umt instructions to different processors, so
that the processor which generated the V_Fail signal contin-
ues to operate, but processes only execution threads without
any vector/graphics instructions. FIG. 6 illustrates a such a
system environment. As shown in FIG. 6, three processors
601-603 each contain a set of primary pipelines and a single
redundant pipeline. The V_Fail signals produced by each

US 2009/0044049 Al

decoder are provided to global fail repair control logic 604,
which may be 1n a separate processing unit such as a service
Processor.

[0072] In processor 601, Pipe3 1s disabled, and redundant

pipeline Piped4 has taken over its operation. Processor 601
otherwise continues to execute normally. In processor 603,
both Pipel and Pipe3 are disabled, causing the V_Fail signal
for processor 602 to be activated. As aresult, global fail repair
control logic generates a trap to low-level software error
repair code. The software error repair code causes any tasks
having vector/graphics 1nstructions (using the vector/graph-
ics pipelines) to be swapped out of processor 602. Processor
602 conftinues to execute threads which contain no such
instructions.

[0073] As a further alternative, 1t would be possible to
continue to operate processor 602 using only the available
pipelines, by serializing pipeline operations. In the example
of FIG. 6, the data for Pipe0 and Pipel could be loaded to
Word 0 and Word 2 of the vector register, followed by loading
the data for Pipe2 and Pipe3 to Word 0 and Word 2 of the
vector register. Each vector/graphics instruction would there-
fore require additional time to complete, but the processor
would be capable of executing such instructions. Additional
control hardware and/or software would be necessary to sup-
port this mode of operation.

[0074] In other multi-processor architectures, 1t may be
necessary to disable the processor which generated the
V_Fail signal. It the system contains only one processor, a
V_Fail signal may cause system failure.

[0075] As described above, a single redundant pipeline 1s
provided for an array of primary pipelines within a single
processor. In the case of a processor having four primary
pipelines, a fifth redundant pipeline 1s provided in hardware,
a pipeline hardware 1increase of 25%. Although only the pipe-
line 1s redundant, and 1t would not necessarily mean an
increase ol 25% 1n the total number of circuits 1n a processor,
there 1s still a significant hardware cost. This cost can be
reduced 11 the redundancy 1s shared among more than one
processor. As chip sizes and circuit densities have increased,
it 1s becoming feasible to put multiple processors (referred to
as “‘processor cores’’) on a single chip. Each processor core
has 1ts own mstruction unit, and thus each processor core

processes mdependent threads of execution.

[0076] FIG. 7 1s a high-level diagram of an integrated cir-
cuit chip having multiple processor cores and a shared redun-
dant pipeline, according to an alternative embodiment of the
present mvention. Referring to FIG. 7, a single integrated
circuit chip 720 includes two processor cores 701, 702. Each
processor core contains 1ts own nstruction unit and execution
unit, capable of processing threads of execution indepen-
dently of the other processor core on chip 720. Processors 701

and 702 may share some components 712, such as an L2
Cache.

[0077] Processor 701 includes vector/graphics primary
pipelines 703-706, while processor 702 includes vector/
graphics primary pipelines 708-711. The physical arrange-
ment of pipelines 1s approximately as shown, although the
pipelines are not necessarily drawn to scale. Redundant pipe-
line 707 1s located along the junction of the two processor
cores, and adjacent Pipe3 706 of processor 701 and Pipe3 708
of processor 702. In normal operation, redundant pipeline
707 1s not used. In the event of a failure of any pipeline 1n
either processor core, data from that processor 1s shifted into
redundant pipeline 707, as described above 1n the case of a

Feb. 12, 2009

single processor. An additional pair of control signals (not
shown) running between the processor cores 1s added to
assure that the other processor 1s not already using the redun-
dant pipeline.

[0078] Inthepreferred embodiment, the processor contains
multiple primary pipelines and a single redundant pipeline.
However, 1n an alternative embodiment, the processor might
contain only a single primary pipeline. This embodiment 1s
possibly less attractive where the redundant pipeline 1s not
shared, and hence a doubling of pipeline capacity 1s required
for redundancy. But 1if, as 1n the alternative embodiment of
FIG. 7, a redundant pipeline 1s shared among multiple pro-
cessor cores on a single chip, the added cost of the redundant
pipeline 1s spread among multiple processors, reducing the
cost per processor. For example, a single chip might contain
two processor cores, each having a single dedicated pipeline,
and a third pipeline which 1s redundant, and could be used by
either processor core in the event that the pipeline normally
assigned to that processor core becomes moperative.

[0079] In the preferred embodiment described above,
redundancy has been applied to multiple parallel pipelines of
a vector/graphics subunit of a processor. However, 1t will be
understood that a redundant pipeline associated with a set of
parallel pipelines could be used 1n other contexts. Specifi-
cally, a processor 1n accordance with the present invention
need not have a vector/graphics subunit, and may implement
a set of parallel pipelines as part of the main execution unait.
Furthermore, parallel pipelines might be contained within
other units and perform other functions. For example, an
instruction unit might have a set of parallel istruction fetch
and decode pipelines for supporting multiple execution
threads or for supporting multiple branch conditions. Further-

more, although 1n the preferred embodiment, an entire redun-
dant pipeline, including a redundant permute section, a
redundant FX section, and a redundant FP section, are pro-
vided, 1t will be understood that redundancy might be applied
to some smaller portion of the hardware. For example, 1t 1s
possible that only the FX section or the FP section will be
redundant.

[0080] In the preferred embodiment, a single pipeline 1s
designated a redundant pipeline while other pipelines are
primary pipelines, and are used by default. In the absence of
a pipeline failure, the redundant pipeline 1s idle. In an alter-
native embodiment, 1t would be possible to rotate the 1dled
pipeline 1n a round robin fashion in the absence of a pipeline
failure, so that no single pipeline 1s always 1dle. By rotating
the idled pipeline, each pipeline 1s used only 80% of the time.
This reduces the average power consumption in the primary
pipelines, and may allow the pipelines to operate at a lower
temperature. Rotation would be performed on a periodic
basis, e.g., approximately every millisecond, or after some
pipelined instruction count 1s reached. Rotation would
require that the pipelines be tlushed, thus losing a few clock
cycles of execution, butifit1s performed approximately every
millisecond, the effect on performance would be negligible.

[0081] In the preferred embodiment, a single redundant
pipeline 1s provided, but 1t would alternatively be possible to
provide multiple redundant pipelines, which may be part of a

single processor, or shared by more than one processor as
shown 1n FIG. 7.

[0082] Although a specific embodiment of the invention
has been disclosed along with certain alternatives, 1t will be

US 2009/0044049 Al

recognized by those skilled 1n the art that additional variations
in form and detaill may be made within the scope of the
tollowing claims:

What is claimed 1s:

1. A method for operating a digital data processing appa-
ratus, comprising:

executing respective threads on each of a plurality of pro-

cessors of said digital data processing apparatus, each
said processor comprising a respective mstruction unit
for supporting execution of at least one respective thread
independently of threads being executed by any other
processor of said plurality of processors;

performing functions of a set of pre-defined functions for

executing said threads using a plurality of parallel pipe-
lines of said digital data processing apparatus, each pipe-
line of said plurality of parallel pipelines having the
capability to perform each function of said set of pre-
defined functions on respective mnput data, said plurality
of parallel pipelines being arranged 1n an array physi-
cally adjacent one another and comprising a plurality of
discrete non-empty pipeline subsets, including (a) a
respective discrete pipeline subset associated with each
said processor of said plurality of processors, each said
pipeline of a respective subset processing data on behalf
of the processor with which 1t 1s associated, and (b) a
discrete pipeline subset containing at least one redun-
dant pipeline, each redundant pipeline being shared by a
respective plurality of said processors, each processor of
said plurality of processors sharing at least one respec-
tive said redundant pipeline, wherein each said redun-
dant pipeline 1s located 1n said array between a respec-
tive pair of said discrete pipeline subsets each associated
with a respective processor;

responsive to detecting a failure of a first said pipeline of a

first said discrete pipeline subset associated with a first
said processor, causing data intended for processing by
said first pipeline to be processed by a said redundant
pipeline located 1n said array between said first discrete
pipeline subset and a second discrete pipeline subset.

2. The method of claim 1, wherein each said respective
discrete pipeline set associated with a processor contains N
pipelines, where N 1s greater than 1.

3. The method of claim 1, wherein said plurality of parallel
pipelines comprises N primary pipelines and a single redun-
dant pipeline, said redundant pipeline providing redundant
function 1n the event of failure of any single one of said N
primary pipelines, where N 1s greater than 1.

4. The method of claim 1, further comprising selecting a
respective one or more input sources for each pipeline using
respective iput selection logic at one or more respective
inputs to each respective pipeline, said selection logic con-
trolling the selection between a primary source and a second-
ary source of pipeline data for the respective pipeline.

5. The method of claim 4, wherein said selection logic 1s
integrated with operand source selection logic for one or more
stages of the respective pipeline.

6. The method of claim 1, wherein said plurality of parallel
pipelines perform arithmetic operations on floating point
data.

7. The method of claim 8, wherein said plurality of parallel
pipelines perform arithmetic operations on mixed data,
including tloating point data and fixed point data.

Feb. 12, 2009

8. The method of claim 1, wherein said digital data pro-
cessing apparatus 1s embodied 1n a single itegrated circuit
chip.

9. A method for operating a digital data processing appa-
ratus, comprising:

executing respective threads on each of at least one proces-

sor of said digital data processing apparatus, each said
processor comprising a respective instruction unit for
supporting execution of at least one respective thread;

performing functions of a set of pre-defined functions for
executing said threads using a plurality of parallel pipe-
lines of said digital data processing apparatus, each pipe-
line of said plurality of parallel pipelines having the
capability to perform each function of said set of pre-
defined functions on respective mnput data, said plurality
of parallel pipelines being arranged in an array physi-
cally adjacent one another; and

responsive to detecting a failure of a first pipeline of said
plurality of parallel pipelines, (a) causing data intended
for processing by said first pipeline to be processed by a
second pipeline of said plurality of parallel pipelines,
said second pipeline being physically adjacent said first
pipeline 1n said array, and (b) causing data intended for
processing by said second pipeline to be processed by a
third pipeline of said plurality of parallel pipelines, said
third pipeline being physically adjacent said second
pipeline 1n said array.

10. The method of claim 9, wherein said plurality of par-

allel pipelines comprises at least one redundant pipeline

11. The method of claim 10, wherein said plurality of
parallel pipelines comprises N primary pipelines and a single
redundant pipeline, said redundant pipeline providing redun-
dant function in the event of failure of any single one of said
N primary pipelines, where N 1s greater than 1.

12. The method of claim 9, further comprising selecting a
respective one or more mput sources for each pipeline using
respective mput selection logic at one or more respective
inputs to each respective pipeline, said selection logic con-
trolling the selection between a primary source and a second-
ary source of pipeline data for the respective pipeline.

13. The method of claim 12, wherein said selection logic 1s
integrated with operand source selection logic for one or more
stages of the respective pipeline.

14. The method of claim 9, wherein said at least one pro-
cessor 1s a plurality of processors, said plurality of processors
sharing at least one of said plurality of parallel pipelines.

15. The method of claim 14, wherein said plurality of
processors shares a redundant pipeline of said plurality of
parallel pipelines.

16. The method of claim 9, wherein said plurality of par-
allel pipelines perform arithmetic operations on floating point
data.

17. The method of claim 16, wherein said plurality of
parallel pipelines perform arithmetic operations on mixed
data, including floating point data and fixed point data.

18. The method of claim 9, wherein said digital data pro-
cessing apparatus 1s embodied 1n a single integrated circuit

chip.

	Front Page
	Drawings
	Specification
	Claims

